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A Convex Approach to Fault Tolerant Control
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The design of control laws for dynamic systems with the potential for actuator failures
is considered in this work. The use of Linear Matrix Inequalities allows more freedom in

controller design criteria than typically available with robust control. This work proposes
an extension of fault-scheduled control design techniques that can find a fixed controller
with provable performance over a set of plants. Through convexity of the objective
function, performance bounds on this set of plants implies performance bounds on a

range of systems defined by a convex huH. This is used to incorporate performance
bounds for a variety of soft and hard failures into the control design problem.

Introduction

The control design of lightly damped dynamic sys-

tems is a challenging area for incorporating fault tol-

erance. Loss of an actuator or sensor can greatly

degrade, or even destabilize, the closedqoop perfor-

mance. This is particularly true for optimal control

laws that are tuned to a specific operating condition.

Ahhough robust control can account for real paramet-

ric uncertaimy, in the case of full actuator failure the

use of broadband 100_ input uncertainty severely lim-

its loop gains, and often results in conservative control

laws.

An alternative approach is considered here that

makes use of the flexibility offered by posing control

design problems as Linear Matrix Inequalities (LMIs).

The use of LMIs in control theory has been studied

extensively in recent years. _,2 Of particular interest is

the design of linear parameter varying (LPV) control

laws, thar are implicitly gain scheduled with changes

in the plant. 3 One application of LPV control is in

the design of fault-scheduled (FS) controllers which

axe scheduled with measured fault parameters in the

system. Here we examine a modification to the FS

control design that allows for fixed controllers and re-

moves the need for griding the parazneter space.

The design technique is tested on a simple coupled

ma_ss-spring-damper system. Although quite simple

this system possess the same qualitative characteristics

as more complex flexible body systems. Contro]lers

are designed using the proposed LMI framework and

analyzed under various fault conditions. These fau/ts

include hard failure - a complete loss of an actuator

and soft failures - dynamically altered capability of an
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Control Synthesis

Much progress has been made in the synthesis of

control laws as convex optimization problems, and

software to solve such problems is becoming more

widely available. 4-_ One benefit of this approach is

that equations for the analysis of linear systems, can

be written quite naturally as linear matrix inequalities.

With the proper change of variables these analysis

equations can be transformed directly into synthesis

equations for controllers that meet the closed-loop ob-

jectives. 7 This allows multi-objective problems involv-

ing a collection H2 or H_ norms, as well as regional

pole placement, passivity, and other performance ob-

jectives.

A second, and here more significant, benefit of us-

ing LMIs to pose controller synthesis equations is that

performance criteria can be simultaneously imposed

on multiple plant models. This allows potential fail-

ure conditions to be explicitly defined in the design

process, and predictions made about performance un-

der nominal, as well as degraded conditions. For soft

failures and dynamic degradation, it is important to

guarantee performance not only at specific conditions,

but over an range of possible variations. The convex-

ity of the LMI controller synthesis equations allows

this problem of infinite constraints to be bounded by

a finite set of conditions imposed at vertex systems.

The basis of the control synthesis in this work is an

He design problem. That is, find K that minimizes

II_-I(P,K)II2, where _-l is the lower Linear FractionM

Transformation. s'9 The augmented plant model P

is partitioned with disturbance to performance path,

P.,_,, over the actuator to sensor path, P_, as P =

[P-,_' P_I T. A block diagrmn of the closedqoop sys-

tem, indicating the feedback structure of the plant,

controller, and design weightings is shown in Figure 1.

The performance requirement is defined in terms of the
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weighted transfer function from disturbances to tile
performance output. Additional paths are included in

the augmented system model to account for the cost

of control effort, weighted by _'%, and the presence

of disturbance input at the sensors, weighted by H';,.
With constant weightingsthisarrangemcnt givesthe

H2 problem essentiallythe same designparametersas

a traditionalLinear Quadratic Gaussian (LQG) con-
trol law) °

Soh,'ingthe H_ controlproblem via Pdccatiequa-

tionsis a straightforward procedure, however, it lacks
the ability to account for failure conditions in the de-

sign. Calculation of the H._ norm using LMIs involves
finding a P > 0 and Q = _T that minimizes Tr(Q),

and satisfies,

[ <,_ <o. >o (J.)

where (A,/3, C) is a realization of the closed-loop sys-

tem _-_(P, K). As an analysis LMI this is readily solved
for P and <2, however, (A, B, C) is the closed-loop sys-
tem and it contains further unknowns from the control

law. A direct expansion of (1) yields inequalities that

contain products of unknowns, and therefore is no

longer convex.
As developed in z a congruence transformation cou-

pled with a substitution of variables can restore con-

vexity with respect to a new set of unknowns. These
unknowns are (,4, B, C, D, X,Y) and are related to

the original controller (Ak, Bk, C_:,D_) and Lyapunov

term P by the following equations,

.'_ = NA_:M T + NBkCX + YBCkM T (2)

+ Y(A + BD_.C)X

J9 = NBk + YBDk (3)

0 = C_M T + DkCX (4)

b = Dk (5)

where ._4N T = (l - X] z) and P is related to X and
Y by

In these new unknowns the H2 norm condition of (1)

can be written as the equivalent problem of minimizing
the trace of Q subject to

.4x+sO +(.)r (.7 (Fl

(B,,, + s_,,,,,) r (YB_.+ #Zh,,,,)r

r Y ( > o (8)
C_X + D=_¢ C= + D_DC

D.,,, :-z),,,.b.o_,,, (9)

where the terms (.)T are implied by symmetry of the

overall matrix. As Linear Matrix Inequalities, these
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conditions represent convex constraints on the solution

space. This has two advantages. First solutions to con-

vex problems are numerically tractable, even with the

large number of unknowns inherent in an output feed-

back problem. Interior-point algorithms are available
that can soh,e such problems or show that a solution
does not exist.

The second advantage is that convex flmetions,
when evaluated over convex hulls, reach their max-

imum at a vertex point. This means that ensuring
these conditions over a infinite range of parameter vari-

ation is possible by checking only" a a finite set. of well
chosen vertex models. For example, if a set. of un-

knowns were found for multiple state input matrices,
i.e. B = {B_, B2}, then the resulting controller would

have performance guarantees not only for the systems
realized by (A, St, C,D) and (A, B._, C, D) but also for

any input matrix given by,

B(a) : aBl + (1 - a)B2, 0 < a < 1 (10)

This condition ensures tolerance of attenuation in ac-

tuator gain as well as fully failed scenarios.

Eliminating Parametric Dependence

The design method described above yields fault-
scheduled (FS) control laws. This is because even for

a constant set of solution variables (A, B, C, D, X, Y)
the controller still must be calculated by inversion of
(3)-(5), yielding

A_ = lV-l(fl- NBkCX - YBCkM T (ll)

- Y(A + BDkC)X)M -r

B_ : N-l(.#- YBZ)_) 02)

Ck = (¢- mkCX)M -r (13)

.o_ = b (14)

This solution introduces a parametric dependence in
the control law. If the input faults of the system are

available for real time implementation, then the FS

controller can be implemented. The ability to accu-
rat.ely measure faults in a system, however, is often

unrealistic. Recent work has looked at sensitivity to

errors in the scheduling parameter in an attempt to
design robust LPV controllers that will tolerate errors
in estimation of the fault condition}

Here we seek a method to find a fixed controller

that will tolerate rapid and unmeasured changes in

the condition of the plant. To do this requires enforc-
ing the performance criteria not only at the nominal

solution condition but also within a specific neighbor-
hood of that solution. Specifically, we consider systems

without disturbance to performance feed-through, i.e.
D_, = 0. This yields finite open-loop H._ norms and
strictly proper optimal controllers, i.e. /) = D_ = 0.

A second, and somewhat more restrictive assumption,

is that all fault conditions enter the plant model only

through changes in the B matrix and these changes

9

AMERICAN INSTITUTE OF AERONAITTICS AND ASTRONAUTICS



AIAA-2002-4940

can be bounded by the convex hull of a set of vertex

matrices,

B = Bo + &B, __B e Co[_,B1, _XB2,... &B,] (15)

where the convex hull is defined as,

n

i=l

Vai > O, fia_ : I;

_:I

(16)

Under these conditions the terms (/?, C, D,X,Y)

are independent of changes in B and thus remain con-

stant with failures. It is only the term ,4 that must

change with the plant changes. Normally, the term

J is held constant by corresponding changes in the

control law achieved through gain scheduling. The

alternative pursued below is to pose additional LMI

equations that explicitly account for potential changes
in A. The norm bounds will hold for the variations in

if synthesis LMIs are posed at the extrema] values

of/{. For a single failure mode B = {Bo, Bo + AB1 }

the synthesis LMIs would be

[AX+BoO+(.)T (.)T (.)_]

I + A T YA + JgC + (-)r (.) <0

B,,T (Y.B,, + bD_,) r -
(lr)

AX + (Bo + ABI)O + (.)T

fi + YABIO + A T "'"

B,T,

(.)r (.)r
(.)r YA + _c + (.)r

-I (YB,,, + J_Dw.) r

<0

(18)

[ Xl (.)ry((')r]
C_X + D:_O C_

> 0 (19)

where the variation terms involving ABI has been.

included in (18). These conditions will provide /-/2

performance with a fixed control law under both the

nominal and failed system conditions. However, the

synthesis problem is no longer convex as the product

of two unknowns, Y and C,, appear in (18).

TO work around the loss of convexity a two stage

approach is taken for the design.

• A robust fault-scheduled control law is first for-

mulated in the LMI framework. For the single

failure mode example, this means that in the syn-

thesis LMI Eq. (17) is used as is, however Eq.
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(18) is modified as fol]ows

AX + (Bo+ _&)O + (.)_
.4 + A T ...

B_r

(.)r ()r
(.)T YA + iBC + (.)T

-I (YB_,, + [?D_,_.) T
<0

(20]

• The value of matrix C, obtained from the LMI

synthesis in the first step, and referred to as Oopt,

is then fixed and a second robust LMI problem

is solved, using the degrees of freedom in the re-

maining variables. The synthesis LMI is defined

by Eqs. (17) and (19), along with a modified gq.

(18).

.4X + (B o "_ /kB1)Oopt + (.)T

i + YAB_Oo_,, + A T "'"

B_r,

(.)r (.)r ]
(.)T YA + BC + (.)T <0

-I (YB,_ + _lP_,,) T

(21)

Although this sacrifices the ful]sense of optimality

in the robust controller it does provide a quantitative

measure of the performance degradation incurred in

accommodating the failure case. Furthermore, it al-

lows a different set of objectives to be imposed in the

second stage. This can be used to enforce as a con-

straint the minimal performance level under failure,

and optimize on the nominal, or if desired constrain

the nominal and optinfize for failure conditions. The

freedom to tailor a problem formulation to meet such

design criteria has powerful engineering significance,

and is one of the advantageous of feasible LMI design

methods versus more conventional robust and optimal

control.

Defining Vertex Points

Thus far, the paper has described an LMI-

based synthesis procedure for designing fixed fault-

accommodating controllers which can handle actuator

faults/failures. The formulation covers both hard fail-

ures, in the form of the total loss of one actuator, as

well as soft failures, which represents a degradation

in the actuator performance, e.g., loss of bandwidth.

As mentioned earlier, the input uncertainties in the

LMI franmwork need only be considered at the ver-

tex points of the parameter space. This is because

convex functions, when evaluated over convex hulls,

reach their maximum at a vertex point. The num-

ber of vertex points generally depends on the nature

of the fault/failure being considered. To elaborate on
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this, consider an example of a system with two inputs.
First consider a hard failure case, wherein one act,ua-

tor has totally failed. There are three distinct vertex
points that need to be considered in this case. These

are: (a) Both actuators functional; (b) Actuator one
h_ failed; and (c) actuator two has failed. Mathemat-

ically, these case are described by the following input
matrices.

Bo=So; S, =[0 B_]; 5'2=[Bo _ 0] (22)

where Bo_ and B_ represent the first and second col-
umn of Bo, respectively. The soft failure case is a bit
more invoh,ed because both gain and phase changes

are possible. As mentioned previously, one of the as-

sumptions of the proposed approach is that all fault
conditions enter the plant through the state input ma-

trix B. To accommodate this condition, an arbitrary
number of vertex points are chosen for each actuator

failure. Moreover, corresponding to each vertex point,

an LTI filter (with arbitrary dynamics) is selected and
placed in series (at the input) with the plant. These
filters represent designer-specified soft failure modes

(note that even hard failures may be defined as well) ,
whose combination determines the degree of soft fail-

ure allowed in the design process. One possible way
of implementing the soft failure filters is to increase

(for each actuator) the number of the plant's inputs

to the number of independent soft failure filters for
that actuator by duplicating the proper column of the

Bo matrix. In the two-input example, lets assume that
for each actuator two independent soft failure modes

are being contemplated. Assume that these failures
are represented by filters Fll(s), Fr2(s), F21(s), and
F22(s). Let/5(s) denote the plant with inflated inputs.

Here, /5(s) is identical to the nominal plant except it

has two additional inputs, identical to the nominal in-

puts, i.e., B = [Bo Bo]. Now, an augmented plant
/5(s) may be defined by placing the filter dynamics in

series with/5(s).

P(s) =/_(s)diag[F11(s) Fr2(s) F21(s) F.22(s)] (23)

Now that the soft failure filter dynamics are included

in the plant dynamics, the vertex points for the LMI

design may be defined by appropriately choosing a
constant distribution matrix Li for each verte× i to

incorporate a specific failure scenario. Note that the
matrix Li must be dhnensioned such that it reduces

the number of inputs back to the original value.

Example Problem

The proposed fault tolerant method is demonstrated
on a simple mass-spring-damper system. As shown

in Figure 3, three serially connected masses compose
the system model, with the following parameters: each
mass is 1 Kg, each spring is 100 N/m, and each dan_per

is 0.25 Ns/m. A velocity sensor is assumed to provide

velocity measurements from mass no. 1. Two force

actuators are ,assumed, at mass no. 1 and 3, to provide
control forces. The model can be explicitly written,

[0'0] I 0 0

The failures of interest are soft failures, in terms

of gain attenuation or phase changes, in any single

actuator, up to hard failures, i.e., a full loss of any

single input. The spring-mass system is assumed to
be disturbed by aa_ unmeasured force applied to the
second mass. The goal of the controller is to minimize

the H2 norm from this input to a performance metric
which is the sum of the the displacement and velocity

of the third mass. This represents the ability of the

disturbance to drive energy into the system. The opti-

mization is balanced by including both sensor noise, as
additional weighted disturbances, and a control effort
penalty. This arrangement is shown in the augmented

plant of Figure 1.
To accommodate both soft and hard failures in the

same parameterization, first the two inputs of the sys-
tem were increased to four by duplicating the two

nominal inputs. Then, failure dynamics filters were
appended to the plant at the inputs. Two types of

failure dynamics were included. The first filter dy-
nannies was chosen to represent aa_ actuator dynamics

with significantly reduced bandwidth, i.e., a low pass
filter, as follows:

2rr

v_ (s) - s + 2_ (25)

The second failure filter was chosen to be the comple-

ment of the first (in the lower frequencies) along with
a roll-off at 10 Hz.

207r
&(s) = (1 - S(s))-- (26)

s + 207r

It is interesting to note that the combination of the two
filters gives the dynamics of a fully functional actua-
tor with a roll-off at 10 Hz. Hence, these dynanfics can

serve to represent both soft and hard failures. More-

over, three distinct design criteria may be considered
with this formulation. They are designs for soft fail-

ure only, hard failure only, and soft and hard failures.
The frequency response coverage provided by the ap-

pended failure dynamics, in terms of gain attenuation
and phase changes, for each design criteria is illus-

trated in Figure 4. As expected, the hard failure case
(Figure 4(a)) allows for actuator gain variations be-
tween 0 and 1 with no variations in phase. The soft

failure ease does allow for phase variations as well as
some gain variations. The combined case (Figure 4(c))

allows both gain and phase variations.
Let the columns of the expanded B matrix corre-

spond to input no. 1 with F1(s), input no. 1 with
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Fy(s), input no. 2 with Fl(s), and input no. 2 with
Fy(s), respectively. Then, for the hard failure case,
there were three vertex points considered; the nora-

inn with no failure (all 4 columns of the B matrix

in tact), and one with each of two actuators removed

from the B matrix (the first two columns of the B
matrix nulled for actuator no. 1 failure, and the last

two columns nulled for actuator no. 2 failure). When

equations (17)-(21) are solved for each of these four

conditions they provide a fixed control law with guar-
anteed//2 performance for hard or soft failure of any

one actuator. The bounds are actually guaranteed over

a convex shape as shown in Figure 2, where the origin
is the nominal condition and each independent axis

represents the percentage degradation in a given actu-
ator. The control design imposes an H2 norm bound

for every system within this space of potential failures.
For the soft failure only case, there were five vertex

points; the nominal with no failure (all 4 columns of
the B matrix in tact), and one with each soft failure

mode of an actuator (one coiumn of the 5' matrix ze-
roed out at a time). For the combined soft and hard

failure case, there were seven vertex points considered.

These are those included in the soft failure case along
with two additional vertex points for total failure of

one of the two actuators (the first two colmnns of the
B matrix nulled for actuator no. 1 failure, and the last

two columns nulled for actuator no. 2 failure). Note
that the guarantees indicated for the hard failure case

(over a convex shape similar to Figure 2) also holds
for the soft failure and combined cases as well.

Numerlcal Results

Three separate control laws were designed. For
reference an He optimal controller was designed via

Riccati equations for the nominal unfailed system. A
fault-scheduled (FS) controller was also designed b),

solving the LMI conditions of (17)-(20). The imple-
mentation of this controller depends upon measure-

ment of the failed condition of the plant as it must

be interpolated in real-time. Finally, using the LMI
conditions of (17)-(21) a fixed controller was designed.

Although based in part on the solution for the nom-

inal plant FS controller, this fixed control law had
provable performance bounds over the entire range of

single-fault failures. The LMI problems were posed
using "YALMIP",6 which is an LMI parser for use in
the MATLAB environment. The LMI conditions were

solved using "SeDuMi", s a sparse convex so/ver for
MATLAB environment.

The three design cases u,ere _rst eva]uated for three
failure cases: hard failures only, soft failures only, and
combined hard and soft failures. The results are sum-

marized in Table 1-3. In all three cases, it is observed

that although the straight//2 control law has the best

performance on the nominal system, this performance
is not maintained for most of the failure conditions.

In fact, in all three cases the H2 controller is unstable
with the failure of actuator no. 1. This is to be ex-

pected as its design does not consider any failures. The

predicted (design) H2 norms for the FS and convex-
hull controllers are typically more conservative than

their actual norms, mainly due to the use of a single

Lyapunov matrix in the multi-vertex LMI formula-
tion. This conservatism is easily observed in Tables

1-3. The performance of the FS and convex-hull con-

trollers are slightly worse than the H_ for the nominal
plant (no failure). However, they are fully stable and

maintain a good performance through different soft
and hard failure scenarios. As mentioned before, the

FS controller requires real-time measurement of the
failure-state, and thus is not feasible for most appli-

cations. The fixed gain convex-hull control law has a

higher bound than the FS control law, but the perfor-
mance is similar (and in many cases even better) and

it has the significant advantage of not requiring knowl-
edge on the failure state of the system. These results
are also iIIustrated graphicalIy in Figures 5-7. Here,

singular value plots of the transfer function from dis-

turbance to performance output are provided for the

three failure scenarios. A significant degradation in
the first mode attenuation is observed in the straight
H_ control, particularly for hard and combined failure

modes. Also, both the FS and convex-hull controllers
exhibit a loss of performance in the second mode for
the hard and combined failure modes. This is the cost

of ensuring robustness against total failure in any one
actuator. It should be emphasized that these plots

may only be used as a ways of observing trends in
the frequency domain, and are not suitable to indicate

closed-loop instabilities. Hence, closed-loop insatiabil-
ities with the H., controller, although there, cannot be

seen in these plots.

Finally, a Monte Carlo analysis of the performance
of these three controller were performed. A set of three

analysis, one for each type of failure considered, were
conducted. In each of these analysis, 500 points were

randomly chosen in the convex hull formed by the ver-

tex po'mts in each design, and then the H._ norms were
computed. The results of these analysis are summa-

rized in Figure 8, wherein histograms of the//2 norms
are illustrated for each of the three controllers and each

of the failure cases. The range of variations for e_ach

controller is provided in the legends. In the combined
failure scenario, the range of variations of the H2 norm
with the straight H._ controller is 0.26 - oc, while that

range with the convex-hull controller is 0.40 - 0.46.

These results clearly demonstrate the effectiveness of
the proposed fault-accommodating control technique.

Concluding Remarks

Control of flexible systems subject to degradation or
total failure of actuators was considered. A Linear Ma-

trix Inequality framework was developed to synthesize
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LQG FS Convex

Design 0.261 0.656 0.681

No Failure 0.261 0.359 0.477

Act.-l_ Hard Failure ec 0.624 0.501

Act.-2, Hard Failure 1.787 0.608 0.443

Table 1 Predicted bounds and closed-loop H_

norms under hard-failure design.

a fixed-gain controller that had known H2 norm per-

formance bounds under a variety of input faults. These

faults included soft failures, in the form of gain at, ten-

uation and phase changes, as well hard failures. The

proposed approach was applied to the design of fault-

tolerant control of a simple three degrees-of-freedom

system. The benefits of the fault-tolerant design over

conventional//.2 approach were clearly demonstrated.

Finally, the proposed approach can easily be extended

to deal with sensor failures/faults.
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Design

No Failure

Act.-1, Soft-fail (low)

Act,.-I, Soft-fail (high)

Act.-2, Soft-fail (low)

Act.-2, Soft-fail (high)

LQG FS Convex
0.261 0.356 0.627

0.261 0.267 0.345

0.389 0.267 0.332

oo 0.276 0.363

0.336 0.270 0.368

0.369 0.290 0.361

Table 2 Predicted bounds and closed-loop H2

norms under a soft-failure design.

Design

No Failure

Act.-1, Soft-fail (tow)

Act.-1, Soft-fail (high)

Act.-1, Hard Failure

Act.-2, Soft-fail (low)

Act.-2, Soft-fail (high)

Act.-2, Hard Failure

LQG FS Convex

0.261 0.745 0.810

0.261 0.338 0.439

0.389 0.294 0.439

oo. 0.519 0.433

oo 0.599 0.464

0.336 0.487 0.439

0.369 0.474 0.444

t.787 0.622 0.463

Table 3 Predicted bounds and closed-loop H2

norms under a combined-failure design.

Sensor Noise

_- _ Control Effort

w
Disturbance _ _ J, Performance __

i

j .........

'- 2
i .... i

Fig. 1 Block diagram of the H2 problem formula-
tion

Z

Actuator 2

100%_

100% Actuator 1

Fig. 2 Schematic of bounded failure-space, i.e.

the range of actuator attenuation for which design
bounds remain valid.
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Fig. 3 Schematic of the example sprlng-mass-

damper system
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(c) Potential Actuator Combined Failures

Fig. 4 Frequency Response of single actuator

(Nominal x's) under random failures (solid lines)

for hard soft and the combined failure cases.
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(c) Fixed Convex-Hull design

Fig. 5 Performance of open and closed-loop sys-

tem under nominal and cases of full hard failure.
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(c) Fixed Convex-Hull design

Fig. 6 Performance of open and closed-loop sys-

tem under nominal and cases of full soft failure.
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(c) Fixed Convex-Hull design

Fig. 7 Performance of open and closed-loop sys-

tem under nominal and cases of full combined fail-

ure.
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(a) Randomly sample systems with hard failures
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(b) Randomly sample systems wiLh soft failures
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(c) I'tandomly sample systems with combined failures

Fig. 8 Monti-Carlo style performance of random

sampled systems under various failure conditions.
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