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Abstract

The paper presents a comparison of experimenta]

noise data measured in flight on a two-engine busi-
ness jet aircraft with Kulite microphones placed on

the suction surface of the wing with computational
results. Both a time-domain discontinuous Galerkin

spectra] method and a frequency-domain spectra] e]-
ement method are used to simu]ate the radiation of

the dominant spinning mode from the engine and
its reflection and scattering by the fuse]age and the
wing. Both methods are imp]emented in computer

codes that use the distributed memory mode] to
make use of large parallel architectures. The results

show that trends of the noise field are we]] predicted
by both methods.

INTRODUCTION

The fan inlet and exhaust noise represents one

of the major components of the noise signa-

ture of an aircraft at take-off and landing. The

noise radiated to the far field by the engine

of an aircraft is largely influenced both by the

flow around the wing and fuselage and by the

scattering from various other aircraft surfaces.

In principle, it is possible to reduce the air-

craft noise footprint by taking advantage of en-

gine and wing location and manipulating the

flow around the aircraft. Experimental inves-

tigations of these phenomena are difficult to

perform and extremely expensive. Numerical

simulations offer a relatively inexpensive alter-

native, and such simulations are becoming in-

creasingly attractive due to the recent advances

in both computer architecture and computa-

tional methods. To date, most measurements

and modeling of engine noise are confined to

isolated engines [1, 2, 3]. However, Stanescu,

Hussaini, and Farassat [4] have recently com-

puted the engine noise propagation and scat-

tering for a generic aircraft configuration by nu-

merically solving the Euler equations by a dis-

continuous Galerkin spectral element method.

The recent popularity of such methods in aero-

dynamic applications stems from the fact that

they require relatively fewer points per wave-

length, they have low dispersion and dissipation

errors [5, 6, 7], they have geometric flexibility,

and they are compact, robust and inherently

parallelizable [4, 8]. In a more recent work [9],

the same authors presented a simultaneous re-

search initiative consisting in the development

of a spectral element method for the solution,

in the frequency domain, of the acoustic poten-

tial equation in the presence of a non-uniform
flow field. The two methods are believed to be

complementary tools useful for prediction of the

tonal sound field in the neat" field of the engine.

The purpose of the present effort is to in-

vestigate the feasibility of large-scale aircraft

noise simulations, and validate them with the

available experimental data. To that end, we

employ the aforementioned numerical method-

ology in the investigation of engine noise prop-

agation and scattering off an actual two-engine

jet aircraft. After a brief discussion of the two

methods in the next section, we present the nu-
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mericalresultsobtainedfor severalflightcondi-
tionsandcomparethemwith theavailableex-
perimentaldata.Althoughthemodalcomposi-
tionof thesourcecouldnotbeobtainedexper-
imentallyandtheactualflight conditionscould
not be replicatedexactlyin the computations
presentedhere,resultsshowthat thenoisesig-
natureobtainedfromcomputationsmatchesthe
trendoftheexperimentaldata.

PROBLEM FORMULATION AND
SOLUTION TECHNIQUE

Computational model

We assumethat the enginenoisesourceis
knownandconsidernoisepropagationandscat-
teringin the left half spaceimplicitly assuming
symmetryoftheproblemaboutthey 0 plane

which is chosen to bisect the aircraft along the

fuselage. For the computational purpose, the

half space is truncated into a computational do-

main comprised of a bounded physical domain

with a damping layer surrounding it. The lat-

ter is used to ensure the physical domain re-

mains uncontaminated by reflections. The sur-

face that separates the computational domain

from the surrounding medium is denoted by

Foo. This governing equations are solved in non-

dimensional form. The reference quantities for

non-dimensionalization are: poo for the density,

coo for the velocity components, 2poocoo for the

pressure, the radius R of the noise-source disk

for distance, and _ for time. The total domain
Coo

of computation (including the damping layers)
is defined in the non-dimensional Cartesian co-

ordinates as 21.4 _< x _< 40.0, -12.0 _< y _< 0.0

and -1.8 _< z _< 11.2. The computational do-

main with the embedded aircraft is depicted in

Fig. 2. As the propagation distance is rela-

tively small, viscous effects are neglected and

the problem is assumed to be governed by in-

viscid compressible flow equations.

The computational domain is covered by a

grid of non-overlapping general hexahedral ele-

ments that can have curved boundaries. The

ICEMCFD Hexa commercial package is used

to generate the unstructured hexahedral grid

around the aircraft configuration. Once an un-

structured grid of hexahedra is generated, an

attractive new feature of this package allows for

the generation of points along each of the edges

of the hexahedral mesh, which can be either a

Legendre-Lobatto or a Chebyshev-Lobatto dis-

tribution for a specified polynomial of degree N.

Fig. 3 shows the hexahedral representation of

the underlying geometry with Causs-Legendre

point distribution, where N 5. All the neces-

sary point coordinates can then be computed by

interpolation based on the spectral interpolants

along the edges (to obtain coordinates at the

Gauss points from the Lobatto points on the

edges) followed by three-dimensional transfinite

interpolation [10] on the faces and inside the el-
ements.

Boundary conditions

A zero normal velocity boundary condition is

imposed on the symmetry surface y 0 (this

supposes that the engines are symmetrically

placed on either side of the fuselage and rotate

in opposite sense) as well as on the fuselage,

nacelle and wing surfaces. The boundary condi-

tions on the other sides of the computational do-

main that make up Foo are treated by a damp-

ing layer method [11]. The damping layer is

about 3.5 wide in the x-, y- and z-directions.

Waves incident on this layer are damped and

reflections into the physical domain of interest

are minimized. This is obtained by modifying

the governing equations through the addition of

a damping term in the form

0(2
o_- + v. F -_(x)O (1)

where the damping parameter is made to vary

from 0 at the interior limit of the damping layer

to a maximum value on Foo according to a power

law

/ x. - x{ _t \ _

{ (2)7-• \xi -- x i

i_t and cxt the coordinates of the interiorwith x i x i

and exterior limits of the absorbing layer, limits

that lie along planes on which one coordinate is
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constant.

The engine tone noise source is specified as

a combination of spinning modes on a surface

Ff conveniently situated inside the nacelle. For

a single spinning mode with azimuthal order s

and radial order d, usually denoted as @,d),

the perturbation of the flow variablesfrom the

mean flow quantities(denoted by bars) isgiven

by [11, 12]:

p_ _ \ / Z_,,(k_,,d_.)cos0

p - _ j [ _2.Z_,_(k_,_d_.)cosO

Vx - Ox A k_ .Em (kmdr) cos 19
coati

vr - Or k_ . E_,_(kmdr') sin 19

_P Em(ksdr) cos19VO _ VO m .
f(_Je

(3)
where 19 ]%x + m0 - c6.t, k,_d

I(c6./c)2 - ]%2, and c6. _.R._ The function

E.,,_(k,_dr') J,,_(k,_dr') + qE,_(k,_dr') is the duct

eigenfunction with J,,_ and E,_ denoting the

Bessel functions of the first and second kind,

respectively. The noise source is specified on

the circular disk centered at (34.7, 4.6, 5.3).

Time domain formulation

For the time domain formulation, the governing

equations are considered the Euler equations in

Cartesian conservation form,

oO _06aT + o_d 0. (4)
d 1

where the state vector 0 and the flux vector /?d

are given by

representing the solution in each element by

spectral basis functions defined on the interval

[-1, 1]. Under the mapping, Eq. (4) becomes

oQ

where Q and F are the transformed components

of the state and flux vectors

3

j v" o_dc4 JO, Fd _ 7 _,_, (7)
m 1 O3gm

and J is the Jacobian of the transfornmtion.

The computational space coordinates are de-

noted by either (&, &, 43) or (4, _1,¢) hereafter

for convenience.

Let the space of polynomials of degree N in

¢ [-1, 1] be denoted by PN. A basis for this

space can be constructed using the Lagrange

interpolating polynomials hj,j O, 1,..., N,

through the N + 1 Gauss-Legendre [13] quadra-

ture nodes 4i, i 0, 1,..., N. A discontinuous

Galerkin approximation is obtained by requir-

ing

(@, ¢_jk) + (V_. F, ¢_jk) 0 (8)

where (., .) represents the usual L 2 inner prod-

uct, and Oijk hi(_)hj(_l)hk(¢ ) are the basis

functions of P).

Using the divergence theorem and Gauss

quadrature, expanding the boundary integral

and performing some algebraic manipulation,

the final discrete form of the equations govern-

ing each variable at the Legendre-Gauss points

are given by

flY1

0 pv2 , Fd

pv3

pE

rOVd

pVlVd + P(_ld

pV2Vd + P(_2d

pV3Vd + P&d

(pE + p)vd

, (5)

with p the fluid density, E the internal energy,

p the pressure, and vd(d 1, 2, 3) the velocity

components.

Each element of the grid is mapped onto the

master element f_M [--1, 1]a with an isopara-

metric transformation for the expediency of

dQijk
Iv _ + V _' + V ¢] F, (9)dt

where the right-hand side is a sum of discrete

differential operators acting on the flux values

of an element, which include values on the ele-

ment faces. Here, the differential operator D_F,

for example, is defined as

o_F 1 [Ff(1,,j,&)h_(1)
/t)i

Ff (- 1,,jj, &)h_(- 1)- d_F],
(10)
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whereF* denotes a common face flux, which

can be computed directly from the readily avail-
able values of the state vector. D_IE and DeE

follow by obvious permutations.

As the solution is approximated by a poly-

nomial that passes through interpolation nodes

distributed within the elements, a mismatch en-

sues when the interpolants are evaluated at el-

ement interfaces. This mismatch in the solu-

tion at element boundaries is resolved by solv-

ing the Riemann problem for the flux there (just

as in the finite volume method) [14, 15]. This

leads to a semidiscrete form of Euler equations,

which is simply an ordinary differential equa-

tion (ODE) system. The resulting ODE sys-

tem is integrated in time using a low-storage

Runge-Kutta scheme optimized for wave prop-

agation [16]. Acoustic perturbations are ob-

tained at each time step by subtracting the

mean flow from the total flow variables, and

the RMS pressure is obtained by integrating in

time the acoustic pressure. This integration is

only performed after sufficient time is allowed

for the acoustic signal from the source to prop-

agate through the computational domain and

establish a periodic acoustic field.

Frequency domain formulation

The equation governing the acoustic field is in

this case obtained by considering the flow irrota-

tional, so that the continuity equation becomes

Op
oT+v(pw) o (11)

where p is the fluid density, and • is the to-

tal velocity potential, related to the velocity by

V V_5. Under the isentropic assumption, the

momentum equation is reduced to an algebraic

relation relating the density to the velocity po-
tential as

1

P [1-(_/-1)( 0_0t + (V_)2-M_)]_/-12

(12)

where Mo_ is tile fat" field Mach nmnber and

7 the specific heats ratio. Consider the un-

steady flow field resulting from the superposi-

tion of small acoustic perturbations, denoted by

a prime, on a steady mean flow denoted by an

overbar: p p + p' and • • + 3'. The pat'-

tial differential equation governing the acoustic

perturbations is

Op'
OT + V. (pV{)' +/V{)) 0 (13)

with tile following relation relating tile acoustic

density to the acoustic velocity potential, ob-

tained by linearization of equation (12):

P _2 [ at + v(5. v_' . (14)

For a frequency domain approach, the acoustic

potential is considered to be of the form _5'

%(x, y, z)exp(/cJt). In view of a weak formula-

tion, the governing equation (13) is multiplied

by a test function _' %(x, y, z) exp(-/cJt) and

integrated using the divergence theorem to yield

jr o
f

(15)
On the aircraft surface both the lIlean flow and

the acoustic normal velocity component are sup-

posed to be zero, so the surface integrand can-

eels there. Furthermore, the integrand is set to

zero artificially on the Fo_ surface, which does

not sensibly affect the computed solution since

the acoustic field is strongly damped in the ab-

sorbing layer.

Let Z denote the complex vector space of

functions that are continuous on 9, whose re-

strictions to an element are polynomials of de-

gree at most N in each variable, where N is

a specified integer, and Zr s C Z the subset
of functions that satisfy the Dirichlet boundary

condition on the source surface F/. Substituting

the expression of the density from the linearized

momentum equation, the following variational

4
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problemis obtained:findO¢ ZD suchthat

_ a2)¢x x + - a

(16)
holds for any 0 ¢ gr z.

The previous equation is discretized by a

Chebyshev spectral element method. To this

end, a basis for Z is constructed using tensor

products of the Lagrange interpolants through

the Chebyshev-Gauss-Lobatto points in the ele-

ment. Upon evaluating the integrals, a complex

linear algebra problem of the form A {4} {b}

is obtained, where {4} is the vector of point

values of the complex-valued acoustic potential

4. The solution of this system is obtained us-

ing a Sdmr complement domain decomposition

method implemented using the Message Pass-

ing Interface (MPI) standard• The matrix is

stored in sparse mode (i.e. only the non-zeroes

are stored), with each processor only storing a

number of lines in the matrix. Let us denote by

P the total number of processors, the computa-

tional domain _ is subdivided in as many parti-

tions, and the unknowns situated on the surface

B which separates the partitions are numbered

last in the system. For every processor p, there

will be a number of unknown 4 values located

on 13. The vector of unknowns is partitioned as

(17)

where 4_ denotes all the unknowns in subpar-

tition p not located on/3. The right-hand side

vector {b} is partitioned accordingly• The ma-

trix A can then be written in the form

A}, o ... A}. )
A 0 AfI ... Af. (18)

AII ... ABB

and straightforward elimination of the terms be-

low the main diagonal leads to

/A10A1B// I}/b1}0 AfI ... AfB 4_ bf

0 0 ... _' 4B bs

(19)

p p 1 p
where bs, bB-EABI(AII) b I. The problem

p

has thus been reduced to solving a reduced sys-

p p 1 p
tem with matrix S ABB- _-_.ABI(AII) AIB

p
for the points on/_ only, followed by a solution

on each domain of the interior problem. The

matrix S is much denser than the original ma-

trix A and its direct computation and storage is

not efficient or even possible• However, for an

iterative method, only the action of S on a vec-

tor is needed, and once the sparse, distributed,

matrix ABB is formed, this action can be com-

puted by matrix-vector multiplications and so-

lutions with A_I which are local operations on

processor p and do not require communications,

followed by accumulation in the global vector

4B. All computations can be conveniently im-

plemented by use of the high level primitives in

the PETSc [17] package for efficient solution of

partial differential equations•

RESULTS AND DISCUSSION

Experimental data

The data available for comparison was collected

in Mo_ 0.3 flight at 500 foot above ground

level• The average Math number at the source

disk based on the mass flux through the engine

is approximately M/ 0.53. The Blade Pass-

ing Frequency (BPF) tone was measured us-

ing several Kulite microphones located on the

wing suction side at different angles from the

5

American Institute of Aeronautics and Astronautics



nacelleaxisasshownin Fig. 1, at a relatively
highpowersettingof the engine.Modalcom-
positionof thesignalcouldnotbesatisfactorily
established,howevertherewereindicationsthat
thedominatingmodeis thespinningmodewith
azimuthalorder_ 22,and_ 18isalsoex-
pectedto havea largecontribution.Thedata
ispresentedasSoundPressureLevel(SPL)val-
ues,normalizedsuchthat the valueat 20de-
greescorrespondsto zeroSPL.

Time domain results

Propagation of both modes was simulated in

the time domain with a quiescent medium sur-

rounding the aircraft in a first attempt to de-

termine the dominating mode and conduct a

first test of the method on this geometry. The

BPF tone corresponds to a reduced frequency

_T 26.3. Propagation and radiation of modes

(18, 0) and (22, 0) was computed separately us-

ing an unstructured grid with 103,105 elements.

The solution is approximated by a sixth-order

Legendre polynomial in each element, raising

the nmnber of Gauss-Legendre discretization

points to 22,270, 680 in the computational do-

main that includes the damping layers. The

computations used one node (32 processors run-

ning at 1.1GHz) of an IBM Regatta-type SP4

machine and each one lasted about 10 days. An

arbitrary value has been used for the ampli-

tude of the incoming mode, which is not known

from the experiments. Therefore, for the pur-

pose of data comparison, computational data

was matched with experimental data at the 60

degree microphone location, where the peak in

SPL was noticed experimentally.

Fig. 4 shows a snapshot of the acoustic pres-

sure contours on the surface of the aircraft at

non-dimensional time t 44, immediately be-

fore starting integration for the RMS pressure

computation, for spinning mode (18, 0). The

computation indicates that radiation of mode

(22, 0) has a pattern that is completely differ-

ent from the experimental data, presented in

Fig. 5. However, mode (18,0) seems to pro-

duce a SPL distribution on the wing with the

same characteristics as the experiments, Fig. 6.

The quantitative difference in levels may stem

from the mean flow effect. Indeed, increasing
the mean flow Mach nmnber in the duct from

its zero value used for the present results will

determine the mode to be more cut-on, with an
immediate effect that the main radiation lobe

will hit the wing at a lower angle location. Thus,

SPL levels at angles lower than 60 degrees are

expected to increase, while decreasing at 70 de-

grees. The effect of the mean flow, on the other

hand, is expected to be in the opposite sense,

but not as strong. It must also be considered

that other sources of noise, not modeled in this

computation (i.e. airframe noise) will increase

the value of the measured SPL data, and this

effect will become more important at larger dis-

tances from the engine (lower angles in the fig-

ures).

Frequency domain results

The effect of the mean flow has not yet been

attested with the time domain formulation, as

our efforts concentrated lately on the develop-

ment of the frequency domain code. The latter

incorporates a solver for the mean flow around

the given configuration (at this time based on an

incompressibility assumption to avoid nonlinear

iteration). The frequency domain code however

has fax" larger memory requirements. To date,

our largest computation with this code was done

on the same mesh with 103,105 elements but

with quartic elements. There are thus a total

of 6,746,736 discretization points in the mesh,

which would generate a complex matrix with a

total of 1.4 billion non-zeroes whose only stof

age in sparse mode necessitates approximately

20GB memory. This resolution does not allow

us to handle the exact experimental conditions,

in particular at larger distances from the na-

celle where the mesh becomes coarser and the

necessary nmnber of points per wavelength is

not reached. Therefore, we considered a test

case in which the mean flow aromld the aircraft

was modeled based on a far field Mach num-

ber M_ 0.1 and a fan face Mach nmnber

Mf 0.2. The problem was run on 192 pro-

cessors of the same IBM machine, and conver-
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gencemorethanthreeordersof magnitudewas
achievedafter 2.5days. This clearlydemon-
stratestheneedfor abettermulti-levelprecon-
ditionerfor the reducedmatrix S. We must

point out, however, that to our knowledge this is

the largest problem of this type reported in the

literature. Moreover, solving the complex linear

algebra problem associated with discretization

of Hehnholtz-type equations is a well-known is-

sue in the numerical analysis and parallel com-

puting community and no satisfactory solution

has, to our knowledge, been found as of now.
Results obtained from this simulation for mode

(18, 0) are presented in Fig. 7, which shows that

the presence of the mean flow has the antici-

pated effects as discussed above.
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Fig. 1: Location of microphones on the wing and corresponding experimental data.
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Fig. 2: Computationa] domain.

Fig. 3: Mesh on the aircraft surface for N 5 (quintic e]ements).
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Fig. 4: Acoustic pressure contours on the aircraft surface. Mode (18,0) radiated at w_ 26.3.
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Fig. 5: SPL ]evels on the wing surface for mode (22,0) radiated at _ 26.3 in a quiescent medium.
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Fig. 6: SPL ]evels on the wing surface for mode (18,0) radiated at co. 26.3 in a quiescent medium.
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Fig. 7: SPL ]eve]s on the wing surface for mode (18,0) radiated at co. 26.3 in the presence of mean flow.
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