
Extreme Programming in a Research

Environment

William A. Wood and William L. Kleb

NASA Langley Research Center, Hampton VA 23681, USA

{W.A.Wood, W.L. Kleb}@LagC. NASA. Gov

Abstract. This article explores the applicability of Extreme Program-

ming in a scientific research context. The cultural environment at a gov-
ernment research center differs from the customer-centric business view.

The chief theoretical difficulty lies in defining the customer to developer

relationship. Specifically, can Extreme Programming be utilized when

the developer and customer are the same person? Eight of Extreme Pro-

gramming's 12 practices are perceived to be incompatible with the exist-

ing research culture. Further, six of the nine "environments that I know

don't do well with XP" [Beck, 2000] apply. A pilot project explores the

use of Extreme Programming in scientific research. The applicability is-

sues are addressed and it is concluded that Extreme Programming can

function successfully in situations for which it appears to be ill-suited.

A strong discipline for mentally separating the customer and developer

roles is found to be key for applying Extreme Programming in a field

that lacks a clear distinction between the customer and the developer.

Key words: XP, extreme programming, customer, scientific application,

testing, research, software development process

1 Introduction

Extreme Programming (XP), as an agile programming methodology, is focused

on delivering business value. In the realm of exploratory, long-tern:, small-scale

research projects it can be difficult to prioritize near-tern: tasks relative to their

monetary value. The assignment of even qualitative value can be particularly

challenging for government research in enabling fields for which business markets

have not yet developed. This fundamental conflict between near-tern: business

value and long-tern: research objectives is manifested as a culture clash when

the basic practices of XP are applied. A brief introduction to these problematic

practices follows.

XP places a premium on the customer/developer relationship, requiring an

on-site customer as one of its twelve practices. Both the customer and devel-

oper have clearly defined roles with distinct responsibilities. Both interact on a

daily basis, keeping each other honest and in sync. The customer focuses the

developer on the business value, while the developer educates the customer on

thefeasibilityandcostoffeaturerequests.In thecontextoflong-termresearch,
thetechnologiesbeingexploredmaybeimmatureoruncertain,yearsremoved
fromcommercialpotential.In this situation the researcher can become the only

customer, at least for the first several years, of their own development effort.

What happens to the balance of power between customer and developer when

they are the same person? Can a person serve two masters?

The government research lab environment conflicts with the pair program-

ruing and collective code ownership practices of XP because the compensation

system, based on the Research Grade Evaluation Guide[2], emphasizes individ-

ual stature. Another practice, the 40-hour week, is problematic, though perhaps

for an inverse reason than encountered in programming shops. The experience

of the present team is that only about 10 hours per week are mutually available

for joint programming, with the rest of the time absorbed by responsibilities for

other tasks or unavailable due to conflicting schedules.

Another practice that is a potential show-stopper is the requirement for sim-

ple designs. Performance is always an issue for numerical analysis, and past

experience with procedurally implemented and speed optimized algorithms has

verified the exponentially increasing cost to change the fundamental design of

elaborate codes. The lure of premature optimization for the developer is very

strong, particularly in the absence of a business-value oriented customer.

Three more of the core practices were perceived to be a poor fit with the

research environment because it was not clear how to implement them for a

science application as opposed to a business application. Continuous integra-

tion conflicts with the traditional approach of implementing algorithms in large

chunks at a time. Testing, perhaps ironically for a scientific research community,

was not commonly done at the unit level, and in fact the appropriate granularity

for testing was not evident. Finally, only the naive metaphor seemed to present

itself.

The following section discusses the existing culture at a research laboratory,

detailing the inherent conflicts with the XP values. The next section provides the

background for a pilot project to evaluate the applicability of XP for scientific

computing. The project was conducted under the auspices of a plan to explore

nontraditional but potentially high payoff strategies for the design and assess-

ment of aerospace vehicles. Specific observations concerning the implementation

of XP practices in a research programming environment are enumerated. The

results of the pilot project are then presented with conclusions drawn as to the

effectiveness of XP in the context of research-oriented programming.

2 Culture

Beck[l] presents a list of nine "environments that I know don't do well with XP."

Six of these nine are counter to the existing culture at this research center. Beck

prefaces his assertions of inapplicability with the caveat that the list is based

upon his personal experiences and that, "I haven't ever built missile nosecone

software, so I don't know what it is like." The software developed for the re-

search situation considered here is in fact intended for aerothermal predictions
on nosecones of hypervelocity vehicles, and so the present study accepts Beck's

challenge that, "If you write missile nosecone software, you can decide for your-
self whether XP might or might not work." The counter-indicators to using XP

as they apply to the present research situation are detailed in this section along
with strategies for coping with them.

Addressing the issues in the order presented by Beck, the "biggest barrier to

the success of an XP project" arises from an insistence on complete up-front de-
sign at the expense of %teering." In Eebruary 2002, NASA announced a $23.3M
award to Carnegie Mellon %o improve NASA's capability to create dependable

software." Two-week training courses in the Personal Software Process (PSP)
developed by Carnegie Mellon have already begun, complete with a 400-page

introductory textbook. The PSP assigns two-thirds of the project time to re-
quirements gathering, documenting, and design. Coding, with the possibility for

steering, is not allowed until the final third of the project. Further, significant
steering can trigger a _re-launch', where the requirements and design process is

started all over again. The present project blended PSP and XP in a 0:100%
ratio, and so fat" has not encountered any administrative consequences.

Another cultural practice at odds with XP is "big specifications." The ISO

9001 implementation at the Center includes a 45-page flowchart for software

quality assurance (LMS-CP-4754) and a 17-page flowchart for software planning
and development (LMS-CP-5528), in which only one of the 48 boxes contains
"Code and Test", located 75% of the way through. Despite threats of being ISO

non-compliant, the present project simply ignored the approved software process,
deferring the issue to when, or if, an ISO audit uncovers the discrepancy.

Beck observed, "Really smart programmers sometimes have a hard time with

XP," because they tend to "have the hardest time trading the _Guess Right'
game for close conmmnication." The members of the research teams typically

have doctoral degrees, though not in computer science. The reward structure
under which the researchers operate is based upon peer review of one's stature
in the field, leading to individual success or project management being highly

valued, whereas team membership is not as valued. Adopting XP for the first
time required a lot of trust, suppressing some long-held programming styles in

the belief that two people doing XP would be more productive than the sum of
their individual efforts.

While the adoption of XP for large teams has been a frequent subject of

debate, the present study faces the opposite problem, a small team of only two
people. Maintaining the distinct roles of programmer, customer, recorder, and

coach were perceived to be challenges to the adoption of XP. With very small
teams the literature was unclear as to which tasks could safely be performed solo

and which others would rapidly degenerate into cowb%v coding. Also, with only
two developers there would not be the cross-fertilization benefit of rotating part-

ners. Another potential problem for the small team is inter-personal conflicts.
When conmmnication turns to confrontation, there are no other team members
to play the role of mediator. Addressing these concerns required diligence in de-

lineatingrolesandaconsciousdecisionto keeptheteamfocusedon productive
work. To reign in the cowb%v coding, test-driven pair programming was used

exclusively when implementing features. Pair programming was also preferred
during refactoring, but solo refactoring was permitted when scheduling conflicts

precluded pairing and no tests were broken or added.
"Another technology barrier to XP is an environment where a long time is

needed to gain feedback." A role of a government research center is to pursue
long-term, revolutionaiy projects. Development cycles can be over a decade in
length. The feedback loop on whether or not the project is headed in a fruitful

direction can be measured in years. XP prefers steering inputs on a days-to-
weeks time frame. It remained to be seen if long-term research goals could be

recast in small, tangible increments suitable to XP's 2 3 week iteration cycles.
In practice, the research feedback time scale remains large, but for development

purposes the technology features were able to be decomposed into small iteration
chunks, following the simple design XP practice.

Beck cautions against "senior people with corner offices," because of the
barriers to conmmnication. At research centers the senior engineers typically
have individual offices, x Eurther, colleagues are spread over multiple buildings

at the local campus. Projects could also involve a collaboration with an off-site
co-worker, such as a university professor. A trip to the junk furniture warehouse

and borrowed time in a wood shop allowed for the one-to-a-cubical office layout

to be refactored into a commons-and-alcoves[3], Figure 1.

3 Background

Despite the counter-indicators to the use of XP for scientific programming needs,
the present project successfully competed for one-year funding to perform a

spike 2 evaluation of XP. The funding source had specifically solicited bids explor-
ing nontraditional methodologies for the field of aerospace engineering research

that might produce extraordinary gains in productivity or enable entirely new
applications. This evaluation of XP for a research environment was conducted
by two researchers in three phases: learning, preparing, and implementation.

Neither investigator had prior experience with XP. Learning was achieved
through a combination of personal reading 3 and sponsorship of the Modern Pro-

gramming Practices Lecture Series 4 through the co-located Institute for Com-
puter Applications in Science and Engineering. The investigators also transi-

tioned from procedural programming to object-oriented technologies, believing
that switch was a necessary, though not sufficient, prerequisite for flattening the

cost-of-change curve for software development and maintenance.

1 Or cubicles.

2 A short-term prototyping assessment.
3 Bibliographic information is provided for books [1,4 23], articles [24], and web-

sites [25 27] that were found to be helpful.
4 For a list of speakers and supporting materiM, see http://www.icase, edu/series/

NPP.

(a) Original (b) Refactored

Fig. 1. The 15 _ x 17 _ office layout transitioned from large, isolated work spaces with

desks separated by towering bookcases and joined by a narrow aisle to small isolated

work spaces employing tables and a large common area consisting of a Beowulf cluster,

a pmr programming station, a conference table, and white boards. Note: the partition

at the upper right of (b) can be moved to further isolate one or the other private work

areas and all three areas can now accommodate pair programming

In preparation for the XP experiment, environmental barriers were addressed.

The office was refactored into an open development room with copious marker

board space and a pair programming station was constructed with simultaneous

dual keyboard/mouse inputs as shown in Figure 2, connected to a 16-processor

Beowulf cluster. The development environment is: GNU/Linux operating system,

Emacs IDE, and the Ruby programming language [28, 29].

The research value to be delivered by the spike project was a software testbed

for evaluating the performance of an optimally adaptive Runge-Kutta coefficient

strategy for the evolution of an advection-diffusion problem,

_ + J,. V_ # V2_ , (1)

advection diffusion

in a multigrid context [30, 31]. Integration of Eq. (1) with application of Gauss'

Divergence theorem leads to

O

The desired Runge-Kutta strategy would optimize the damping of the high-

frequency errors in the discrete representation of the temporal evolution in

Fig. 2. Pair programming station consisting of two Herman Miller Aeron task chairs, a

60"-wide Anthro AdjustaCart, Logitech wireless keyboards and mice, Belkin keyboard

and mouse switches, and two Viewsonic 18" LCD displays supporting a merged 2,560 x

1,024-pixel desktop. The sustenance items, refrigerator, microwave, fresh-air supply,

and plants, can be seen at the right

Eq. (2), while the multigrid scheme applied to the spatial discretization serves

to alias discrete low-frequency errors into higher harmonics, which are efficiently

damped by the temporal operator.

Both investigators had independent prior experience programming related

algorithms for the advection-diffusion equation using FORTRAN. Neither investi-

gator had experience in team software development, object-oriented design, unit

testing, or programming with the Ruby language.

4 Methodology

A serious effort was made to apply the 12 XP practices by the book. As described

in Sect. 1, eight of the practices presented challenges for implementation. These

challenges were caused by perceived environmental, historical, or cultural barri-

ers.

The biggest challenge was to have an on-site customer, specifically when the

customer and developer are the same person. In the present case, the developers

werewritingsoftwarefortheirownuse.Withtwoteammembersit wasdecided
thattheindividualwiththemosttogainfromusingthesoftwarewouldserveas
thecustomerwhiletheotherindividualwouldserveasthedeveloperduringthe
planninggame.Duringcoding,bothindividualsservedasdevelopersuntilques-
tionsarose,atwhichpointoneindividualwouldhaveto answerin thecustomer
role.Thisswitchingofrolesprovedto bechallengingfortheindividualperform-
ingdualjobs.Duringtheplanninggameit wasachallengeto thinkof stories
withoutsimultaneouslyestimatingtheircost.Thegamerequiredalotofconmm-
nicationandconsciouseffortstothinkgoal-orientedandremainfocusedonend
resultswhenplayingthecustomer,ratherthanthinkingoftheworkaboutto be
performedasthedeveloper.It wasfoundthatforcingauser-orientedviewpoint
helpedto focustheresearcheffort,andit is believedthat,whiledifficultand
uncomfortable,theexplicitroleofcustomerduringtheplanninggameimproved
thevalueoftheresearchproject.Evenoutsidethecontextof a programming
assignment,a planninggamewitha customerroleisrecommendedfor other
researchprojectsasahighlyeffectivefocusingtool.

Thesimpledesignpracticewasacceptedwithskepticism,aspoorlyconceived
numericalanalysisalgorithmscanbeprohibitivelytimeconsumingto run.Past
experiencewithproceduralalgorithmssuggeststhat performanceissuesneed
to beplannedup-front.Theapproachof thepresentteamwasto includeper-
formancemeasuresin the acceptanceteststo flagexcessiveexecutiontimes,
andthento forgeaheadwiththesimplestdesignuntil theperformancelimits
wereexceeded.Onceaperformanceissuewasencountered,aprofilerwasused
to targetrefactoringsthatwouldspeedthealgorithmsjustenoughto passthe
performancecriteria.Thespeedbottleneckswerenot alwaysintuitive,andit
becameevidentthatprematureoptimizationwouldhavewastedeffortonareas
thatwerenotthechokepointswhilestillmissingtheeventualculprits(of.[32]).
Also,theadherenceto simpledesignsmadetheidentificationandrectification
ofthebottleneckseasierat theappropriatetime.

AsdiscussedinSect.2,pairprogrammingappearedtobeapoorfit, andthe
smallteamwouldsufferfromnotbeingableto rotatepairs.However,produc-
tivitygainswerein factachievedthroughpairing.Thepairpressureeffectledto
intensivesessionsthatdiscouragedcornercutting,andtheconstantcodereview
producedmuchcleaner,morereadablecodethatwasmucheasiertomodifyand
extend.Also,eventhougheachdeveloperhadover23yearsprogrammingexpe-
rience,therewasstill somecross-fertilizationoftricksandtipsthataccelerated
individualcodingrates.

Thecollectivecodeownershippracticewascountertotheestablishedpractice
at thisresearchcenterandconflictedwiththepromotioncriteria.Thepresent
teamagreedto collectivecodeownershipanddidnotexperienceanyproblems.
Thelongtermimpactofnothavingsolecodeownershipwithregardsto promo-
tionpotentialisnotyetknown.

Theresearchenvironmentisdifferentfromaprogrammingshop,inthatother
activitiesoccupymostof a person'stime,andthepresenteffortfoundonly
about10hoursperweekforpairprogramming,insteadof therecommended

40 hour practice. New functionality was always added during joint sessions in
a test driven format. With the pair-created tests serving as a safety net, solo

refactoring was permitted to increase the rate of progress. Also, disposable spikes
and framework support were occasionally conducted solo.

Unit testing was not commonly done prior to the present effort, and it was
not clear what to test, in particular the appropriate granularity for tests. Fuur

levels of fully-automated testing were implemented. Unit tests using an xUnit
framework were written for each class, and the collection of all unit tests along

with an instantiation of the algorithms devoid of the user interface was run
as the integration test, running in a matter of seconds. Smoke tests, running in

under a minute, exercised complete paths through the software including the user
interface. Full stress tests, taking hours, included acceptance tests, performance

monitoring, distributed processing, and numerical proofs of the algorithms for
properties such as positivity and order of accuracy. All levels of testing could be
initiated at any time, and all forms are automatically executed nightly.

A search for a system metaphor was conducted for a while and eventually

the naive metaphor was selected as no other analogy seemed suitable. The naive
metaphor worked well, as both the customer and developer spoke the same
jargon, being the same people.

Continuous integration was addressed by assembling a dedicated integration
machine and by crafting scripts to automate development and testing tasks. The

planning game and simple design helped pare implementations down to small

chunks suitable to frequent integration.

5 Results

The pilot project consisted of two release cycles, each subdivided into three two-

week iterations, for a total project length of 12 weeks. The estimated and actual
time spent working on stories and tasks for each iteration is listed in Table 1.

The times reported do not include the time spent on the planning game. Typical

Table 1. Work effort for two-week iterations, over two release cycles

It eration 1.1 1.2 1.3 2.1 2.2 2.3 Total
Estimated hours 19 14 15 8 17 29 102
Actual hours 22 8 8 8 30 18 94

1 1
Velocity 1 2 2 1 _ 1_ 1

lengths for the planning game at the start of each iteration were two hours. The

overall average velocity for the project was about one, and the average time per
week spent on development was about eight hours.

The team produced 2,545 lines of Ruby code, for an average of 27 lines

per hour (productivity of a pair, not individual). A breakdown of the types of

codewrittenshowsthattheaveragepairoutputwastheimplementationofone
methodwithanassociatedtestcontainingsixassertsevery45minutes.This
productivityincludesdesignandis forfullyintegrated,refactored,tested,and
debuggedcode.Priorperformancebytheteamonsimilarlyscopedprojectsnot
developedusingXPhasshownanaverageproductivityof 12linesperhour,or
24linesperhourfor twoworkers.However,thishistoricalproductivityis for
integrated,butneithertestednordebugged,code.Further,asubjectiveopinion
ofcodeclarityshowsastrongpreferencetowardthepair-developedcode.

Ofthetotalsoftwarewritten,912lineswereforproductioncode,1135lines
werefortestcode,and498lineswerefortestingscriptsanddevelopmentutili-
ties.Theproductioncodecontains120methoddefinitions,exclusiveofattribute
accessormethods.Theautomatedtestcode,bothunitandacceptance,contains
128specifictestsimplementing580assertions.A prior,non-XPprojectbythe
presentteamimplementingcomparablefunctionalityrequired2,144linesofcode,
approximatelytwiceaslargeasthecurrentproductioncode.Thereductionin
linesofcodeperfunctionalityisattributableprimarilyto mercilessrefactoring
andsecondarilyto thecontinuouscodereviewinherenttopairprogramming.

6 Conclusions

Despitecounter-indicatorsofXPbeingat oddswiththeexistingresearchsoft-
waredevelopmentcultureandtheinitialawkwardnessofseveralofthepractices,
anXPspikeprojectwassuccessfullyimplemented.Attentionto theXPrules,
blindtrustin theXPvalues,andthediligentroleplayingofthecustomerand
developerpartswerekeyto thissuccess.Theconsciousanddeliberatesepara-
tionofthecustomerrolefromthedeveloper,evenwhenembodiedbythesame
individual,wasfoundto provideabenefitto theresearchprojectin general,
beyondthescopeofthesoftwaredevelopment.This benefit was manifest as a

focusing of the research effort to tangible, targeted goals.
The team consisted of two people, and undoubtedly missed the benefits XP

brings through pair rotation. While not preferred, it was found that some refac-
toring could be safely performed solo when supported by sufficient automated

testing. This compromise was necessitated by the realities of conflicting schedules
with a part-time work commitment. Predominantly, the initial cultural counter-

indicators to using XP were found in fact to not preclude the use of XP in the
research context, although the long-term impact on promotions and prestige due
to lack of clear code ownership is not known. It is anticipated that the more pro-

lific research output enabled by XP will more than compensate for the loss of
single code ownership upon prestige in the field.

The results of the present study indicate that the XP approach to software

development is approximately twice as productive as similar historical projects
undertaken by members of the team. This study implemented functionality at

the historical rate, but also supplied an equal amount of supporting tests, which
are critical to the scientific validity of the research effort, and which were not
included in the historical productivity rates. Further, the functional code base is

about half the lines of code as would be expected from past experience, and the

readability of the code is considered to be much improved. Continual refactor-

ing, emergent design, and constant code review as provided by XP are largely

responsible for the improved code aesthetics.

References

1. Beck, K.: Extrelne Programming Explained: Embrace Change. Addison-Wesley

(2000)

2. Workforce Compensation and Performance Service: Research grade evaluation

guide. Transmittal Sheet TS-23, Office of personel Management, Washington, DC

(1976) Also available as http ://www. opm. gov/f edc3_ass/gsresch.pdf.

3. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns • Build-

ings • Construction. Center for Environmental Structure. Oxford University Press

(1977)

4. Beck, K., Fowler, M.: Planning Extreme Programming. XP. Addison-Wesley (2001)

5. Jeffries, R., Anderson, A., Hendrickson, C.: Extreme Programming Installed. XP.

Addison-Wesley (2001)

6. Succi, G., Marchesi, M., eds.: Extreme Programming Examined. XP. Addison-

Wesley (2001)

7. Newkirk, J., Martin, R.C.: Extrelne Programming in Practice. XP. Addison-Wesley

(2001)

8. Wake, W.C.: Extreme Programming Explored. XP. Addison-Wesley (2002)

9. Auer, K., Miller, R.: Extreme Programming Applied: Playing to Win. XP. Addison-

Wesley (2002)

10. Eowler, M.: Refactoring: hnproving the Design of Existing Code. Addison-Wesley

(1999)

11. Yourdon, E.: Death March: Managing "Mission Impossible" Projects. Prentice-

Hall (1997)

12. Brooks, Jr., F.P.: The Mythical Man-Month: Essays on Software Engineering.

Anniversary edn. Addison-Wesley (1995)

13. Kernighan, B.W., Pike, R.: The Practice of Programming. Addison-Wesley (1999)

14. Cockburn, A.: Surviving Object-Oriented Projects. Addison-Wesley (1998)

15. Eowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Lan-

guage. Object Technology. Addison-Wesley (2000)

16. Booch, G.: Object Solutions: Managing the Object-Oriented Project. Object-

Oriented Software Engineering. Addison-Wesley (1996)

17. Booch, G.: Object Oriented Design with Applications. Ada and Software Engi-

neering. Benjamin/Cummings (1991)

18. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Re-

suable Object-Oriented Software. Professional Computing. Addison-Wesley (1994)

19. Meyer, B.: Object-Oriented Software Construction. 2nd edn. Prentice-Hall (1997)

20. Hunt, A., Thomas, D.: Pragmatic Programmer: From Journeyman to Master.

Addison-Wesley (1999)

21. DeMarco, T., Lister, T.R.: Peopleware: Productive Projects and Teams. 2nd edn.

Dorset House (1999)

22. Highsmith, III, J.A.: Adaptive Software Development: A Collaborative Approach

to Managing Complex Systems. Dorset House (2000)

23. Machiavelli, N.: The Prince. Bantam classic edn. Bantam Books (1513)

24.Gabriel,R.P.,Goldman,R.:Mobsoftware:Theeroticlifeofcode.http://oopsla.
acm.org/oopsla2k/postconf/Gabriel.pdf(2000)ACMConferenceonObject-
OrientedProgramming,Systems,Languages,andApplications(OOPSLA).

25.http://_r_w.c2.com/cgi/wiki?ExtremeProgramming(2000)
26.http://_r_w.xprogramming,corn/(2000)
27.http://_r_w.extremeprogramming,org/(2000)
28.Matsumoto,Y.: Rubyin aNutshell:A DesktopQuickReference.O'Reilly&

Associates(2002)
29.Thomas,D.,Hunt,A.:ProgrammingRuby:ThePragmaticProgrammer'sGuide.

Addison-Wesley(2001)
30.Kleb,W.L.,Wood,W.A.,vanLeer,B.: Efficientmulti-stagetimemarchingfor

viscousflowsvialocalpreconditioning.AIAAPaper993267(1999)
31.Kleb,W.L.: OptimizingRunge-KuttaSchemesforViscousFlow.PhDthesis,

UniversityofMichigan(2003)In preparation.
32.Goldratt,E.M.,Cox,J.:TheGoal:A ProcessofOngoingImprovement.2ndedn.

NorthRiverPress(1992)

7 Biographies

Bill Wood: PhD Virginia Tech, Aerospace Engineering. 1987 Present: NASA

Langley Research Center. Currently in the Aerothermodynanfics Branch.

Bil Kleb: PhD Candidate University of Michigan, Aerospace Engineering. 1988

Present: NASA Langley Research Center. Currently in the Aerothermodynanfics

Branch.

