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Introduction

Pressure-sensitive paint (PSP) is an optical pressure sensor that utilizes the oxygen

quenching of luminescence. PSP measurements in unsteady aerodynamic flows require fast time

response of the paint [1,2,3]. There are two characteristic time-scales that are related to the time

response of PSP. One is the luminescent lifetime representing an intrinsic physical limit for the

achievable temporal resolution of PSP. Another is the time-scale of oxygen diffusion across the

PSP layer. When the time-scale of oxygen diffusion is much larger than the luminescent

lifetime, the time response of PSP is controlled by oxygen diffusion. In a thin homogenous

polymer layer where diffusion is Fickian, the oxygen concentration [02] can be described by

the diffusion equation in one-dimension,
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where D m is the diffusivity of oxygen mass transfer in the polymer, t is the time, and z is the

coordinate normal to the layer. For an arbitrary time-dependent change of the oxygen

concentration at the air-paint interface, the complete convolution-type solution of Eq. (1) with

the suitable boundary conditions can be obtained by using the Laplace transform [4,5]. The

special trigonometrical-series-type solutions for a step change and a sinusoidal change of oxygen

were used for PSP dynamic analysis [1,2,3]. The solution of the diffusion equation gives a well-

known square-law estimate for the diffusion time-scale Vdi_- through a PSP layer,

h e/D m (2)T diff

where h is the PSP layer thickness. The response time of a homogenous PSP is proportional to

the square of the layer thickness and inversely proportional to the diffusivity of mass transfer Din.

This estimate is correct for a conventional homogenous PSP.



Comparedwith aconventionalPSP,a porousPSPhasa muchshorterdiffusionresponse

timerangingfrom 18btsto 500bts[6]. Theshorterdiffusiontime-scaleis essentiallyrelatedto an

enlargedair-polymerinterfacein a porousPSP. Interestingly,recentmeasurementsof the

responsetimefor threepolymersGP197,GP197/BaSO4mixtureandPoly(TMSP)showedthat

theclassicalsquare-lawestimate(2) doesnot holdfor porousPSPs[7, 8]. As shownin Fig. 1,

h 1"07 foro_ h 1.s3 for GP197, Vdi_-measurements gave the power-law relations Vd_-

GP197/BaSO4 mixture, and Vd_- o_ h °.29 for Poly(TMSP) at a temperature of 313.1K. For the

GP197 silicone polymer, the power-law exponent is close to 2 as predicted by the classical

estimate. However, the power-law exponents for the porous polymer materials GP197/BaSO4

mixture and Poly(TMSP) are significantly smaller than 2. In addition, Fig. 2 shows that the

power-law exponent for the polymer Poly(TMSP) linearly increases with temperature over a

temperature range from 293.1K to 323.1K. Unfortunately, a comprehensive and universal theory

of diffusion in porous materials has not been developed yet. In order to understand the time

response of a porous PSP, nevertheless, this note attempts to derive the expressions for the

effective diffusivity and the diffusion response time of a porous polymer layer from a standpoint

ofphenomenology.

Effective Diffusivity

Diffusion in a porous material can be considered as a diffusion problem in a two-phase

system made up of one disperse phase and one continuous polymer. In PSP, the disperse phase

is composed of numerous pores filled with air. An element of a porous polymer layer of the

length l, width l, and thickness h is considered, as shown in Fig. 3. The coordinate z is normally

directed to the polymer layer from the upper surface of the layer. We assume that many



cylindrical (tube-like) pores are distributed in the element and the pores are oriented in the z-

direction. The effective radius and depth of a pore are denoted by rpore and hpore, respectively.

The radius of a pore is much larger than the size of a molecule of oxygen. In general, the depth

of a pore is smaller than the layer thickness, i.e., hpo_ < h. For simplicity of expression, the

normal directional derivative of the oxygen concentration [0 2] at the air-polymer interface is

denoted by

0[o2]
v. (z) - (3)
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The effective diffusivity Dm__- of the porous polymer layer with cylindrical pores is given by a

balance equation between the mass transfer through the apparent homogenous upper surface and

the total mass transfer across the air-polymer interface,

t2vn(O)= Dm(t -Npo jrrTo e)vn(O)+ D Nwjr r7or   (hw )
, (4)eh

+ DmNpo_ 2_r rpo_e Jo p°rev, (z)dz

where Npo_ is the total number of the pores in the element and D m is the diffusivity of the

polymer continuum. The integral term in Eq. (4) is the total mass transfer across the peripheral

surface of the pores in the element. Thus, the effective diffusivity Dm__- is given by

Dme ff / D m = 1+ [vn(hpore) / vn(O)- l] Npore 7g _r e 1-2

(5)eh,,

+ Npore 21r rpore 1-2V21 (0) JO_°_ Vn (z)dz

In a simplified case where v. (z) = cons tan t across the thin layer, Eq. (5) becomes

Dm__- / D m = 1+2a v rplore h, (6)



where av=Npore_r_orehporel-2h -1 is the volume fraction of the cylindrical pores in the

polymer layer. Eq. (6) indicates an increase of the effective diffusivity that is proportional to the

volume fraction of the pores and a ratio between the polymer layer thickness and the radius of

the pore. The expression (6) for Dine ff is valid only for an ideal porous polymer layer with the

straight cylindrical pores oriented normally. Nevertheless, this model should be generalized for

real porous polymers where topology of the pores is often highly complicated.

In a more realistic model, the topological structure of a pore is considered as a highly

convoluted and folded tube in the polymer layer while the cross-section of the tube remains

unchanged. The integral in Eq. (5) should be replaced by the integral along the path of the

highly convoluted tube-like pore. In this case, the concept of the fractal dimension should be

introduced because the length of the highly convoluted tube is no longer proportional to the

linear length scale of the tube in the z-direction (e.g. hpore ) [9]. According to the length-area

,dc_/2 dfi_
relation for a fractal path, the integral along the path is proportional to ApJo're or hpore , where

2
df_ (1 < df_ < 2) is the fractal dimension of the path of the pore and Apore o_ hpore is the

characteristic area covering over the path. Loosely speaking, the fractal dimension represents the

degree of complexity of the pore pathway. In order to take the fractal nature of the pores into

account, Eq. (5) is generalized by using a Riemann-Liouville fractional integral of the order df_,

i.e., [10]

Dm_,/Dm=l+[vn(hpo_)/vn(O)_l]Npo_ _r;)or_2 1-2

+ Npo_e 2_ rpo_ 1-2v_ 1(0) I] p°revn (z)(dz/jr
o (7)



Notethat a unitaryconstantwith thedimension[m 1-djr ] is implicitly embedded in the third

term in the right-hand side of Eq. (7) to make Eq. (7) dimensionally consistent. This

dimensional constant is implicitly contained in all the results derived from Eq. (7). In a

simplified case where v n (z) = cons tan t across the thin layer, a generalized expression for Dmeff

is

2 a v -1 dfr-1rpo_e hpo_
Dmeff - 1 + h d_* (8)
D m F(1 + dfr ) h '

where F(1 + dfr) is the gamma function. Here, hpore

the convoluted tube in the z-direction and a v is the volume fraction of the apparent cylindrical

pores. The expression (8) clearly shows that the effective diffusivity Dme ff is not only

proportional to h dj_ , but also related to the parameters of porosity a v ryo__ and hpore/h. For

df_ = 1, Eq. (8) is simply reduced to Eq. (6).

is interpreted as a linear length scale of

Diffusion Time-Scale

For a porous polymer layer where diffusion is Fickian under some microscopic

assumptions [1 1,12], the diffusion equation (1) is still a valid phenomenological model as long as

the diffusivity D m is replaced by the effective diffusivity Dme ff . Hence, the estimate for the

diffusion time-scale for a porous PSP layer is

h2 �Din (9)

72d__: 2avrp_lore hpor e d_-I
halJr

1+ F(l+df_) h



Eq. (9), a generalized form of Eq. (2), clearly illustrates how the parameters of porosity a v rplore

and hpore/h, and the fractal dimension df_ affect the response time of a porous PSP. For

a v rplo_e<< 1 or hpore /h << 1, Eq. (9) naturally approaches to the classical square-law estimate

(2) for a homogenous polymer layer. On the other hand, for a v rplo_e>> 1 and hpore /h -_ 1,

another asymptotic estimate for "Cd_-is a simple power-law

7£diff oc h2-d_ �Din. (10)

The estimate (10) is asymptotically valid for a very porous polymer layer. The exponent in the

power-law relation between the response time Vd_- and thickness h deviates from 2 by the ffactal

dimension df_ because of the presence of the ffactal pores in the polymer layer. The relation

(10) provides an explanation for the experimental finding that the exponent q in the power-law

relation "Cd_-_ h q is less than 2 for porous PSPs [7, 8]. Also, this relation can serve as a useful

tool to extract the fractal dimension of the tube-like pores in a very porous polymer layer from

measurements of the diffusion response time. The fractal dimension df_ of the pore in the

polymer Poly(TMSP) is df_ = 1.71. For GP197/BaSO4 mixture, the fractal dimension df_ is

close to one. In addition, based on the experimental results shown in Fig. 2, one knows that the

fractal dimension dfr for the polymer Poly(TMSP) linearly decreases with temperature in a

temperature range from 293.1K to 323.1K. This implies that the geometric structure of the pore

in Poly(TMSP) may be altered by temperature change. Note that the diffusivity D m of oxygen

mass transfer is also temperature-dependent, but it is independent of the coating thickness h.

Therefore, the experimental results in Fig. 2 mainly reflect the effect of temperature on the

geometric structure of the pores in the polymer rather than the diffusivity.



Conclusions

The Notedevelopsa simplephenomenologicalmodel for the effectivediffusivity of a

porousPSPandgives a new expressionthat clearly illustratesthe relationshipbetweenthe

diffusiontime-scaleandthefractaldimensionof thepores.Thetheoreticalresultscannotonly

explainwhy a porousPSPis ableto achieveavery fast timeresponse,but alsoquantitatively

showhow the fractaldimensionandtheparametersof porosityaffectthe responsetime. For

very porousPSPs,the classicalsquare-lawestimateof the diffusion time-scaleshouldbe

replacedby thegeneralizedrelationderivedin theNote.
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Captions

Figure 1. Power-law relationship between response time and coating thickness for three

polymers GP 197, GP 197/BASO4 mixture and Poly(TMSP) at a temperature of 313.1K.

Figure 2. The exponent of the power-law relation between time-scale and coating

thickness for the polymer Poly(TMSP) as a function of temperature.

Figure 3. An element of a porous polymer layer.
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Figure 1. Power-law relationship between response time and coating thickness for three

polymers GP 197, GP 197/BASO4 mixture and Poly(TMSP) at a temperature of 313.1K.
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Figure 2. The exponent of the power-law relation between time-scale and

coating thickness for the polymer Poly(TMSP) as a function of temperature.
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Figure 3. An element of a porous polymer layer.
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