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Comparison of Evolutionary (Genetic)

Algorithm and Adjoint Methods for

Multi-Objective Viscous Airfoil Optimizations

T. H. Pulliam,* M. Nemec_ T. Holst} and D. W. Zingg_

A comparison between an Evolutionary Algorithm (EA) and an Adjoint-Gradient

(AG) Method applied to a two-dlmenslonal Navier-Stokes code for airfoil design is pre-
sented. Both approaches use a common function evaluation code, the steady-state explicit
part of the code,ARC2D. The parameterization of the design space is a common B-spline

approach for an airfoil surface, which together with a common griding approach, restricts
the AG and EA to the same design space. Results are presented for a class of viscous

transonic airfoils in which the optimization tradeoff between drag minimization as one
objective and lift maximazation as another, produces the multl-objectlve design space.

Comparisons are made for efficiency, accuracy and design consistency.

Introduction

HE main focus of this paper is a comparison

of multi-objective optimization between an Evo-

lutionary Algorithm (EA) and an Adjoint-Gradient

(AG) method applied to a two-dimensional Navier-

Stokes code for airfoil design. The EA used here

is a genetic algorithm approach(1) coupled with two

multi-objective optimization methods: a Weighted-

Objective-Function (WOF) Pareto optimal set tech-

nique and a Dominance-Pareto-Front (DPF) tech-

nique. The AG approach is described in detail by

Nemec (3) and is coupled with the WOF technique for

multi-objective optimization. Both approaches use a

common function evaluation code, the steady-state ex-

plicit operator from ARC2D,(s) which employs second-

order finite-differences, artificial dissipation, and the

Spalart-Almaras turbulence model. The parameteriza-

tion of the design space is taken from the B-spline ap-

proach(2) for an airfoil surface, which together with a

common griding approach, restrict the AG and EA to

the same design space.

A characterization of the two distinct approaches to

multi-objective optimization would be:

1. The EA (6)(7)(1) method, which using a genetic al-

gorithm to produce a subtle interaction of explorations

and exploitations of a design space.

2. The AG method, employing a discrete-adjoint and

flow-sensitivity approach(2) (3) which attempts to esti-

mate the slope of the landscape of a design space and

follow the terrain to find local minima or maxima.

Both approaches have been extensively applied to
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single-objective optimization problems. The focus

here will be on multi-objective optimization, which

has an obvious application to multi-disciplinary prob-

lems 1. The comparison for the two approaches will

be made for the computation of a Pareto optimal set

("Pareto front"), of a two-objective optimization (one

a function of lift, the other a function of drag) within

the framework of a two-dimensional viscous transonic

airfoil computation. In the context of Pareto opti-

mal sets; the "Pareto front" is the set of solutions

found in the design space which are non-inferior or

non-dominate in both objective measures, i.e., there

is no feasible solution which would decrease one ob-

jective without causing a simultaneous decrease of the

other. The set of minimal non-dominated solutions

constitute the "Pareto front".

The two approaches employed to compute the

Pareto front are:

WOF: The method of Weighted Objective Func-

tions,(5) sometimes called Aggregating Functions. In

this method, the two objectives are combined with

weights (summing to 1.0) to form a new objective

function. The aggregated objective is then optimized

as a single objective-optimization. This method has

been demonstrated to work well for non-convex design

spaces, but suffers for convex spaces and is subject to

difficulties in the choice of weights, especially if the ob-

jectives are not properly scaled. Fortunately, for our

application, the design space is non-convex and well

scaled.

DPF : A Dominance Pareto Front technique,(9) (6)(7)

typically applied in conjunction with an EA algorithm,

employs non-dominated sorting and selection coupled

with a genetic algorithm to move a population toward

1The number of references on Evolutionary

Algorithms as applied to multi-objective opti-
mization are too numerous to present here, see

http://www.lania.mx/Scoello/EMO O/EMO Obib.html prob-
lems for a large repository of papers on the subject.
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the Pareto front. This method does not suffer from

convexity or scaling problems.

Design Process

PTIMIZATION of a two-dimensional viscous
transonic airfoil is studied where the objective is

to develop a class of airfoils which have trade offs be-

tween minimization of drag and a maximization of lift.

The flow conditions and modeling characteristics (e.g.

turbulence model, numerical algorithm) are described
below.

Design Space

A B-spline representation of the airfoil geometry is
employed, details can be found in Nemec.(3) Briefly,

the airfoil surface is defined by a number of control

points connected by a B-spline function representation

based on a default surface and grid system. Typi-

cally 10 control points are distributed over the upper

and lower surface, labeled D1 through D10 (starting

at the lower surface trailing edge and going clockwise

to the upper surface trailing edge). The control points
along with angle of attack (a) constitute the design

space parameters for the optimization. As the opti-

mization progresses, perturbed control points produce

a new geometry (the default grid is locally reclustered

in the surface normal direction) combined with a new

a defining a candidate design, which is driven by the

various optimization processes defined below. The pa-

rameterization of the design space together with a

common volume grid procedure, restricts all the op-

timization approaches to the same design space.

Objective Space

A common function evaluation code is used for all

the methods, the explicit steady-state operator from

ARC2D (s) (a second-order finite-difference, artificial

dissipation code which uses the Spalart-Almaras tur-

bulence model). The code produce values of lift, Cz,

and drag, Cd, which are in the fitness functions defined
below.

In the case of EA optimization, the viscous Navier-

Stokes code ARC2D is used to compute a flowfield, in

particular the lift and drag, and performs the function

evaluation. For the AG optimization approach the

Newton-Krylov approach of Pueyo, (4) which employs

the same explicit steady-state operator from ARC2D,

is used for the flow field integrator. Consistency be-
tween the two methods was verified and identical flow

solver parameters were used. In fact, both approaches

have identical fixed point solution spaces when pro-

vided identical parameterizations and input data.

Fitness Function

Fitness functions (one for lift Fz and one for drag

I'd) are

Fz = (1- Cz/Cz*)2 + Fd = (1 - Cd/C ) 2 +

where the targets are Cz* = 0.55, C_ = 0.0095 and ,_
is a thickness constraint designed to increase when a
minimum thickness distribution is violated. The thick-

ness constraint limits are chosen so that the design can

achieve the target Cz*, but not C_. Further details for
these objective functions can be found in Nemec.(3)

Adjoint Gradient Method

HE AGmethod is described in detail in Ne-
mec,et.al. (2) and Nemec. (3) The Newton-Krylov

algorithm consists of four modules: 1) design variables

and grid perturbation, 2) flow solver, 3) gradient com-

putation, and 4) optimizer. The design variables are
based on the B-spline parameterization of the airfoil.

The discretized Navier-Stokes and turbulence model

equations are differentiated by hand, and the adjoint

method is used to compute the objective function gra-

dient. The preconditioned GMRES method is applied

to solve not only the flow equations, where it is used

in conjunction with an inexact-Newton method, but

also the adjoint equation. The accuracy of the gradi-

ent is verified by comparison with gradients based on

the finite-difference and flow-sensitivity methods. The

optimization problem is cast as an unconstrained prob-

lem by using quadratic penalty functions. A BFGS

quasi-Newton optimizer is used to solve the uncon-

strained problem. A detailed evaluation of the algo-
rithm was performed (3) with emphasis on the accuracy

and efficiency of the gradient computation and the ef-

ficiency of the flow solver. The resulting algorithm

provides a highly efficient approach for aerodynamic

design problems governed by the Navier-Stokes equa-

tions. The preconditioning strategy, in particular, has

been optimized for both the flow solution and the gra-
dient evaluation. Nemec (3) provides a detailed devel-

opment and validation of the design process for single

and multi-point airfoil optimization.

Genetic Algorithm

A generational genetic algorithm(1) is used to drive
the EA. It combines a number of ranking and

selection techniques, mutations and perturbations per-

formed on the exploited "chromosomes" producing the
exploration set for the next generation. In the case of

the DPF results, a chromosome archival strategy is

also used, where new points found on the Pareto front

are stored in an accumulation file producing a well de-

fined front. The archival file can be used in the ranking

process and also as part of the selection pool. The flow
code ARC2D (s) is used to evaluate a chromosome for

it's fitness to be used in the next generation's rank-

ing. Efficiency is obtained on a parallel computing

system by parallel evaluation of each chromosomes fit-
ness. Most of the results shown for the EA cases were

performed on 16, 32 or 64 processors of a workstation

cluster, where the number of processors chosen was

equal to the population size of the optimization.
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Briefly, a set of "chromosomes" ("population") con-

sisting of the design parameters "genes" is first pro-

cessed by the objective function, ARC2D, producing

"fitness" values (Fz, Fd). The "chromosomes" are then

ranked by their "fitness," a new intermediate genera-

tion is selected from the current "population," using
a number of selection algorithms (e.g. tournament

selection, where 3 randomly chosen "parents" com-

pete based on ranking, the winners surviving to form

the intermediate generation). The intermediate gen-

eration is then processed by cross-over and mutation

strategies to produce the the new generation of "chro-

mosomes". The genetic algorithm process is repeated

until convergence. Convergence is hard to define for

algorithms of this type. Typically, convergence of a

genetic algorithm is assumed when the objective func-

tion ceases to improve, although this is not always a

good measure, since the genetic algorithm can wan-

der around for a rather long time, until new region

of convergence is found. There are a number of ge-

netic algorithm parameters involved, such as, number

of "chromosomes" in a generation, probability of se-

lection, mutation, cross-over, and convergence criteria.

The genetic algorithm parameters were chosen to op-

timized the convergence of the EA, see Holst and
Pulliam.(1) Also, in the context of the objective func-

tion ("fitness"), a flow solver, such as ARC2D, involves
a large number of input variables controlling accuracy,

convergence of the flow computation, physical model-

ing etc. In the results presented below, we freeze the

flow solver (ARC2D) parameters, except where noted,

so that the design space has consistency over the var-

ious optimizations

Optimization Processes

HE two Pareto front calculation techniques are
combined with the optimization algorithms to

produce three Pareto optimization methods: AG-

WOF, EA-WOF and EA-DPF.

AG-WOF: The AGis coupled with the WOFto

produce a Pareto front. The two objective functions

Fz, Fd are combined to form an aggregate objective

function F = Wz * Fz + Wd * Fd with a set of weighting
coefficients:

{(Wz, Wd): (0.99, 0.01), (0.90, 0.10), (0.80, 0.20),

(0.70, 0.30), (0.60, 0.40), (0.55, 0.45), (0.50, 0.50),

(0.40, 0.60), (0.45, 0.55), (0.30, 0.70), (0.20, 0.80),

(0.15, 0.85), (0.10, 0.90), (0.05, 0.95), (0.01, 0.99)}

The AG optimization method is then applied to the

aggregated objective to find optimal results for discrete

points on the Pareto front.

EA-WOF : The EA is coupled with the WOF using

the same weighting procedure as AG-WOF.

EA-DPF : The EA is applied with the DPF to pro-

duce the Pareto front directly. The Pareto dominance

approach of Goldberg (9) is employed to establish rank-

ing for the EA. In this case, the Pareto front will be
defined as a set of discrete points which in some sense

represent an equivalence to WOF set of results. This

is only an appropriate analogy for non-convex simple
fronts.

Results

ESULTS are presented for a viscous airfoil op-
timization of lift and drag. The flow conditions

are a Mach number, M_ = 0.7, and a Reynolds num-
ber, Re = 9 × 106. The angle of attack, a, is one of

the design variables. A C-grid consisting of 201 by 45

points is used.

Pareto Front Comparison

Figure 1 shows the computed Pareto fronts from

the three approaches. Results from AG-WOF may

be considered the "true Pareto front," since the

AG results are driven to a zero gradient at conver-

gence. The large symbols refer to the specific results

for the various weighting ratios as given above. The

EA-WOF results compare well with the "true Pareto

front," except in the region of large Wz weighting

where the objective function Fz goes to zero. This

region is sensitive, since without the drag constraint,

the maximized lift problem (Fz = 0) is ill-defined (an

infinite number of airfoils can satisfy the optimiza-

tion). In general, the EA-WOF results show excellent

agreement with the AG-WOF results. Results from

EA-DPF are also a good approximation to the "true
Pareto front" and produce a well populated set of op-

timizations along the Pareto front. In fact, one of the

strengths of the EA-DPF method is the automatic
development of a large class of optimization results,

which can be evaluated by the designer. On the other

hand, when the gradient can be formed (a difficult

task in general, but possible as demonstrated in Ne-

mec(3)), the AG-WOFmethod can more efficiently

obtain specific designs, i.e., in the case of non-convex
Pareto fronts.

A selection of the weighing coefficients is indicated

in Figure 1, with black lines pointing to cases where

AG-WOF and EA-WOF produce similar results, red

AG-WOFand blue EA-WOFarrows where they

differ, and a single blue arrow at {Wl, Wd} =

{0.02,0.98} a point added to the EA-WOFcase

to fill in the results in that region. The results

from EA-DPF consist of about 500 points along the
Pareto front, fairly well distributed, and demonstrate

a strength of the dominance approach, i.e., no weight-

ing choices have to be made to produce a reasonable
front.

Figure 2 shows a comparison of -Cz, (we plot neg-

ative lift to emphasize the minimization aspect of the

optimization) against Cd for the three methods. Spe-

cific values of Cz, Co, O_, F/, and Fd are shown in Tables
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Fig. 1 Pareto Front Calculation

1 and 2 for the AG-WOF and EA-WOF methods.

The results from EA-DPF are too numerous to show 0.012

in a table format and will be discussed in more detail

below. For the two similar approaches AG-WOF and

EA-WOF the comparison are excellent for Cz and Cd.

The objective functions Fz and Fd are also is good

agreement. Somewhat interesting is the disparity in 0.0115

terms of a and by inference the details of the designed

airfoil shapes. A further discussion of these results is

given below.

Work Estimates O_
0.011

Before proceeding with further comparisons, we will

discuss timing or work estimates. The three design op-

timization methods (AG-WOF, EA-WOF and EA-

DPF ) are composed of similar components (they all

use the same explicit function evaluation of ARC2D,

design space representations and grid generation), but 0.01o5

they have enough dissimilar components (e.g., ad-

joint gradient in contrast to genetic algorithm pro-

cess) to make detailed CPU timings unreliable and

misleading. Results for the AG-WOF cases will be

presented in terms of design cycles, which include,

the design space variations, flow solves, gradient (ad- Fig. 2
joint) evaluations and optimizer steps. Work esti- ods.
mates from the EA-WOFand EA-DPFcases are

/W I = 018

W I - 0.5
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Lift-Drag comparison for the three meth-
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Table 1 Table 1: AG-WOFResults

I I IF I
0.99 0.5494 0.01211 0.286 0.0000 0.0754

0.90 0.5439 0.01203 0.264 0.0002 0.0713

0.80 0.5371 0.01195 0.243 0.0009 0.0671

0.70 0.5291 0.01187 0.221 0.0023 0.0631

0.60 0.5194 0.01178 0.193 0.0044 0.0592

0.55 0.5137 0.01174 0.180 0.0059 0.0571

0.50 0.5073 0.01169 0.166 0.0079 0.0550

0.45 0.5000 0.01164 0.152 0.0104 0.0527

0.40 0.4915 0.01158 0.135 0.0136 0.0503

0.30 0.4693 0.01145 0.090 0.0242 0.0447

0.20 0.4346 0.01127 0.023 0.0467 0.0375

0.15 0.4080 0.01115 -0.007 0.0693 0.0328

0.10 0.3680 0.01099 -0.055 0.1117 0.0268

0.05 0.2955 0.01074 -0.140 0.2159 0.0189

0.01 0.1321 0.01040 -0.261 0.5781 0.0100

Table 2 Table 2: EA-WOF Results

IW, I c, I cd I I F, I Fd I
0.99 0.5491 0.01245 2.123 0.0000 0.0961

0.90 0.5437 0.01221 1.884 0.0004 0.0814

0.80 0.5361 0.01197 0.406 0.0011 0.0683

0.70 0.5284 0.01194 1.333 0.0024 0.0668

0.60 0.5194 0.01186 1.309 0.0044 0.0630

0.55 0.5120 0.01175 0.712 0.0064 0.0579

0.50 0.5079 0.01170 0.434 0.0078 0.0558

0.45 0.4949 0.01167 1.000 0.0119 0.0539

0.40 0.4894 0.01162 1.063 0.0145 0.0524

0.30 0.4695 0.01149 0.984 0.0242 0.0470

0.20 0.4338 0.01128 0.420 0.0474 0.0379

0.15 0.3978 0.01111 0.192 0.0789 0.0312

0.10 0.3687 0.01010 -0.003 0.1109 0.0272

0.05 0.2814 0.01069 -0.115 0.2395 0.0167

0.01 0.1402 0.01037 -0.275 0.5561 0.0094

given in terms of generations, which include, de-

sign space variations, flow solves, and genetic algo-

rithm processing. Work estimates for design cy-

cles and generations are given in terms of explicit
ARC2D evaluations, this is the time it takes to form

the steady state right-hand-side in ARC2D (RHS-

Evals ). The AG-WOF requires approximately

1,000 RHS-Evalsper design cycle, while EA-

WOFand AG-WOFrequire approximately 10,000

RHS-Evalsper generation. Typically 100 design

cycles are used for complete design using AG-

WOFresulting in 100,000 RHS-Evalsper design.

In contrast, EA-WOFrequires about 300 genera-

tions for a design, resulting in 3,000,000 RHS-Evals,

a factor of 30 times that of an AG-WOF design.

These are just ballpark estimates. Part of the time

advantage of AG-WOF over EA-WOF comes from

the efficiency of the Newton Krylov algorithm used

for the flow solver and adjoint solution, compared to

the approximate factorization time integration used

by ARC2D. Typically, the Newton Krylov solver is

an order of magnitude faster per Navier-Stokes solu-
tion compared to the default approximate factoriza-
tion solver in ARC2D.

Another aspect of the work associated with each

of these methods are the requirements on the flow

solver. The AG-WOF method requires complete con-

vergence of the flow solver at each design cycle, about
10 orders of magnitude drop in the flow solver resid-

ual. It also requires a 3-4 order of magnitude drop in

the gradient as a design convergence criteria. Smart

restart strategies, in some cases, reduce the work re-

quired for subsequent designs along the Pareto front.

For the EA results, shown here, the flow solver

residual is converged 10 order of magnitude as above,

although this is not a requirement. In fact, partial

convergence of the flow solver (ARC2D) can be used

(especially in the early stages of the design). A 3-4

order of magnitude drop in residual of the flow solver

is sufficient for a design. This can reduce the work of

the EA designs by as much as a factor of three.

Parallelization

One advantage of the EA processes is its embarrass-

ingly parallel nature. For example, if a population

size of 32 is employed, each chromosome set can be

parsed out to a separate processor on a 32 processor

parallel system and simultaneously evaluated. This re-

sults in a direct linear scalability of processing and can

make up for the factor of 30 between AG-WOF and
EA-WOF- in wall clock turn around time. The

AG-WOFprocess could also be parallelized, where

different weights of the WOF Pareto front could be

solved simultaneously. Parallelization also provides a

degree of efficiency for the EA-DPF method, where

multiple design points are simultaneously computed
for approximately the same work. In fact, the amount

of work for the EA-DPF results shown in Figure 1 is

equivalent to two EA-WOF results (i.e. two weight-

ing choices), and produces over 500 distributed points
over the Pareto front.

Comparison of AG-WOF and EA-WOF

We focus now on a detailed comparison between

AG-WOF and EA-WOF for one point in the Pareto

front computation. The WOF approach is applied in

both cases for each point generated on the front, and,

in general, except near Wz = 1.0, the results from each

method compare quite well. The Wz = 0.5, Wd = 0.5

case is chosen for comparison and typifies the other
results.

The left side of Figure 3 shows the convergence for

AG-WOF in design cycles for the total fitness func-

tion, F, the lift coefficient, Cz, the drag coefficient,

Cd, angle of attack, a (one of the design variables),

and two other design variables (the control points near
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the trailing edge), D1 and D10. The right side of

Figure 3 shows similar convergence results for EA-

WOF in generations. The final values are shown in

the plots for each of the results. Except in the case of

a and the design variables, both method converge to
consistent values.

Obviously, the convergence path of each method
is different and specific comparisons would be fruit-

less. Instead, certain characteristics should be noted.

The results for F in AG-WOF are somewhat noisy
(due to activation of the thickness constraints, see (3)),

but do show a steady convergence. In contrast, EA-
WOF shows a rapid convergence of F (we are ac-

tually showing the F from the best chromosome in

the EA which is guaranteed to be a monotonically de-

creasing function). Lift convergence is very consistent

between the two methods, which is to be expected

since the lift objective function is a strong forcing con-

straint. More interesting is the convergence of a and

the two design variables, D1 and D10. As noted above,

angle of attack a and the trailing edge region are the

slowest to converge in both methods. Approximately,

for AG-WOF, a steadily decreases, while for EA-

WOF, a converges in distinct steps. Simultaneously,

the two design variables, D1 and D10 steadily increase
for AG-WOF and also for EA-WOF.

Some insight into the convergence process can be

found in Figure 4. Here we show the convergence

for AG-WOF of the gradient and also the computed
trailing edge deflection angle as a function of design

cycles. The gradient shows slow convergence for 90

design cycles and then rapid convergence over the

last 10 design cycles. The trailing edge deflection

angle converges in a similar manner, although it does

start it's rapid decent at about 70 design cycles.

This trade-off in the design space between the trail-

ing edge deflection angle and angle of attack make the

EA-WOF results slow to converge to the final a, D1

and D10 of the "true Pareto front", i.e. the AG-

0.025

-_ AG-WOF

:Ol

c_= 0.4348
i i i i

-0"00585 0.9 0.95 1 1.05

X

Fig. 5 Designed airfoil comparison for AG-
WOF and EA-WOF, Wl = 0.5

WOF results. Figure 5 compares the airfoil surface

obtained with the two methods. The general airfoil

shape, leading edge, thickness, and camber compare
well for both of the methods. The main differences

occur near the trailing edge and are indicative of the
slow convergence of EA-WOF for angle of attack and

trailing edge deflection angle.

The results for the other weightings are very similar
to the Wz = 0.5 results presented above. The larger

Wz weightings converge the slowest and therefore

have the largest deviation from the AG-WOF results.

Based on Figure 1, the two weighting methods (AG-

WOF and EA-WOF) converge to the same Pareto

front. Details in regions such as the trailing edge do

not compare as well.

This slow convergence of the trailing edge region,

and by inference the angle of attack, a, is typical

of all the results. It may be a difficulty created by

the choice of the design space parameterization or just

a consequence of the Newton-like performance of the
AG-WOFmethod, see Nemec. (3) It could also in-

dicate a flat region in the design space, where the

AG optimization slowly converges until the gradient

converges. Such a region would also slow down an EA,

which would be good at getting into the flat region, but
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have difficultly in the later stages of finding an absolute

extrema. The EA-WOF method relies on an explo-

ration (somewhat stochastically) of the design space

and suffers greatly in relatively flat design spaces.
On the other hand AG optimization would have more

difficulty than an EA in noisy design spaces, (since
AG relies on smooth gradients), and multi-modal de-

sign spaces, (where AG could get stuck in a local but

not global extrema).

Pareto Front Results From EA-DPF

The true strength of the EA approach for multi-

objective optimization, is not in the area of a

Weighted-Objective approach, rather it is in the com-

putation of the total Pareto front in one total design

integration -EA-DPF. Results for the EA-DPF are

presented in Figure 6. The development of the Pareto

front is shown after 5 10 and 100 generations. The

results at 600 generations are declared converged by
virtue of the lack of movement of the Pareto front. In

fact, the Pareto front was fairly well established by

about 400 generations, but to ensure the final devel-

opment another 200 generations was computed. The

complete search design space is shown as points. The

search space is a plot of results from all the generations

and shows all the locations in design space visited by
the EA. Also shown is the "true Pareto front" from

AG-WOF. Convergence of EA-DPFis rapid (ap-

proximately 100 generations ) over most of the front.
The front fills out and converges more slowly in the

high Fz region. These results were obtained in approx-

imately 6,000,000 evaluations which is a factor of 60

larger than a single AG-WOF design, but only a fac-

tor of 5 times more expensive than a Pareto front com-

putation using the AG-WOF approach which pro-

duced approximately 15 points along the front. The
final Pareto front shown for EA-DPF contains 500 in-

dividual designs and although some regions are more

densely populated than others the entire curve is well

represented. The EA-DPFapproach does not rely

upon a set of weightings and is a more hands off

approach to finding a Pareto front. It still suffers

from some of the poor convergence exhibited in EA-

WOF for probably the same reasons.

The EA-DPFapproach takes advantage of the

economy of scale available because of the paral-

lel nature of the computations. Multiple function

evaluations (ARC2D runs) can be processed simul-

taneously across processors and thereby cover up

much of the cost inherent in the EA as compared to

AG optimization. The wall clock times can actually

be less for a parallelized EA approach relative to a

no-parallel AG approach, although parallelization of

AG-WOF for multiple weightings could be employed
also.

Figure 7 shows comparisons of results from AG-

WOF at weightings Wz -- 0.01, 0.20, 0.50, 0.80, respec-

tively, with results taken from the EA-DPF Pareto

front at points very close in fitness space to the EA-

WOF values. In Figure 6, we have marked the lo-

cations of the comparisons, e.g. CASE Wz -- 0.20.

Also shown are the convergence characteristics of the

ARC2D runs made to compute the analysis. In gen-
eral, the results compare quite well in terms of basic

airfoil shape, aerodynamic loads (Cz, Cd, coefficient of

pressure, CB) and designs. The main difference is again
in the trailing edge region and the trade off between

trailing edge deflection angle and angle of attack.

Conclusions

ETAILED comparisons of three approaches for
multi-objective airfoil optimization have been

presented. In terms of the approach to comput-

ing a Pareto front, the two similar methods, (AG-

WOF and EA-WOF ) produce consistent fronts and

designs. The third method EA-DPF also produces a

consistent front and is able to compute a large number

of design points on the Pareto front for a reasonable

cost. In general, the designs obtained are consistent

across the approaches and except in the trailing edge

region, they represent similar optimal designs.

The main purpose of this paper was to demonstrate

the applicability of an EA approach for optimization
and Pareto front computation and to contrast its per-

formance and results with an AG approach. It was

not to cast one method as being superior to another.

Even within the rather restricted class of airfoil design

using Navier-Stokes, there will be occasions where one
method will be more appropriate than another based

on speed or efficiency issues. The AG method is obvi-

ously more efficient than an EA approach on a point

for point basis of the WOF for a Pareto front calcu-

lation. The AG does involve significant programming

to develop a solver for the adjoint and a proper gra-

dient operator. When this can be accomplished an

AG approach will be superior and is a very capable

and useful design tool. On the other hand, if the

model (flow solver, design parameterization, etc) re-

quire significant modifications, the computation of the

gradient may require significant recoding and analysis.

The EA approach requires little if any modification to

an existing flow solver and the actual genetic algorithm

processing of chromosomes requires trivial additional
work.

There are other issues which may favor the EA, but

we have not explored or addressed them here. These

include multi-modal design spaces and non-smooth

design spaces. Future work could concentrate on char-

acterizing the two approaches for design problems with

these characteristics (if we can find such problems!).

Finally, we may conclude that measuring conver-

gence based on the achieved level of the objective

function for AG-WOF is be misleading. The objec-

tive function converges rapidly while the gradient is
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slow to converge except in the last 10% for the op-

timization, see Figures 3 and 4. In the case of an

EA optimization, the only measure of convergence is

the objective function, and it's convergence is similar
to the AG results. Therefore, we may also conclude

that in the absence of a measure on the gradient, the

best we can hope for in an EA optimization is to get

close to the extrema. One could argue, though, that

this would be sufficient since other influences, (such

as, design space approximations, flow solver error, and

gradient error in an AG ), could produce larger design

differences than lack of convergence of the optimiza-

tion. This should be the subject of future studies,

where such errors are investigated for the influence on

d) Case WI = 0.80

Comparison of AG-WOF and EA-DPF

the final design and design tolerances can be estab-
lished.
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