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Abstract. Software testing is typically an ad hoc process where human

testers manually write many test inputs and expected test results, per-

haps automating their execution in a regression suite. This process is

cumbersome and costly. This paper reports preliminary results on an

approach to further automate this process. The approach consists of

combining automated test case generation based on systematically ex-

ploring the program's input domain, with runtime analysis, where exe-

cution traces are monitored and verified against temporal logic specifica-

tions, or analyzed using advanced algorithms for detecting concurrency

errors such as data races and deadlocks. The approach suggests to gen-

erate specifications dynamically per input instance rather than statically

once-and-for-all. The paper describes experiments with variants of this

approach in the context of two examples, a planetary rover controller

and a space craft fault protection system.

1 Introduction

A program is typically tested by manually creating a test suite, which in turn

is a set of test cases. An individual test case is a description of a test input

sequence to the program, and a description of properties that the corresponding

output is expected to have. This procedure seems complicated but ultimately

unavoidable since for real systems, writing test cases is an inherently innovative

process requiring human insight into the logic of the application being tested.

Discussions with robotics and space craft engineers at NASA seems to support

this view. However, an equally widespread opinion is that a non-trivial part of

the testing work can be automated. In [3] is described a case study, where an

8,000 line Java application was tested by different student groups using different

testing techniques. It is conjectured that the vast majority of bugs in this system

that were found by the students could have been found in a fully automatic way.

The paper presents reflections and preliminary work on applying low-budget



automatedtestingtoidentifybugsquickly.Thepapershallbeseenasaposition
statementoffuturework,basedonexperimentsusingourtestingtoolsoncase
studies.

Wesuggestaframeworkforgeneratingtestcasesinafullyautomaticwayas
illustratedbyFigure1.Foraparticularprogramtobetested,oneestablishesa
testharnessconsistingoffourmodules:a test input generator module, a property

generator module, a program instrumentation module and an observer module.
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Fig. 1. Test case generation (test input generation and property generation) and run-

time analysis (instrumentation and observation).

The test input generator automatically generates inputs to the application, one

by one. A generated input is fed to the the property generator, which auto-

matically generates a set of properties that the program should satisfy when

executed on that input. The input is then fed to the program, which executes,

generating an execution trace. The observer module "observes" the executing

program, checking its behavior against the generated set of properties. That is,

the observer takes as input an execution trace and the set of properties generated

by the property generator. The program itself must be instrumented to report

events that are relevant for monitoring that the properties are satisfied on a par-

ticular execution. This instrumentation can in many cases be automated. The

test input generator and the property generator are both written ("hard-wired")

specifically for the application that is tested. This replaces manual construction

of test cases. However, the instrumentation and observer modules are generic

tools that are re-used on different applications. In the rest of this paper we use

the term test case generation to refer to test input generation and property gen-

eration, and the term runtime analysis to refer to instrumentation as well as

observation.

The above described framework was applied to two case studies, a planetary

rover controller and a space craft fault protection system. In each case the sys-

tem properties were expressed in temporal logic. For the rover controller, test

cases were generated using a model checker and the properties generated were

specific to a single test case. For the fault protection system, test cases were gen-



eratedbyasmallprogram1,anduniversal correctness properties were manually
constructed.

Property generation is the difficult step in this process. We are investigating

problem characteristics and tradeoffs between the two approaches used in the

studies. The approach of generatingtproperties specific to a single test case is

more novel and will be investigated further.

The paper is organized as follows. Section 2 outlines the abstract framework

for test case generation that we have tried to adhere to. Section 3 describes

the runtime analysis techniques. Sections 4 and 5 describe the two case studies.

Finally Section 6 concludes the paper and outlines how this preliminary work

will be continued.

2 Test Case Generation

This section presents, in abstract, the test case generation framework. As men-

tioned earlier, we consider test generation as consisting of test input generation

and property generation.

2.1 Test Input Generation

In practice today, the generation of test inputs for a program under test is a time-

consuming and mostly manual activity. However, test input generation naturally

lends itself to automation, and therefore has been the focus of much research

attention - recently it has also been adopted in industry [21,25,6,10]. There are

two main approaches to generating test inputs automatically: a static approach

that generates inputs from some kind of model of the system (also called model-

based testing), and a dynamic approach that generates tests by executing the

program repeatedly, while employing criteria to rank the quality of the tests

produced [20,24]. The dynamic approach is based on the observation that test

input generation can be seen as an optimization problem, where the cost function

used for optimization is typically related to the code coverage (e.g. statement or

branch coverage). The model-based test input (test case) generation approach

is used more widely (see Hartman's survey of the field [12]). The model used for

model-based testing is typically a model of expected system behavior and can

be derived from a number of sources, namely, a model of the requirements, use

cases, design specifications of a system [12] - even the code itself can be used to

create a model (e.g. symbolic execution based approaches [19,21]). As with the

dynamic approach, it is most typical to use some notion of coverage of the model

to derive test inputs, i.e., generate inputs that cover 'all transitions (or branches,

etc.) in the model.

To construct a model of the expected system behavior can, however, be a

costly process. On the other hand, generating test inputs just based on a spec-

ification of the input structure and input pre-conditions can be very effective,

while typically less costly. We propose to use a model checker to traverse the

space of possible valid inputs, in order to generate test inputs. We describe the



inputmodel as a nondeterministic program that describes all valid inputs, and

then we use the model checker to traverse the state space of this program. We

also assert, as the property the model checker should check for, that no such

test input exists - this causes the model checker to produce a counterexample

whenever a valid test input has been generated and from this counterexample

trace we then produce the test input. It is important that various techniques for

searching the state space should be available since this gives the flexibility to gen-

erate a large array of test inputs to achieve better coverage of the behavior of the

system under test. For test input generation we use the Java PathFinder model

checker (JPF) that analyzes Java programs [26] and supports various heuristic

search strategies (for example, based on branch coverage [11] or random search).

In Section 4.2 we show how this model checker is used to generate test inputs

for the Mars K9 rover.

The most closely related work to ours is the Korat tool [2] that generates test

inputs from Java predicates, but instead of model checking they use a dedicated,

efficient, search strategy. The use of the counterexample capability of a model

checker to generate test inputs have also been studied by many others (see [18]

for a good survey), but most of these are based on a full system model, not just

the input structure and pre-eonditions as suggested here.

2.2 Property Generation

As mentioned earlier, the ideal goal is from a particular test input to generate

properties that can be checked on executions of the program on that input. More

precisely, assume a particular program that we want to test and the domain

Input of inputs. Then we have to construct the following objects. First of all, we

need to define what is the domain of observable behaviors. We shall regard the

executing program as generating an execution trace in the domain Trace, where

a trace is a sequence of observable events in the domain Event. We must define

a function:

execute : Input -+ Trace

that for a given input returns the execution trace generated by the program when

applied to that input. Defining the domain Event and the function execute in

practice amounts to instrumenting the program to log events of importance. The

resulting execution trace will then consist of these logged events. Obviously we

also need to define the domain Property of properties that are relevant for the

application and a relation: _ C_ Trace x Property that determines what traces

satisfy what properties. %Ve say that (a,_) E _ , also written as a _ _, when

the trace a satisfies the property _. EssentiMly what is now needed is a function
translate:

translate : Input --_ Property-set

that for a given input returns the set of properties that it is regarded as relevant

to test on the execution of the program on that input. A well-behaved program

satisfies the following formula:

Vi E Input. V_ E translate(i) - execute(i) _



Our experience is that temporal logic is an appropriate notation for writing prop-

erties about the applications we have investigated, and which will be studied in

subsequent sections. For a particular application one needs to provide the in-

strumentation (execute) and the property generator (translate), which generates

a set of temporal logic properties for a particular input. We shall discuss each of

these aspects in connection with the case studies.

3 Runtime Analysis

Runtime analysis consists of instrumenting the program and observing the exe-

cution of the instrumented program. The runtime analysis modules consist of a

code instrumentation module, that augments the program under test with code

that generates an event log, and an observer module chat evaluates the event

log for conformance to desired properties. The event log can be transmitted via

inter-process communication or stored as a file. This allows for running an in-

strumented executable remotely and with little impac_ on the performance of

the system under test.

In our case studies we used two different runtime analyzers: the commercial

tool DBRover, based on an extension of the Temporal Rover tool [6] and the

research tool JPaX [14,1]. These systems will be described in the following.

The architecture of the JPa,X runtime analysis framework is designed to al-

low several different event interpreters to be easily plugged into the observer

component. In the test studies two event interpreters were used: one algorithm

analyzes temporal logic properties, as already discussed, and the other concur-

rency properties. These algorithms are discussed below.

3.1 Instrumentation Framework

Instrumentation takes a program and the properties it is expected to satisfy and

produces an instrumented version of the program that when executed generates

an event log with the information required for the observer to determine the

correctness of the properties. For ,]PAX we have implemented a very general and

powerful instrumentation package for instrumenting Java bytecode.

The requirements of the instrumentation package include power, flexibility,

ease of use, portability, and efficiency. We rejected alternative approaches such

as instrumenting Java source code, using the debugging interface, and modi-

fying the Java Virtual Machine because they violated one or another of these

requirements.

It is essential to minimize the impact of the instrumentation on program ex-

ecution. This is especially the case for real time applications, applications that

may particularly benefit from this approach. Low-impact instrumentation may

require careful trades between what is computed locally by the instrumentation

and the amount of data that need be transmitted to the observer. The instru-

mentation package allows such trades to be made by allowing seamless insertion

of Java code at any program point.



Codeis instrumentedbasedonaninstrument specification that consists of

a collection of predicate-action rules. The predicate is a predicate on the byte-

code instructions that are the translation of a Java statement. These predicates

are conjunctions of atomic predicates that include predicates that distinguish

statement types, presence of method invocations, pattern-matched references to

fields and local variables and so on. The actions are specifications describing the

inserted instrumentation code. The actions include reporting the program point

(method, and source statement number), a time stamp, the executing thread,

the statement type, the value of variables or an expression, and invocation of

auxiliary methods. Values of primitive types are recorded in the event log, but

if the value is an object a unique integer descriptor of the object is recorded.

This has been implemented using Jtrek [5], a Java API that provides lower-

level instrumentation functionality. In general, use of bytecode instrumentation,

and use of Jtrek in particular, has worked out well, but there are some remaining

challenges with respect to instrumenting the concurrency aspects of program

execution.

3.2 Observer Framework

As described above, run time analysis is divided into two parts: instrumenting

and running the instrumented program, which produces a series of events, and

observing these events. The second part, event observation (see Figure 2), can

be split into two stages: event analysis, which reads the events and reconstructs

the run-time context, and event interpretation. Note that there may be many

event interpreters.

To minimize impact on the program under test, log entries contain minimal

contextual information and the log entries from different threads are interleaved.

Event analysis disentangles the interleaved entries and reconstructs the context

from them. The contextual information, transmitted in internal events, include

thread names, code locations, and reentrant acquisitions of locks (lock counts).

The event analysis package maintains a database with the full context of the

event log. This allows for writing simpler event interpreters, which can subscribe

to particular event types made accessible through an observer interface [9] and

which are completely decoupled from each other.

Each event interpreter builds its own model of the event trace, which may

consist of dependency graphs or other data structures. It is up to the event

interpreter to record all relevant information for keeping a history of the events,

since the context maintained by the event analysis changes dynamically with the

event evaluation. Any information that needs to be kept for the final output, in

addition to the context information, needs to be stored by the event interpreter.

If an analysis detects violations of its rules in the model, it can then show the

results using the stored data and context information such as code locations,

thread names, etc.
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Fig. 2. The observer architecture.

3.3 Temporal Logic Monitoring

Temporal logic in general, and Linear-time Temporal Logic (LTL) in particular,

has been investigated for the last twenty )'ears as a specification language for

reactive systems [22]. LTL is a propositional logic with the standard connectives

A, V, -4 and -_. It furthermore includes four temporal operators: Dp (always p),

0p (eventually p), p5/q (p until q - and q has to eventually occur), op (in next

step p), and four dual past-time operators (always p in the past, p some time in

the past, p since q, and in previous step p). As an example, consider the future

time formula [](p --4 0q). It states that it is always the case ([3), that when

p holds, then eventually (0) q holds. LTL has the property of being intuitively

similar to natural language and capable of describing many interesting properties

of reactive systems.

Metric Temporal Logic (MTL) extends LTL so that every temporal operator

can be augmented with a relative-time or real-time constraint. Hence, for exam-

ple, p Uc<5 q means p must be true until a future time, at most 5 c real-time

units in the future, where q must hold. Here c is some clock. Similarly p L/<5 q

requires q to be true at most 5 cycles in the future, using the underlying state, or

cycle based semantics to define the notion of a cycle. As mentioned, we have ex-

perimented with two systems that perform temporal logic monitoring: DBRover

[6] and JPaX [14,1].

The DBRover Temporal Observer The DBRover is a MTL monitoring

tool, based on the TemporalRover code generator [6]. DBRover extends MTL



withtwoformsofparametrization:multi-instancing,whichallowsforaruleto
beindependentlyvalidatedperinstanceofanobjectclass,process,or thread,
andparametrizationbasedontimeseriesdatavalues[7],whichenablesthe
verificationofpropertiessuchastemporalstabilityandmonotonicity.It consists
ofaGUIforeditingtemporalassertions,agraphicalLTL/MTLsimulator,andan
executionengine.TheDBRoverbuildsandexecutestemporalrulesforatarget
programorapplication;at runtime,theDBRoverlistensforeventmessages
from the target applicationand evaluatescorresponding temporal assertions.

The JPaX Temporal Observer With respect to temporal logics, we have

implemented several specialized algorithms in JPaX: traversing the execution

trace either forwards or backwards, based on either rewriting or automata gen-

eration, implemented in either Java or Maude [4]. We next briefly sketch one

of these algorithms and refer the interested readers to more elaborated descrip-

tions. Efficiency of runtime analysis algorithms is always an important aspect of

our research, even if the observer operates off-line. A crucial observation is that

one can design more efficient algorithms if one focusses on segments of temporal

logics rather than on the entire logic. Thus, we were able to develop optimal

algorithms for future time and for past time temporal logics separately. We do

not regard this segmentation as a problem in practice, because in our experience

so far one rarely or never uses both future and past time operators in the same

requirements formula. The algorithm we are going to describe monitors future

time temporal logic formulas and is entirely based on rewriting technology. The

idea is to maintain a set of monitoring requirements as future time LTL formulas

and modify them accordingly when a new event is emitted by the instrumented

program. If one of these formulas ever becomes false then it means that that

formula has been violated, so an error message is generated and an appropriate

action is taken. Four rewriting rules, inspired from known recurrences of tem-

poral operators, transform the formulas whenever a new nonterminal event e is

received (and four others not mention here are called on terminal events):

(oF){e} _ F,
(I-1F){e} -+ F{e} A 7]F,

(0F){e} -+ F{e} V OF,

(Y 5/F'){e} -+ F'{e} V (F{e} A F U F')

The formula F{e}, for some formula F, is the (transformed) formula which

should hold next, after receiving the event e. For example, for OF to hold now,

where the first event in the remaining trace is e, either F must hold now (F{e}),

or OF must again hold in the future, thus postponing the obligation. Using

memoization (or hashing) techniques provided by advanced rewriting engines

such as Maude, the simple rewriting algorithm above performs well in practice.

We were for example able to monitor 100 million events in less than 3 minutes

on a formula [](9 --+ (-_r) L/y) stating a safety policy of a traffic light controller

(yellow should come after green). The interested reader is referred to [15,16] for

proofs of correctness, complexity analysis and evaluation of this algorithm.



A secondapproachto buildingLTLobserversbasedonautomataconstruc-
tionisfoundin[16].Arewriting-basedalgorithmformonitoringpasttimeLTL

requirements formulas has been presented in [13], which is quite different from

the one for future time LTL. A dynamic algorithm approach to monitoring past

time LTL formulas is presented in [17].

3.4 The JPaX Concurrency Analyzer

Multi-threaded programs are particularly difficult to test due to the fact that

they are non-deterministic. A multi-threaded program consists of several threads

that execute in parallel. A main issue for a programmer of a multi-threaded

application is to ensure mutual exclusion to shared objects. That is: to avoid data

races where one thread writes to an object while other threads simultaneously

either write to or read the same object. Multi-threading programming languages

therefore provide constructs for ensuring mutual exclusion. To ensure mutual

exclusion on a shared object, a thread can acquire a lock before accessing the

object, releasing it after. If other threads re:quire the same lock when accessing

the object, mutual exclusion is guaranteed. If threads do not acquire the same

lock (or don't acquire locks at all) when accessing an object then there is a

risk of a data race. The Eraser algorithm [23J can detect such disagreements by

analyzing single execution traces. The Eraser algorithm has been implemented
in the JPaX tool.

Deadlocks can occur when two or more threads acquire locks in a cyclic

manner. As an example of such a situation consider two threads T1 and T2

both acquiring locks A and B. Thread 7"1 acquires first A and then B before

releasing A. Thread T_ acquires B and then A before releasing B. This situation

poses a deadlock situation since thread T1 can acquire A whereafter thread T2

acquires B, where after both threads cannot progress further. In JPaX we have

implemented an algorithm for detecting such deadlock situations. It builds a

lock graph, where nodes are locks and edges represent the lock hierarchy. That

is, for the above example, there will be an edge from A to B and another edge

from B to A. Hence for this example the graph contains a cycle, and a cycle

represents a potential deadlock situation. This algorithm yields false positives

(false warnings) and false negatives (missed deadlocks). In [1] an extension to

this algorithm is described that reduces the number of false positives. JPaX's

concurrency analysis has been integrated with the DBRover, where deadlock

results are graphically displayed as UML message sequence charts.

4 Case Study 1: A Planetary Rover Controller

Our first case study is the planetary rover controller K9, and in particular its

executive subsystem, developed at NASA Ames Research Center - a full account

of this case study is described in [3]. The executive receives plans of actions that

the rover is requested to carry out, and executes these plans. First we present

a description of the system, including a description of what plans (the input
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Plan

Node

Block

NodeList

Task

-_ Node

-+ Block [ Task

--+ (block

NodeA_r

:node-list (NodeList) )

Node A ttr -_

Condition --+

(task

NodeAttr

: action Symbol

[:tan]
[:duration Duration Time])

:id Symbol

[:start-condition Conditio_

[:end-condition Condition]

[:continue-on-failure]

(time StartTirne EndTime)

(block

:id plan

:continue-on-failure

:node-list (

(task

:id drivel

:start-condition (ti_8 +l +5)

:end-condition (time +I +30)

:action BaseMovel

:duration 20

)

(task

:id drive2

:end-condition (time +i0 +16)

:action BaseMove2

:fail

)

)

)

Fig. 3. Plan grammar (left) and an example of a plan (right).

domain) look like. Then we outline how plans (test inputs) can be automatically

generated using model checking, and finally we describe how for each plan a set

of temporal logic properties can be automatically generated, that the executive

must satisfy when executing the plan.

4.1 System Description

The executive is a multi-threaded system (8,000 lines of Java code) that receives

flexible plans from a planner, which it executes according to a plan language

semantics. A plan is a hierarchical structure of actions that the rover must

perform. Traditionally, plans are deterministic sequences of actions. However,

increased rover autonomy requires added flexibility. The plan language therefore

allows for branching based on conditions that need to be checked, and also for

flexibility with respect to the starting time and ending time of an action. We give

here a short presentation of the (simplified) language used in the description of

the plans that the rover executive must execute.

Plan Syntax A plan is a node; a node is either a task, corresponding to an

action to be executed, or a block, corresponding to a logical group of nodes.

Figure 3 (left) shows the grammar for the language; we should note that all the
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node attributes, with the exception of the node's id, are optional. Each node

may specify a set of conditions, e.g., the start condition (that must be true at

the beginning of the node execution) and the end condition (that must be true

at the end of the node execution). Each condition includes information about

a relative or absolute time window, indicating a lower and an upper bound on

the time. The continue-on-failure flag indicates what the behavior will be when

node failure is encountered.

The attributes fail and duration were added to the original plan syntax to

facilitate testing of the executive. That is, during testing using test case gen-

eration, the real actions are never executed since this would require operating

the rover mechanics. The :fail and :duration attributes replace the actions

during testing. The fail flag for a task specifies the action status after execution;

the duration specifies the duration of the action. Figure 3 (right) shows a plan

that has one block with two tasks (drivel and drive2). The time windows here

are relative (indicated by the '+' signs in the conditions).

Plan Semantics For every node, execution proceeds through the following

steps: (1) Wait until the start condition is satisfied; if the current time passes

the end of the start condition, the node times out and this is a node failure.

(2) The execution of a task proceeds by invoking the corresponding action. The

action takes exactly the time specified in the :duration attribute. Note that

this attribute during testing replaces the actual execution of the action on the

rover. The action's status must be fail, if :fail is true or the time conditions are

not met; otherwise, the status must be success. If the action's status indicates

failure, we have a task failure. The execution of a block simply proceeds by

executing each of the nodes in the node-list in order. (3) If the time exceeds the

end condition, the node fails.

On a node failure, when execution returns to the sequence, the value of the

failed node's continue-on-failure flag is checked. If true, execution proceeds to

the next node in the sequence. Otherwise the node failure is propagated to any

enclosing nodes. If the node failure passes out to the top level of the plan, the

remainder of the plan is aborted.

4.2 Test Input Generation

Figure 4 shows the Java code, referred ¢o as the universal planner, that we used

to generate plans (i.e., test inputs for the executive). We exploit nondeterminism

(i.e., choose methods) to systematically generate all the possible plans (up to

a given number of nodes specified by nNodes) that have the structure specified

by the grammar in Figure 3; we also use nondeterminism to generate the data

values for the time conditions (up to a given value specified by tRange). The

assertion in the program specifies that it is not possible to create a 'qealid" plan

(i.e., executions that reach this assertion generate valid plans). Vte used the JPF

model checker to explore the (finite) state space of the generated input plans (i.e.,

JPF model checks the universal planner). We used different search strategies to
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c/ass L_liversalPlanner { ...

static i_t nNodes = 0;

static ir_ tRange = 0;

static void Plan(int run, int tr) {

nNodes = nn; tZange = tr;

Node plan = UniversalNode() ;

prlnt (plan) ;

assert (false) ;

}

static Node Uni_L_ode () (

if (nNodes == 0) zetuzn r_ll;

if (chooseBool()) mst_n _wll;

if (chooseBool())

return UniversalTask ();

return UniversalBlock () ;

)

static Node UniversalTask() {

L_i,._saL_t _ibates {);

Symbol action = new Symbol();

boolean fail = c,hooseBool () ;

int duration = c_hoose(tRange) ;

Task t =

new Task(id, action, start,

end, continueOnFailure,

fail, duration} ;

nNodes-- ;

zeturn t;

)

static Node UniversalBlock () {

UniversalAttributes ();

n_x_es - -;

ListOfNodes i = _ ListOfNodes () ;

for (Node n = Universa_q]de () ;

n != null; n = Univ_rsalNode () )

l .pushEnd (n) ;

Block b = _ Bl_k(id, !, sta_t, _nd,

continueCr_ai lure) ;

ret-_m b;

)

static Symbol id;

static TimeCondition start, end;

static boolean continueOnFailure;

static Unive_rsalAttrmbutes () {

id = _ Symbol();

int __im__!= cbmose(t_nge)"

int time2 = timel + choose(tRange);

start = r*Bw TimeCondi t ion (time l , time2) ;

timel = _se(tRange) ;

tin_2 = timel + choose(t-Rar_e);

e/xl = r*m_ TnmeCondition(timel,time2);

cor_tinueOnFailure = chooseBool () ;

}

Fig. 4. Universal planner that generates input plans for system under test.

find multiple counterexamples (to the assertion); for each counterexample we

ran JPF in simulation mode to print the generated plans to a file, which then

served as input to the rover.

4.3 System Analysis

The semantics of a particular plan can very naturally be formulated in tempo-

ral logic. In writing such properties, we used the following predicates: start(id)

(true immediately after the start of the execution of the node with the corre-

sponding id), success(id) (true when the execution of the node ends success-

fully), fail(/d) (true when the execution of the node ends with a failure); end(id)

denotes success(id) V fail(id). We instrumented the code to monitor these pred-

icates. For each plan we further wrote a collection of temporal properties over

these predicates and verified their validity on execution traces. As an example,

the properties for the plan shown in Figure 3 (right) are shown in Figure 5.

This set of properties does not fully represent the semantics of the plan, but the

approach appeared to be sufficient to catch a large amount of bugs.
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- Ostart(plan), i.e., the initial node plan should eventually start.

- Q(start(plan) --4 01,sstart(drivel )), i.e., if the plan starts, then task drivel should

begin execution within 1 and 5 time units.

- [:](start(drivel) -+ (01,aosuccess(drivel) V Ofail(drivel))), i.e., if task drivel

starts, then it should end successfully within 1 and 30 time units or it should

eventually terminate with a failure.

- r](success(drivel) --_ Ostart(drive2)), i.e._ if task drivel ends successfully, then

task drive2 should eventually begin execution.

- [](end(drive2) -+. Osuccess(p!an)), i.e., termination of t_sk drive2 implies success-

fill termination of the whole plan (due to continue-on-failure flag).

- Osueeess(drivel)_ i.e., task drivel should end successfully (since :duration is

within time window).

- Ofail(drive2), i.e., task drive2 should fail (due to :fail).

Fig. 5. Temporal logic properties representing partial semantics of plan in Figure 3 .

The purpose of the case study was to find a number of seeded errors in the rover

by using a number of different technologies, including runtime analysis, model

checking, static analysis and traditional testing. Here we just focus on the results

on the runtime analysis which was done according to the framework described

in this paper. We used the DBRover to monitor the temporal properties that

each plan had to satisfy. We generated the formulas for each plan by hand, in a

similar fashion as the formulas given in Figure 5. Using this approach most of

the errors pertaining to plan semantics were easily discovered. It is worth noting

that none of the other techniques found as many of the plan semantic errors as

the temporal logic runtime analysis technique. It is possible to generate these

properties automatically.

The rest of the errors were related to concurrency and for those JPaX's

concurrency analysis was used (see Section 3.4). All but two of the concurrency

errors were discovered this way. JPaX found all the seeded data races and all the

seeded cyclic deadlocks (resource deadlocks), which are the errors this tool can

find. The errors it could not find were communication deadlocks involving Java's

wait and notify constructs. These errors were very subtle and required analysis

beyond what JPaX could do at the time. Note that this supports our hypothesis

that our framework is good at finding a large class of errors, but may not be as

good in finding some subtle errors - for this more advanced techniques may be

required, such as model checking (that did find all the concurrency errors in the

rover).

5 Case Study 2: A Space Craft Fault Protection System

In this section we describe the ongoing application of the framework in a verifi-

cation experiment targeted to a mission-critical NASA application called a fault

protection system (FPS). A fault protection system monitors critical hardware
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andsoftwarecomponentsofaspacecraftandexecutescorrectiveresponsesto
detectedfaults.Ourapproachtothiscasestudyisto:

1.writeasmallprogramtogeneratetestcasesfortheFPS,
2. writeapartialspecification(ofaninstantiation)oftheFPSintheformof

LTL(lineartemporallogic)assertions,
3. instrumenttheFPStoemitalogthatallowscheckingoftheLTLassertions,
4.writea testdriverwhichrunseachgeneratedtest,andinvokestheLTL

observertoanalyzethegeneratedlog,
5. and finally, the observer reports those test cases and assertion combinations

that failed or are inconclusive.

5.1 System Description

The FPS system we analyze consists of a reusable core engine and a portion cus-

tomizable for a specific spacecraft. The FPS is a complex, logic-oriented system.

That is, the code is dense with decision points yielding a very large number of

potential control paths. Given the complexity, mission criticality, and reusability

of this code, a high level of reliability is demanded. The FPS system has been

the study of a model checking experiment reported in [8]. The FPS was origi-

nally written in C and has flown on spacecraft. A new implementation in Java

has recently been developed. This implementation was provided with a wrapper

that allows it to run stand alone using a simple command interface. We based

our experiments on this Java implementation.

One of the commands informs the FPS of spacecraft problem symptoms.

The FPS maintains a customizable mapping between symptoms, faults, and re-

sponses. The basic mode of execution is to respond to a symptom by mapping the

symptom to a fault, the fault to a response and then execute the response. The

FPS executes one response at a time. However many symptoms may have been

reported requiring that responses be queued. In addition, responses have differ-

ent priority levels; some responses can be interrupted; and some responses "call"

other responses as subroutines. In addition, responses, symptoms, and faults,

may be in various modes, such as enabled or disabled, and there are commands

to reset responses and the whole fault protection system. Darthermore, the FPS

must respond to ground commands to execute a response in a manner that dif-

fers from responses invoked by fault protection itself. It is these capabilities and

others that contribute to the significant complexity of the FPS.

The FPS core engine is specified as finite state machines that signal and

invoke each other by generating events. There are state machines for the FPS

engine itself, instances of a state machine for each symptom, fault and response.

In fact there are two state machines for each response. One is part of the engine

itself- it records the status of the response, and a second encodes the semantics of

the responses themselves (e.g. turn on a device). Code is automatically generated

for the latter response state machines and become part of the code base for an

instantiation of the FPS. In fact we analyzed a particular instantiation of FPS

with two responses.
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5.2 Test Input Generation

For this application a simple program (less than 200 lines of Python code) was

written to generate test cases. A test case for the FPS is simply a sequence of

commands. The generator generated commands sequences of a specified length

by making independent random selections of individual commands. The gener-

ator is parameterized by:

- the number of test cases to be generated,

- the number of commands in a test case,

- the relative frequency of each command,

- for each command, the relative frequency of its arguments.

There is subtlety to this process. It should be noted that the execution of a

response takes time. Generally in one time unit a response performs the action

described in a single state of its state machine and then transitions to a new state.

The signalling of a new time step corresponds to the execution of a command

(or signal) to advance the clock. Thus the relative frequencies of the commands

need to be selected such that response queues do not overflow, yet there would be

enough pending responses to test the behavior when multiple faults required a

response. We thank Owen O'Malley of NASA for writing the test case generator.

5.3 System Analysis

We used the JPaX temporal observer to check LTL formulas against the exe-

cution traces generated for each test execution. We used a partial static LTL

specification for the FPS. As such it is not specific to any single input as is the

case for the K9 experiment. It is based on the code itself, design documents de-

scribing the state machines of the FPS, and some test data and expected results.

Clearly, the purpose of the specification is to describe the intended semantics of

the program independently of the program itself, and so using the program is

less than ideal. However we found in places that the code itself exhibits incon-

sistencies and resolving these was essential to specification creation. In fact, it

was by this process that some bugs were found.

LTL is a very natural notation for describing the FPS. The FPS is a trans-

action system. Its top level functionality is as a command processor. It reads

commands and executes them, potentially queuing actions. Characterizing the

state of the FPS (e.g., as the state of each state machine and the value of certain

variables) and then characterizing the action over time of each command on the

state is a natural methodology for developing such a specification. In addition,

properties asserting that each action taken is in response to a relevant command

will insure that the program does only what is intended to do and nothing more.

One subtlety of the process is the mapping of specification level concepts (e.g. a

'_response completes") with a suitable code-level event. There may be many can-

didate predicates or events at the code level that correspond to a specification

level predicate or event. These code level predicates may differ in subtle ways
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andmayormaynotcorrectlymodelintendedsemantics.Vv'efoundit mostef-
fectivetorelatepredicatesandeventscloselytotheinputsandoutputproducts
oftheprogram.

Theseexperimentsarestillinprogress.Allofthecomponentsdescribedarein
placeandexecuting.TheadditionalworkistostrengthentheLTLspecification.
However,todatewehavealreadyidentifiedprogrambugsandinaccuraciesin
thespecifications.Onebugissignificantinthatit existedintheCversionthat
flewonspacecraft.

This case study varies from the proposed framework in two respects. First

we did not use a model checker to generate test cases. The model checking

approach would work fine, and would enjoy the benefits described above. Second

the defined properties are universal correctness properties, valid for all inputs.

The framework suggests defining a function that maps an input to a set of

properties specific to that input. In this case it was straightforward to define

universal properties and it is not evident that the alternative approach makes

property specification any easier. Note that the specification was constructed

by formalizing the semantics of each type of command, taking into account the

computation state, independently of the other commands. If this approach is

followed then knowing the other commands in the sequence would not be of

much help in simplifying the property set.

6 Conclusions and Future Work

We have presented a framework for testing based on automated test case gener-

ation and runtime analysis. The framework requires construction of a test input

generator and a property generator for the application. From that, an arbitrarily

large test suite can be automatically generated, executed and verified to be in

conformity with the properties. For each input sequence (generated by the test

input generator) the property generator constructs a set of properties that must

hold when the program under test is executed on that input. The program is

instrumented to emit an execution log of events. An observer checks that the

event log satisfies the set of properties.

We take the position that writing test oracles as temporal logic formulas is

both natural and leverages algorithms that efficiently check if execution on a test

input conforms to the properties. While property definition is often difficult, at

least for some domains, an effective approach is to write a property generator,

rather than a universal set of properties that are independent of the test input.

Note also that the properties need not completely characterize correct execution.

Instead, a user can choose among a spectrum of weak but easily generated prop-

erties to strong properties that may require construction of complex formulas.

We see the proposed framework as a complementary approach to testing that

may be applied opportunistically to test selected system behaviors. We proposed

and demonstrated the use of model checking for test case generation. We will be

exploring how to improve the quality of the generated test suite by altering the

model checker's search strategy, and by use of symbolic execution.
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In the near future, we will continue the development of a complete testing en-

vironment for the K9 rover and seek to get this technology transferred to NASA

engineers. We are continuing the work on instrumentation of Java bytecode. In a

parallel effort with Robert Filman, one of our NASA Ames (RIACS) colleagues,

a source code instrumentation tool is being developed that is based on ideas in

Aspect Oriented Programming. Concerning the observer part, we have presented

various interpreters for temporal logic. Current and future work is devoted to

the design of a specification language that is attractive to engineers and power-

ful enough to capture a majority of practical system requirements. We are also

investigating new algorithms for concurrency analysis that extend the scope of

deadlocks and data races that can be identified.

Our research group has done fundamental research in other areas, such as

software model checking (model checking the application itself, and not just the

input domain), and static analysis. In general, our ultimate goal is to combine

the different technologies into a single coherent framework.
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