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ABSTRACT

An aerodynamic shape optimization method that uses

an evolutionary algorithm known at Differential Evolu-

tion (DE) in conjuction with various hybridization strat-

egies is described. DE is a simple and robust
evolutionary strategy that has been proven effective in

determining the global optimum for several difficult

optimization problems. Various hybridization strategies

for DE are explored, including the use of neural net-
works as well as traditional local search methods. A

Navier-Stokes solver is used to evaluate the various

intermediate designs and provide inputs to the hybrid

DE optimizer. The method is implemented on distrib-

uted parallel computers so that new designs can be
obtained within reasonable turnaround times. Results

are presented for the inverse design of a turbine airfoil

from a modern jet engine. (The final paper will include
at least one other aerodynamic design application). The

capability of the method to search large design spaces

and obtain the optimal airfoils in an automatic fashion is
demonstrated.

INTRODUCTION

Remarkable progress has been made in recent years in

the ability to design airfoil shapes that are optimal with

regard to certain desired characteristics. This progress
has been achieved by combining improved methods for

the simulation of complicated flow fields with efficient

numerical optimization techniques and by harnessing

the powerful capabilities of modem computers. Both

steady and unsteady Navier-Stokes and Euler solvers

have been combined with various traditional optimiza-
tion techniques (gradient-based methods, 1'2 response

surfaces, etc.) to obtain optimal airfoil designs.

More recently, there has been considerable interest in

the development of airfoil shape optimization tech-
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niques that are based on nontraditional approaches such

as evolutionary algorithms and neural networks. Various
approaces based on neural networks, 3'4 neural networks

in conjunction with response surfaces, 5'6'7'8'9 genetic

algorithms, 1°'11'12 and genetic algorithms in conjunc-
tion with neural networks, 13"14among others, have been

reported in the literature. These techniques offer several

advantages over traditional optimization methods. The
references cited above primarily deal with airfoil shape

optimization for turbomachinery applications. A com-

plete review of the literature and the comparative merits
of all these different optimization techniques is beyond

the scope of this article. The reader is refered to the ref-
erences cited as the starting point for a more exhaustive
literature search.

This paper deals with an aerodynamic shape optimi-

zation method that uses an evolutionary algorithm
known at Differential Evolution. 15 DE is a simple and

robust evolutionary strategy that has been proven effec-

tive in determining the global o_timum for several diffi-
cult optimization problems. 16 Its application in

aeronautics, however, has been rather limited. It has

been used in the predictive control of aircraft dynam-
ics. 17 It has been used in conjunction with a potential

flow solver in the inverse design of turbomachinery air-

foils; 18 the same authors have also presented a hybrid-
ized version 19 that combines DE with a local direct

simplex search method to minimize the number of

objective function evaluations using the potential flow
solver.

While population-based approaches such as DE are

robust and capable of locating the global optimum in

difficult objective function landscapes, they often suffer

from slow convergence once in the vicinity of the global

optimum and require many objective function evalua-
tions. This limits their applicability in aerodynamic

design optimization where the objective function evalu-

ations typically are obtained from high-fidelity simula-

tions (e.g., Navier-Stokes simulations) that are

computationally expensive. This paper deals with

hybridization strategies that use rapidly convergent, but

less robust, local optimization methods in conjunction

with the global and robust DE algorithm to effectively

reduce overall computing time requirements in aerody-

namic shape optimization
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VarioushybridizationstrategiesforDEareexplored,
includingtheuseof neuralnetworksaswellastradi-
tionallocalsearchmethods,A Navier-Stokessolveris
usedto evaluatethevariousintermediatedesignsand
provideinputstothehybridDEoptimizer.Onehybrid-
izationstrategythatisexploredusesa neuralnetwork
thatis trainedon thecomputationalfluid dynamics
(CFD)simulationdataandactsasa surrogateforthe
Navier-Stokessolverin theobjectivefunctionevalua-
tions.Otherstrategiesincorporatevariouslocalsearch
methodsandwill bedescribedin thefinalpaper.The
methodis implementedondistributedparallelcomput-
erssothatnewdesignscanbeobtainedwithinreason-
ableturnaroundtimes.Resultsarepresentedfor the
inversedesignof a turbine airfoil from a modern jet

engine. (The final paper will include at least one other

aerodynamic design application). The capability of the

method to search large design spaces and obtain the
optimal airfoils in an automatic fashion is demonstrated.

DESIGN OPTIMIZATION METHOD

Differential Evolution

Differential Evolution is an evolutionary strategy

(ES) developed for single-objective optimization in con-

tinuous search spaces. It is conceptually simple and pos-

sesses good convergence properties that have been
demonstrated in a variety of applications. 15 Details of

the algorithm can be found elsewhere; 15'20 only its main
features are summarized here.

The approach uses a population P that contains m n-

dimensional real-valued parameter vectors, where n is

the number of parameters or decision variables:

P = {_l ..... L.}

The population is usually initialized at generation
g = 0 in a random fashion:

P(0) = IX1(0) ..... Xm(0)}, g = 0

The population size m is maintained constant

throughout the optimization process. Differential evolu-

tion is thus similar to a (It, _,) ES 21 with bt and L equal
to m. 22 The method however differs from standard ES

approaches in several respects as described below.

As with all ES-based approaches, mutation is the key
ingredient of differential evolution. The basic idea is to

generate new parameter vectors for the subsequent gen-

eration by using weighted differences between two (or

more) parameter vectors selected randomly from the

current population to provide appropriately scaled per-

turbations that modify another parameter vector (or,

comparison vector) selected from the same population.

This idea has been implemented in various forms but the

form discussed and used here is the classical implemen-

tation where new trial parameter vectors {Yl ..... Ym}
for the next generation g + 1 are generated according to

the following mutation scheme:

For l = 1, m ; i = 1, n generate

Yl = x l(g)+F, x (g)-x (g)

1 l 1
In the above cz1 , cz2 , c_3 are distinct elements of

{1,2 ..... m} randomly selected for each l, and

F e [0,2] is a parameter that controls the amplification
of the differential variation. Other variants that either

use the difference between more than two parameter

vectors or keep track of the best parameter vector at
each generation and use it in the mutation scheme have

also been developed 15 and used with varying success in

specific applications.

DE is similar to other recombinative ES approaches
in that it also uses discrete rec'ombination. The strategy

adopted in differential evolution is to modify the trial

parameter vectors {Yl ..... Ym} to generate parameter

vectors {Zl ..... Z.m} as follows:

Forl = 1, m;i = 1, n generate

i y! with probability Pc
z l

xi(g ) with probability 1 - Pc

where Pc is a parameter that controls the proportion
of perturbed elements in the new population. Note that

the mutation and recombination operations described

above can lead to new vectors that may fall outside the

boundaries of the variables. Various repair rules can be
used to ensure that these inadmissible vectors do not

enter the population. A simple strategy, which is the one

adopted here, is to delete these inadmissible vectors and
form new ones until the population is filled.

The selection scheme used in DE is deterministic but

differs from methods usually employed in standard ES

approaches. Selection is based on local competition

only, with the modified trial parameter vector competing

against one population member (the comparison vector)

and the survivor entering the new population g + 1 as
follows:

For l = 1, m

2l if f(zl) < f(xl(g))Ycl(g + 1) = xI(g) else

where f denotes the corresponding objective function

(or fitness) value. This greedy selection criterion results

in fast convergence; the adaptive nature of the mutation

operator, in general, helps safeguard against premature

convergence and allows the process to extricate itself

from local optima. The generation counter is incre-
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mentedandtheprocessisrepeateduntilsomestopping
criteriaaresatisfied.

Hybridization Strategies

1. Using Neural Networks

While the DE algorithm is quite efficient and effective

in exploring the entire design space in search of the opti-

mal solution, the algorithm has a tendency to slow down

as it approaches the vicinity of the optimal solution.

Many subsequent function evaluations are then required

to obtain the exact optimum. The computational effort
required by these function evaluations in the vicinity of

the optimum can be nearly eliminated using a hybrid

approach that combines the DE algorithm with a neural
network that is trained on the CFD simulation data. 23

The trained neural network is then used to evaluate the

objective function with negligible computational effort

and expense instead of using the CFD solver. While

hybridization is always useful, it must be done with cau-

tion. Here the neural network is used only in the latter

stages after the entire population has evolved to the gen-

eral vicinity of the optimal solution. Thus the neural net-

work is used as a "local" response surface with validity

only in a small region of the design space. This makes it

easier to train the neural network and improves its gen-

eralization abilities. For the inverse shape optimization
problem, the neural network is trained on the sum-of-

squares error between the actual pressure computed by

the CFD solver and the target pressure at various points

on the airfoil. A three-layer feed-forward neural net-

work as shown in Fig. 1 is used here.

2. Using Local Search Methods

The final paper will include results using hybridization

strategies based on local search methods.

Constraint Handling

For use in aerodynamic design we have incorporated

an efficient constraint handling mechanism into the DE

algorithm. It is a parameter-less approach that helps

steer the algorithm away from infeasible regions of the

design space. Physical constraints (e.g: maximum air-

foil thickness) are imposed, as well as aerodynamic con-

straints (e.g. wavy surfaces). Airfoil geometries that do
not violate the constraints but for which the CFD solver

fails to converge are also deemed infeasible and treated

accordingly by the constraint handling mechanism.

Airfoil Geometry Parametrization

Geometry parameterization and prudent selection of

design variables are critical aspects of any shape optimi-

zation procedure. Since this study focuses on airfoil

redesign, the ability to represent various airfoil geome-

tries with a common set of geometrical parameters is

essential. Variations of the airfoil geometry can be

obtained then by smoothly varying these parameters.

Geometrical constraints imposed for various reasons,
such as structural, aerodynamic (e.g., to eliminate flow

separation), etc., should be included in this parametric

representation as much as possible. Additionally, the

smallest number of parameters should be used to repre-

sent the family of airfoils.

The airfoil geometry parametrization method
described in Rai and Madavan 7 is used here. A total of

13 geometric parameters were used to define the airfoil

geometry in the current study. These parameters are

listed below (see Fig. 2 for illustration):

1. Leading edge and trailing edge airfoil metal angles

(2 parameters).

2. Eccentricity of upper leading edge ellipse (1 param-
eter).

3. Angles defining the extent of the leading edge

ellipses (2 parameters).

4. Semi-minor axes values at the leading edge (2

parameters).

5. Angles defining the extent of the trailing edge circle

(2 parameters).

6. Airfoil y-coordinate values at about 50% chord on

the upper and lower surfaces (2 parameters).

7. Airfoil y-coordinate values at about 75% chord on
the upper surface (1 parameter).

8. Airfoil stagger angle (1 parameter).

This method of generating the airfoil surface provided

the necessary variations in airfoil geometry required by

the optimization procedure.

CFD Simulation Methodology

A Navier-Stokes solver was used to perform the flow

simulations (direct function evaluations) that serve as

inputs to the optimization process. The solver used is a
modified version of the ROTOR-2 computer code 24 and

solves the two-dimensional, Navier-Stokes equations

around a single airfoil in a cascade (with spanwise peri-

odic boundary conditions) for a given set of inlet and

exit conditions. Multiple grids are used to discretize the

flow domain; an inner "0" grid that contains the airfoil

and an outer "H" grid that conforms to the external

boundaries as shown in Fig. 3.

Figure 3 also shows the grid system used to discretize

the flow domain. Each airfoil has two grids associated

with it: an inner "O" grid that contains the airfoil and an

outer "H" grid that conforms to the external boundaries.

For the analyses performed here, each inner O grid has

151 points in the circumferential direction and 41 points
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in thewail-normaldirection.EachouterHgridhas101
pointsin theaxialdirectionand41pointsin the trans-

verse direction. For the sake of clarity, only some of the

grid points are shown in Fig. 3.

The dependent variables are initialized to freestream

values and the equations of motion are then integrated

subject to the boundary conditions. The flow parameters

that are specified are the pressure ratio across the turbine

(ratio of exit static pressure to inlet total pressure), inlet

temperature and flow angle, flow coefficient, and unit

Reynolds number based on inlet conditions.

Design Objective Formulation

Various design objectives can be incorporated in the

current procedure depending on the optimization prob-

lem being solved. For the inverse turbine airfoil design
shown here, the design objective function was formu-

lated The design objective function was formulated as

the equally-weighted sum-of-squares error between the

target and actual pressure obtained during the optimiza-

tion process at various locations on the airfoil.

Implementation on Distributed Parallel

Computers

In order to reduce overall design time, the procedure
has been implemented on a distributed parallel com-

puter. The results in this article were obtained on the

SGI Origin 3000 and the Cray SV1 distributed parallel

computers at NASA Ames Research Center. Parallel

implementation of the method is quite straightforward

and relies on the simultaneous computation of multiple,

independent aerodynamic simulations on separate pro-

cessors. A script-based procedure is used that invokes a

variable number of processors depending on processor
availability and the size of the population used. The

number of processors can also be adjusted as the design

proceeds. The current setup is based on a "master-slave"

arrangement, with the master handling the tasks of set-

ting up the simulations, neural network training for the

hybrid method, and farming out of the aerodynamic

computations to the other "slave" processors. Since the

aerodynamic computations are independent of each

other, no communication between the processors is

required until the computations are completed. The
slave processors then communicate their results to the

master which then performs the necessary calculations

to determine the members of the next population.

RESULTS

The design method was used in the inverse design of a

turbine airfoil with a specified pressure distribution. The

target pressure distribution was obtained at the midspan

of a turbine vane from a modern Pratt and Whitney jet

engine. Several flow and geometry parameters were

also supplied and used in the design process. The design

objective function was formulated as the equally-

weighted sum-of-squares error between the target and

actual pressure obtained during the optimization process
at 45 locations on the airfoil. Some of these results have

been presented earlier. 23

The initial design space was chosen to be quite large

to allow a wide range of airfoil shapes to be explored. A

sampling of some of the initial airfoil geometries is

shown in Fig. 4. In order to hold the CFD function eval-

uations to a reasonable number, 6 (instead of 13) design

variables were used in the initial stages of the design.

The population of 50 members were then evolved using

the DE algorithm.

The DE algorithm without any hybridization strategy

was considered first. Figure 5 shows the pressure distri-

bution for the optimal airfoil that represents the best air-

foil obtained after 13 generations using the DE

optimization method with 6 design parameters. The

algorithm is able to approach the target distribution
within about 650 function evaluations. Note that in the

early stages of evolution several of the airfoil geometries
were infeasible and hence were not evaluated by the

CFD solver, After 13 generations, the number of design

variables is increased to 13 and the population evolved

further. The optimal pressure distribution shown in

Fig. 5 was obtained after an additional 13 generations

and agrees well with the target distribution. The airfoil

geometries corresponding to the optimal designs with

both 6 and 13 design parameters are shown in Fig. 6.

The convergence history of the baseline DE

algorithm 23 is shown in Fig. 7 which plots the popula-
tion mean and variance as a function of the number of

generations. Both the mean and the variance decrease

with generation number except for the slight increase
corresponding to the switch from 6 to 13 design parame-

ters. The figure also shows that convergence of the
algorithm is slower in the vicinity of the optimal solu-

tion. This is typical of many other evolutionary algo-

rithms and highlights the need for a hybrid approach

that combines the global search and exploration capabil-

ities of the DE algorithm with other algorithms that can

converge rapidly to an optimum when initialized in the

local neighborhood. As described earlier, a different

hybrid approach to reducing overall design time was

adopted here in the DE-NN method where the popula-

tions after the first few generations (using 13 design

parameters) were used to train a neural network.

Figure 8 shows the envelope of pressure data around the

target pressure distribution that was used to train the

neural network. Note, however, that the network was

trained directly on the sum-square-error and not on the
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individualpressuredata.Thedataenvelopein Fig.8
representsthevariationofthepressuredistributionsfor
therangeof airfoilgeometriesin theneuralnetwork
trainingsetandismeanttoconveythelocalnatureof
theneuralnetworkresponsesurfaceinthevicinityofthe
optimalsolution.Thepressuredistributionfortheopti-
malairfoildesignobtainedbytheDE-NNapproachis
shownin Fig.9 andcompareswellwiththetargetand
optimalDEdesignpressuredistributions.

FINAL PAPER

Somepreliminaryresultsusingonehybridization
strategyfor theDEalgorithmarepresented.Thefinal
paperwill includeresultsusingalternativestrategies.
Additionaldemonstrationcomputationsillustratingthe
useofthemethodindirect(notinverse)designarealso
underway.
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Figure 1. Schematic of the three-layer feed-forward

neural network used in the hybrid DE-NN method.
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Schematic of a generic airfoil showing

location of control points on the airfoil surface and the

defining angles used in the parametrization of the airfoil

geometry.
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Figure 3. Representative turbine airfoil geometry and

computational grid used in the CFD simulations.
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Figure 5. Airfoil pressure loading for the optimal

design.
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Figure 4. Sampling of initial airfoil geometries.
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Figure 7. Convergence history for the baseline DE

algorithm (no hybridization strategy included).
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using the hybrid DE-NN approach.
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neural network for the hybrid DE-NN algorithm.
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