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Proceedzngs of the Summer Program 2002

Preface

The ninth Summer Program of the Center for Turbulence Research was held during

the period July 29th - August 23rd, 2002. The increase in number of participants, noted

in the Preface to the Proceedings of the 2000 Program, continues: this year there were
50 participants from ten countries, and 30 hosts from Stanford and NASA-Ames.

This Proceedings volume contains 32 papers that span a wide range of topics and

an enormous range of physical scales. The papers have been divided into seven groups:

Acoustics, RANS modeling, Combustion, Large-eddy simulation (LES), LES Numerics,

Stratified Flows, and Fundamentals, In several cases, a paper could have fitted in more

than one group so the classification is somewhat arbitrary.

Combustion has been a topic of interest at CTR for many years. New advances are

noted, with chemistry models increasing in realism as available computing power has
increased. A related topic, essential to combustion of liquid fuels or pulverized solids,

is the behavior of sprays. A newly appearing sub-grid stress model for mono-disperse

particles is shown to be important. The paper by Selle et al. merits special attention

because it demonstrates how the basic research work done at CTR over the years is now

being applied to real-life problems, in this case, the burner of an existing gas-turbine

combustor. Calculations weredone using large-eddy simulation and a combustion model,

on an unstructured grid fitted to this extremely complicated geometry. CTR's work on

LES for combustors has attracted a great deal of attention from the leading companies

in the gas turbine industry, because simpler methods of predicting turbulence, mixing

and combustion are unable to deal satisfactorily with this very important problem, while

direct numerical simulation of the exact Navier-Stokes equations (DNS) is impossibly

expensive at full-scale Reynolds number.

In aero-acoustics, Large-eddy simulation is emerging as a cost-effective prediction tech-

nique, while DNS continues to be a powerful method for answering basic questions about
noise production by turbulence that could not possibly be answered by experiments.
Reynolds-averaged turbulence models in Navier-Stokes codes (RANS) provide the stan-

dard technique for turbulence prediction in industry. One of the papers in this group

relates to traditional RANS-model calculations, and the other is a comparison of RANS,

DNS and Detached-Eddy Simulation (DES, which treats regions near a solid surface by

RANS and regions further from the surface, in particular separated regions, by LES).

Work on large-eddy simulation comprised a large part of the Summer Program activi-

ties, and in these Proceedings the papers on LES are divided into two sections. The first is

on Large-eddy Simulation proper, with an emphasis on subgrid-scale modeling. Accurate

subgrid-scale modeling near solid surfaces - or the development of alternative near-wall

treatments -is a prerequisite for the application of LES to flows with separation. The

papers in this group deal both with new concepts and with detailed analysis of existing

ones. The LES Numerics group addressed worked on numerical issues for LES in complex

geometries. New numerical schemes such as the discontinuous Galerkin method, and new

computational paradigms are being introduced to build LES codes. This is another trend

indicating that LES is moving out of the proof-of-concept stage, to become part of the

application tools for engineering analysis.

The Fundamentals group is composed of papers that address specific issues. The wall

modeling effort in this group is of particular importance for LES modeling as a practical

engineering tool. NASA's increased interest in Earth Science is motivating CTR's renewed



attentionto Stratified Flows and geophysical flows. Two of the papers in this section

are on idealized flows; while the third presents a simulation of the flow in the Adriatic

Sea. This last paper demonstrates one of the advantages of simulations; that one can,

for heuristic purposes, add spurious terms to the equations or use artificial boundary

conditions to test and improve understanding. In this case, the bathymetry of the Mid-
Adriatic Pit is modified to demonstrate the cause of the current along its northern flank.

Optimization and the closely-related topic of airflow control are two important objec-

tives in aerospace research. An outstanding demonstration of what can be achieved by

applying optimization theory is the paper by Mohammadi on sonic boom minimization.

More detailed summaries of the accomplishments of each group can be found in the

overviews that precede the grouped papers. This year four review tutorials were given:

Concepts for Analyzing the Structure o] Complex Flows (Julian Hunt), LES on Unstruc-

tured meshes (Krishnan Mahesh), Computational Acoustics (Sanjiva Lele), and Turbulent

Combustion (Norbert Peters/Heinz Pitsch). The final presentation of research accom-

plishments on August 23rd was attended by a number of colleagues from universities,

government agencies and industry. Early reports on some of the projects were presented
at the Fifty-first Meeting of the Division of Fluid Dynamics of the American Physical

Society in Dallas, TX, November 24th-26th, 2002.

We are grateful to Dr. Stavros Kassinos for his help with the final preparation of these

Proceedings. Special thanks are due to Millie Chethik and Marlene Lomuljo-Bautista for

their work on organizing the Program. Their help in the planning, operation and effective

interface with the administrative requirements of Stanford University and NASA Ames

Research Center are highly appreciated.

Parviz Moin

Nagi N. Mansour

Peter Bradshaw (editor)

This volume is available as a .pdf file on the Web at htzp ://ctr. stanford, edu
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Acoustics

Substantial reductions in jet noise have been made since the dawn of the jet age over

50 years ago, following for the most part the same simple approach: higher and higher by-

pass ratios. This reduces noise by reducing jet exit velocity, taking advantage of Lighthill's

result that jet noise scales as a high power ("near the eighth") of the flow velocity. This

was the first aeroacoustic theory and remains after 50 years the most effective theory for
jet noise reduction. However, the gains it affords have been exploited to the utmost, and

is unclear how to make further reductions. Trial-and-error experiments have shown that

nozzle modifications can further reduce noise, but there is currently no predictive tool or

modeling framework that can provide an engineer even the basic noise trends to expect

for specific nozzle modifications. In light of this, our projects focused on key issues in jet

noise physics, modeling, and prediction.

Large-eddy simulation is an attractive candidate for making jet noise predictions be-

cause it is the energetic scales, those that are resolved in a large-eddy simulation, that

make most of the noise in a jet. However, early attempts suggest that the noise may be

significantly more sensitive to the approximations made in large-eddy simulation than

the standard flow quantities for which the large-eddy simulation was initially designed.

Even in cases where the mean flow and basic turbulence statistics are well predicted, the

predicted noise can be erroneous because it depends on subtle (quadrupole-like) cancella-

tions. In this case, small errors made in the energetic flow field overwhelm the low energy

sound field. Rembold, Freund, and Wang explored this directly by evaluating the far-field

sound from a large-eddy simulation of a 5:1 aspect ratio rectangular jet, making a direct
comparison to a corresponding direct numerical simulation. Results showed substantial

errors especially in sideline and upstream directions, which has motivated an ongoing

effort to identify their precise cause.

In the second project, Freund, Bodony, and Lele developed and implemented tools to

quantify the turbulence interaction leading to jet noise. In a subsonic jet, most of the
turbulence does not have a frequency-wavenumber makeup that allows it to radiate to

the far acoustic field. In order to radiate, turbulence components must have supersonic

phase velocity, which result from the growth, decay, and interactions of substantially

convecting eddies. To quantify these dynamics, this group developed linearized equations

for the very large turbulence scales, which are defined by a filter with a width greater

than the integral scale of the turbulence but smaller than the wavelength of the dominant

acoustic radiation. Using this formulation and tools they developed for analyzing the

jet directly in wavenumber-frequency coordinates, they have initiated a study into the

dynamics of these very large, radiation capable scales.

The third project examined flow-acoustic interactions in jets, which are important for

statistical models of jet noise as well as for experimental identification of noise source

location and spectral characterization. While it is widely accepted that the mean flow

of a jet refracts some of the noise, the specific effect of the turbulence in scattering the

noise, both in direction and frequency, is not understood. Cervifios, Bewley, Freund and

Lele used a numerical solution of the adjoint flow equations to quantify the scattering of

sound by the turbulence. The scattering of plane waves in the adjoint solution provides

an adjoint Green's function for the unsteady jet flow. That is, this procedure gives the

forward Green's function for the selected far field direction for all source points in the

jet. A substantial broadening of the frequency spectrum was observed. Directivity will
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becomparedwith a correspondingGreen'sfunctionthat accountsonlyfor mean-flow
refraction,to developcorrectionsforscatteringbytheturbulence.

John Freund
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An evaluation of LES for jet noise prediction

By B. Remboldt, J. B. Freund:_ AND M. Wang

Large-eddy simulation (LES) is an attractive candidate for prediction of jet noise, since
it resolves unsteady flow structures over a range of length scales, but it remains unclear

how the subgrid-scale modeling affects its noise-prediction capability. The present study

makes a direct evaluation of LES using the approximate deconvolution model against a
corresponding direct numerical simulation (DNS) of a 5:1 aspect ratio rectangular jet at

Mach 0.5. The DNS spectra and directivity are as anticipated for a low-Reynolds-number

jet, and we compare these to LES predictions. We find that the LES spectra match the

DNS ones at low frequencies, but the higher frequency portions are highly contaminated

by spurious waves particularly at upstream angles. A correction for the subgrid-scale

contribution to the Lighthill source terms based on approximate deconvolution of the

velocities does not change the LES prediction.

1. Introduction

The success of efficient RANS models in fluids engineering has not extended to the

prediction of noise, even when the only objective is to predict general trends, and it is

not obvious how to improve their fidelity given the complexity of statistical noise sources.

Since the inherent flow unsteadiness is the source of jet noise, LES is attractive for its

prediction. The computation of flow induced noise has its unique difficulties, and several

important issues arise when extending an established DNS capability, which of course is

only applicable in the low-Reynolds-number limit (e.g. Freund 2001), to noise. With LES

additional questions, such as the effects of subgrid-scale modeling and numerical errors,
must be addressed.

LES can be most easily applied if the bulk of the noise, at least at frequencies of

interest, comes from scales that are retained in the simulation, and do not have to be

modeled. This is believed to be the case based on statistical analysis, and it seems that

high-frequency noise does indeed come from the vicinity of the jet nozzle (Narayanan,

Barber & Polak 2000). One objective of this study is to confirm that LES can predict the

louder, lower-frequency noise. Another objective is to see if the subgrid-scale turbulence

models directly affect the noise prediction. The subgrid-scale stress terms in the spatially

filtered Navier-Stokes equations are closed by a model, which also appears as a noise

source but is not necessarily accurate. Their effects on the resolved scales thus need to

be evaluated. Discretization errors can also play a larger role in LES than in DNS since

the spectra are typically truncated by the mesh at a much higher energy level, which

is another potential problem for LES of jet noise. Thus, we also investigate a spurious

generation of noise by numerical errors. A long-term objective is to correct this spurious
effect.

To investigate these issues we use DNS results for a rectangular jet with Mach number

Institute of Fluid Dynamics, ETH Zfirich
:_ Department of Theoretical and Applied Mechanics, University of Illinois at Ur-

bana-Champaign
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0.5 and Reynolds number 2000 (based on theshorter dimension of the nozzle) rectan-

gular jet (Rembold, Adams & Kleiser 2002). Rectangular jets are of current interest
because in some cases they are quieter than their axisymmetric counterparts. They also

have enhanced mixing properties (Grinstein 2001), which is important in some military

applications. A previous LES study by Rembold, Adams & Kleiser (2001) using the

approximate deconvolution subgrid-scale model (Stolz & Adams 1999, Stolz, Adams &

Kleiser 2001) showed turbulence statistics in agreement with the DNS in the transition

region, but the jet's noise was not computed. In this study we use Lighthill's theory to
compute the far-field noise, and compare the noise predicted using the DNS and LES

source terms. Our formulation of Lighthill's theory is outlined in section 2. Section 3

covers the results from the DNS database, and comparisons between LES and DNS are
made in section 4.

2. Fax-field sound computation

Lighthill's equation reads

02 P 2 82P 02T_:

aT a , - '
with

(2.1)

Tij (x, t) = puiuj + 6_j{p - Po - c_(p - P0)} - _-i3. (2.2)

{o_, _ _5..._._.._Here -r,j = # \ ox, + ox, - 3 _30_1 is the viscous stress tensor. Taking _o_o_j as the

equivalent noise source, the far-field sound at point x is evaluated using the free space

Green's function and the divergence theorem as

1 f. RiRJR3 02 Rp(x,t) - 4rrc_., Ot 2Tij(y't - _)dy, (2.3)

where R = Ix - Yl and Ri -- xi - Yi. Evaluation is simplified by reformulating (2.3) in

frequency space in dimensionless form, as

M 4

p(x,w) : _ Iv _w2T'j(Y'w)e-iM_t_dY' (2.4)

since this avoids the interpolation needed to compute retarded times in (2.3). Both for-

mulations correctly represent the quadrupole nature of the source, and have been shown

to facilitate an accurate numerical evaluation (Bastin, Lafon & Candel 1997). The vari-

ables axe non-dimensionalized using jet exit quantities and L1/2 defined in figure 1. In

evaluating (2.4) we neglect _-_j which is typically small (Goldstein 1976). The second term
in the tensor is also small in neaxly-isentropic flow, and so is also expected to be small

here. Thus for the present analysis we retain only puiuj in the source tensor.

3. DNS results

3.1. Database description

The coordinate system and a visualization of the jet simulation are shown in figures I and

2, respectively. Relevant physical and computational parameters are listed in table 1. A

high-order compact finite-difference algorithm was used to solve the compressible Navier-

Stokes equations in Cartesian coordinates; it iss fully discussed by Rembold et al. (2002).
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L2I'" i_

...,.""

FIGURE 1. Inflow profile and coordinate
system

FIGURE 2. Flow topology visualized by
density isosurface

L1/L2 5
ReLII2j 5000

Mj 0.5
Too/T_ 0.936143
Strouhal Number (----Llrtf/uj) 2.7066
grid (x, y, z) 337 x 229 x 229
box (15 x 14 x 14)L1/2
computational time 78.8
time samples used 552
average sampling interval 0.1435

TABLE 1. Parameters of the jet DNS database. The subscript j denotes jet-center quantities.
Unless noted, quantities are non-dimensionalized by P3, %, and L1/2.

A smoothed laminar top-hat velocity profile, as suggested by Yu & Monkewitz (1990),

u(n, = 1
(1 + sinh[]r/[ sinh-1 (1)] =", )(1 + sinh[]{] sinh-1 (1)] 2"=) (3.1)

defined the inflow, where _ and _ are the cross-stream coordinates normalized by the

corresponding velocity half-width Li/2, i = 1, 2. The parameters nl = 9 and n2 =
n,L=/L1 gave a common vorticity thicknesses a = & = £,/[v_ni sinh-l(1)] in both

directions. A linearly-unstable eigenmode was superimposed on this inflow at St = 2.7066

in order to trigger transition.

A total of 552 samples in time (dimensionless time interval 78.8) of the full DNS fields
were used to compute the sound sources. This set was subdivided into sub-intervals of

five overlapping sets of 192 samples each. The Lighthill stress tensor was computed in
each interval, and time transformed using a discrete Fourier transform. The samples were

windowed in time using a function constructed from a half-period of a cosine function,

which ramped the signal smoothly to zero over 50 samples at the beginning and end of

each window to reduce spurious high frequencies introduced by the finite sample length.

Figure 3 shows a windowed fluctuation pressure signal at y = z = 0, x = 6.2. The data
was unfortunately stored at non-equidistant intervals, but the change of the interval

length was less than one percent, and the associated error in the evaluation of Fourier

sums was shown to have negligible consequence for the frequencies of interest.

The far-field sound spectra were obtained by numerical evaluation of (2.4) using trape-

zoidal rule quadrature. The source term Tia goes to zero at large y and z and at the inflow

boundary, which allows integrating all the way to the domain boundaries. At the outflow



8 B. t_embold, J. Freund 8J M. Wang
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FIGURE 3. Pressure fluctuation signal at sensor point on the jet-center-azc/s in the transition
region of the DNS field.

FIGURE 4. Instantaneous contours of Tll (a,d), T12 (b,e) and Tlz (c,f) in the major (a-c) and
minor (d-f) jet-plane, _ origin of the far-field arcs.

boundary it is also small compared to its size in the transition area, though not zero since

turbulent structures leave the domain. We therefore smoothly ramped down the source
terms close to the outflow boundary in order to avoid affecting the volume integral by

leaving sources. It was found that the influence on the particular form of the smoothing
function is weak and therefore the same window function as in time was applied.

3.2. Acoustic analysis

In order to visualize the location and structure of the sound sources we plot in figure

4 contours of the dominant source tensor components Tll, T12, Tlz in the two jet-center

planes. Here the flow is from left to right and in streamwise direction the entire physical

domain is shown. In the lateral directions only the part with significant source terms is
shown. From this visualization we see that the maximum source terms are obtained at
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FICURE 5. Sound pressure level along an arc of radius 60L1/2 around the transition area in
the major o and minor * jet-planes; expected Doppler-scaling

the edges of the jet around the location where the potential core closes. The location

of the peak of the source does not necessarily coincide with the virtual origin of the

radiated sound, since most of the components do not radiate to the far-field. This was

shown by Freund (2001), who actually filtered the source terms in order to only obtain

the radiating components. However, it does give the indication that the dominant noise

producing structures are located in the transitioning shear layers. Far-field spectra and

intensities were computed on two arcs in the y -- 0 and z - 0 planes at a radius of

60L1/2 and with angle 8 measured from the downstream axis. The center of the arcs

x = 5, y = 0, z = 0 is labeled in figure 4 (a). In figure 5 the radiated sound-pressure-level,

SPL = 101oglo(pr2/p_ef), is plotted for the two arcs, taking the standard dimensional

reference condition Pref = 2 × 10-Spa. The anticipated directivity based on a Doppler

scaling
1

SPL ,,_ (1 - Mccos(8)) 5 (3.2)

with assumed convective Much number Mc = 0.6M is also plotted.

We observe a directivity of the jet peaking near 8 = 35 °. At this angle, the SPL

in the major jet-plane is 5dB lower than that in the minor jet-plane. This effect is

reversed at _ = 75 °. This trend is consistent with experiments of non-axisymmetric

jets which typically show that noise is more directive in the minor plane (Kinzie &

McLaughlin 1999), although we note that these observations are for supersonic jets. The

overall directivity matches well with the expected directivity for uniformly moving sound
sources.

Figure 6 shows noise spectra, (pp*)½/pju_, at six angles for each of the two arcs.
The spectra are highly peaked, as expected for a forced low-Reynolds-number jet. At

= 5°, the two spectra nearly coincide, which is not surprising since the observation

points are very close at low angles to the jet. For 8 = 30 °, the spectrum in the minor

plane is slightly higher at most frequencies. By 8 = 150 °, the spectra are flatter and

now not dominated by the forced instability frequency. We observe a slight increase of

the far-field spectrum at the high frequency end in this case, which is unphysical. This
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FIGURE 6. Far-field spectra for different 0 (((>-)" denoted complex conjugate quantities). 0 =
(a) 5 °, (b) 30°, (c) 60°, (d) 90°, (e) 120 °, (f) 150°, on the arc at radius 60L1/2 in the major
-- and minor m.p jet-planes. Also plotted are the spectra from a round jet DNS (Freund
2001) o and experiments of Stromberg et aL (1980) .... at 0 = 30 degrees.

might be caused by the non-equidistant time steps which was neglected in the sound

analysis and is being investigated further• For comparison we also plot for all angles the

far-field spectrum (arbitrary units) of the DNS data of Freund (2001) and experiments of

Stromberg, McLanghlin _: Troutt (1980) at an angle of 30 degrees. If the Strouhal number

is scaled such that L2 corresponds to the jet diameter, the drop-off in the spectra matches

the present data.

4. LES results

4.1. LES database

The physical parameters of the LES match the DNS. The flow was computed using

the approximate deconvolution model, as described in Stolz et al. (2001) and Rembold
et aL (2001) on a 141 × 77 × 77 mesh, which corresponds to one-third the DNS mesh in

each direction. We found, however, it necessary to increase the size of the downstream

absorbing "sponge" layer over that used in the DNS to suppress reflections from the

outflow plane (streamwise thickness of the sponge in DNS is 1.6L1/2, compared with

4.8L1/2 in LES). The simulation parameters are listed in table 2. Note that for the

LES we used constant time steps, and the temporal sampling rate was approximately 1.5

times that of the DNS. Temporal windowing of the same form as for the DNS was applied

to the entire data set. In figure 7 we show the analogous pressure-fluctuation signal at

a sensor point in the transition region of the jet with the temporal window function
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grid (x, y, z) 141 x 77 × 77
box (18 x 14 x 14) L1/2
computational time 90
samples used 1000
sampling interval 0.09

TABLE 2. Parameters of the jet LES database.

0.04[ ' ' ' '

0.02
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_-0.02

-0.04

0 20 40 60 80

t(2uj/L1)

FIGURE 7. Pressure fluctuation signal at sensor point on the jet-center-axis in the transition
region of the LES field.

applied. Instead of ensemble-averaging over several sub-samples, spectral binning, which
like windowing is a rigorous means of reducing variance, was applied to smooth the
spectra. A bin width of Aw = 0.35 was used. The spectra and far-field sound were

computed in exactly the same way as for the DNS.

4.2. Acoustic analysis

Naturally, in LES only filtered quantities are directly available for computation of the

Lighthill source, although deconvolution potentially offers a means of correcting this. In

the approximate deconvolution model, an approximate inverse of the filter is used to

partially recover unfiltered data, which is then used to model subgrid-scale effects on the
filtered flow field, u-G. The overbar denotes filtered quantities and the superscript G is

used for represented quantities on the LES grid. We define u* as our best approximation

for the unfiltered field. Stolz et al. (2001) and Rembold et al. (2001) discussed this in

detail and showed that this approach is effective for flow simulations. Thus, it is tempting

to ask whether parts of the sound spectrum can also be recovered in an LES.

The source tensor T/j can be decomposed into a part that can be represented on the

LES grid (Ti?) and a part that cannot (Ti_G), just as the velocity field u is decomposed

into a filtered field represented on the grid u-_ plus two error terms:

T,j = Ti_(u) + TSG(u), u = u-G + (u a - u--_) +(u - u G)

modeled _u"
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nil
FIaurt_ 8. Instantaneous contours of Tn (a,d), T12 (b,e) and T13 (c,f) in the major (a-c) and

minor (d-f) jet-planes from the LES database, _ origin of the far-field arcs.
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FIGURE 9. Sound pressure level along an arc in the major o and minor • jet-plane of radius
60L1/2 around the transition area; expected Doppler-scaling

We used a five-point explicit filter in computational space with two vanishing moments

in physical space. The source tensor components beyond the grid cutoff Ti_G(u) cannot
be recovered and must be modeled. These are not considered here. The represented part

of the tensor Ti_ (u) is a function of u but can be evaluated in LES only from the filtered

field u-c. Seror et al. (2001) have shown that the acoustic spectra computed from incom-

pressible homogeneous isotropic turbulence can be improved when the Lighthill stress

tensor, based on resolved velocities, is supplemented by the subgrid-scale contribution.

In the present study we investigated whether the far-field spectral prediction can be im-

proved when u-_ is replaced by u* _ u G, as is done for the flow computation. First, we

computed the far-field sound using Ti_(u-a) and then compared it with the prediction

using deconvolved quantities Ti_(u* ). The difference is found to be insignificant, as will
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the arc at radius 60L1/2 in the major -- and minor ----- jet-plane. Spectra for a round
jet of the DNS of Freund o and experiments of Stromberg et al. (1980) .... at an angle of 30
degrees.

be discussed later. The following results are based on the first formulation of the source
term.

The instantaneous source distribution, plotted in figure 8, is seen to be very similar

to the distribution in the DNS case (see figure 4) with maximum values at the edges of

the jet. Quantitative analysis in the far-field, however, reveals significant discrepancies

between the DNS far-field and the LES data (see figures 5 vs. 9). Whereas the directivity

in the main radiation direction (at angles around 30 degrees) is well recovered, we observe
spurious radiation of the LES jet at higher angles. The far-field spectra show that the

spurious noise is at high frequencies, where a rapid increase in the acoustic intensity in
the far-field is found, particularly at high angles. For reference the data of Freund (2001)

and Stromberg et aL (1980) at 0 = 30 degrees are again plotted. Careful examination of

the origin of these spurious waves is needed and ways to suppress them have to be found.

The same analysis was repeated with the source tensor based on the deconvolved

velocities to include the subgrid-scale contribution. We found no significant difference

between the results using the two source formulations. At this point it is not clear whether

the subgrid-scale contribution is indeed small or is overwhelmed by numerical errors. In

order to reliably predict the sound radiation from LES calculations and study the subgrid-

scale modeling effects, the source of these spurious waves first needs to be identified and
eradicated.
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5. Conclusions

We have computed the far-field sound of a Mach 0.5 low-Reynolds-number rectangu-
lar jet using a DNS database and Lighthill's acoustic analogy in frequency space, and

analyzed the sound pressure level and the frequency spectra along two arcs in the major
and minor jet planes. The directivity is found to match the theoretical prediction and

the spectra show characteristics similar to comparable data in the literature. In a second

step we performed an LES of the same flow using 1/33 the DNS mesh size and again

computed the sound. We found that the low frequency part of the far-field spectra is well

reproduced by the LES using source formulations based on both the filtered velocities

and the approximately deconvolved velocities. However, spurious waves from the LES

data resulted in an unphysical increase of the spectral level at higher frequencies, and

no subgrid-scale contribution has been observed. For reliable prediction of the far-field

sound with compressible LES this spurious effect has to be analyzed further.
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It is well understood that it is the development, not just the convection, of jet turbu-

lence that generates fluctuations with supersonic phase velocities which radiate noise to

the far acoustic field, but the mechanisms causing this mode conversion are not under-

stood. The relative efficiency of the interactions of turbulence with the mean flow and the

turbulence 'self' interactions has not been quantified. In light of this, tools are developed

here to analyze the process of mode conversion (scattering of flow energy into acoustic

energy) in a jet. Very large scales, with typical lengthscale between the turbulent inte-

gral length and the dominant acoustic wavelength, are thought to be capable of radiating

to the far-field. Inhomogeneous linearized filtered equations for the very large scale dy-
namics are derived and presented. The resulting source terms are computed from a well

validated DNS database, which also provides an 'ideal' subgrid-scale model for their evo-

lution. A capability to analyze the mode conversion in streamwise frequency-wavenumber
coordinates is also developed and discussed.

1. Introduction

It is widely understood that the frequency-wavenumber makeup of the turbulence in a

subsonic jet is such that most of the turbulence energy does not radiate to the far-field

(Ffowcs Williams 1963; Crighton 1975). Most of the energy manifests itself as evanescent
near-field disturbances, which are in essence the hydrodynamic pressure fluctuations
associated with the jet turbulence. Only components with supersonic phase velocity in

the streamwise direction, or more specifically sonic phase velocity in the direction of

radiation, are heard away from a jet. Since the flow, and the eddies in it, move at

subsonic speed for a subsonic or moderately supersonic jet, it must be the evolution of

the turbulence as it moves that puts energy into radiation capable modes.

A question naturally follows from this discussion: what interactions convert the great

portion of the turbulence energy which cannot radiate noise into modes that can radiate?

There are nominally two possible mechanisms: (i) the nonlinear interactions of the ener-

getic turbulent eddies in the flow; or (ii) the linear interaction of the energetic motions

with the background mean. At a particular frequency w, it is only the longest wavelength

(lowest streamwise wavenumber kz) components that can have a supersonic phase ve-

locity, Cph = w/kx > aoo, where aoo is the ambient speed of sound. So the question can
be posed more definitively in terms of how autonomous are the lowest-frequency modes

in the jet. If the radiation dynamics of these very large scales are primarily interactions

with the mean flow, this is the dominant interaction leading to radiation. However, if

the smaller but energetic scales play a substantial role in the dynamics of these very

t Theoretical and Applied Mechanics, University of Illinois at Urbana-Champalgn
:_ Aeronautics and Astronautics, Stanford University
¶ Mechanical Engineering and Aeronautics and Astronautics, Stanford University
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large scales, then it will be clear that turbulence interactions are more important. The

distinction of these mechanisms is inherent in the discussions of Goldstein (1984).

In this report we present a preliminary investigation of the modal interactions that lead

to noise radiation. We do not address this question expecting to identify any particular

interaction that "makes the noise." Instead, we apply a filter in physical coordinates to

jet-noise simulation data, to define the very large modes. This decomposition is in turn

used to see how the mean flow and the energetic turbulent scales affect the dynamics of

these very large scales. Spectral analysis is used to diagnose the wavenumber-frequency
makeup of different components.

The following section introduces a decomposition of the field variables into a very large

scale portion and an energetic scale portion. This procedure is analogous to that of large

eddy simulation, except that a substantially more restrictive filter is applied and there

is an additional step of linearizing the equations about the mean flow. In section 3 we

introduce the simulation database that will be used for this analysis. Section 4 illustrates

the complexity of the interactions in wave space that lead to radiation capable modes

by direct evaluation of convolutions in frequency-wavenumber coordinates (k,w) that
correspond to certain multiplications appearing in the flow equations. In section 5, we

define and apply a low-wavenumber filter to the simulation flow fields. Its effect will be

shown both qualitatively in physical coordinates with visualizations and quantitatively in
k-w coordinates. In section 6, we show some preliminary results for the evolution of the

very large scales, using an ideal subgrid-scale model derived from the direct numerical
simulation database. Section 7 summarizes our results and discusses the future direction

of this on-going project.

2. Evolution equations for the very large scales

For a filter defined in general as

= f G(x- x')q(x') dx, (2.1)

equations for the very-large-scale components of flow quantities, designated as q(L) are

derived from the compressible-flow equations by following the standard procedure used

for large-eddy simulation, with an additional step of linearizing about the mean flow,

which is denoted as _. This procedure yields

O---n(L)Jr _ (-[ju_L) Jr p(L)_j) = 0ate - (2.2)

(2.3)

(2.4)



Mode coupling and jet noise 17

with familiar 'subgrid-scale' terms appearing right of the equal sign. However, despite

this similarity, these equations will be use as a diagnostic tool rather than predictive

simulation tool. The missing subgrid-scale terms will be computed directly from a direct

numerical solution database, thus providing an ideal turbulence model. The relatively

importance of these scales and the interactions of the retained very large scales with the
mean flow will be quantified.

3. Simulation database

The database we used was for a circular jet with Mach 0.9, Reynolds number 3600and

constant stagnation temperature Tj/Too = 0.86 reported in detail by Freund (2001).
It was validated extensively against the corresponding experiments of Stromberg et al.

(1980) and also matches turbulence statistics and mean-flow spreading rates of jets at
much higher Reynolds number (Hussein et al. 1994; Panchapakesan and Lumley 1993).

The mesh had 640 x 250 × 160 points in the axial x, radial r, and azimuthal 8 (angular)

coordinates. The physical portion of the simulation domain extended 31ro downstream

and was surrounded by a non-physical buffer zone to absorb outgoing disturbances (Fre-

und 2001). During the course of the entire simulation, data for all five conservative flow

variables were saved every 20 numerical time steps on every other mesh point. This has

been found sufficient to reconstruct nearly all relevant statistics of the turbulence and

the sound field. There are 2333 such fields in all, though typically only 2304 of these are

used when doing frequency analysis to facilitate fast Fourier transforms.

4. Analysis in fwequency-wavenumber coordinates

4.1. The space-time transform

Since the wavenumber-frequency make up of the data is tied closely to its characterization

as a noise source, it is instructive to transform the simulation results in both space and

time and examine their structure. This is computationally challenging because it involves

manipulation of the entire time resolved, three-dimensional database. Even with data
saved only at every other mesh point, it involves five flow variables at over 5 billion space-

time points. For this reason, the transform, which is straightforward to write analytically,

is challenging to implement. The procedure for transforming the data was first developed

and applied to the pressure alone (Freund 2001), but has been modified somewhat in the

present study.

Each flow variable q is first transformed azimuthally as

1 Ne-1

4,_(x, r, t) = -_o E q(x, r, Ok, t)e i"s" n = -N,_ .... ..., -Nn .... (4.1)
k=0

where Nnm,x is the maximum mode number that we retain. Fortunately, the sound from
this jet is dominated by the lowest azimuthal modes (Freund 1999; Freund and Colonius

2002) so we have taken N_m, , = 6 in this current study.
Next, the data are interpolated onto a uniform mesh in x with Nz = 640 points and

then padded with zeros out to Nzp = 8Nz to minimize the implied periodicity of the
discrete Fourier transform. The aperiodicity of the mean flow was removed artificially by

multiplying by

1
w_(x) = 1 + _ (tanh[0.06a(x - x2)] - tanh[a(x - xl)]), (4.2)
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--. The windowing functionFZGURE 1. Jet velocity at r = 0 normalized by jet exit velocity u3
is ........ . The vertical line indicates the extent of the physical portion of the simulation domain
(Freund 2001).

where a = 0.4, xx -- 44ro, and x2 = 220.3ro. The effect on the axial velocity at r = 0 at

one instant is shown in figure 1. The x transform is then

1_---, ___vzp 2_rj
O_(kj,r,t) = -- L wx(z,)O_)(z_,r,t)e_k,_'; k_ = _. j = --Nk .... ... Nk ....

gxp z-_l XNzP _

(4.3)

where we shall see that taking Nk_._ = 640 captures nearly all of the energy, and so is
more than sufficient for our purposes.

The final step is the time transform. It is defined as

1 N, 2rm

_,_(kj,r, wm)= .._-_--Ewt(tt)_n(kj'r'tl)ei_"t'; Wm= ---_-; m = -N_ .... ... ,N_m..,
/=1

(4.4)

where taking N_m.. = 200 is sufficient for our purposes. The "window" function wt(t)
was

wt(t) ----- tanh _5_) -I- tanh , (4.5)\ tl - t2/J

where to and ty in (4.5) are the time in the simulation when it was determined to be
statistically stationary, and the final time, respectively. Times tz and t2 are the 5 and

95 percent points in this time series. Figure 2 shows transformed velocities in (k,w)
coordinates.

4.2. Convolution in k--w coordinates

The products that couple modes to put energy into radiating components are convolu-
tions in k-w coordinates. We can examine the modal contributions to these directly, by

explicitly computing these convolutions. For example, the pvi products that appear in

the mass equation are

W-I-k'=k w' +w'=w

Figure 3 shows contributions of individual components to the sum for k/w = ao¢ cos a,

where a is a directivity angle measured from the downstream axis. That is, if _(k', w')

and 7)_(k",w") combine such that (fi_)k_ is indeed a component with k/w = a_ cosa,

then the (fi'_)k_ from this interaction is added to the statistical 'bin' at both (kt, w ')
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FIGURE 2. (a) and (b) show the n = 0 component of v_ at r = ro and the n = 1 component

of vr at r = 0.5to, respectively. The horizontal line at _ = 0 in figure 2 (a) is the mean-flow

contribution. The energy falls around a line of steeper slope in (b) than in (a) because it is

at this smaller r that the convection velocity is expected to be higher. Integrating all radial
contributions in r biases the slope towards lower phase velocities because of the larger volume

contribution of the slower portions of the jet.
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FIGURE 3. Convolution contribution (see text) for (a) a = 30 ° and (b) _ = 110 °. Contours:
10 -3, 10 -2, 10 -1, 10 ° and 10 z p_r2o . A smoothing was applied to make the contours legible.

and (k', _)").Thus, we can make a contour plot that shows the contributions of different

portion of the (k, w) plane to radiation-capable components for a given product. Only

non-radiation-capable components are computed, because we are most interested in the

transfer of energy from non-radiation capable turbulence to that which can radiate. The

contributing regions of the (k, w) plane are differently shaped depending on the angle of

radiation. The region for a = 30 °, which is the angle of peak intensity, and the region for

= 110 ° are clearly different, though most conversion comes from near the origin in both

cases. These particular pv_ products were considered because the creation of radiation

capable p modes can be related, after subsequent manipulation, to the far-field sound,t

though we have not undertaken this because of insufficient statistics.

5. Filter definition

The turbulent integral length scale, near the end of the potential core is )_int _ 2.5ro,

and the wavelength of the most intense contributions to the noise at St _ 0.2 is A = lOro.

Our objective is to separate these scales. A filter with a transfer function T(A) defined

t Applying a wave operator to p yields an effective noise source for the jet, which is equivalent

to the Lighthill source. The far-field sound can then be computed by solving the Lighthill

equation. However, this relied on us being able to differentiate in the radial coordinate, which

is not possible because the convolution procedure does not preserve the smoothness of the

numerical solution in physical coordinates, rendering differentiation impossible for our statistical

sample.
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Ao = 2.5ro Ao = 5.0to
-0.66589224519920 -0.66665926684208
0.16591449129057 0.16666133194156

TABLE 1. Filter parameters for (5.1) and (5.2).
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FIGURE 4. Transfer function for the filters:
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,_/_r
Ao = 2.5ro and .... Ao = 5.0ro.

such that T(Ao) = 0.5 for waves with Ao = 2.5ro and one that is 0.5 for wave with

Ao = 5.0to were designed and applied to the data. Following Lele (1992), both filters
have the form

]_+ _(£-1 + ],+1) + Z(],-2 + ],+2)
b c d

= af_ + 5(/_+1+/__i) + _(/_+2 + £-2) + _(£+3 +/_-3), (5.1)

where the coefficients were selected following the procedure outlined by Bodony and

Lele (2002b). Requiring that the filtered field approaches the unfiltered field as A s when

A --+ 0, where A is the grid spacing, imposes the constraints that

a = (2 + 3a)/4 b = (15 + 34c_ + 30f_)/32
(5.2)

c = (-3 + 6_ + 268)/16 d = (I- 2a + 2/3)/32

Values selectedfor a and f_are given in table 1 and the transferfunctionsare plotted

infigure4.This filterwas appliedonly in x. Itissuch a severefilteringthat application

in r would disruptthe quasi-parallelstructureof the jet.In the P-directionsix Fourier

coefficientswere retained.

The effectof the filteron the streamwise and radialcomponents of the velocityis

visualizedin figure5. There isan obvious removal of scales.However, even with the

substantialchanges we see inthe physicalspace visualizationsbrought on by the filter,

the radiation-capableportionof the source in k-w coordinatesisessentiallyunchanged.

This is shown in figure 6 for the filter of width ), = 5.0to.

6. Evolution of the very large scales

An assessment of the role of the 'background field' on the scattering of non-radiating

fluctuations into sound is explored through the solution of equations (2.2)-(2.4), gener-

ically called the 'linearized inhomogeneous Euler' (LIE) equations by Goldstein (2002),

for the large-scale fluctuations {p(L), ulL)p(L)}. The inhomogeneous terms of the LIE

equations are known a priori from the DNS database and constitute an 'ideal turbu-

lence model' for the very large scales. Furthermore, as the filtering process defined in
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FIGURE 5. Velocity field visualization: full field (a) v_ and (b) v_; filtered with Ao = 2.5ro (c) v_
and (d) vr; and filtered with Ao = 5.0to (e) v_ and (f) v_. For vx the white contours axe evenly

spaced between 0 and uj; for v_ they are evenly spaced between 5=0.12u_, omitting v_ = 0.
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FIGURE 6. Same as figure 2 after application of the Ao = 5.0ro filter.

(2.1) is purely spatial, the time-derivative terms occurring in the momentum and energy

equations, (2.3) and (2.4) respectively, are smaller by an order of magnitude than the

corresponding flux terms and are therefore neglected.
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6.1. Numerical Method

The LIE equations were solved numerically using a modified larg- eddy simulation code

(Bodony and Lele 2002a). Written in cylindrical coordinates, the code employs standard

sixth-order Pad@ derivatives (Lele 1992) in the axial and radial directions, and spectral
differentiation in the homogeneous direction. Time advancement is by a fourth-order

explicit Runge-Kutta algorithm. Boundary conditions are non-reflecting on all compu-

tational boundaries. The source terms are stored precomputed and interpolated in time
using cubic splines. Initial conditions for the simulation are taken to be the filtered,

large-scale disturbance field from a particular instant in the jet. That is, if q(L) denotes

an initial value of a particular conserved disturbance quantity, then q(L) = qDNS -- q.

The early development of the mean flow is laminar and therefore nearly parallel, so spa-

tially developing instabilities can amplify substantially. If left undamped, upstream trav-

eling disturbances couple to instabilities at the artificial inflow boundary. These quickly

grow and overwhelm the solution. Thus, the inlet 'sponge' was set strong enough to damp

this process completely.

6.2. Preliminary Results

The primary goal of the investigation of very-large-scale dynamics is to determine the role

of the mean in the conversion of non-radiating hydrodynamic fluctuations into sound. For

model problems, such as a 'gust' impacting the leading edge of a solid body (Crighton

and Leppington 1971), the mechanism of 'scattering' vorticity into sound is well estab-

lished. However, a jet is more complex because the coupling region is nonlocal, and the

linear decomposition into entropy, vorticity, and acoustic fluctuations (Kovasznay 1953)

is inadequate for the finite-amplitude disturbances in the jet. The current solution of the

linearized equations is an attempt to examine the effect that the background flow has

on the fluctuations through direct comparison with the previously known nonlinear so-

lution. One-to-one comparisons, however, are not possible because the initial conditions

described in section 6.1 are not precisely consistent with the LIE equations causing a
substantial initial transient. We therefore must make statistical comparisons.

Visualizations of the large scale disturbance pressure field, of which figure 7 is a partic-

ular snapshot, do not show any distinctive large-scale motion of the jet, such as 'flapping'

or 'pulsating', that can be correlated with the radiated sound. Instead, it appears that

the pressure fluctuations are related to the large scale axial motion of nearly axisym-

metric (low azimuthal mode number) structures through the jet. Previous experimental

(Fuchs and Michalke 1975), numerical (Freund and Colonius 2002; Freund et al. 2000),

and analytical work (Tam and Morris 1980) support this conjecture.

To find the radiated sound, the pressure history on a surface surrounding the jet is

collected and projected onto the far-field. Beyond a radius of approximately R, = 5to

the mean flow and its gradients are very weak so that acoustic propagation is governed

by the wave equation for a stationary medium. If the pressure on the Kirchhoff surface is

denoted as p(x, Rs, 8, t), then the far-field sound is found using the Fourier-transformed

wave equation

d2p+ldp ( _2 _ k2 n2)dr--_ r_rr + _ -_-_ #=0 (6.1)

where #(k, n, w; r) is the three dimensional discrete Fourier transform (in x, 8, and t) of

p(x, r, 8, t) with dual variables (k, x), (n, 8), and (w, t). Equation (6.1) is Bessel's equation
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FIGURE 7. Instantaneous very-large-scale pressure-disturbance field p(L) obtained from
solution of equations (2.2)-(2.4).
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FIGURE 8. Near-field pressure data taken from Kirchhoff surface (r = 5to). (a) Pressure
fluctuation traces at x = 15to (solid) and x = 24.4ro (dashed) and (b) their Fourier coefficients.

and is subject to the boundary conditions that, for r = Rs, 15(k, n, w; r) = 15(k, n, w; Rs),

and that as r --+ oo the solutions represent outgoing traveling waves.

Sample pressure traces taken from the Kirchhoff surface (r = 5to) are shown in fig-

ure 8(a) for x = 15.0ro and x = 24.4ro. (The windowing of (4.5) has been applied.)

Differences between the two traces are apparent. The trace at x -- 15.0ro is at an angle

of approximately ninety degrees from the downstream jet axis, nearly directly 'above'

the end of the potential core while that at x = 24.4ro is closer to thirty degrees. From

previous work (for example, Lush (1971)) the latter trace should exhibit a stronger signal,

with lower frequency content relative to the former trace. This is borne out in figure 8(a)

qualitatively and more quantitatively in figure 8(b). The corresponding far-field pressure

signals are shown in figure 9 at a distance of 60ro from the end of the potential core.

(The time axes have been shifted to remove the time delay between the traces.) While

the available far-field data are not sufficient to yield reliable sound pressure levels, the

separation in frequency content, though minimal for this very-large-scale formulation,

and in amplitude is observed.
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through the near-field traces of figure 8(a).

7. Conclusions

We have developed a formulation of the very-large-scaleequations and the necessary

filtersfor very largeturbulence scales.The cutoffscaleislargerthan the integrallength

scaleof the turbulence,but smaller than the dominant acousticwavelength. We have

alsodeveloped the toolsforspace-time transformationof the fullflow-fielddata in such

a way that itallowsus to look at specificmodal interactions.Initialobservationsof the

very-large-scaledynamics impliesthat this type of investigationiswarranted. Purther

work isplanned to explorethe statisticalpropertiesofthe linearizeddynamics and their

connection to the radiated sound.

This initialeffortisthe startingpoint for a more in-depth study using the toolsthat

we have developed. As the problem iscurrentlydefined,being the solutionof the LIE

equations (2.2)-(2.4),the roleofthe mean ismasked by two factors.First,the inhomoge-

neous terms, collectivelyreferredto here as S, may themselvesradiate,so that the sound

predictedisthe sum ofthe scatteredvery-large-scalehydrodynamic fieldand the directly-

radiated sound coming from S. To assessthe importance ofthe mean to scatteringmore

directly,the source terms should be appropriatelyfilteredtoremove theirradiatingcom-

ponent, leavingonly that portion of S which does not radiate.The transform procedure

discussed in section4 issuitablefor this.Secondly,the factthat only the mean flow has

been retainedinthe linearizationimpliesthat the scatteringefficiencyisreduced relative

to that ifthe background flow were permitted tobe unsteady.The new formulationofthe

LIE equations would then take on an acousticanalogy quality(Goldstein2002) as the

assumption would have to be made that the very largescalehydrodynamic fluctuation

fieldpresentinthe DNS isindependent ofthe radiated very largescalefluctuations.This

type ofstudy has been performed in the contextofjet screech(Manning and Lele 2000)

for the case of boundary sources.
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Perturbation and adjoint analyses of flow-acoustic

interactions in an unsteady 2D jet

By L. I. Cervifio?, T. R. Bewley_, J. B. Freund$, AND S. K. Lele

It is well known that noise sources embedded in a jet produce sound fields which refract

due to the presence of the flow. The refraction due to the mean flow has been appreciated

and modeled for some time, but only occasionally is the significant refractive effect of

the unsteadiness of the flow acknowledged. In the present work, perturbation and adjoint

analyses of high-frequency acoustic fluctuations are performed in a numerical simulation

of a cold 2D jet system at a Mach number of M = 0.5 and a Reynolds number based

on the jet diameter of ReD ----5000. The jet system is hydrodynamically excited into a

sinuous mode near the jet exit at a Strouhal number of St = 0.4, and exhibits the classical

vortex roll-up phenomenon. Acoustic perturbations to this flow system are analyzed at

Strouhal numbers of St = 0.8, St = 2, and St = 8 (that is, 2×, 5x, and 20x the vortex

roll-up frequency). It is found that the unsteady effects of the flow cause a significant

frequency broadening in both the perturbation and adjoint analyses.

1. Introduction

The problem of jet noise has significant engineering consequences. The far-field noise

radiated by an unsteady flow system may be computed directly from a highly-accurate

simulation of the compressible Navier-Stokes equation, or may be extracted from an

approximate compressible flow simulation using any of several "acoustic analogies", in-

cluding the celebrated Lighthill and Lilley equations. Despite their elegance and the fact
that they are exact expressions, such acoustic analogies generally fail to isolate the true

"sources" of far-field noise from significantly stronger noise "sources" which almost com-
pletely destructively interfere and radiate relatively little energy to the far field, as with

the so-called quadrupole noise sources in a turbulent jet.
In order to better understand the physics of far-field noise and how it may be con-

trolled, the present investigation represents one in a series of efforts to interrogate nu-
merical databases, which capture the production of far-field sound directly, by accurate

simulations of the compressible Navier-Stokes equation. The present paper focuses on

the significance of acoustic scattering due to unsteady vortex roll-up in the perturbation
and adjoint analyses central to this investigation.

There have been several previous investigations aimed at analyzing the effects of refrac-

tion in perturbation and adjoint analyses due to the presence of the flow. Many of them,

however, consider the governing equations only after they have been linearized about

the mean flow. For example, Durbin (1983a, 1983b) derived a high-frequency Green's

function from an idealized steady jet profile. Tam & Auriault (1998) obtained an adjoint

Green's function, using a steady jet profile obtained from a PLANS calculation, and re-

lated it to the corresponding Green's function of the acoustic field at a particular point

in the flow field due to additional localized sources embedded within the jet.

t Univ. of California, San Diego
$ Univ. of Illinois, Urbana-Champaign
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In a turbulent flow, however, acoustic phenomena are closely related to system un-

steadiness. This was characterized in Freund & Fleischman (2001), where a refraction

analysis was performed by means of ray tracing. It was observed that, when a noise

source was located within the laminar jet core, the difference in the directivity calculated
by the mean flow analysis and the unsteady flow analysis was rather small. However,

when the source was placed farther downstream on the jet axis, the rays in the mean

flow were significantly refracted by the unsteady jet shear layers, and the time average

of the unsteady analysis was completely different than the corresponding analysis of the

mean flow. Suzuki & Lele (1999) and Suzuki (2001) performed Green's function analyses

in unsteady 2D mixing layers and boundary layers and analyzed the effects of acoustic
scattering. The interaction between incoming plane waves at various angles of incidence

with the unsteady vortices in the flows were investigated in detail, and the results com-

pared with the ray-tracing procedure. A significant broadening of the frequency content

of the acoustic wave after it passed through the mixing layer was observed, indicating sig-

nificant flow-acoustic interaction. The present paper extends these lines of investigation

with perturbation and adjoint analyses of cold 2D jets.

1.1. Approach

As mentioned in the Abstract, the flow system considered in this work is a Mach 0.5 cold

2D jet at a Reynolds number Rez) -_ pDUj/# = 5000 with sinusoidal excitation near the jet

exit at St = foD/Uj = 0.4. Refraction effects are expected to be significantly weaker in a
cold jet than in a hot jet, as the speed of sound is identical in the ambient fluid and the jet

core. In fact, in sharp contrast with the perturbation and adjoint analyses of the mean of

a heated jet as considered by Tam & Auriault (1998), the corresponding analyses of the

refraction due to the mean of the cold jet flow studied here exhibit very little refraction.

Nevertheless, as shown in this paper, the acoustic scattering due to the unsteady vortex

roll-up in the present flow is quite pronounced even in this cold jet system, illustrating

significant opportunities to force the hydrodynamic field (at low frequencies) in order to

modify the high-frequency radiated noise.

The simulation code used in the present work implements the full compressible Navier-

Stokes equation using a numerical method based closely on that developed by Freund,

Moin, & Lele (1997). The present simulations do not resolve any solid boundaries. In-

stead, artificial "buffer zones" have been used around the domain of physical interest,

coupled with characteristic-based boundary conditions on the computational boundaries.

This type of ad hoc but effective numerical boundary conditions simulates the effect of

quiescent far-field boundary conditions on the physical system, and has now become
standard for this type of problem. It is discussed further in, e.g., Freund (1997) and

Colonius, Lele, _z Moin (1993).

As summarized in Figure 1, two types of analyses are considered in the present work.

In sec. 2, perturbation analyses of the flow field are performed in order to obtain a

characterization of the propagation of disturbances in the system as it evolves forward

in time. In these analyses, artificial RHS forcing (to be referred to in this paper as the

"control") is introduced into the jet system, and the resulting perturbation to the flow

which is introduced by this forcing is computed. As depicted in Figure 1, such analyses
characterize control--_effect relationships. A representative perturbation analysis of the

present system is shown in the top row of Figure 2.

In sec. 3, adjoint analyses of the flow field are performed in order to characterize the

sensitivity of a particular metric measuring the flow system to additional forcing of the

governing equations. In these analyses, an "adjoint system" is defined and computed in
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FIGURE 1. Perturbation analysis (left) and ad3oint analysis (right) of the jet system.
Note that perturbation analyses characterize control --+ effect relationships:
• If I change the "control" here, how and where wall that affect the flow?
On the other hand, adjolnt analyses characterize effect --+ control relationships:
•IfI want to achieve a desired effect here, how and where should I apply "control" to the flow?
The answer to the latter question is of particular interest when a high-dimensional forcing schedule for a
complex system, such as a turbulent jet exhaust, is being optimized to achieve a desired effect, such as
the reduction of radiated noise in a particular direction. Note that adjoint analyses do NOT identify the
"source" of the radiated noise in such a system. Rather, they ldenufy how and where additional forcing may
be applied to the existing system to modify the radiating noise already present m a desired manner.

tc 2>

FIGURE 2. Perturbation analysis (top) characterizes the effect on the entire flow resulting from a small
change to a particular "control" quantity, taken here to be a sinusoidally-varying mass source at point Xc.
Adjoiat analysis (bottom) characterizes the effect on a particular flow quantity, taken here to be high
frequency noise at point x_, due to small changes in the "control" applied anywhere in the flow. Note that a
perturbation analysis involves marching the governing equation forward in time, whereas an adjoint analysis
involves marching the corresponding adjoint equation backward in time.

order to identify the gradient of a "cost function" (which mathematically quantifies the

metric of interest) to additional forcing of the jet system. As depicted in Figure 1, such

analyses characterize effect-_eontrol relationships. A representative adjoint analysis of

the present system is depicted in the bottom row of Figure 2.
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FIGURE 3. Adjoint analysis of sound waves, produced by a monopole sound source at the point marked by
the X, in a stationary fluid. In the problem depicted here, the desired effect is to reduce the intensity of the
sound field in the "interrogation region" outlined by the rectangular box. The corresponding adjoint field is
driven by the sound waves in the box and propagates away from it, as visualized above, illustrating possible
locations for "antinoise" sources where additional forcing could be applied to achieve the desired effect
(namely, to reduce the sound pressure level within the box). Even though the governing system represented
here is a linear, constant-coefficient PDE and the cost function is quadratic in the state variables, the adjoint
field identifies a range of effective "antinoise" forcing locations, and does not accurately identify the isolated
sound source. Note that the focusing of the adjoint field on the isolated sound source is found to improve
when the size of the box is increased as compared with the wavelength of the sound.

It is important to note that adjoint analyses do not identify the "origin" or "source" of

the radiated sound in such a system. This point is readily evident by considering a simpler

model system (without the jet present), as depicted in Figure 3. Thus, identification

of sound "sources" is not to be expected from adjoint analyses when applied to more

complex systems, such as the unsteady jet considered in the present work.

Note that, in the remainder of the present work, the cost functions considered are

essentially pointwise measures of the sound field, and the adjoint field computations are

therefore referred to as "adjoint Green's functions".

2. Perturbation analyses

A logical starting place for this investigation is to assess the effects of hydrodynamic

unsteadiness (that is, vortex roll-up) on small perturbations to the flow system. In par-

ticular, we will investigate the scattering of low-amplitude acoustic waves as they pass

through the unsteady jet system. In order to perform a perturbation analysis of this sort,

one approach is to calculate numerically the linearized ("perturbation") equations. The

code used to solve such a problem is often referred to as a "tangent linear" code. With

this approach, the perturbation field is obtained directly.

An alternative "finite-difference" approach allows us to calculate the perturbation field

using the nonlinear flow solver itself, without writing a separate tangent linear code.

This is achieved by computing a "nominal" flow, computing a second "perturbed" flow

(with the appropriate small perturbation applied to the initial conditions, the boundary

conditions, or the right-hand-side forcing), and taking their difference, dividing by the
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perturbation amplitude e. In fact, in the s -+ 0 limit, this is how we define the so-called

"perturbation field". However, as a computational strategy, this approach presents certain

difficulties. If e is made too small, the finite-precision arithmetic of the computer leads to

differencing errors, as the two fields being compared are almost identical. On the other

hand, if e is made too large, the "small" perturbation assumption breaks down, and E2

terms in the Taylor series expansion begin to become significant. In practice, selecting an

appropriate value of e to minimize the sum of these spurious effects is difficult. Though
higher-order finite-difference approximations of the perturbation field can be proposed,

they are also plagued by the competition of these two spurious effects.

In order to circumvent the difficulties cited above associated with selecting s in a finite-

difference approximation of the perturbation field, an alternative approach, referred to

as the Complex Step Derivative (CSD) method, has been developed (Lyness & Moler

(1967); Squire & Trapp (1998)). This method has already been applied broadly in the

optimization literature (see, e.g., Martins, Sturdza, &: Alonso (2001)). The basis of this

method is to redefine all of the real variables in the system as complex, and to perform

the nominal (real) simulation as before while introducing the small perturbation into
the imaginary part of the system. It can be shown by a straightforward Taylor-series

expansion of the complex fields which result that, to order _2, the real part of the re-

sulting field contains the nominal flow and the imaginary part (divided by e) contains

the perturbation field sought. Further, this calculation is not plagued by the "difference

of large numbers" problem, so e may be made very small without inducing differencing
errors in the calculation of the perturbation field. This provides an extremely accurate

technique for computing a perturbation analysis when the simulation code nominally

involves only real arithmetic (as is the case with the present 2D simulations), and is the

approach selected in the present computationst.

The result of a representative perturbation analysis is shown in the top row of Figure

2. A localized mass source which oscillates sinusoidally in time (at five times the vortex

roll-up frequency of the jet) has been introduced in the jet at point Xc. This has been

accomplished by adding a forcing term to the right-hand side of the continuity equation.
The addition of this forcing excites an acoustic wave, which is significantly refracted by

the unsteady vortex roll-up. Mean-flow analyses, of course, fall to capture such scattering,
which is due to the unsteadiness of the flow.

It is also straightforward to characterize acoustic waves coming from the far field.

Computationally, the approach is slightly different: unsteady forcing is used along a line

within the non-physical "buffer zone", and particular care must be exercised to avoid

spurious effects in the corner regions of the computational domain. Physically, however,

the result is qualitatively similar, and significant scattering is encountered when the

acoustic field passes through the unsteady jet, as shown in Figure 4.

t In fact, it is interesting to note that it is straightforward to extend the CSD method to
pseudospectral codes which nominally employ complex arithmetic. This approach was investi-
gated briefly during the CTI_ summer program, and is reported in Cervifio & Bewley (2002).
Unfortunately, the FFT's used in such pseudospectral extensions of the CSD approach combine
the nominal (real) and perturbation (imaginary) parts of the analysis, and thus the accuracy of
this approach for computing the perturbation field is found to be not significantly better than
the second-order finite-difference approach.
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FIGURE 4. Perturbation analysis: refraction of pressure waves coming from the far-field by the unsteady

2D jet system

3. Adjoint analyses

The ultimate goal of the present research effort is to identify effective control strategies
to reduce appropriate metrics of jet noise, extending the previous work reported by Wei
& Freund (2002) of reducing the noise in a 2D mixing layer using a similar adjoint-
based approach. Thus, though the perturbation analyses are qualitatively interesting,
adjoint analyses contain significantly more relevant quantitative information related to
our ultimate goal, and form the focus of the remainder of this study.

3.1. The adjoint operator

We now summarize briefly the adjoint formulation used in the present work. The con-
tinuous (PDE) description of the governing equation is first linearized and integrated by
parts to obtain both an adjoint PDE operator useful in defining the adjoint field, and an
identity that (once boundary conditions, initial conditions, and the right-hand-side forc-
ing of the adjoint system are defined appropriately) may be used to express the required
flow sensitivities in the continuous setting. As a final step before implementation in the
numerical code, the state and adjoint equations are discretized in space and time in a
consistent fashion.

We first define a state vector q, a perturbation vector q', .and adjoint vector q* as

P q' m' q* m* (3.1)

p' p*

We may then denote the nondimensionalized full compressible Navier-Stokes equation

for an ideal gas with constant specific heats cp and cv and constant Prandtl number Pr
as

N(q)= o, (3.2)

bP +V.m

N(q)= v. - + v.p Re '

_P +V" -_ + (Y- 1)p(V" p) - Re_rV" (#Vp) - ¢¥

and ¢ denotes the irreversible viscous dissipation term. Assuming appropriate expressions
for g and gs, the simulation code used in the present work implements the full compress-
ible Navier-Stokes equation outlined above. In order to develop an adjoint solver, certain

where
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additional approximations have been made, namely that tt = constant,/_B = constant, and

q) = 0. These convenient simplifications are thought to be acceptable in the approximate

adjoint analysis, as the spatial and temporal variations of viscosity in the system and

the irreversible viscous dissipation in the heat equation both affect the dynamics of the

system only at the small length scales, and are thus thought to be relatively unimportant

in terms of the mechanics of sound generation. Subject to these additional assumptions,

and following the established procedure for performing an adjoint analysis [see, e.g., ap-
pendix B of Bewley, Moin, & Temam (2001) for the case of an unsteady compressible

Euler system], we may take the Frdchet derivative of this governing equation to obtain a
linearized equation of the form

N'(q) q' = O. (3.3)

Selecting an L2 duality pairingt of the form (q*,q')& forf_q * .q'dxdt, this linearized

operator is then transformed according to the identity

(q*,N'(q)q') = (N'(q)* q*,q'}+ b. (3.4)

After some algebrainvolvingseveralintegrationsby parts,itisstraightforwardto show

that the adjointoperator corresponding to the approximate linearizedform ofthe com-

pressibleNavier-Stokesequation in thisframework is:

3p* m.vp, +(7_ 1)p.V. m_v.m . _Y--_nV2P" '_
_-t p p prrKe j

I

ap" pm , (7- 1)m . m m , /÷--7- +
/

+ _-_:-_ _ [m. V2m* + (_--_B + 1"_ (m.V)(V.m')] + Y-:-_ -P-v2p *j
_eP 2 L \ /_ J/ J pPr_e p /

It is important to note that, in the present derivation, we have associated the "adjoint

pressure" with additional forcing of the continuity equation, and the "adjoint density"

with additional forcing of the selected form of the energy equation. [This is in contrast

with, e.g., the nomenclature selected by Tam & Auriault (1998).] The nomenclature has

been defined in this manner in order to have a logical zero-Mach-number limit. In this

limit, p and p* axe constant, the forward and adjoint energy equations may be dropped,

and the state, perturbation, and adjoint vectors reduce to

,.(,.)' m t ' m* "

In a domain enclosed by solid boundaries, by selecting the appropriate adjoint bound-

ary and initial conditions, we can make the boundary term b in (3.4), which results from

the several integrations by parts, equal to zero. Alternatively, as in the present analysis,

t In multiscale PDE systems such as the present, the L2 duality pairing is not necessarily the
best choice for defining the adjoint operator, and incorporating spatial or temporal derivatives
into this pairing is recognized to have an important regularizing effect on the spectra of the
resulting adjoint field that must be calculated. For further discussion of this important topic,
see Protas, Bewley, & Hagen (2002).
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FZGURE 5. Adjoint density (top) and adjoint pressure (bottom) reveals sensitivity of the pressure compo-
nent of the perturbation field at point xe at time te to additional forcing of, respectively, the energy equation
(top) and the continuity equation (bottom) everywhere in space xc and for all times tc < te. Note that, by
causality, the adjoint field is zero fortc> te; that is, the adjoint field marches backward in time from t = te.

we may surround the physical part of the domain of interest in both the flow and adjoint

problems with the numerical equivalent of quiescent far-field boundary conditions which

propagate no information towards the physical domain of interest; this again effectively

allows us to neglect the influence of b. By so doing, the adjoint identity (3.4) then reveals

that the following two analyses are equivalent:

#1) analyzing the effect on q}(Xe,te) (that is, the effect on the i'th component of the
perturbation field at point x = Xe and time t = te) created by applying a localized force

g} = _(x - xc)5(t - tc) to the j'th component of the perturbation equation, and

#2) analyzing the effect on q_(xc,t¢) created by applying a localized force
g_ = _i(x- Xe)5(t- te) to the i'th component of the adjoint equation.

By the identity (3.4), we may relate the perturbation and adjoint fields in these two

analyses by

q_(xe,te) = q_(Xc,tc). (3.5)

Note that the point Xc and time tc do not appear in the formulation of the adjoint system

in problem #2, but arise only in the subsequent analysis of the resulting adjoint field.

Thus, a single adjoint calculation allows us to quantify the effect of forcing anywhere

in the flow system (for any Xc, tc, and j) on the particular flow quantity q_(xe,te). This

relation between the perturbation and adjoint Green's functions provides an alternative

but equivalent explanation of the significance of adjoint analyses to the more general

"controls-oriented" explanation provided in Figure 1.

3.2. Calculation of an adjoint Green's function

Figure 5 illustrates a computation of the adjoint Green's function, as formulated at the
end of the previous section, obtained by forcing the adjoint system N_(q) * q* = g* with
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FIGURE 6. Evolution of adjoint pressure (left) and adjoint density (nght) in time at the points {x,y} of
(solid) {5D,0}, (dashed) {5D,2.5D}, (dot-dashed) {5D,-2.5D}.
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FIGURE 7. Adjoint pressure at three different locations at the centerline: at (dot-dashed) x = 8, (dashed)
x = 9, and (solid) x = 10. When the actual evolutions of the variable (left) are shifted by the time corre-
sponding to the convection velocity (right), there is an approximate superposition of the three lines, which
indicates that these perturbations convect toward the nozzle at the convective speed.

an isolated force at a particular point in space and time, that is, g_ = 8(x - Xe)5(t - te).
As discussed above, each component j of the resulting adjoint Green's function, at each

point in space Xc and each instant in time tc, may be interpreted as the i'th component

of the perturbation to the flow at point xe and time t, that would arise due to localized

forcing of the corresponding component j of the flow system at the corresponding point

in space Xc and time tc. The calculation reported in Figure 5 takes i = i, that is, the

adjoint field shown characterizes the effect on the perturbation pressure p'(xe,te).

It is interesting to note (see Figure 5) that the disturbance in the adjoint pressure grows

rapidly as it propagates within the jet towards the nozzle at the convective velocity as
the adjoint field evolves (in backwards time). In contrast, the disturbance in the adjoint

density essentially propagates right through the jet, experiencing significant refraction.

This behavior is quantified further in Figures 6 and 7. The component of the adjoint

density that propagates at the convective speed of the jet within the jet shear layers is

found to be quite small. This indicates, as one might expect, that mass sources are more

efficient than energy sources in modifying the hydrodynamic field in a way which changes
the radiated noise.



36 L. L Cervi_o, T. R. Bewley, J. B. Freund 8J S. K. Lele

FIGURE 8. Adjoint density field due to incoming waves from the far field.

3.3. An adjoint Green's function at temporal frequency f

An alternative to forcing the adjoint problem at an isolated time te is to force it at a

specific temporal frequency f. This corresponds roughly to looking at the sensitivity of

the sound field at point Xe (at the frequency and phase selected) to additional forcing
of the governing equations. This correspondence is only approximate, however, as the

system under consideration has time-varying coefficients, and therefore frequency-based

characterizations of the system's response are of limited usefulness. Note that, in systems
with constant coefficients, a Bode plot completely characterizes the frequency response

of the system. Such a frequency-domain analysis may only be applied to the mean flow.

Nonetheless, an approximate characterization of this sort may still be developed for the

present system (in the time domain) simply by forcing the adjoint system sinusoidally

at the frequency of interest during the backwards march for the adjoint field. The result

of such a calculation is illustrated in the bottom row of Figure 2. The scattering of the

adjoint field due to the vortex roll-up is a necessary consequence of the scattering in the

corresponding perturbation fields.

3.4. An adjoint Green's function corresponding to far-field noise

An alternative to forcing the adjoint problem at an isolated point in the computational

domain Xe is to force it along a line near the boundary of the computational domain

(that is, in the "buffer zone" used to approximate the far-field boundary conditions). By

so doing, one may set up a propagating wave in the adjoint field which is the same as

if the computational domain extended deep into the far field and the adjoint problem

was forced a very long distance away. By varying the forcing along this line sinusoidally,

one may simulate the arrival of a wave in the adjoint field corresponding to the effect

on the far-field noise in any direction of interest. A representative example is given in

Figure 8. Note that both reflection and refraction of the adjoint field are observed in this

computation.

3.5. Quantification of scattering of adjoint Green's functions

In an attempt to quantify the scattering of a wave in the adjoint field due to the unsteady

vortex roll-up, the values of the adjoint density and adjoint pressure have been measured
at three different points in the representative adjoint Green's function analysis illustrated

in Figure 9. The points where the adjoint density and adjoint pressure were measured
are above the jet (where the scattering will be referred to as reflection), at the centerline,

and below the jet (where the scattering will be referred to as refraction). The time series

of these measurements were Fourier-transformed in time, and the results axe plotted in

Figure 10. The analysis was performed for adjoint forcing at three different Strouhal
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FIGURE 9. Adjoint pressure wave corresponding to far-field noise at an angle of 60° off the jet axis and at
a frequency of St = 2.0. The Fourier transform of this field evaluated at the three points indicated _sshown
in Figure 10.

numbers: St = 0.8 (2x the vortex roll-up frequency), St = 2.0 (5x the vortex roll-up

frequency), and St = 8.0 (20x the vortex roll-up frequency).

Perhaps the most important observation to make in Figure 10 is that there is very

significant frequency broadening in all of the adjoint spectra measured. The adjoint

systems are excited by forcing at the single frequency indicated (St = 0.8, 2.0, or 8.0)

but, due to the time-varying coefficients (from the unsteady flow field q) in the adjoint

operator, the measurements of the adjoint field at the points indicated exhibit energy over

a broad range of temporal frequencies. For comparison, the spectra of the hydrodynamic

fluctuations of the base flow is shown in Figure 11. Note that the frequency broadening
of the adjoint field cannot be captured by a steady-flow analysis.

The frequency broadening present when the adjoint field is forced at a high frequency
is much larger than when it is forced at a low frequency. This fact was noticed by

Suzuki (2001) for the direct problem, and was interpreted as "multiple scattering". In

the present adjoint analysis, this suggests that high-frequency noise may be modified by

a broad range of possible forcing frequencies.

Note in particular that the frequency spectrum is generally narrower at the point

above the jet (dashed lines) than below the jet (dot-dashed lines), apparently because

the refraction of the traveling wave in the adjoint field is stronger than the reflection of

this wave for the incidence angle tested. Within the jet (solid line), it is observed that

the frequency broadening is strongest.

The low-wavenumber components of the spectra of the adjoint pressure at the cen-

terline are especially strong for all three forcing frequencies tested. This indicates that
low-frequency modulation of the hydrodynamic field via mass sources within the jet can

have a significant impact on the high-frequency noise in the far field, and provides impe-
tus for further studies in jet-noise control based on such characterizations to exploit this

sensitivity.

Note also that all of the spectra are somewhat jagged, and the distance between of each

small peak in this jaggedness is Af = 0.2D/U, which is exactly half of the vortex roll-up

frequency. This appears to indicate (as one might expect) that the scattering of the wave

in the adjoint field is closely related to its interactions with the large-scale vortex roll-up.
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FIGURE 10. Temporal spectra of (left) the adjoint pressure p'_f and (right) the adjoint density p'*f for an
incident wave in the adjoint field coming from above (at an angle of 60 ° off the jet axis), at a frequency of
(top) St = 0.8, (middle) St = 2.0, and (bottom) St = 8.0 and measured at the points {x,y} of (solid) {5D,0},
(dashed) {5D, 2.5D}, (dot-dashed) {5D,-2.5D}. See Figure 9 for flow configuration.

A second set of cases was also run in which the wave in the _djoint field approaches the

jet at a 90 ° angle off the jet axis (cf. Figure 9). The results showed very similar trends,
and are thus not included here.
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4. Concluding remarks

Perturbation and adjoint analyses of flow-acoustic interactions in an unsteady 2D jet

have been performed. Attention has been focused on the scattering of adjoint Green's

functions corresponding to far-field high-frequency noise. Significant scattering of the

adjoint field is detected both above and below the jet, as quantified by a spectral analysis

of the adjoint field. This scattering is a direct result of system unsteadiness (vortex roll-

up), and cannot be captured by mean flow analyses.

The degree to which frequency broadening extends into the low frequencies within the

jet in the adjoint analyses indicates the degree to which low-frequency alteration of the

hydrodynamic field can be used to affect the high-frequency radiated acoustic field. This

distinguishes promising low-frequency "hydrodynaznic" control strategies from simple

(but perhaps impractical) "antinoise" control strategies, which must be applied at the

frequency of the radiated noise.
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RANS modeling

The RANS section contains two reports on three projects: RANS models have of course

played a part in many other projects reported here. The work of Ooi et al. is addressed to

Reynolds averaged analysis of flow in a ribbed duct. This configuration is used in cooling

passages; the ribs enhance heat transfer. The terminology 'turbulator' is some times used
to describe the role of the ribs. This project explores the possibility that the ribs function

by generating strong secondary flows, not simply enhancing turbulence levels. Though

experiments were done in which the secondary flow is switched off and heat transfer is

compared to that of the full flow field. Swept ribs were found to produce a large amount

of secondary flow heat transfer. The article by Ooi et al. provides some specific numbers,

as well as visualizations of the secondary flow features.

Rousson et al. report on two projects related to fires. Reynolds averaged analysis and

eddy simulation are discussed. Fires can propagate by radiative heating. Whether or not

a surface will ignite can depend on whether convective cooling keeps the surface below

the flash point. This group identified a benchmark data set on mixed convective cooling

in a parameter range of interest to fires. They initiated a joint RANS/DNS/LES study

of how well this flow can be predicted. Initial results are promising, but not definitive.

The fire group also explored the idea of time-filtered LES to simulate the puffing effect

that is seen in large scale pool fires. The characterization of this phenomenon as low

frequency unsteadiness suggests that one should think in terms of the time domain. It

was found that puffing can be produced by LES. An auxiliary component to this and

the RANS work is to further the development and application of the DOE fire prediction

code called Fuego.

Paul Durbin
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RANS calculations of secondary flow structures
ribbed ducts

By A. Ooi t, B.A. Petterson Reif :t, G. Iaccarino AND P.A. Durbin

in

The spatial structure and effects of secondary flows in ribbed ducts are investigated using

numerical data from Reynolds-averaged Navier-Stokes (RANS) calculations. Ducts with

ribs placed at different angles to the mean flow are considered. The mean flow is assumed

to be fully developed; therefore, only a small portion of the duct is calculated, and periodic

boundary conditions are used in the streamwise direction. The computations are carried

out using turbulence models based on the concept of isotropic eddy viscosity. Hence,

only secondary flows (of the first kind) due to inviscid effects are predicted. Of particular

interest is the effect of the secondary flow on the heat-transfer rate through the walls. It

is demonstrated that, for ribs perpendicular to the flow, the secondary flow localizes the

heat-transfer rate and has a direct effect on the spatial distribution of Nusselt number,

Nu, on the smooth side wall of the duct. However, the value of Nu averaged over all the

walls is not significantly affected by the presence of the secondary-flow structures. For

ribs that are at an angle to the main flow, the presence of secondary flow influences both

the spatial distribution and the average value of Nu.

1. Introduction

In order to increase the lifespan of the turbine blades in gas-turbine engines, which

are subjected to high heat loads, various cooling techniques have been employed. One
of the methodologies that have been used is to insert surface ribs, which act to promote
turbulence and thus enhance heat transfer in the internal cooling passages of the blades.

Thus, in order to improve design and produce more efficient engines, it is important that

the flow and heat transfer of the internal cooling passage can be accurately predicted

and understood. Using PLANS methodology, Ooi, Iaccarino, Durbin & Behnia (2002)
showed that accurate heat-transfer values can be obtained at the center of the ribbed

walls, but the predictions get worse closer to the smooth side walls of the duct. It was

suggested in that paper that this could be due to the presence of secondary-flow structures

which might not have been properly predicted by simple eddy-viscosity closure schemes.

The main purpose of the work presented here is to reveal the features of the predicted

secondary-flow structure and to determine the role of these structures in the prediction
of heat transfer in ribbed ducts.

In ribbed ducts, fluid is forced upward on the upstream side of the rib (supposed here

to be on the floor of the duct) and downward downstream of the rib. This motion, caused

by pressure gradients, together with the no-slip boundary condition along the side walls

will generate a secondary circular motion with two cells rotating in opposite directions.

Experimental observations and measurements of these secondary-flow motions have been

t The University of Melbourne, Australia
:_ Norwegian Defence Research Establishment, Norway
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reported by Son, Kihm & Han (1998), Rau, Cakan, Moeller & Arts (1998), Ekkad &Han

(1997), Liou, Wu & Chang (1993) and Hirota, Yokosawa & Fujita (1992). The presence
of these secondary-flow structures in RANS calculations has also been reported by Jang,

Chen & Han (2001) and Prakash & Zerkle (1995).

'Secondary' flows allude to the currents that may arise in planes perpendicular to

the primary flow direction. These flow structures may be generated by various mech-

anisms. Among them are pressure gradients induced by the geometry of the flow con-

figuration, and/or by the body force associated with an imposed rotation; streamwise-

aligned counter-rotating roll-cells associated with rotational or centrifugal instabilities;

and turbulence-generated secondary flows. In order to capture turbulence-generated sec-

ondary flows, nonlinear or second-moment closure models must be used (see e.g. Petterson

Reif & Andersson (2002)). In this study, linear eddy-viscosity models will be used, which

implies that effects of turbulence-generated secondary flows are excluded. This is not

a severe shortcoming per se since turbulence-generated secondary motions are signifi-

cantly weaker than the secondary flows generated by pressure gradients. As a first step

towards a more complete description of the flow in rotating ribbed passages, the present

study focuses only on the non-rotating case with the ultimate objective of understanding

the impact of secondary-flow structures on the overall heat transfer and on the local
distribution of the Nusselt number Nu.

We have chosen to calculate the flow and heat-transfer cases investigated by Rau,
Cakan, Moeller & Arts (1998). This experimental data set is unique in that heat-transfer
measurements were taken both on the ribbed floor and on the smooth side walls of the

duct. The data allow the effect of secondary flow on the heat-transfer distribution on all

walls to be investigated. One drawback of this data set is that only the case where the

ribs were placed at 90 ° to the mean flow was investigated. In order to investigate the

effects of ribs that are at an angle to the flow, the numerical predictions were validated

by the experimental data obtained by Iacovides, Kelemenis & Ralsee (2003).

2. Mathematical preliminaries

In order to study the secondary-flow structures, one must first be able to detect the

vortical flow structures in the numerical results. Many vortex-detection methods have

been proposed in the literature, e.g. Jeong & Hussain (1995) and Chong, Perry & Cantwell

(1990). In this paper, the methodology proposed by Chong, Perry & Cantwell (1990) will
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be used. The vortical flow structures in the flow will be visualised by plotting isosurfaces
of the second invariant of the velocity-gradient tensor, Q, defined as

1
Q = -_AijAj_ (2.1)

= 1 (W, iW_ i _ S,_Sji) (2.2)
2

Aij is the local velocity-gradient tensor computed from the predicted mean-velocity field

of the RANS calculations. Sij and Wii are the symmetric and antisymmetric parts of

Aij respectively. From (2.2), it is easily seen that Q measures the local strength of the

rotation relative to the strain field. Positive values of Q indicate regions of the flow

where rotation is dominant and negative values of Q identify regions of the flow that are
strain-dominated.

To identify regions of the flow where secondary flow is important, some quantity must

be used to measure the strength of the secondary flow. In this paper, the strength of the
secondary flow will be measured by S, defined to be

i V2 + W 2S = .U2 + V2 + W_. (2.3)

Here U is the velocity component in the direction of the main flow, and V and W are

the velocity components in the plane perpedicular to U. S provides a measure of the

strength of the fluid motion in the plane perpendicular to the mean flow, relative to

the total velocity of the fluid. Note that S is a positive quantity which has a maximum

possible value of 1 and a minimum value of 0.

3. Numerical model: assumptions and calculations

In all cases, the mean-flow field is assumed to be fully developed. Hence, only the

domain extending, for example, from the leading edge of one rib to the leading edge of
the next is considered. A commercial flow solver, FLUENT 6.0, is used in all calculations.

The flow is assumed to be incompressible and buoyancy effects are neglected.

An outline of the computational domain is shown in figure 1. X is the streamwise

direction, Y is in the vertical direction normal to the ribbed wall, and the ribs are at

an angle 0 to the axis of the orthogonal coordinate Z. The angle 0 measures the skew

of the rib relative to the main flow direction: 0 = 0 when the flow is perpendicular to

the ribs. Walls on which the ribs are placed are called the "ribbed walls". The "side

walls" are perpendicular to the "ribbed walls" and there are no ribs on these walls. The

heat transfer is similar on both "side walls" for 0 = 0 but when 0 _ 0 the heat-transfer

distributions on the two "side walls" are different. In the following discussion, the part

of the "side wall" upstream of the rib will be termed the "upstream side wall" and the
term "downstream side wall" will be used to refer to the "side wall" downstream of the

rib.

Calculations were carried out at Re = 30,000 with the ratio of pitch to rib height ratio,

p/e, set to 9. The ribs were placed on only one of the walls, Y = 0. Boundary conditions

of constant heat flux were implemented on all walls so that a direct comparison could be

made with the experimental data of Rau, Cakan, Moeller & Arts (1998).

Another experimental data set for the flow and heat transfer in ribbed ducts can

be found as case 7.3 of the 7th ERCOFTAC/IAHR Workshop. Data were obtained at
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FZGURE 2. Secondary flow pattern at various streamwise stations. Calculations carried out ls,
p/e = 9, Re = 30,000, Pr = 0.7 with the Spalart-Allmaras model.

Re = 100,000 with air as the working fluid. The experiments were carried out in a square

duct with the height of the ribs 10% of the width of the duct. The ribs were staggered on

both the top and the bottom walls. Only the ribbed walls were heated, and the smooth
side walls and the ribs themselves were insulated. In order to validate the numerical

models, one set of calculations was carried out with similar thermal boundary condi-

tions, with molecular Prandtl number Pr = 0.71. The results of this set of calculations

can be found in Ooi, Pettersson Reif, Iaccarino & Durbin (2000). In summary, it was
found that the velocity field is well predicted by all the turbulence models used, but the

predicted surface heat-transfer rate differs considerably between the models. More re-

cently, Iacovides, Kelemenis & Raisee (2003) reported measurements of the velocity field

in square ducts with skewed ribs (8 = 45 °) at Re = 100,000. Velocity fields obtained

from numerical prediction are in reasonable agreement with the experimental data. No

heat-transfer measurements on the side wall were reported.

As there is every likelihood that the secondary-flow structures would influence the

distribution of Nusselt number Nu on the smooth side walls, further calculations were

carried out with constant heat flux on the side walls in order to investigate the effects of

the secondary flow on the distribution of Nu.

In order to investigate the effects of secondary-flow structures, calculations were also

carried out in which the mean spanwise component of velocity, W, was set to zero at

the start of the solution iterative process. Note that the value of W at the end of the

iterative process is small, but finite (maximum about 10-5). This is of course numerical

error. This procedure eliminates all secondary-flow motion from the calculation, but still

ensures mass conservation and also satisfies both the U and V momentum equations.
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FIGURE 3. Secondary flow strength, S, at various streamwise stations. Calculations carried out
at Re = 30,000, pie = 9, Pr = 0.71 with the S - A model.

The no-slip boundary conditions at all boundaries are also satisfied. In the discussion

below, this set of calculations will be termed "no-W'.

4. Results and discussion

The secondary-flow structure for calculations carried out using the Spalart-Allmaras

turbulence model at Re = 30,000 with p/e = 9 is shown in figure 2. The streamlines

shown are computed from the in-plane velocity components, V and W, only. Data at

X/Dh = 0.15 and X/Dh = 0.45 (Dh is the hydraulic diameter) can be qualitatively
compared with the sketch in the paper by Rau, Cakan, Moeller & Arts (1998). Both

our predictions and the experimental data of Ran et aZ. show that on these two planes

there is a general trend of fluid moving away from the smooth side wall and toward

the symmetry plane. As only eddy-viscosity models are used in the calculation here,

turbulence-generated secondary flow is excluded. Hence, this secondary flow must be

generated by pressure gradients: this is Prandtl's secondary flow of the first kind. At

X/Dh = 0.35 there is a general upward trend in the streamlines. This is due to the

adverse pressure gradient experienced by the fluid as it approaches the rib. Further

downstream, as fluid moves over the rib, a general downward movement is expected.
There is a small vortex formed at the corner where the side wall meets the bottom

wall. The corresponding secondary-flow strength, S, is shown in figure 3. It is clear that

secondary-flow effects are more prominent close to the tip of the rib on the Y/Dh ,,_ 0.1
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FIGURE 5. Skin friction lines on the side wall (a) and on the floor (b). Turbulent flow calculation
at Re = 30,000 with ribs on one side (ls) and the Spalart-Allmaras model. Contours of Nu are
also shown.

plane througout the computational domain. The secondary flow motion is stronger closer

to the ribs than away from the ribs.

These secondary-flow structures can be visualised with isosurfaces of Q as shown in

figure 4. As expected, spanwise structures are dominant at the center of the duct due

to the recirculation bubble upstream and downstream of the rib. Close to the corners of

the duct, streamwise structures are dominant. As will be shown later, these streamwise

structures localize the heat-transfer rate and are responsible for the spatial distribution

of Nu on the smooth side wall as shown in figure 4. From this figure, it is also clear

that the spanwise flow structure is principally responsible for the spatial distribution of

Nu on the bottom wall, and the streamwise flow structure is responsible for the spatial
distribution of Nu on the side wall.

In order to understand the effects of the flow field on the heat-transfer distribution,

skin-friction lines are shown together with the spatial distribution of Nu for the calcu-
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FIGURE 6. Isosurfaces of Q = 1. Calculations with _ = 45 °, Re = 100,000 and Pr = 0.71 using
the k - c model.
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FIGURE 7. Skin friction lines and contours of 1Vu on the side walls of the duct. Calculations
with 8 = 45°, Re = 100,000 and Pr = 0.71 using the k - e model.

lation with p/e = 9 in figure 5. It is evident that flow impinges on the side wall just

downstream of the rib and accelerates over the rib. This flow mechanism brings in cold

fluid from the center of the duct, and this impinges on the side wall to create a region

with high values of Nu. The spatial distribution of Nu on the bottom wall is influenced

by the separation bubble, which is the counterpart of the spanwise vortical flow structure.

The skin-friction lines show that the region of high heat transfer upstream of the rib is

due to the impingement of cold fluid entrained from the center of the duct. Downstream

of the rib, there are regions where relatively low values of Nu occur. This is due to the
movement of fluid away from the ribbed wall towards the center of the duct.
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of skewing the ribs on the average values of Nu.

When the ribs are skewed, the structure of the flow field is changed dramatically.

Numerical results for this case have been obtained at Re = 100,000 with both the two-

layer k - e and the Spalart-AUmaras turbulence models. The flow structure for 8 = 45 ° is

shown in figure 6. It is evident that there is much more streamwise structure in the flow

field, even close to the center of the duct. This gives rise to different spatial distributions
of Nu on both the smooth side walls and the ribbed walls of the duct.

The skin-friction lines and distribution of Nu on the side walls are shown in Figs. 7.

On the upstream side wall, the distribution of heat-transfer rate is determined by the

acceleration of flow over the ribs. On the downstream side wall, high values of Nu are

found in the regions where fluid impinges on the wall. On the wall between the two ribs,

the spatial distributions of Nu and skin-friction lines are shown in figure 8. It can be

seen that the distribution of Nu is similar to the case where the ribs are perpendicular
to the main flow.
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FIGURE 10. Figure showing the effects of secondary flow on the average Nu on the walls of the
ducts. Staggered rib calculation with Re = 100,000 and computed using the k - • turbulence
model. This figure shows the effects of skewing the ribs on the average values of Nu.

Effects of skew angle on the "heat transfer averaged all walls are shown in figure 9. In

general, it can be seen that the heat transfer increases with 0. This is in agreement with
experimental observation in the industry. The effects of secondary flow structures can

be quantified by comparing the no-W calculations with data from the standard RANS

calculations. This is shown in figure 10. The secondary flow effects on Nuave are larger for

higher values of 0. For the 0 = 0 case, the secondary flow has very little effect on the value

of Nuave. This can be understood by looking at the value of skin friction (or turbulence

level) on the ribbed duct as compared to the value for a smooth duct. For higher values of

skew angle, 0, the differences in the computed value of Nu between the standard and the
no-W calculations is increased. This is clear evidence that the secondary flow structures
that exist in the calculations for ducts with skewed ribs play an important role in the

generation of heat transfer.

5. Conclusions

For a duct with surface-mounted ribsperpendicularto the mean flow,the localspatial

distributionofNusselt number Nu on the side wallsisgreatlyaffectedby the presence

of secondary flow structures.In agreement with the conclusionsof Son, Kihm & Ham

(1998),ithas been demonstrated that thereisgreat enhancement of localheat-transfer

rate due to flow impingement in the vicinityof the rib.Novel numerical experiments

have shown that the heat-transferrate averaged over allwallsof the duct isvirtually

unaffectedby the presence of the secondary flow structures.The average heat-transfer

rate isdue to the enhancement ofmixing caused by turbulent diffusion.

For ducts with skewed ribs,ithas been shown that the presence of secondary flow

greatly increases the average heat-transfer rate. The importance of secondary flow is

greater for higher values of skew angle, 0. Hence, in order to accurately predict the Nu

on all walls of the duct it is critical to capture all the important physics of the secondary
flow.
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Modeling convection heat transfer and turbulence

with fire applications: a high temperature vertical
plate and a methane fire

By D. Rouson t, S. R. Tieszen $ AND G. Evans ¶

Simulations of the three-dimensional turbulent flow and heat transfer adjacent to a large

(3 meter) high temperature (up to 860 K) vertical flat plate and in a large-scale methane
flame have been made and compared with experimental data. Results are obtained with

a Reynolds averaged Navier-Stokes (RANS) v 2 - f model, a direct numerical simulation

(DNS), and a detached eddy simulation (DES) model. The preliminary results are encour-
aging, with respect both to heat transfer and to the prediction of large-scale structures

in these highly buoyant flow fields.

1. Motivation and objectives

Although radiation is the dominant heat-transfer mechanism in fires, turbulent convec-

tion to or from a surface can be significant. The convective regime typically encountered

in fires is turbulent mixed convection. Due to large surfaces and large temperature dif-
ferences, the Grashof number in fires can be quite high, e.g. 1.0 × 1012, and the effects

of variable properties can be significant. Turbulent mixed-convection heat transfer from

a large (3 meter) vertical, high-temperature (Tsurface up to 860K) surface was studied

experimentally by Siebers, Schwind & Moffat (1983). In that study, local and average

heat transfer coefficients as well as boundary layer profiles of velocity and temperature

were obtained; these quantities can be used for validation of computer models of turbu-
lent convection heat transfer dint conditions commonly encountered in fires. The present
work describes three approaches that use different formulations to solve the Navier-Stokes

and energy equations to predict the flow and heat transfer from a large, high temperature
vertical surface. These three methods are: 1) a RANS formulation using the v 2 - f model

in an unstructured-control-volume finite-element code to predict the steady flow and heat

transfer; 2) a DNS formulation of the unsteady free convection turbulent boundary layer

on the high-temperature plate; and 3) a DES formulation that uses time filtering to allow

large-scale time-dependent structures to be captured. Preliminary results were obtained

during the summer program and are described in the following sections of this report.

2. RANS v 2 - f modeling of mixed and forced convection

2.1. Problem description and cases selected for simulation

The problem studied is shown in figure 1. Air flows horizontally at constant freestream

velocity parallel to the surface (xy plane) of a 3 m by 3 m vertical flat plate. In the

experiment the plate surface consisted of 21 stainless steel strips oriented horizontally

t City College of the City University of New York, NY
J; Sandia National Laboratories, Albuquerque, NM
¶ Sandia National Laboratories, Livermore, CA
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FIGURE 1. Flat plate geometry.
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FIGURE 2. Flow regime map showing the three cases selected for simulation; filled circle: free
convection (GrH = 1.4 x 1012, ReL = 0.0, GrH/ReL 2 = oo); open circle: mixed convection
(GrH = 2.3 × 1012, ReL = 8.7 x 105, GrH/ReL 2 = 3.06); filled square: forced convection domi-
nated (GrH = 1.4 x 1011, ReL = 8.9 × 105, GrH/ReL 2 = 0.18).

(from x=0 to L) with an electrical current passing through each strip to give uniform heat

flux through the surface. The plate surface temperature was measured at 105 locations

with thermocouples. These measured surface temperatures were used in the current study

as the thermal boundary condition at the surface of the plate (z = 0). Figure 2 shows

the flow regime studied experimentally in terms of dimensionless parameters, GrH and

ReL, where

arH = g_(Tw v2-Too)H 3 ReL = --uooLu' (2.1)

and the cases selected for the numerical study.. The properties of air that enter these

dimensionless parameters were evaluated at ambient temperature (Too) and pressure; H

and L are the vertical and horizontal plate dimensions, respectively. The three cases se-

lected for simulation span the range of the experiment: they are; (1) a forced-convection-
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dominated flow condition (ID604) with u_ = 4.4 m/s, ReL = 8.9× 105, Tw _ 323 K, GrH =

1.4 x 1011, GrH/ReL 2 = 0.18; (2) a free-convection flow condition (ID643) with Tw

698K, GrH = 1.4 x 1012; and (3) a mixed-convection flow condition (ID648) with u_ =
4.3 m/s, ReL = 8.7 × 105, Tw _ 829K, GrH = 2.3 x 1012, GrH/ReL 2 = 3.06.

The high temperatures of the mixed- and free-convection cases result in significant

property variations across the boundary layer and a radiation heat transfer that is 38%

to 50% of the electrical energy dissipated in the surface. The heat transfer by radiation

and by conduction through the back surface of the plate was accounted for in determining

the local heat transfer coefficient, which had an experimental uncertainty ranging from
6% to 10%.

2.2. Numerical method

The numerical model is a low-Mach-number, variable-property formulation of the Reynolds-

averaged Navier-Stokes (RANS), energy, species, and mass-conservation equations. De-

veloped at Sandia National Laboratories as part of the Department of Energy's Accel-

erated Strategic Computing Initiative (ASCI) project, Fuego is a control volume finite

element code for the simulation of the fluid mechanics and heat transfer in fires (Moen,

Evans, Domino & Burns (2002)). Combustion is modeled with the Eddy Dissipation

Concept (EDC) of Magnussen (1989); the default turbulence model is the standard k -

model of Launder & Spalding (1974). Recently the v 2 - f model of Durbin (1991) has

been added as an option, and is used in this study. Transport equations are included for 6

species and for the nucleation, growth, and transport of soot. For fire simulations Fuego

is coupled with a discrete-ordinates finite-element participating-media radiation code,

Syrinx (Burns (1997)). Fuego and Syrinx are two modules of a larger suite of codes in

the SIERRA framework (Edwards & Stewart (2001)) at Sandia. This framework provides

a common architecture, allowing codes to be coupled to solve multi-mechanics problems.

The framework provides access to linear solver packages, parallel tools, parsing tools, etc.

Variables in Fuego are collocated at the nodes of the mesh as shown in the control

volume of figure 3 (shown as a 2D quadrilateral for convenience). A pressure-projection

method is used together with pressure smoothing to satisfy continuity at each time step;
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the equations are solved one at a time (segregated-solution method). Three-dimensional

hex elements are supported currently with tetrahedral elements planned. The code is first-

order accurate in time; various upwind convection discretizations yield overall spatial

accuracy between first and second order. The results presented here used first-order

upwind differences. Fuego runs on a variety of computing platforms including Janus, the

massively-parallel computer at Sandia.
The control-volume formulation of the turbulence model is:

/ _t dV + / pkujnjdS = / (# + _k ) ff-_kxon3dS + /(P- pe)dV (2.2)

/ _t dV + / pcujn3dS = / (# + _) ff_anjdS + / T(Ce'iP- C_:pe)dV (2.3)

OPv2 f _2 0_2=J(, +,,)-5-g_,_,dS /(pky pNv 2-g-_v +] ,,,,u,,_y + - _)dv (2.4)

1 {CI (2/3-v2/k) P (N- v2/k

_a..ou' ( au,'_P = 2#tS2 - 3 *'Oxj Pk+#t-_xt) (2.6)

1 (o,,, ou,'_(o,,, o,,,'_ (2.r)
S== S,3&_= a \&_ + &_) \Oz_ + az_)

,o I
L = CLmax , C_ (2.9)

tit = C_,pv 2T (2.10)

(2.11)

C1 = 0.4, C2 = 0.3, N = 6, CL = 0.23, C_ = 70, a, = 1.0 (2.12)

In the above equations, k, uj, p, nj, #, P, e, v 2, f, u, and tit are the turbulent kinetic en-

ergy, time averaged velocity, density, unit normal, dynamic viscosity, turbulent energy

production rate, turbulent energy dissipation rate, wall-normal component of turbulent

kinetic energy, elliptic relaxation variable, kinematic viscosity, and turbulent viscosity,

respectively. The turbulent Prandtl number is assumed to be 0.9. At the surface of the

plate (z = 0) the boundary conditions for the turbulence variables are

k=v 2=f=0; _=2vkpyp 2 (2.13)
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FIGURE 4. Curves of k and _ showing decay in the streamwise direction of the freestream
values and mesh showing line along which curve data was taken (y--2 m; z-10 cm).

where variables with subscript p are assumed to be located at the centers of the sur-

face node subcontrol volumes. For the forced and mixed convection cases, at the inflow

boundary (x = 0), velocity, temperature, k, e, and v 2 are specified and Of�On = O. On

the open boundaries: at y---0, H and at x=L and as z --+ co, pressure is specified (p = 0),
Of/On = O, and k, c, and v _ are convected out of the domain with the calculated mass
flow rate. If the flow is into the domain on the open boundaries, then k, e, and v 2 enter

the domain with specified values.

2.3. Forced convection dominated flow and heat transfer results

In the forced convection dominated case selected for simulation, ID604, ReL = 8.9x105

(the momentum thickness Reynolds number was approximately 1450 at x=2.75 m). In

the experiment the boundary layer was tripped with a vertical wire located at x=0.65 m;

effectively the upstream 30% of the boundary layer was laminar or transitional. To insure

a turbulent boundary layer flow over the plate, the simulation used an inlet turbulent

intensity of 3% and a length scale of 10 cm, resulting in inlet values of k and c of 250

cm2/s z and 394 cm2/s 3, respectively; v-2 was set to 70 cm2/s 2 at the inlet. The effects of

buoyancy are small in this case (GrH/ReL _ = 0.18). The 3D mesh used for the results

shown in this report and curves showing the freestream (z=10 cm) decay of k and e in

the strearnwise (x) direction at the height y=2 m are shown in figure 4. The mesh is

20 × 20 × 30 in the (x, y, z) directions, uniform in x and y, and nonuniform in z such that

y+ _ 2 at the first subcontrol volume off the surface.

Computed and measured boundary-layer profiles of temperature and the x component

of velocity at x=276 cm, y=108 cm are compared in figures 5 and 6, respectively. The

calculated results agree reasonably well with the data. The computed local heat-transfer

coefficient is compared with experimental data in figure 7. Also shown in figure 7 is a 2D
simulation result (symmetry boundary conditions were applied to the domain at y=0,
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FIGURE 7'. Local heat-transfer coefficient at y=2.1 m for the forced convection dominated case.

H) on a 100 x 100 mesh in the x, z plane with one element in the vertical (y) direction.
Transition is evident where the heat transfer coefficient increases from a minimum value

at x _60 cm. Note that the specified surface-temperature distribution implicitly includes

the effects of transition; prediction of transition is not addressed here. The calculations

agree qualitatively with the data. Medium- and fine-mesh 3D calculations are being made

to reduce the uncertainty in the results due to mesh spacing.

2.4. Mixed convection flow and heat transfer results

The Reynolds number for the mixed-convection case selected for simulation, ID648, is

ReL = 8.7 x l0 s, similar to the forced convection dominated case. There was no trip

wire in this experimental case; however there is evidence of transition at approximately

the same horizontal location on the fiat plate (x _0.65 m). As in the forced-convection-

dominated case, the simulation used an inlet turbulent intensity of 3% and a length scale
of 10 cm. The same 20 x 20 x 30 3D mesh was used for this case.

The effects of buoyancy are now significant (GrH/ReL 2 = 3.06): the horizontal flow

in the freestream over the plate undergoes significant turning toward the vertical (y)

direction within the boundary layer. Computed and measured boundary-layer profiles
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of temperature and x and y components of velocity near the vertical trailing edge of

the plate (x=276 cm) and at two vertical locations (y=22 and 252 cm) are compared in

figures 8, 9 and 10 respectively. The calculated results agree well with the data except for

the velocity components at y=22 cm (near the bottom of the plate). Efforts are underway

to compute this case at finer grid resolution.

The computed local heat-transfer coefficient for the mixed-convection case is compared

with experimental data in figure 11 along a horizontal line on the plate at y=155 cm,

and in figure 12 along a vertical line near the vertical trailing edge of the plate at x
270 cm. The results are in reasonable agreement with experimental data.
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3. DNS of free convection

In the free-convection case of figure 1 (GrH = 1.4x10 z2, ReL = 0.0), the experimental

data of Siebers, Schwind & Moffat (1983) do not include boundary layer profiles below

approximately 2 m above the bottom of the plate. In such cases, the upstream flow

conditions near the bottom of the plate may be difficult to predict with RANS calculations

such as the forced- and mixed-convection calculations presented in the last section. In

particular, it may be difficult to predict where transition to turbulence occurs. The DNS

results to be presented here for free convection help to answer such questions and provide

higher-fidelity boundary-layer statistics against which to validate the RANS calculations.

Free-convection RANS calculations are still in progress.

The spatial and temporal resolution requirements of DNS restrict the size of the do-

main to less than 20% of the vertical extent of Siebers' plate and less than 5% of its

width. However, it is expected that the DNS data will also provide a benchmark for a

future LES encompassing the full vertical extent of the plate. Figure 13 shows the DNS

domain geometry and instantaneous temperature contours. The opaque boundary shown
encompasses a 5cm tall, unheated, free-slip surface, above which is a 50 cm tall no-slip

surface heated to 424 C. Above this no-slip surface is a 5 cm tall open surface. The two

5cm tall surfaces separate the heated region from the inflow and outflow boundary con-

ditions to prevent these conditions from affecting the statistics collected in the heated

region. In the wall-normal and spanwise horizontal directions, the flow domain is 3.75 cm
and 10 cm wide, respectively. The above dimensions correspond to roughly 1730, 298,

and 109 wall units in the streamwise (vertical), spanwise, and wall-normal directions,

respectively.

All clear boundaries in figure 13 are open and allow inflow or outflow as the problem
solution dictates. The numerical implementation of these boundary conditions will be
described in section 3.2.

3.1. Mathematical model

The DNS was performed with the Fire Dynamics Simulator (FDS) published by the Na-

tional Institute of Standards and Technology (see McGrattan, Rehm _z Baum (1994), Mc-

Grattan, Baum & Rehm (1998)). FDS solves the low-Mach-number form of the compress-
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ible Navier-Stokes equations first proposed by Rehm & Baum. (1978). For a chemically

-nert gas, these equations take the form

0u 1_
-- = u x w - VT-/+ -(p - poo)g + V .% (3.1)
cOt p

cOp
cO--_+ u. Vp = -pV. u, (3.2)

where u, w, and p are the fluid velocity, vorticity and density, respectively; Poo is a

reference density; r is the viscous-stress tensor given by

_" = # [Vu + (Vu)T + _(V • u)I] , (3.3)

where I is the identity tensor, and finally

V_ _ 1Vlu[_ + -1V_ (3.4)
P

is an approximation that neglects baroclinic torques resulting from the non-alignment of

the density and pressure gradients. In the last equation, 16 is the pressure perturbation
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in the following decomposition:

P = Po - p_gz +/5, (3.5)

where Po is a background pressure,which remains constant in the present application and

is given by the ideal gas law:

Po = pRT, (3.6)

where T is the gas temperature and R is the gas constant divided by the molecular

weight.

FDS uses fast Fourier transforms to solve the elliptic partial differential equation for

that results from taking the material derivative of P0 and combining it with mass- and

energy-conservation statements:

V27_ = 0V-u
at v. F, (3.7)

F _=-. × - - p )g + V (3.8)
p

7-1
V. u = _(V- VT- V. qr), (3.9)

")'P0

where -), is the ratio of specific heats, k is the thermal conductivity, and qr is the radiative
heat flux.

In all of the above equations, FDS accounts for variable properties. Since FDS is

designed to model combustion, the dynamic viscosity is calculated for each species present

according to

26.69 x lO-Z(MiT) 1/2

#t = a_t_ ' (3.10)

where Ml and at are the molecular weight and the Lennard-Jones hard-sphere diameter

of the l th species, and where _2v is an empirical collision integral. Likewise, the thermal

conductivity of the l th species is

t_tCp,l (3.11)ks = Pr '

where the Prandtl number, Pr, is 0.7 and cp,l is the constant-pressure specific heat of
species I.

3.2. Numerical method

The above equations are advanced in time using a second-order Runge-Kutta, predictor-

corrector algorithm. Spatial derivatives are estimated with second-order-accurate finite

differences on a rectangular grid, with scalar quantities assigned to the center of grid
cells and vector quantities assigned to cell faces. Convective terms are upwind-biased,

based on a CFL condition, in the predictor step and downwind-biased in the corrector

step. Where the CFL number is near its upper limit, differencing is nearly fully-upwind.

Where the CFL number is small, differencing is nearly centered. Diffusive terms are

central-differenced. In the current problem, these differencing schemes are employed on

a grid with 192 x 96 × 64 points in the streamwise, spanwise and wall-normal directions

resulting in spacings of 3.1, 9.0 and 1.7 wall units in these directions, respectively.

The initial condition is still air at standard temperature and pressure, to which FDS

adds random vorticity perturbations resulting in velocites on the order of lmm/s. These

perturbations disrupt the flow symmetry that would othewise result from the specifi-
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catlon of symmetric boundary and initial conditions. As will be seen below, this has the

effect of tripping the flow, causing unstable waves that decay into turbulence.

A homogeneous Neumann condition is applied to 7-t at the no-slip boundary:

07_
On O, (3.12)

where n is the direction normal to the boundary. At open boundaries, the boundary
condition on 7-[ varies depending on the flow orientation:

7-/= Iu12/2, outgoing (3.13)

7-{ = 0, incoming. (3.14)

Other implementation details are described by McGrattan et al. (2001).

3.3. DNS results

Figure 13 shows temperature contours at the final time step after 5.2 s of physical time.

Smooth, laminar contours can be discerned near the bottom of the domain with a rapid

transition to turbulence between 10 and 20 cm from the bottom of the heated portion.

This flow pattern is established after approximately 1.5 s. It is preceded by a very orderly

temporal transition, illustrated in figure 14 which shows an instantaneous isothermal

surface at 200 C in a run with a'slightly higher wall temperature of 462 C and a resolution

of only 64 points in the wall-normal direction. Apparent in the surface at 1.2s into

the simulation is a dominant mode of oscillation extending over the vertical extent of

the plate with little spanwise temperature variation except near the side boundaries

where cold air is entrained. This orderly instability rapidly decays into a fully three-

dimensional disturbance, yielding the disorderly surface shown in figure 15 after 1.6 s.

Time traces (not shown) indicate that the above unstable mode results in a persistent,

periodic oscillation in the temperatures and velocities 10 cm above the bottom of the

plate. This periodic variation remains at this location throughout the simulation, while

just above this location, the entire flow is turbulent after 1.5 s.
Figures 16-17 show time-averaged temperature and velocity profiles at a location 40

cm above the bottom of the heated portion of the plate. Although both plots agree

qualitatively with typical free-convection profiles, the RANS calculations to which these

will be compared are still under way and no data were were taken this low on the plate in

the experiment. Calculating a heat-transfer coefficient from the temperature profile, and
. .._ I/3

evaluatingallpropertiesat freestrearnconditions,the ratioJvuz/t_rz is0.173,where

Nu_ isthe Nusseltnumber based on height above the bottom edge ofthe plateand Grz

isthe Grashof number based on the same height.This value isis80% higher than the

value measured by Siebers,Schwind _ Moffat (1983) in fully-turbulentflow.However,

Nu= = 270 and Gr_ = 3.8 x 109 at thislocationin the DNS, which fallsin the middle

ofthe turbulenttransitionrange inthe experimental data.

4. Temporal filtering

The preceding sections have addressed convection heat transfer with the broadest

range of filter widths from direct numerical simulation to traditional Reynolds averag-

ing. Approaches that implicitly or explicitly involve filter widths between these limits,

including large-eddy simulation, very-large-eddy simulation, detached-eddy simulation,

and unsteady RANS (cf. Speziale (2000), Spalart (2000)). All but the last are filtered
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FIGURE 14. Isothermal 200 C surface 1.2 s
after the initial time.

FIGURE 15. Isothermal 200 C surface 1.6 s
after the initial time.
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in space: unsteady RANS is filtered in time. These techniques bridge the gap between

fidelity and engineering practicality. The choice of method depends on application needs

for these conflicting requirements.

Fire environments are strongly influenced by two modes of heat transfer, radiation and
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convection, with radiation being dominant in most cases. In general, material response is

dominated by conduction, and there is usually a significant separation between turbulent

and material-response time scales. Thus, a substantial filter width can be employed for

the reacting fluid mechanics without significant fidelity loss in material response. For this

reason, it is desirable to use steady RANS approaches for maximum practicality.
On the other hand, to capture radiative emission, it is desirable to obtain as much

spectral (temporal/spatial) resolution as possible from the Navier-Stokes solution be-

cause radiative emission is a highly-nonlinear process and is dominated by small-scale

flame structures. Generally, the time-averaged output of a highly-nonlinear process is not

strictly a function of time-averaged inputs. Specifically, the time-average flux is all that
is required for material response, but the fidelity of subgrid radiative-emission models is

limited by time-averaged scalar inputs. Further, fires are reacting plumes, and as such,

there is strong coupling between the density and velocity fields. The coupling results in
strong vorticity production, and turbulent dynamics produce large, coherent structures

with a full turbulent cascade. For these reasons, it is desirable to resolve at least the

large-scale, low frequency, structures within the flow.

Thus fire application requirements suggest a hybrid RANS/LES approach, retaining

RANS in the near wall region of objects and LES in the bulk reacting flow. Most hy-

brid approaches, such as detached-eddy simulation, have employed spatial filtering of

the Navier-Stokes equations, even though the RANS equations are temporally filtered.

For this study, it was desired to explore temporal filtering as a means of separating

the high-frequency wall boundary-layer region from the low-frequency puffing motion
characteristic of fires.

Pruett (2000) explores temporal filtering for the Navier-Stokes equations and discusses

its strengths and weaknesses. A strength is that temporal filters are bounded and thus

the commutivity error usually associated with spatial filtering is generally avoided. Weak-

nesses include phase- and Doppler-shifting of the filtered signal. The phase-shifting occurs

because temporal filters are by necessity causal, and hence one-sided. Doppler shifting

occurs because the mean convective velocity increases the temporal frequency required
to capture the signal of a given eddy size. Pruett (2000) concludes that the latter is the
most serious drawback for use in applications for which it is desired to resolve eddies of

a given size, i.e., traditional LES.
However, in the current application, temporal separation into structures of resolvable

and unresolvable frequencies is perhaps a stronger motivation than separation of struc-
tures by size classification. _rther, Courant-number limitations on numerical methods

limit the time step, thus ensuring that convectively-induced Doppler shifting is minimized

if the temporal filter width is some small multiple of the time step. Given the desire in

current applications to employ RANS in the near-wall regions, a further advantage of

temporal filtering is the consistency of the filtering operation, not requiring a shift from

temporal- to spatial-filtering arguments inherent in hybrid RANS/LES approaches.

The current study represents an initial exploration of the practicality of temporal

filtering within the time frame of the CTR summer program. In the next section, a

simple eddy-viscosity model will be described, followed by a brief description of a test

problem, comparison of model and data, and discussion.

4.1. Implementation

There are many possible closure models for the temporally-filtered equations. For this

preliminary investigation, we chose a simple eddy-viscosity closure that retains the k-

epsilon modeling in our RANS code. The definition ofintegral time scale in the standard
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RANS eddy-viscosity formulation is replaced by a fixed temporal filter width which is

input by the user.

= pC kT (4.1)
where

T --- min(tf, k/e) (4.2)

Selecting a fixed temporal time scale is analogous to selecting a fixed filter width in

LES. If the selected filter width is larger than the integral scale, the rain function selects
the integral time scale. For this study the time step is fixed to one half the filter width.

The model has been implemented in FUEGO's predecessor, VULCAN (which is based

on the KAMELEON family (cf, Holen, et al, (1990)), a staggered, block-structured grid

code with second-order upwind differencing for the convective terms and a first order

implicit (SIMPLE based) differencing for the transient term. In addition to the temporal

filter, the k-epsilon implementation has a density based generation term (V. Nicolette,
private communication). The model suite includes combustion, soot and radiation mod-
els.

4.2. Test problem descriptions

To test whether the current formulation will separate time scales, two problems with dis-

parate time scales were simulated, the free convection data described earlier and recently

published methane fire data Tieszen, et al, (2002). The methane data consists of a one

meter high vertical plane of 2-D PIV data through the centerline of a one-meter-diameter

methane fire (See citation for details). The experimental puffing frequency of the fire is
1.65 Hz.

4.3. Model/data comparison

Figures 18-25 show the results of the simulations, and comparisons with the methane

data. The filter width for the results shown is 1/30 of the puffing period. Figure 18 shows

the temperature profile at an instance in time. Figure 19 shows the simulated time history

of the vertical velocity on the centerline, half a diameter above the burner. The puffing

is somewhat irregular, as in the experiment, but consistent with the experimental value.

Comparison of the vertical (axial) and horizontal (radial) time-averaged velocity fields

is shown in figure 20 vs. figure 21, and figure 22 vs. figure 23, respectively. The width of

the reacting mixing layers is somewhat underpredicted, resulting in the more-pronounced
'W' shape in the vertical velocity profile compared to the data. The transition from the

'W' shape to a Gaussian-like profile marks the end of the fuel vapor core in the fire.

Figures 24 and 25 compare the turbulent kinetic energy. The data assume that the

out-of-plane fluctuations are comparable to the horizontal in-plane fluctuations. The

simulation supports this assumption of the data analysis. Simulations with a filter width

of 1/10 the puffing frequency (0.06 sec) still showed some dynamics, but were significantly

more damped than those shown in the figures. Time-step and grid-refinement studies have

yet to be conducted for a constant filter width.

Time did not permit simulations with the v2.f model for the free convection boundary

layer. However, a preliminary simulation of the free convection problem using k-epsilon

with no wall function with RANS mesh spacing of 7 cm parallel to the plate did not

show any indication of puffing with a filter width of 0.05 sec as desired.
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4.4. Discussion of temporal filtering

Given the numerics and simple modeling closure, the preliminary comparisons are quite

encouraging. Overall, the mixing is somewhat underpredicted. The underprediction may
be due to an excess of numerical or model viscosity, or to physical reasons. Unlike

momentum-driven flows, buoyant flows have strong coupling between the density and

momentum fields. It can be argued that baroclinic vorticity production occurs at all

scales in the cascade (Tieszen (2001)). Growth dynamics in the methane-fire mixing layer

suggest that, via pairing, this small-scale production can result in large-scale dynamics.
Eddy-viscosity models, which are designed for energy dissipation, do not capture the
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vorticity production at small scales andits later appearance as vorticity at grid-resolved

scales due to pairing mechanisms along the mixing layer.

5. Conclusions

Simulations of the three-dimensionalturbulent flow and heat transferadjacent to a

large (3 meter) high-temperature (up to 860 K) verticalflatplate and in a large-scale

methane flame have been made and compared with experimentaldata.Reynolds-averaged

Navier-Stokes (RANS) resultsusingthe v2 - / model walltreatment offorced-and-fixed

convectionflow and heat transferon a verticalflatplatewith a horizontalforcedflow are

in qualitativeagreement with experimental data, with quantitativecomparisons await-

ing finer-meshresults.Directnumerical simulation(DNS) resultsindicatethat transition

occurs within 10-20 cm above the bottom of the heated plate.The transitionproceeds

as an initially-orderlywave that convects along the entireverticalextent of the plate
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before transition to turbulence. These insights have helped to inform the ongoing RANS

development effort by providing a detailed picture of the upstream flow conditions where

measurements were unavailable. Preliminary detached-eddy simulation (DES) compar-

isons for the methane fire are quite encouraging, although overall the mixing is somewhat

underpredicted. For free convection on the heated plate, the preliminary DES results were

steady as desired.
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Large-eddy simulation

The six projects in this group aimed at developing or testing new concepts, as well as

assessing existing approaches to the subgrid-scale modelling problem. Other projects in

which LES is applied to complex flows or combustion and studies related to the coupling
between numerics and LES modelling are reported elsewhere in this volume.

In the first project, He, Wang & Lele have evaluated the performance of several subgrid-

scale models in terms of time correlations. In the past, such diagnostics have been limited
to the study of the time history of pointwise quantities. Here, space-time correlations,

which can be characterized by a two-time energy spectrum, have been computed in homo-
geneous turbulence for both DNS and LES fields. Correct predictions of the space-time

correlations do not represent a purely theoretical challenge for LES since they are needed

in the computation of turbulent sound sources. Various eddy-viscosity SGS models have

been tested, and the results showed a systematic, though limited, over-prediction of the

time correlations as compared to DNS results. This can be understood by the deter-

ministic nature of the eddy-viscosity picture and indirectly supports the introduction

of explicit random backscatter mechanisms to the models. However, Another solution is

suggested by the authors: the use of a history-dependent eddy-viscosity. Although none

of these approaches has been explicitly tested, the measurement of space-time correla-

tions in turbulent fields is likely to become a new important assessment methodology in

the LES community.

In the second project, Carati & Wray have explored LES formulations in which equa-

tions for nonlinear functions of the velocity are carried explicitly. Adding an evolution

equation for the time derivative of the filtered velocity was first considered. This ap-

proach has however been abandoned, because the turbulence statistics appeared to de-

pend strongly on the initial conditions chosen for the additional variable. Another, more

promising, approach consisted in writing an additional equation directly for the subgrid-

scale force, the divergence of the subgrid-scale stress tensor. The modelling effort is then
postponed to the new equation. It contains an unknown subgrid-scale tensor for which a

dynamic procedure has been developed. Preliminary runs are inconclusive as to whether

this approach might be successful but tend to show that, in this formulation, the re-

sults are less sensitive to initial conditions. Interestingly, this framework could be used

to implement a history-dependent eddy-viscosity as suggested in the first project.

The channel flow is the simplest LES test case of a wall bounded flow. It has been used

extensively in two papers in this group. Gullbrand & Chow report on tests comparing

LES of the channel flow with and without an explicit filter. In contrast to the subgrid-

scale stress, which represents turbulent motions not captured on the numerical grid, the

additional subfilter-scale stress generated by the explicit filter can theoretically be re-

constructed exactly. In practice, however, this term is only reconstructed approximately

using, for instance, the scale-similarity model or an iterative deconvolution method. Var-
ious numerical schemes have been used in this paper in order to better evaluate the effect

of the numerical errors. Although the interaction of numerical errors with subfilter and

subgrid models remains an open issue, a grid resolution adapted to each scheme has

been determined. Comparisons between several models show that using an explicit filter

improves the LES predictions as long as accurate reconstruction schemes, like high order
iterative deconvolution methods, are used for the subfilter stress.

In the second paper using channel flow as a test case, Jeanmart & Winckelmans have
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performed a systematic study of LES predictions for a series of dynamic models including

the Smagorinsky model, a regularized version of the mult_scale model, a mixed viscos-

ity and hyperviscosity approach and an eddy viscosity acting on a modified, enhanced,

velocity field. This last model is very similar in nature to the 'mixed viscosity and hy-

perviscosity' approach but contains a single parameter to be determined dynamically.
Special attention has also been paid in this study to the consistent implementation of

the test filter in the wall-normal direction in the dynamic procedure, but without sig-
nificant improvement in the results. Although no model simultaneously reproduces the

velocity profile and all the components of the Reynolds stress, there is a systematic trend

supporting a different modelling strategy for the very large scales and for the small, but

resolved, scales in LES. In particular, both the multiscale model and the Smagorinsky

model acting on an artificially-enhanced velocity field appear to produce more accurate

predictions.

A hyperviscosity term has also been used by Caughey & Jothiprasad in an attempt

to develop a tool for assessing LES accuracy for flows at high Reynolds number. For

such flows, comparison with DNS of the Navier-Stokes equations with a viscous term is

usually not possible. The authors have considered an alternative way of simulating flows

at high Reynolds number by artificially increasing the separation between the energetic
and the dissipative scales. For this purpose, they have replaced, in a fourth order-central-

difference code, the physical viscous dissipation by an artificial hyperviscous dissipation

mechanism acting more in the small scales and less in the large scales. Several turbulent

flows, like the freely-evolving Taylor-Green vortex, the inhomogeneous Kolmogorov flow

generated by a static force periodic in space, and homogeneous decaying turbulence have

been considered. Numerical results obtained using the hyperviscous dissipation mecha-

nism on relatively modest meshes show good agreement with higher-resolution DNS.

The concepts of ideal and optimal LES have been proposed recently as strategies to

reach the best possible approximations for the LES fields. Both these approaches require

explicit expressions for several turbulence statistics, which are computed in the opti-

mal LES using a stochastic estimation procedure determined from DNS. Haselbacher,

Moser, Constantinescu & Mahesh have investigated the extension of optimal LES to

high-Reynolds number flows using a stochastic-estimation procedure based on turbu-

lence theory. The method has been implemented in an unstructured finite-volume code.

Some of the statistics necessary to implement the optimal LES require further theoreti-

ca/investigation, and predictions for the energy spectra are not fully consistent with the

underlying Kolmogorov theory. However, preliminary tests of this innovative approach,

coupling statistical theories of turbulence and subgrid-scale modelling, have already been

performed and show a reasonable agreement for global quantities such as the total energy

decay in homogeneous turbulence.

Daniele Carati
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Evaluation of subgrid-scale models in terms of
time correlations

By Guo-Wei Her, Meng Wang AND Sanjiva K. Lele

In certain applications such as the computation of turbulent sound sources, Large-Eddy
Simulation (LES) is required to predict correctly the space-time correlations of the ve-

locity field. A previous study (He, Rubinstein & Wang 2002) has shown that LES with
the spectral eddy-viscosity model over-predicts time correlations. In this work, we eval-

uate the Smagorinsky model, the dynamic Smagorinsky model and the multi-scale LES

method in terms of time correlations. The dynamic Smagorinsky model is shown to give

better predictions on time correlations than the constant-coefficient Smagorinsky model,

which gives significant over-predictions. The results from the multi-scale LES method

are in between. The over-predictions are discussed according to the random backscatter

and the sweeping hypothesis. Based on those discussions, a history-dependent sub-grid

scale model is suggested for time correlations.

1. Motivation and objectives

The goal of this work is to evaluate and develop subgrid-scale (SGS) models for pre-

dicting time correlations in turbulent flows. Here by "time correlation" we refer to the

two-time, two-point correlation of velocity fields ui(x, t) in physical space

C(r, _') = (ui(x, t)ui(x + r, t + T)), (1.1)

or, equivalently, the two-time correlation of velocity Fourier modes u,(k, t) in spectral

space

C(k, 7) = (ui(k, t)ui(-k, t + r)). (1.2)

where r = IrE is the magnitude of spatial separation r, k = Ikl is the magnitude of wave

number k, and _- is time delay. The turbulence is assumed statistically homogeneous and

isotropic, but not necessarily stationary. Hence, the correlation function also depends on

t in general.

Time correlation describes temporal statistics of turbulent flows. It has been shown by

previous evaluations (Menevean & Katz 2000) that large-eddy simulation (LES) with an

appropriate SGS model is capable of predicting correctly the single-time spatial statistics

of turbulent flows, such as turbulent kinetic energy and Reynolds stress. The temporal

statistics did not enter such evaluations. However, a major application of LES is the

prediction of unsteady flows in which time accuracy, even if in the statistical sense, is im-

portant. This emphasis will impose new requirements on SGS modeling. For instance, in

the computation of flow-generated sound the Lighthill acoustic analogy (Lighthill 1952)

shows that the radiated sound power depends on the space-time properties of turbulence.

Therefore, it is necessary to investigate the predictive power of LES in terms of time cor-

relations. A recent study by He et al. (2002) has shown that LES with the spectral

t Laboratory for Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Science,
Beijing 100080, China
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eddy-viscosity model (Chollet & Lesieur 1981) over-predicts the time correlation relative

to Direct Numerical Simulation (DNS). The over-prediction, which can be significant,

alters the frequency distribution of the sound radiated by turbulence. A follow-up ques-

tion to ask is then: which of the currently existing SGS models can better predict time
correlations, and to what extent?

The dynamic Smagorinsky model (Germano et al. 1991) has been applied in many

different flows, generally with good results. Therefore, this model is the first choice in

our evaluations. The multi-scale LES method of Hughes, Mazzei & Oberai (2001) is
also attractive in that the SGS model acts only on the small scales in the resolved

field, and thus may have less impact on time-correlations, particularly at large spatial

separations. We also use the classical Smagorinsky model (Smagorinsky 1963) to calculate
time correlations, in order to verify our previous results and compare it with the dynamic

Smagorinsky model and the multi-scale LES method.

The above SGS models are mainly based on energy balance. For example, the eddy-

viscosity coefficients in the Smagorinsky models are determined by the energy-balance
equation. They are not required to satisfy the governing equations for time correlations,
which is the root cause of potential errors. As an extension of the present work, we

incorporate the physical mechanism for time correlations into SGS modeling, and suggest
a history-dependent Smagorinsky model.

2. Numerical setup

We will use a calculation of decaying homogeneous isotropic turbulence to evaluate the

Smagorinsky model, the dynamic Smagorinsky model and the multi-scale LES method.

The previous evaluation of He et al. (2002) was carried out for forced homogeneous

isotropic turbulence at a moderate Taylor-scale Reynolds number (Rex) of 108 in a cubic

box of side 2_r, using DNS on a 1283 grid and LES on a 643 grid. That evaluation may have

been affected by the forcing scheme, the moderate Reynolds number and the relatively
small grid ratio between DNS and LES. These deficiencies are rectified or reduced in the

present study.

The new setting is a decaying turbulence of initial Re_, = 127.4 in the same cube as

before. It is simulated by DNS with grid size 2563 and LES with grid size 643. A standard

pseudo-spectral method is used, in which spatial differentiation is by the Fourier spectral

method, time advancement is by a second-order Adams-Bashforth method with the same

time steps for both DNS and LES, and molecular viscous effects are accounted for by

an exponential integrating factor. All nonlinear terms are de-aliased with the two-thirds
rule, except those involving SGS eddy viscosity.

The following SGS models are evaluated:

(1) The Smagorinsky model: the Smagorinsky constant is C8 = 0.22 and the filter

width is set equal to the inverse of the largest effective wave number kc = 21.

(2) The dynamic Smagorinsky model: the Smagorinsky coefficients are determined by

the Germano identity. The grid filter width is k_-1 and the test filter width is taken as

2k_ -1.

(3) The multi-scale LES method: we decompose the filtered Navier-Stokes equations

into the large-scale equations for the lower one-half of the Fourier modes and the small-

scale equations for the remaining half of the Fourier modes. The Smagorinsky model is

applied only to the small-scale equations.
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FIGURE 1. Energy spectra at t = 2.4. _ DNS field; .... LES with dynamic
Smagorinsky model; ----- Multi-scale LES; ........ LES with Smagorinsky model.

The initial condition for DNS is an isotropic Gaussian field with energy spectrum

E(k, O) o¢ (k/ko) 4 exp[-2(k/ko)2], (2.1)

where ko = 4.68 is the wavenumber corresponding to the peak of the energy spectrum.

The shape of the energy spectrum excludes the effects of the box size. The initial condition

for LES is obtained by filtering the initial DNS velocity fields with filter wavenumber

kc = 64/3 _ 21. Therefore, the initial LES and filtered DNS velocity fields are exactly
the same. At eaxly stages, the LES and DNS velocity fields are highly correlated due to
the same initial conditions. Therefore, the time correlations of the LES velocity field are

nearly the same as those of the DNS field. As time progresses, the LES fields become
decorrelated from the DNS fields. The difference in time correlations between the LES

and DNS velocity fields are then observed.

3. Main results

In figure 1, energy spectra are presented at t = 2.4. Generally speaking, the results

from the Smagorinsky model, the dynamic Smagorinsky model and the multi-scale LES

method are in agreement with the DNS result. However, the multi-scale LES method over-

predicts a little more than the Smagorinsky and dynamic Smagorinsky models between

k = 3 and k = 10. There is also a slight under-prediction for k >_ 10 which is shared by

the Smagorinsky model. Beyond k = 20, the resolution limit is exceeded, and the LES

results are meaningless.

Figure 2 shows the normalized time correlations, c(k,r) = C(k,_-)/C(k,O), of the

DNS and LES fields for wavenumbers k = 7, 11, 15, and 17, spanning a range of scales

from the integral scale to the upper end of the resolved scale. The starting time is

t = 1.4. The figure confirms our previous observations: LES with eddy-viscosity-type
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models over-predicts time correlations. The over-predictions can be understood by the

following physical arguments: the contribution of unresolved scales to resolved scales

can be described as energy dissipation and random backscatter. The eddy-viscosity-type

SGS models are designed to model the drain of energy from resolved scales to unresolved

scales, but fail to account for the random backscatter from unresolved scales to large

scales. This leads to a more coherent field at resolved scales. Therefore, the LES field

evolves in a more correlated fashion, in the sense that their time correlations decay more

slowly. The extent of over-estimation on time correlations varies with the SGS model, as

seen in figure 2. This can be understood by the sweeping effects (Kraichnan 1964): the

Eulerian time correlations are dominated by the sweeping velocity. The eddy-viscosity-

type models reduce the sweeping velocity by excessive dissipation, which causes the

time correlations of the LES fields to decay more slowly than those of the DNS fields.

It is observed from our numerical calculations that, among the SGS models evaluated,
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the Smagorinsky model produces the largest dissipation and thus the smallest sweeping

velocity. Therefore, it predicts the slowest correlation decay. The dynamic Smagorinsky
model introduces the most appropriate amount of dissipation and hence gives the best

predictions on time correlations. The dissipation produced in the multi-scale LES is

smaller than the Smagorinsky model but larger than the dynamic Smagorinsky model.

Therefore, its predictions for time correlation lie between those of the other two models.

Figure 2 also indicates that the time correlations of the LES fields deviate more from

the DNS fields at small scales than at large scales. This is in agreement with the well-

known divergence property of Eulerian time correlations discovered by Kraichnan (1964).
It implies that the cutoff effects are stronger in the near range than those in the far range.

It is further noted from figure 2 that, although the dynamic Smagorinsky model and

the multi-scale LES method give better overall predictions than the Smagorinsky model,

all curves near _- --- 0 are in good agreement, implying that the Taylor microscales are

well predicted by all models. The maximum time delay used in the calculations is _- =

1.0, which is not long enough to catch the zero-crossing points of time correlations.

Nonetheless, the relatively large differences of the LES curves relative to the DNS value

at T = 1.0 are still observed, indicating that the decorrelation scales are poorly predicted.

4. Conclusions and future work

We have evaluated the Smagorinsky model, the dynamic Smagorinsky model and the

multi-scale LES method in terms of time correlations. Comparatively speaking, the dy-

namic Smagorinsky model predictions are in better agreement with DNS fields, with
some over-prediction of the decorrelation length scales. The Smagorinsky model obvi-

ously over-predicts time correlations. The results of the multi-scale LES method, using

the Smagorinsky model on the small scale equations, lie in between. However, we be-
lieve that the results from the multi-scale LES method could be much improved if an

appropriate SGS model is applied to the small scale equations.
Evaluations have also been made on forced turbulence, and similar results are obtained

but will be presented in a forthcoming paper (He, Wang & Lele 2002). This is because

the sweeping hypothesis is true for both forced and decaying turbulence. However, the

sweeping hypothesis may not be valid for general unsteady flows, such as 'kicked' turbu-

lence, where turbulence is forced periodically. In this case, the eddy viscosity coefficients
should be history-dependent. Therefore, we suggest a history-dependent Smagorinsky
model for time correlations

rij(x,t) = [-2ur(t')Si_(x,t')]w(t')dt' (4.1)

where _'ij is the sub-grid scale stress, and w(t') is a weighting function, ur(t') is a history-
dependent-eddy-viscosity coefficient, which can be determined by either one time or two

time Germano identity. This work is in progress.
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Large-eddy simulations with explicit equations for

subgrid-scale quantities

By Daniele Carati _ AND Alan A. Wray :_

Various alternative formulations of the LES equations have been explored in which addi-

tional evolution equations for variables such as the acceleration, the subgrid-scale stress

tensor, or the subgrid-scale force are explicitly carried. Statistics of the velocity field ob-

tained from the equation for the acceleration are shown to depend strongly on the initial

conditions. This feature, which is independent of LES modeling issues, seems to prove

that the velocity-acceleration formulation of the Navier-Stokes is not useful for numerical

simulation. Equations for the subgrid-scale quantities appear to be much more stable.

However, models required by this formulation of the LES problem still require additional
study.

1. Introduction

The Navier-Stokes equation is usually written in terms of the velocity. However, it is

legitimate to re-explore the turbulence problem by considering new formulations which

are obtained by a change of variables. For instance, the equation for the vorticity can

be considered as such an alternative formulation. The change of variables is in this case

linear, and the two large-eddy simulation (LES) problems, obtained by projecting these

two equations on a coarse grid, are more or less equivalent (Winckelmans et al, 1996). If,

however, a nonlinear change of variables is considered, then the new LES problem would
differ from the classical formulation of subgrid-scale modeling. The present project is

devoted to the investigation of new LES formulations in which equations for certain

nonlinear functions of the velocity are carried explicitly.

Our first attempt in that direction consisted in writing an explicit equation for the

entire right-hand side of the velocity evolution equation, i.e., for the acceleration. In that
case, the DNS formulation of the problem itself seems to be ill-conditioned since the

turbulence statistics obtained from the acceleration equation appear to depend rather

strongly on the initial conditions. For that reason, the related LES formulation has not

been explored further.

Our second attempt in deriving a new formulation of the LES problem was to write
explicit equations for the unknown subgrid-scale quantities. Equations for the Reynolds

stress tensor in RANS have long been explored (Rodi, 1979), but in the LES context

equations for the subgrid-scale stress have almost never been considered. One possible

reason is that in LES it is a common practice to push the resolution to the limit of

the available computational capacities. Consequently, carrying additional equations for

the unknown subgrid-scale quantities has not been considered as a viable alternative to

their modelling. Also, lack of knowledge about the phenomenology associated with the

t Universit_ Libre de Bruxelles, Brussels, Belgium
:_ NASA Ames Research Center, Moffett Field, USA
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dynamics of the subgrid-scale quantities has probably discouraged LES practitioners from

exploring these equations. One exception is the equation for the trace of the subgrid-

scale stress tensor, often referred to as the turbulent kinetic energy, which has been

used together with the resolved velocity equation. Our objective is to generalize and

systematize this approach.

2. LES based on an equation for the acceleration

In a first attempt to derive an alternative formulation of the LES problem, we have

considered the incompressible Navier-Stokes equation written in terms of the acceleration
variable:

Otu_ = ai (2.1a)

a_ = -Ojuiu 3 - cqip + uV2u, (2.1b)

V2p = -Oicgjuiuj (2.1c)

Obviously equations (2.1) are closed and there is no need for an additional evolution

equation for g. Nevertheless, such an evolution equation can be derived easily, and the

resulting equivalent formulation of the incompressible Navier-Stokes reads:

cOtui = ai (2.2a)

cOtai= -Oj (u_aj + ujai) + vV2ai - _gipa (2.25)

Here the 'pseudo pressure' p_ has been introduced to enforce incompressibility of the

vector 4. Like the pressure in the classical formulation of the incompressible Navier-

Stokes equations, it is obtained by solving a Poisson equation. Since equation (2.2a) is

linear, imposing incompressibility on both _ and the initial condition if(t0) guarantees

that the velocity field remains divergence free. The set of equations (2.2) is thus equivalent

to the original set of equations (2.1) provided ai is properly initialized as in (2.1b). For

DNS, solving (2.2) would be more complicated that solving (2.1), and there is no reason

to consider this formulation. However, filtering the two sets of equations leads to different

modeling problems. Filtering the set (2.1) yields the classical LES formulation. Filtering

equations (2.2) yields:

cqt_i = 5i (2.3a)

in which a model is required for ¢i_ - uiaj + a_uj - _i'dj - _j'Si. Expressing the unclosed

subgrid-scale quantities in terms of _i and _i would constitute an entirely new approach to

subgrid scale modelling. Moreover, the evolution equation for _i carries more information
on the nonlinear dynamics than the classical equation for _.

Coding the equations (2.2) is rather straightforward. We have checked that the re-
sults produced from a standard DNS code for (2.1) and from a code for the ui - a_

formulation (2.2) yield indistinguishable results when the acceleration vector is properly
initialized. Unfortunately the equations (2.2) produce results that, even in the statistical

sense, depend strongly on the initial conditions. If ai(t0) is not set exactly from (2.1b),

then global statistical quantities like the total energy and the total dissipation diverge
from the DNS results.

The sensitivity to the initial conditions is so high that in the example presented here,

the viscous decay of energy is not at all reproduced when the phase of the initial accel-
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FIGURE 1. Total energy dissipation predicted by the equations (2.2)
with the exact initial acceleration field (solid line) and with a field for which the phases have
been slightly modified by multiplying each vector in Fourier space a_(k) by a factor e '_`, where
s E [-0.1, 0.1] is a random variable.

eration are slightly modified. In the late stage of the computation, an increase of energy

is even observed. We thus believe that the DNS velocity-acceleration formulation (2.2) is

not reliable and, consequently, there is no point in further exploring the associated LES

problem (2.3).

3. Equations for subgrid-scale quantities

The purpose of this section is to derive explicit evolution equations for subgrid-scale
quantities. Two difficulties can immediately be anticipated. First, considering for instance

the subgrid-scale stress tensor, T_ = uiu 3 -- U_U_, it appears that this quantity is not

strictly speaking a resolved variable since the product u_uj cannot in general be fully
captured on the same grid as the LES velocity _i. Carrying simultaneous equations for

_i and rij thus requires two different grids, which of course is not desirable. This problem
can be solved by rewriting the LES equation as follows:

O, gi = -Oj_ - Oi_ + vV2g, - cgjgi i, (3.1)

where now _ij = uiuj --UiU-'--_. This equation implicitly assumes that the operator --= defin-

ing the LES field is a projection, =-:.. = :'=.-, in order to ensure the Galilean invariance

of the LES equations independently of the modelling approach used for representing _ij-

Another obvious advantage of the formalism (3.1) is that all the terms in this equation,

including the convective nonlinearity, appear as projected quantities (Carati, Winckel-

mans, & Jeanmart, 2001). We also note that by definition gij = ri--7.
The second difficulty comes from the definition of the subgrid-scale quantities. It is

obvious that the time derivative of a subgrid-scale quantity is a subgrid-scale quantity as

well. It might thus be argued that the evolution of gij is entirely driven by subgrid-scale

effects that require modelling and consequently the evolution equation for g,j might be

seen as entirely arbitrary. This difficulty will be partially worked around by deriving

the evolution equation directly from the definition of gij. However, there is still some
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arbitrariness in the expression of resolved and unresolved terms in this equation. Part

of this arbitrariness will be removed by imposing that the evolution of any subgrid-scale

quantity characteristic of a turbulent flow should be driven by an advection-dispersion

equation.

3.1. Equation for the subgrid-scale stress tensor

The equation for _,j is directly derived from its definition and from both the Navier-
Stokes and the LES equations (3.1):

o, ,j = + + ,v% - 0, j, - - - (3.2)
Four unclosed terms appear in this equation. They can be related to the convective

--C --C --_

nonlinearities ¢i3t and ¢ij, to pressure terms _,Pj, and to viscous terms _ij and are fully
symmetric second and third rank tensors:

-¢_, = u,%ut - _ (3.3)

• _q= "_iajp+ u_O,p- _0_ - %0.p (3.4)

_ = -_a_(_ - _j) - _a_(_ - _) (3.5)

• _ = 2. (a,u,a,_ - a,_,a,_j) (3.6)

The dynamic equation (3.2) for _ij does not contain an explicit advection term, though

one is presumably hidden in ¢-_fl. Hence, a reasonable expansion for this fully symmetric
tensor that introduces the desirable advection term would be:

--C __ __ --C

¢ijt = uiT"jt + _j_it + ulrq + ¢_jt (3.7)

--C

where _ijl is a residual tensor that remains to be modelled. This expansion yields the

following dynamic equation for "_ij:

where _ _= (0i_ + Oj_i)/2. The trace of this equation yields the evolution equa-

tion (Speziale, 1991,Ghosal et al, 1995) for the subgrid-scale energy q = rii/2:

a,_ = -_a_ + vv_ - _ij - a_] - _. (3.0)

The production term S_j_,j is independent of _ since S-_i_"is traceless for incompressible

flows. The turbulent flux _ originates from _t and from _'_i which can be easily written

as a divergence term. The status of _i is less obvious. However, using the property of

projectors ._b) = (ab), where (..-) is the volume average, the following identity can be
derived: (_ii) = 0. Thus it is not inconsistent to take _ii to be a divergence term which

then contributes to the subgrid-scale energy flux _q. Finally, the subgrid-scale dissipation

= _i"//2 (3.10)

is not a flux term. It represents the dissipation of subgrid-scale energy due to viscous

effects and has the property of remaining finite in the limit of very small viscosity. We

will not consider further the equation for _q but will focus in the next section on the

evolution equation for the subgrid-scale force.
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3.2. Equation for the subgrid-scale force

The subgrid-scale stress tensor _j represents more information than required to close

the equation for the resolved velocity _i. Only the divergence-free part of 0j_ij, which
will be denoted h_, is actually needed for incompressible flows. The dynamics of hi can be

derived immediately from the equation for _ij and by noting that the right-hand side of
the evolution equation for h_ must be the divergence of a symmetric tensor. The complete

set of LES equations then reads:

0,_ = -0_ - 0,½ + _,v_, + _ + 7_ (3.11)

where a pseudo pressure Ph has been introduced to ensure that the subgrid-scale force

remains divergence free. An external forcing term fi has also been added to the Navier-
Stokes equation for completeness and for keeping track of the possible effect of such a

forcing on the balance equations derived in the following section. The LES pressure

is not _ because the incompressibility of the subgrid-scale force is enforced separately. It

is thus a function of the LES velocity only:

V2Y)-_ = - OiOj_i_ (3.13)

3.3. Balance equations

Balance equations for second order quantities based on _i and h, can be used to better

understand the effects of the different terms entering the evolution equation for hi. The

resolved kinetic energy balance is straightforwardly given by

cgt(_i_i/2) = (u,]i) + (_ihi) - 2u(SijS,j) (3.14)

There is nothing new in this relation. As expected the energy input rate due to the
subgrid-scale force is given by the average value of the "cross-helicity" uihi. In the absence

of external forcing and of viscous effects, the subgrid-scale force is, as expected, the only

source of variation of the resolved kinetic energy. Remarkably, in the same conditions, the
evolution of the average cross-helicity depends only on the subgrid-scale force intensity

h,h, and on the unknown subgrid-scaJe tensors ¢ij:

-- -- --u -- _ --h

Ot(ui-hi) --_ (h_hi) + (Sij¢i_) + (f:h,) -4v(SijSij ) (3.15)

--h (oqihj + Oj-hi)/2. Ill particular, the contributions of the nonlinear convectivewhere Sij =

terms from the gi and hi equations cancel exactly. We can also write the balance equation

for hihi:

o,(LL/2) -^-= - 2v(SijSij)+ (Sij¢ij) (3.16)

3.4. The role of the new subgrid-scale tensor

The unknown subgrid-scale tensor ¢ij has contributions from both viscous and nonlinear
effects. There is no reason here to separate these two contributions since they both appear

with the same form (the divergence of a symmetric tensor) in the equation for hi. This

g_eneralized subgrid-scale stress tensor should be responsible for both the turbulent flux of
hi and the creation of hi due to nonlinear interactions between modes from the resolved

velocity field. A model for ¢ij should thus have the property of remaining finite for

finite _i even when hi = 0 in order to be able to represent the creation of hi due to

the resolved velocity. However, this model should also remain finite for finite hi when
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_i = 0 in order to be able to represent the turbulent flux of hi generated by subgrid-scale

motions. Since only the projections of _j along the tensors S-_3 and _hj affect the global

balance equations, it is tempting to model this tensor as:

- (3.17)

Assuming that the Kolmogorov theory applies to the subgrid-scale tensor ¢,_, the coef-
ficients _h and _u can be written as functions of the dissipation rate _ and the projector

characteristic width A (or the wavenumber in Fourier space) only. Dimensional analysis

then yields

I_ h _--- Ch-_l/3_ 4/3 (3.18)

_ = C_2/3_ 2/3 (3.19)

where Ch and C_ are dimensionless parameters that remain to be determined.

4. Dynamic procedure for subgrid-scale quantities

The dynamic procedure (Germano et al, 1991; Germano, 1992), based on the intro-

duction of a test operator • ."_.,can be generalized for the pair of equations (3.11-3.12).
The evolution of variables at the test level is:

0tui
A

= -0j_i_j - 0_ + vV2ui + Hi + fi (4.1)

o, i = + + - - (4.2)

At this stage, it is convenient to introduce the following notations for the divergence-free
nonlinear terms:

_i = -a./_ - Oik, (4.3)

_i = -cgju,% -0i_. (4.4)

Because of relation (3.13), the vector _i is known in terms of the LES velocity. Similarly,

Ni is a function of ui only. With these definitions, we can derive a generalized Germano

identity between the subgrid scale force at the LES and test levels

Hi = hi + li (4.5)

where li = _i - Ni. Because Hi # hi, the comparison of ¢ij with g2ij cannot be done

directly but requires an evolution equation for li:

= _inj -_- Ztjn i -- _

-c3j + _j-hi - ui-'Hj - - cOiTat + vV2_i - cg.iLi_. (4.6)

The comparison of equations (4.2-4.6) with the test-level version of equation (3.12) yields

the following identity:

_2i./ ----¢i./+ Lij + Zij + Lij (4.7)
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where

A --

L_ 3 = -v(0z_,0zhj - 01_,0lh_) (4.8)

_h _

Z, = 2 + _,_ - _i_, - (4.9)

_. = _ + _, + _:v_ + _j_, - 2_,_j - 2_ (4.1o)

In order to simplify the implementation of the dynamic procedure in this preliminary

study, we introduce two approximations. First, we note that, in the limit of very small

molecular viscosity, Li3 vanishes. For this reason, we neglect this term in the present
approach, assuming a high Reynolds number flow. Second, the scaling of the coefficients

nh and _u depends on the dissipation rate _. It will be assumed that _ measured at the

grid level is the same as the dissipation rate _ measured at the test level. Again, this

approximation is compatible with the large Reynolds number limit. It is thus reasonable
to rewrite the coefficients nh and _ as follows:

_h = C_ _4/3 (4.11)

_ = c_ _2/3 (4.12)

where the coefficientsC_ = Ch_ I/3 and C_ = Cu_ 2/3 should now be the same at the

gridand testlevelsand can be determined using the dynamic procedure. This yieldsthe

followingexpressionsforthe unknown coefficients:

^tot^h _h ^u ^tot^u _h ^h

i (Lij Sij> (S_3Sij)+ (Li3S_) (Si3Sij)
^h ^h ^_ ^_ _ ^h ^u __h (4.13)

_u = 2(1- a4/3) (SijSij) <SijSij) _ (S,jSij) (SijSij>

_tot^u ^h ^u ^tot^h ^u ^u

1 (Li3 Sq) (SijSij) + (Lii Sij ) (-S_3-Sii) (4.14)
JCu = 2(1 - a 2/3) ^h _'-h ....... h ""u Ah

(Si_S.> <S.S,j>- <S.S_) <S.S.)

^ ^ ^tot ^u ___h

where a _= _/_, _ is the characteristic length of the test operator, and L_ - Li_ + Li_.
These models have been implemented in a spectral code for isotropic decaying turbu-

lence. Preliminary tests have not yet produced successful results. The equation for the hi

variable appears to be unstable without a model for ¢ii. However, the models described
here, despite the fact that they definitely improve the behavior of the equation, do not

prevent instabilities after an initial decaying stage. At least two reasons could explain

these difficulties. Firstly, the approximation of neglecting Lij might be too crude for the
fairly modest Reynolds number considered in the present tests (the reference data base

corresponds to a 256 _ DNS). Second, the very simple model we have considered so far

might be inadequate to model the unclosed term.

5. Conclusion

We have considered new formulations of the LES problem based on nonlinear changes

of variables in the Navier-Stokes equation. The formulation of carrying an equation for

the acceleration vector appears to be ill-conditioned and produces turbulence statistics

that depend strongly on the initial conditions.
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We have also considered a new formulation of the LES problem based on explicit

equations for the unknown subgrid-scale quantities. In particular, the equation for the

subgrid-scale force has been studied in detail and implemented in a spectral code. A

dynamic procedure has been proposed for the related LES equations. The results obtained

in preliminary runs are inconclusive as to whether this approach might eventually be
successful.
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Investigation of numerical errors, subfilter-scale

models, and subgrid-scale models in turbulent
channel flow simulations

By Jessica Gullbrand AND Fotini Katopodes Chow t

Turbulent channel flow simulations are performed using second- and fourth-order finite

difference codes. A systematic comparison of the large-eddy simulation (LES) results for
different grid resolutions, finite difference schemes, and several turbulence closure models

is performed. The use of explicit filtering to reduce numerical errors is compared to results
from the traditional LES approach. Filter functions that are smooth in spectral space are

used, as the findings of this investigation are intended for application of LES to complex

domains. Explicit filtering introduces subfilter-scale (SFS) as well as subgrid-scale (SGS)
turbulence terms. The former can theoretically be reconstructed; the latter must be

modeled. For turbulence models, the dynamic Smagorinsky model (DSM), the dynamic

mixed model (DMM), and the dynamic reconstruction model (DRM) are all studied. It

is found that for explicit filtering, increasing the reconstruction levels for the SFS stress

improves the mean velocity as well as the turbulence intensities. When compared to LES

without explicit filtering, the difference in the mean velocity profiles is not large; however

the turbulence intensities are improved for the explicit filtering case.

1. Motivation and objectives

The equations for large-eddy simulation (LES) are obtained by applying a low-pass
filter to the Navier-Stokes equations. When the equations are solved on a discrete grid,

a discretization operator is applied to the equations as well. These filtering and dis-

cretization operations divide the turbulent flow field into resolved, subfilter, and subgrid
scales. The effect of the subfilter-scale (SFS) and subgrid-scale (SGS) motions on the

resolved velocity field must be considered. The SFS contribution can theoretically be

reconstructed, but the SGS stress must be modeled. The filter shape as well as the filter

width and, of course, grid resolution are free parameters in LES.

For engineering purposes, second-order numerical methods are usually used when per-

forming LES for complex flow fields. In LES the smallest resolved scales are often used

to model the contribution from the unresolved scales. Therefore, it is of great importance

that the former scales be resolved to high accuracy. High accuracy LES results can be

achieved by high-order numerical methods and/or by explicit filtering. The complexity of

implementing high-order methods, as well as the computational cost, become prohibitive

when studying flow fields in complex geometries. Therefore, the use of explicit filtering

may provide a favorable alternative.

In traditional LES solution methods, the computational grid and discretization op-

erators are considered as "implicit" filtering of the Navier-Stokes equations. Using this

t Environmental Fluid Mechanics Laboratory, Civil and Environmental Engineering, Stanford
University



88 J. Gullbrand _ F.K. Chow

approach, there is no need to define a filter function, but neither can the implicit filter

be determined. The only actual filter that may be applied in the simulations is used in

models for the SFS and/or SGS contributions. One example is the need for a test filter

in the dynamic Smagorinsky SGS model to determine the model coefficient.

In contrast, when explicit filtering is applied in LES, an explicitly-defined filter function

is needed. In this approach, the defined filter is used when calculating the SFS contribu-

tion. If the dynamic Smagorinsky model (DSM) is used as the SGS model, an additional

filter function (with larger width than the explicit filter) must also be defined for the

test filter in the dynamic procedure. Both the SFS and the SGS contributions must be

included in the simulations. The differences in the implementation of the traditional LES

and the explicitly-filtered LES approaches might be considered subtle; however, the effect
on the LES results is considerable.

The explicit-filtering approach has recently been proposed as a method to minimize

the influence of discretization error in finite-difference codes. All finite-difference approxi-

mations have a truncation error that grows with increasing wavenumber. This truncation

error can be reduced or eliminated when explicit filtering with a filter width larger than
the computational grid cell size is applied (Lund 1997). Several researchers have in-

vestigated explicit filtering in turbulent channel flow. Lund & Kaltenbach (1995) used

sharp-cutoff filters (in spectral space) in the homogeneous directions with a second-order

finite difference code (the same code used in the present work). They concluded that

the explicit filtering improved the accuracy of the LES results, however, mesh refinement

without explicit filtering improved the results at a greater rate. All of their simulations

used the DSM with a cutoff filter, which is not applicable to general geometries. Carati

et al. (2001) developed a useful framework for the explicit filtering approach. They pro-

posed governing equations for LES which carefully distinguish between the discretization

and filtering procedures. These equations are also used here to separate the SFS and

SGS effects used in explicit filtering. Winckelmans et al. (2001) performed simulations
with explicit filtering using a fourth-order finite-difference code (also used in the present

work). However, they applied second-order filters in three dimensions, which introduce
commutation errors in the wall-normal direction due to the stretched grid (Ghosal &

Moin 1995). The explicit-filtering approach (with low-order SFS reconstruction) did not

perform as well as DSM without explicit filtering (with a sharp-cutoff filter), though the

authors suggested that higher-order reconstruction of the SFS terms could improve the

results obtained with explicit filtering. Gullbrand (2001) performed explicit filtering (also

with low order SFS reconstruction) in three dimensions using commutative filters with

the DSM in the same fourth-order finite difference code. Results without explicit filtering

showed better agreement with direct numerical simulation (DNS) data, also suggesting

that higher-order reconstruction is needed for the SFS terms.

In this investigation, we study the influence of numerical errors on the LES results, as

well as the influence of the filtering approach on the turbulence models. The numerical

error is studied by performing simulations of a turbulent channel flow using both second-

order and fourth-order finite difference codes. The advantage of studying the channel

flow is that both sharp-cutoff and smooth filter functions can be used. As previously

shown by Piomelli, Moin & Ferziger (1988), the DSM performs better with the sharp-

cutoff filter than with a smooth filter function. In the present work, the sharp-cutoff

filter is used only for comparison purposes, as our aims are to investigate approaches

for LES in complex domains where sharp cutoffs cannot be used. The sharp cutoff is

therefore used only for traditional LES, without explicit filtering. A smooth filter is
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applied for LES with explicit filtering. Higher-order reconstruction models for the SFS

stress are investigated with filters applied only in the homogeneous directions, as this

avoids introducing commutation errors. The effect of three-dimensional filtering must

ultimately be considered, but is left to future work. For turbulence models, the DSM,

the dynamic mixed model (DMM), and the dynamic reconstruction model (DRM) are

all investigated. The DSM is used as the SGS model and is applied in all the simulations

presented here. The DMM is a linear combination of the scale similarity model (SSM)

of Bardina et al. (1983) (the SFS model) and the DSM. In the DRM, the SFS stress is

modeled by using an estimate of the unfiltered velocity in the unclosed term; the SGS

stress is again modeled by the DSM.

2. Governing equations

The governing equations for an incompressible flow field are the continuity equation

together with the Navier-Stokes equations,

Ou___Ai= Oui Ou_u 3 _ Op 1 OZu, (2.1)
Ox_ 0, Ot + Oxj Oxi + Rer Oxgx j "

Here ui denotes the velocity, p the pressure and Rer the Reynolds number based on the

friction velocity and the channel half-width. Repeated indices indicate summation.

In computational LES, the governing equations are filtered in space and solved numer-

ically on a grid. The traditional procedure for LES has been to treat the grid and the
discretization operators as the filtering procedure of the governing equations. Here, we in-

stead follow the approach of Carati, Winckelmans & Jeanmart (2001) and Winckelmans

et al. (2001) where the filtering and discretization procedures are treated separately. The
discretization operator is represented by a tilde and the filtering operator by an overbar.

The filter function G is applied to a flow variable f in physical space as

fl-f(z, A, t) = zx)I(x', t)dx' , (2.2)

where A is the filter width. Thus fii denotes a variable on the grid, and _i denotes a

filtered variable on the grid. Figure 1 shows a schematic of a typical energy spectrum

from a turbulent flow. The spectrum can be separated into three parts (Carati et al.

2001; Zhou et al. 2001). The low-wavenumber portion is well-resolved on the grid, and

is contained in the velocity g_. The shaded portion represents SFS motions; this region

contains filtered information that is still resolved on the grid. The area between the

dotted and solid lines is called the numerical-error (NE) region, which is present due to

the discretization errors. This region would not exist if spectral methods were used; in

this particular case, the complete SFS stress could be recovered. If numerical errors are

present, the SFS motions cannot be fully reconstructed. The high-wavenumber portion

contains SGS motions that cannot be resolved on the grid, and must be modeled.

Hence, the LES momentum equations on a discrete mesh are written as

0gi 0ujgi c9:_ 1 02g_ 0N (2.3)
0--7-+ Ox----ff.= _xi + Rer OXjOXj OX 3

where the turbulent stresses are defined as _-ij = uiuj - _iSj. The filtered equations

are not closed, due to the nonlinear term uiu_. Properties of the specific filters used are
described in section 4.
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FIGURE 1. Schematic of velocity energy spectrum showing partitioning into resolved, subfil-
ter-scale, and subgrid-scale motions. The numerical-error region is also shown. The grid is indi-
cated by the vertical dashed line, and the filter by the curved dashed line.

Following Carati et al. (2001), the turbulent stresses can be separated into two parts,

7"ij : Bij -t- Aij, where

Bij = (z,53 - (zifij , Aij = uiuj - _j . (2.4)

Aij, which we call the SGS stress, depends on scales beyond the resolution domain of
the LES. Bij, the SFS stress, depends on the differences between the exact and filtered

velocity fields within the resolution domain. As the filter width increases (with fixed grid

resolution), the total turbulent stress term, consisting of the SGS and SFS terms, will

increase. The SFS component can theoretically be computed, as an infinite expansion in

a series model for ui would give the exact form (Stolz, Adams & Kleiser 2001; Katopodes,

Street & Ferziger 2000). Further discussion concerning partitioning of the SFS and the

SGS stresses can be found in Carati et al. (2001) and Winckelmans et al. (2001).

3. Subfilter-scale and subgrid-scale models

When an explicit filter is applied to the Navier-Stokes equations, as in Equation 2.3

above, information at the high wavenumbers is damped. In theory, this SFS information

can be restored exactly by using an inverse filtering operation. Several methods have

been proposed to approximate this inverse filtering operation. Stolz et al. (2001) use the

van Cittert (1931) iterative method in their approximate deconvolution procedure to re-
construct the unfiltered velocity field ui from the filtered field _. Chow & Street (2002)

use Taylor-series expansions to obtain the unfiltered velocity. This is then substituted

into the expression for Bij to obtain the SFS reconstruction. The SSM (Bardina et al.

1983) and the tensor-diffusivity model can be derived from either of these reconstruc-
tion procedures by truncating the series expansions after a specified number of terms

(Katopodes et al. 2000; Winckelmans et al. 2001). By truncating these series, a model is

obtained for the SFS term Bij. However, an additional term is still required to model the
SGS stresses. Note that if the problem domain can be transformed into spectral space,

the filter (if it is smooth) can be exactly inverted, and an exact reconstruction can be ob-

tained. Explicit filtering is thus of no advantage when smooth filters are used in spectral

methods (Winckelmans & Jeanmart 2001).

In this study, both low-order (the SSM) and higher-order reconstructions (van Cittert
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iterative method) are used to model the SFS stresses. In order to do a fair comparison

between the SFS models, the same SGS model (DSM) is used in all the simulations. The

combinations of SFS and SGS models used are described below. Tests without explicit

filtering are also performed for comparison purposes.

3.1. Dynamic Smagorinsky Model

The DSM is a widely-used eddy viscosity SGS model (Smagorinsky 1963):

= -2 e ij = 21sls j, (3.1)

where ue is the eddy viscosity, A the filter width and S,j the strain rate tensor. The
model parameter C is calculated dynamically (Germano et al. 1991) using the least

square approximation of Lilly (1992). The choice of the explicit filter and the test filter

for the dynamic procedure greatly affects the performance of the DSM, as discussed

further below. The DSM is used in our simulations with and without explicit filtering.

3.2. Dynamic Mized Model

Low order reconstruction of the SFS stresses can be performed by using the scale sim-

ilarity model proposed by Bardina et al. (1983). The SSM is obtained by substituting

fii _ ui into the definition of the SFS stress tensor, B, 3. Here the SFS stress is modeled
by the scale similarity term and the DSM is used as the SGS model, in a procedure

similar to that of Zang, Street & Koseff (1993):

Tij = UiUj -- giftj -- 2(CA) 2 IS[-_i3 , (3.2)

where the contribution of the SSM is taken into account in the calculation of the dynamic

coefficient. In addition, the test- and explicit filters must be carefully applied in the

dynamic procedure, which leads to a different form of the test-filtered equations, as

described by Winckelmans et al. (2001). The SSM term is discretized by the same method
as the convective term in each code.

3.3. Dynamic Reconstruction Model

Higher order reconstruction of the SFS stress tensor can be achieved by the iterative
deconvolution method of van Cittert (1931). The unfiltered quantities can be derived by

a series of successive filtering operations (G) applied to the filtered quantities with

ui = _i + (I - G) * gi + (I - G) * ((I - G) * ui) +... (3.3)

where I is the identity matrix. The truncation order of the expansion determines the

level of deconvolution, as discussed by Stolz et al. (2001). The approximate unfiltered

velocity, _i_ (due to the truncated series), is substituted into the first term (_) of the

SFS stress which becomes _*j. This reconstruction was used by Stolz et al. (2001) who
called the SFS model the approximate deconvolution model (ADM). Here the ADM is

used together with the DSM:

"rij = fi*fi_ - fiiuj - 2(CA) 2 IS1£¢, (3.4)

which we call the dynamic reconstruction model (DRM). The implementation in the code

uses _ directly in the convective term on the left-hand side of the equations (2.3), as

was done by Stolz et al. (2001). The DSM is applied as usual to the right-hand side.
The ADM with the DSM was also independently proposed and used by Winckelmans &

Jeanmart (2001) for isotropic decaying turbulence. Reconstruction series of level five and
ten are used in this study and they are denoted DRM5 and DRM10, respectively.
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4. Filter functions

In finite-difference methods, the filter in the LES equations is important for limiting

numerical errors. As shown by Ghosal (1996) and Chow & Moin (2002), numerical er-

rors from finite-difference schemes can be larger than the entire contribution from the

turbulence closure term, O_'ij/Ox_. To avoid this problem, the explicit filter width should
be at least twice the cell size for a fourth-order-accurate finite-difference code. For a

second-order finite-difference code, these studies suggest that the filter width should be

four times the cell size. In this work, the filter width in the case of the second-order code

is not four times the cell size, but instead is chosen to be the same as that used in the

fourth-order code. The effect of this choice on the results warrants further study.

The correct use of the filter is especially important in the SFS stress models, particu-

larly in the dynamic procedure which is based on the scale-similarity assumption in the

Germano identity. To compute a quantity such as _i in the dynamic procedure, the test

filter ('caret' or 'hat' symbol) must be explicitly applied. To satisfy scale similarity, it is

required that the caret operator be "similar" to the overbar operator. Therefore, if the

filtering operator (the overbar) is a top-hat, the combined effect of the two (caret and
overbar) should also be a top-hat filter. Such an operator can be obtained by following

the method of Carati et al. (2001) and Winckelmans et al. (2001), described below.

A discrete approximation to a top-hat filter of twice the cell size can be obtained by

trapezoidal rule integration. In one dimension the filter is

¢i = 0.25¢i_1 + 0.5¢i + 0.25¢_+1. (4.1)

However, the effective filter width of this discrete filter is no longer twice the cell size,

but rather vf6. If Simpson's rule were used to derive a discrete version of the top-hat

filter, the weights would instead be (1/6, 2/3, 1/6), with an effective filter width of twice
the cell size. Despite the inconsistency in the effective filter width for (4.1), this filter

was chosen because the function goes to zero (in spectral space) at the grid cutoff, and
therefore eliminates the highest wavenumber that could be sustained by the grid (see e.g.

Najjar & Tafti 1996).

To construct an appropriate test filter, it is useful to write the top-hat filter in Fourier

space as "G(k) = sin(kA)/(kA). The combined effect of the test filter (at twice the

width) and the explicit filter (the overbar) should thus also be a top-hat: _(k) =

sin(2kA)/(2kA). The required test filter (acting alone), would therefore be

G(k) = sin(2kA)/(2 sin(kA)) = cos(kA). (4.2)

If we now transform this back into physical space, we have a discrete filter which requires

only the immediate neighboring values,

¢_ = 0.5¢i-1 + 0.5¢i+1 . (4.3)

The combined effect of the overbar and hat filters in physical space is also a top-hat, but

over a wider grid stencil, as expected:

¢i = 0.125¢__2 + 0.25¢i_1 + 0.25¢i + 0.25¢i+1 + 0.125¢i+2 . (4.4)

In this investigation, the same top-hat explicit and test filters are used in both the

second- and fourth-order finite-difference codes. The explicit and test filters are applied

only in the homogeneous directions, as is commonly done in channel flow studies. Though

this choice is not entirely self-consistent, it allows a direct comparison between the second-
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and fourth-order LES codes without introducing commutation errors due to filtering in

the wa/1-norma/ direction over a stretched grid (Gullbrand 2001). Note that the test

filter in Equation 4.3 is only used in the simulations with explicit filtering, as done by

Winckelmans et al. (2001). When no explicit filter is applied, the top-hat in Equation
4.1 is used as the test filter.

5. Solution algorithm

The second- and fourth-order codes represent spatial derivatives on a staggered grid
with second- and fourth-order central difference schemes, respectively. In the second-

order code, the convective terms are in divergence form, while in the fourth-order code

they are in skew-symmetric form (Morinishi et al. 1998; Vasilyev 2000). In both codes,
the equations are integrated in time using the third-order Runge-Kutta scheme described

by Spa/art, Moser & Rogers (1991). The diffusion terms in the wa/1-norma/direction are

treated implicitly with the Crank-Nicolson scheme. The splitting method of Dukowicz

& Dvinsky (1992) is used to enforce the solenoidal condition. The resulting discrete

Poisson equation for the pressure is solved in the wa/1-normal direction using a tri-

diagonal direct matrix solver in the second-order code and a penta-diagonal matrix solver
in the fourth-order code. In the homogeneous directions, the Poisson equation is solved

using a discrete Fourier transform in both codes. Periodic boundary conditions are applied

in the streamwise and spanwise homogeneous directions, with no-slip conditions at the

channel walls. A fixed mean pressure gradient is used to drive the flow. The Reynolds

number is Re_ = 395 and the computational domain is (2_rh, 2h, _rh) in (x, y, z) where

x is the streamwise direction, y the wa/1-norma/direction, and z the spanwise direction.

The computational grid is stretched in the y-direction by a hyperbolic-tangent function

tanh(_/(1 - 2j/N2))

Y(J) = tanh(7) j = 0, ..., N2 (5.1)

where N2 is the number of grid points in the wall normal (j) direction and 7 is the
stretching parameter, which is set to 2.75. The computational codes are compared in
Gullbrand (2000).

6. Turbulent channel flow simulations

6.1. Effect of grid resolution and numerical error

As one focus of this work is to examine the effect of numerical errors in actual LES, the

resolution for the two finite-difference codes must be chosen carefully. Figure 2 shows

the effect of increasing grid resolution for the second-order code, using no turbulence
closure model. All results are compared to the DNS of Moser, Kim & Mansour (1999) for

Re_ = 395 with a resolution of (256,193,192). It is clear that the choice of resolution can

significantly alter the results of the simulation. The results in figure 2 show a minimum

grid resolution of (81,65,64), where the results do not seem to be greatly affected by

the numerical errors. This should be one of the necessary criteria for determining the

required grid resolution. Of course, as the grid resolution is increased the solution will

eventually approach the DNS of Moser et al. (1999). Due to increased accuracy of the

fourth-order code (compared to the second-order code), the required minimum resolution

was coarser at (64,49,48).

It is expected that, for a given resolution, the performance of the fourth-order code



94 J. Gullbrand _ F.K. Chow

2O

15

U
10

m

I I Jill] i i J J IIJIJ I I

10 ° 101 10 2

y+

FIGURE 2. Mean velocity profiles for different grid sizes for the second-order code using no
turbulence model. ---- : 48x37x36, ----- : 64x49x48, ------ : 81x65x64, -- : 96x73x72,
and _ : DNS.

will be better than that of the second-order code, due to the higher accuracy of the

finite difference schemes. Figure 3 shows results of simulations made with the same grid

resolution (48,37,36) for both finite-difference codes and for the pseudo-spectral code of

Jeanmart & Winckelmans (see the companion study in this volume). The pseudo-spectral

code uses fourth-order compact finite differences in the vertical direction and is spectral

in the horizontal directions. The simulations are performed without a closure model, so

that the effect of the numerical errors can be compared. As seen in figure 2, increasing

resolution (and hence decreasing numerical errors) first reduces the predicted mass flow

rate (mean velocity profile) in the simulations to a level lower than the DNS results. If

the resolution is further increased, the mass flow rate increases and approaches the DNS

results. Similarly, it is expected that, for a given grid resolution, the pseudo-spectral

code will produce the lowest mean-velocity profile of the three codes, as it has the lowest

numerical errors (see figure 3). The fourth-order finite-difference code also predicts a

mean velocity profile that is lower than the DNS for this resolution (but higher than the

pseudo-spectral code); however the second-order code does not, due to the effect of large
truncation errors.

Because of the large differences in the profiles in figure 3, different grid resolutions

are chosen for each finite-difference code to make a fair comparison of results in further

tests. In this way, we attempt to minimize the numerical differences at the outset of the

investigation, though the interaction of these errors with different SFS and SGS models
is still an issue. To choose the appropriate resolution, simulations with the DSM, using

a spectral-cutoff test filter with a width of twice the grid cell size, were performed at
different resolutions until good agreement was obtained. (Agreement at the two chosen

resolutions can be seen in figures 4 and 5, to be described later.) We use the cutoff-filter
case as the base case for comparison, because this approach does not involve explicit

filtering and thus provides an independent reference. Note that the cutoff filter is more

accurately termed a "cutoff projection", as it is not reversible. However, we use the term
"cutoff filter" as is commonly done in the literature.

The grid resolutions for the remaining simulations are therefore as follows. The fourth-
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FxGuR_. 3. Mean velocity profiles for three different LES codes with the same grid resolu-
tion (48,37,36) using no turbulence model. -- : second-order, ---- : fourth-order, ----- :
pseudo-spectral, -- : DNS.

order finite-difference code resolution is chosen to be (64,49,48), which is one-quarter of

the DNS resolution in each spatial direction. This resolution corresponds to a streamwise

grid cell size of Ax + = 39, and a spanwise cell size of Az + = 26. Nondimensional

"plus", or "wall" units are defined as y+ = yu_/v, where u, is the friction velocity

and u is the kinematic viscosity. The range of cell size in the wall-normal direction is

0.4 _< Ay+ _< 45. In the simulations using the second-order code, a grid resolution

of (81,65,64) is employed. This resolution corresponds to Ax + = 31, Az + = 19 and

0.3 _< Ay+ < 34. Thus the choice of grids for each code corresponds to the grid size

which was shown to be not greatly influenced by the numerical errors for the "no model"

tests mentioned previously. The time step used is 1.5 x 10 -3 and is the same in both
codes. A statistically-stationary solution is obtained after 30 dimensionless time units,
and thereafter statistics are sampled during 15 time units. The time is normalized with

the friction velocity and the channel half width.

6.2. SGS modeling: LES without explicit filtering

For the purpose of comparison, tests are performed using traditional SGS model formu-

lations. These simulations do not use explicit filtering, meaning that the only filter that

is actually applied is the test filter in the dynamic procedure, and this is chosen to be

twice the cell size. In our test cases without explicit filtering, the reconstruction term

(the SFS stress) is not considered; only the SGS stress is modeled. By using the top-hat

filter (which is smooth in spectral space) as the test filter in the dynamic procedure, it

is assumed that the implicit filter is also a top-hat; therefore the SFS stress should in

theory be considered. However, the implicit filter cannot be determined, meaning that

reconstruction of the SFS stress is questionable.

For the channel flow, the periodic lateral boundary conditions allow the use of a

spectral-cutoff filter for the test filter. It is well known (Piomelli et al. 1988) that the

Smagorinsky model performs best when used together with such a cutoff filter. The dif-

ficulty with this filter choice is that it cannot be easily applied to other geometries. The

cutoff filter width in our simulations is twice the cell size, giving the filter-grid ratio
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FmURE 4. Mean velocity profiles for the second-order (81,65,64) and fourth-order (64,49,48)

codes without explicit filtering. _ : fourth-order code, DSM with sharp cutoff filter, - ....
second-order code, DSM with sharp cutoff filter, --.-- : fourth-order code, DSM with top-hat
filter, ---.-- : second-order code, DSM with top-hat filter, and _ : DNS.

a = A/Ag = 2, where A and Ag are the filter width and grid cell size respectively.

Because filtering is applied only in the x and z directions, the effective filter-grid ratio

squared is aeff2 ---_ 4 2/3 . Simulations with the DSM using a top-hat filter in physical
space as the test filter are also performed. The test filter is applied as in Equation 4.1;

the filter-grid ratio in this case is a = v_ and hence c_elI2 = 62/3 (see Najjar & Tafti
1996; Lund 1997).

Figure 4 shows mean velocity profiles from both the second- and fourth-order finite

difference codes, compared with DNS data. Agreement between the second- and fourth-

order codes for the simulations using the cutoff filter is quite good, indicating that the

chosen resolution for each code is good for comparisons. The agreement between the

second- and fourth-order codes for the reduced (deviatoric) turbulent intensities for the
cutoff filter case is excellent, as seen in figure 5. Note that the turbulence intensities axe

adjusted by removing the trace from each tensor component, as discussed by Winckel-

marls, Jeanmart & Carati (2002). Results for the top-hat filter are, as expected, worse

than for the spectral cutoff filter. Though it is known to perform poorly with a smooth

filter (Piomelli et al. 1988), the DSM is frequently used with the top-hat filter because

spectral cutoff filters cannot be applied in domains with general geometries. Note that

the profiles obtained by the second-order code in figures 4 and 5 are slightly closer than
the fourth-order code to the DNS for the top-hat filter cases, which may be due to the

choice of higher resolution for this code than the fourth-order code. Profiles of the SGS

stress _12 over half the channel width are shown in figure 6. The contribution of the SGS

stress is smaller for the second-order code because the simulations are performed using
a higher resolution, meaning that more of the turbulent motions are resolved. The SGS

stress is larger for the top-hat filter cases for both codes because the effective filter width

of the top-hat is larger, which therefore places more energy in the SGS terms.
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FIGURE 5. Profiles of reduced turbulence intensities in streamwise u'u', wall-normal v'v' and
spamwise w'w' directions for the second-order (81,65,64) and fourth-order (64,49,48) codes with-
out explicit filtering. The trace is removed from each tensor component. _ : fourth-order
code, DSM with sharp cutoff filter, ---- : second-order code, DSM with sharp cutoff filter,
----- : fourth-order code, DSM with top-hat filter, ------ : second-order code, DSM with top-hat
filter, and _ : DNS.

6.3. SFS and SGS modeling: LES with explicit filtering

To attempt to minimize the influence of discretization errors in finite difference codes,

explicit filtering can be used. The difference between the implementation of this approach

and that of section 6.2 is in the filters used in the closure models, and thus the ability to

reconstruct the SFS terms. As this approach is intended for finite-difference methods in

complex domains, the filters used must be smooth; the spectral-cutoff filter is not used
here.

We performed several simulations using explicit filtering, using increasing levels of

reconstruction for the SFS stresses. For the first case, the DSM is applied using an
explicit filter of width twice the grid cell size and a test filter of four times the cell size.

This case has no reconstruction terms. Then, a low-level reconstruction is added by using

the DMM, followed by the DRM5 and DRM10 with five and ten levels of reconstruction,

respectively (see sections 3.2 and 3.3). Figure 7 shows that the mean velocity profiles for
the fourth-order code improve compared to the DNS results as the level of reconstruction

increases. The improvement is very clear in the comparison of the reduced turbulent

intensities in figure 8. The incremental improvement between DRM5 and DRM10 is not

large, indicating that good reconstruction of the unfiltered velocity is probably already

obtained by DRM5; the reconstruction series seems to have converged. The differences

between the LES results (with DRM5 and DRM10) and the DNS results are therefore

most probably due to numerical errors (see the NE region in figure 1) and the SGS
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FIGURE 7. Mean velocity profiles for the fourth-order code (64,49,48) with explicit filtering
(top-hat) and reconstruction. ------ : DSM, ----- : DMM, ---- : DRM5, -- : DRM10,
and -- : DNS.

model used. The total turbulent stress _12 shown in Figure 9 increases considerably with

increasing reconstruction level (though only slightly between DRM5 and DRM10). For
each case, the contribution of the DSM portion (not shown) of the model is roughly

the same, with a peak of around 0.1, so the increase of the modeled stresses is almost

entirely due to the SFS model. Results for the second-order code are shown in figures 10

and 11. Turbulent intensities are not shown for the second-order code as the pattern of

improvement is similar to that of the fourth-order code.
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FIGURE 9. Profiles of the turbulent stress _12 for the fourth-order (64,49,48) code with explicit
filtering (top-hat) and reconstruction. ------ : DSM, ---_ : DMM, .... : DRM5, and _ :
DRM10.

7. Discussion and conclusions

Despite the existing theory and previous attempts at LES using explicit filtering

(Carati et al. 2001; Winckelmans et aL 2001; Lund & Kaltenbach 1995), the advantages

of this method in practice remain unclear. Because of the extra filtering operations, the
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FIGURE 10. Mean velocity profiles for the second-order code (81,65,64) with explicit filtering
(top-hat) and reconstruction. ------ : DSM, ----- : DMM, ---- : DRM5, _ : DRM10,
and --: DNS.
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FIGURE 11. Profiles of the turbulent stress 712 for the second-order (81,65,64) code with explicit
faltering (top-hat) and reconstruction. ------ : DSM, --.-- : DMM, ---- : DR.M5, and -- :
DRM10.

explicit-filtering approach is necessarily more computationally expensive than traditional

LES. However, explicit filtering offers the potential to limit the influence of numerical
errors in finite difference schemes on the flow solution.

Figure 12 compares results from both the second- and fourth-order codes, with and

without explicit filtering. The models used are the DSM with the top-hat filter (without
explicit filtering, as is common in engineering applications) and the DRM10 (with ex-

plicit filtering). For both codes, there is a slight improvement in the mean flow profiles

for the cases with explicit filtering and reconstruction. The largest difference is seen in

the reduced turbulence intensities, shown in figure 13, where the improvements due to

DRM10 are quite significant. Even the magnitudes of the reduced streamwise intensi-

ties u'u' for DRM10 are smaller than the DNS values, which is the opposite of what is
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FIGURE 12. Mean velocity profiles for the second-order (81,65,64) and fourth-order (64,49,48)
codes with and without explicit filtering (using top-hat filters for both). -- : fourth-order
code, DRM10, ---- : second-order code, DRM10, ----- : fourth-order code, DSM no explicit
filtering, ------ : second-order code, DSM no explicit filtering, and -- : DNS.

usually observed with turbulence closures such as the DSM (Gullbrand 2001). Better rep-

resentation of turbulent intensities is, for example, very important in applications where

accurate prediction of turbulent mixing is required. These results therefore demonstrate

that improvements can be obtained for a given resolution and code by using explicit

filtering and reconstruction.

The implications of these results for LES for engineering applications must be con-

sidered carefully. For engineering flows, traditional LES (without explicit filtering) is

commonly performed with the DSM, using a top-hat test filter. As shown in this in-

vestigation, this method poorly predicts mean velocity profiles as well as turbulence
intensities. There axe several choices that must be made in determining how best to

improve the performance of LES in practical applications.

Choosing the appropriate grid resolution for a simulation is necessarily the first step,

as our results show great discrepancies among simulations with different grid sizes. Two

main concerns must be addressed when selecting the necessary grid resolution. First, the

grid should be able to resolve important physical characteristics of the flow. Second, the

grid must also be fine enough to obtain a solution that is not largely affected by the
numerical errors.

The order of accuracy of the finite-difference scheme used also greatly affects the

solution. Note, for example, that the difference between the predicted mean velocity

profiles for simulations using different turbulence models was larger for the fourth-order

than for the second-order code. The higher sensitivity of the fourth-order code may be

due to smaller numerical errors, and/or the coarser resolution used in these simulations

(compared to the resolution of the second-order code), so that the turbulence models

play a larger role in the fourth-order case.

Finally, explicit filtering can be used as a means to reduce the influence of numerical er-

rors in the high wavenumbers. Increasing the grid resolution improves the representation

of the important large energy-containing scales. However, the truncation errors in the

high wavenumber portion remain. It is precisely these high wavenumbers that are often
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FIGURE 13. Profiles of reduced turbulence intensities in streamwise u'u', wall normal v'v' and
spanwise w'w' directions for the second-order (81,65,64) and fourth-order (64,49,48) codes with
and without explicit filtering (using top-hat filters for both). The trace is removed from each
tensor component. _ : fourth-order code, DRM10, ---- : second-order code, DRM10,

--- : fourth-order code, DSM no explicit filtering, ------ : second-order code, DSM no explicit
filtering, and _ : DNS.

used to represent SGS motions, and it is therefore imperative that they be represented

as accurately as possible.
The extra computational cost of using explicit filtering to obtain increased accuracy

may be worthwhile as LES continues to be applied to increasingly complex geometries

and to problems where fine resolutions are not practical. The improvements resulting

from use of the DRM10 (and the DRM5) model may be even more significant at coarser
resolutions. Tests with DRM10 with the second-order code at a resolution of (48,37,36)

show improvements over the DSM with the top-hat filter (without explicit filtering) even
with such an under-resolved simulation (not shown). The turbulent intensities predicted

by DRM10 are much better than those from the DSM, even though the difference in the

mean velocity profiles for these two models is still small.

As this investigation has shown, the explicit-filtering approach has the potential to

improve simulation results. SFS models with different levels of reconstruction were con-

sidered. The LES results with explicit filtering improve as the level of reconstruction

is increased. No significant improvements were observed between DRM5 and DRM10,

indicating that the reconstruction is probably adequate at level five (which is also less

expensive computationally); discretization errors and poor performance of the SGS model

prevent the unfiltered velocities from further approaching DNS values. The ability of the

SGS (or SFS) model to account for such numerical errors due to the discretization and

finite difference schemes is of course desirable. There is, therefore, a great need to develop

SGS models that work well in the context of explicit filtering, where the accuracy of the
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smallest scales is increased. In addition, the effect of filtering in all three directions (and

the resulting commutation errors) needs to be investigated.
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Some recent subgrid-scale models are evaluated in turbulent channel flow at Rer = 395.

The models considered were chosen among those performing best in decaying isotropic

turbulence, following the study by Winckelmans & Jeanmart (2001): the dynamic Smagorin-
sky model (used as a baseline); a dynamic and regularized version of the variational

multiscale model of Hughes, Mazzei, Oberai & Wray (2001); a dynamic "Smagorinsky +

hyperviscosity" model (here with two dynamic coefficients); and a dynamic Smagorinsky
model acting on an artificially-enhanced velocity field. The last three models put more

emphasis than the Smagorinsky model on the subgrid-scale (SGS) dissipation at small

scales, leading to significant improvement of the results in isotropic turbulence. The last

two models combine viscosity and hyperviscosity effects.

The dynamic procedure was implemented for each model, with and without adding a

test projection in the wall-normal direction. The projection uses a combined "sampling

+ interpolation" procedure, applied in physical space.

The models are assessed and compared to the direct numerical simulation (DNS) data

of Moser, Kim & Mansour (1999) on the basis of mean profiles of velocity, rms velocities

and reduced (deviatoric) turbulence intensities. A main outcome is the good behavior

of the multiscale model of Hughes et al. as compared to the Smagorinsky model. Good

results are also obtained when using the Smagorinsky modeI acting on an artificially-

enhanced velocity field. In all cases, the dynamic procedure without test "sampling +

interpolation" in the wall-normal direction leads to better agreement with the DNS

data. The poor performance of "sampling + interpolation" is most probably due to
the interpolation part, and a possible solution to the problem is proposed.

1. Introduction

The practical approach to large-eddy simulation (LES) is concerned with modeling the

effective "subgrid-scale" stress (SGS stress) due to the projection from the complete ui

field to the incomplete large-eddy field ui: a non-regular operation, the effect of which
must be modelled. On the other hand, the mathematical approach usually assumes a

regular explicit filter: a regular convolution acting on u_ to produce the filtered field gi,
leading to an effective "subfilter-scale" stress (SFS stress). One can also consider practical

LES with regular filtering added to the projection, thus solving for ui instead of ui- The
effective stress is then the sum of a SFS stress (which can be reconstructed) and a SGS

stress (which must be modelled).

A systematic comparison of many of the recent LES models and approaches was con-

ducted by Winckelmans et al. (2001a) for the case of decay of isotropic turbulence (483

LES started from a truncated 2563 DNS). The models tested were:

t Center for Systems Engineering and Applied Mechanics (CESAME), Universit_ Catholique
de Louvain, Belgium
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• viscosity model (Smagorsinky (1963));

• mixed "Smagorinsky + hyperviscosity" models (similar to the model proposed in

M6tais et al. (1992), but formulated differently and with only one coefficient);

• the variational multiscale model, Hiughes et al. (2001a) (basically the Smagorinsky

model applied to half of the wavenumbers, from kmax/2 to kmax);

• the Smagorinsky model acting on an artificially-enhanced velocity field (a new
model);

• the approximate-deconvolution model (ADM), Stolz et al. (1999), Stolz et al. (2001).

The spectral behavior of the models was investigated numerically. Two diagnostics were

used: the model dissipation spectrum and the energy spectrum. This systematic compar-

ison work pointed out the superiority of the models combining viscosity and higher order

viscosity. Models that behave as viscosity at low k and-higher order viscosity at high

k can indeed reproduce the correct dissipation spectrum for the SGS stress. The best

results were those with "viscosity + k 6 hyperviscosity" (also consistent with the findings

reported by M_tals et al. (1992)). The model by Hughes et al. performs better than the
Smagorinsky model (even though it lacks the part of the SGS dissipation that occurs at

low wavenumbers). The Smagorinsky model acting on an artificially-enhanced velocity

field also leads to better results than the standard Smagorinsky model (Smagorsinky
(1963)).

Another conclusion of this investigation was the possible uselessness, at least in pseudo-

spectral methods, of using additional explicit filtering, thus requiring "deconvolution"
methods augmented by "regularization" terms: either the method used in Winckelmans

et al. (2001b) or that used in Stolz et al. (1999), Stolz et al. (2001): the results are, at
best, equivalent to (and usually worse than) those obtained from LES without additional

explicit filtering, using the Smagorinsky model.

LES with added explicit filtering is not considered here. The purpose of this work is

to study the SGS models in a more challenging test case, the turbulent channel flow

(here at Re_ = 395) to see if the conclusions from isotropic turbulence still hold. All

models are implemented in their dynamic version (Germano et al. (1991), Ghosal et

al. (1992), Ghosal et al. (1995)). A more consistent test projection operator for the

wall-normal direction is described in section 2. The different models investigated are

detailed in section 3. The LES results are then compared to the DNS results in section 4.

Comparisons are made with the profiles of mean velocity, rms velocities and reduced

(deviatoric) turbulence intensities. The main conclusions are summarized in section 5.

2. Projection test operator

The operator - is the projection from DNS to the LES grid of cell size h. For the

dynamic procedure, we further consider the test operator ^ : a projection from the LES

grid of size h to a LES grid of size 2 h. The channel flow code being pseudo-spectral in
x and z, and finite differences in y, we use, as projection, the sharp Fourier cutoff in x

and z. In y, we can either do nothing (not fully consistent with the dynamic procedure)
or apply a test projection using sampling. The sampling is done by retaining one value

every two: from a sequence of field values If1, f2, ]3,...] on the LES grid, we retain the

sequence If1, fs,.--] on the twice coarser grid. Clearly, this corresponds to a projection:

a loss of information. Then, in order to obtain projected values everywhere on the LES

grid (we need them for the dynamic procedure, at least in its usual version), we use



Comparison o/recent dynamic SGS models in channel flow 107

interpolation. Using here linear interpolation, the projected field evaluated on the LES

grid is [fl, (fl + f3)/2, f3,-.-].

Thus, the combined operator, - followed by A is also a projection: from DNS to a LES

grid of size 2h. Therefore this has nothing to do with regular explicit filtering: in that

case, information is not lost and one can always recover the original field from the filtered

field using a "deconvolution" method (such as the van Cittert iterative method). This

point is most important: here we perform LES with projection only, and thus without

regular explicit filtering and with no need for reconstruction of the effective SFS stress.

The equations for the DNS (with c_,u, = 0) are

+ % + a,P = . (2.1)

Those for the LES (with cgi_i = 0) are

+o, +oja ,+ (2.2)atE,

with _iy = _ - _j the SGS stress to be modelled. Thus _,3 is the projection of

uiuj -- Ui_j, the LES resolved part of "product of complete (DNS) fields minus product

of incomplete (LES) fields".

Those for the LES at the coarser level (with 0,ui = 0) are

with Aij = "aiuj - _iuj the SGS stress at the test level.

Projection, using ", of the equations for gi leads to equations that must be consistent
A

with those for gi. This provides the Germano's identity:

Aij - aij = _ti_zj - uiuj = Li_ • (2.4)

3. Investigated models

3.1. Dynamic Smagorinsky model

We first consider the dynamic Smagorinsky model. The model for the SGS stress is taken
as

_M =a<i -2 CA 2 Sij (3.I)

/ _ \i/2

with Sij = (cqjui + cgiuj)/2 the rate of strain tensor and S = (2SklSkl) . For con-
\ /

sistency, the model for the SGS stress at the coarser level is taken as

AMAij = -2 C(2A) 2 _ij •

The dynamic procedure consists in minimizing the error in Germano's identity,

(3.2)
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= L, 3 - CA 2 _)_j . (3.3)

Minimizing (EijEq) in the least-square sense (where ( ) stands for averaging over the

homogeneous directions: x and z for the channel flow) leads to

(CA2) (Y) = (Lq Q,3 ) (3.4)

<QijQ,j)

3.2. Dynamic "Smagorinsky + hyperviscosity" model

We consider a model which combines viscosity (Smagorinsky) and a fourth-order hyper-
viscosity. The model for the SGS stress is here taken as

--M

aij = -2CA 2 S Si_ + 2DA a S V2S, j. (3.5)

The model for the SGS stress at the coarser level is thus

dij = -2 C(2A) 2 _ij + 2 D(2A) 4 V2Sij , (3.6)

and the error is

=Lj -ca2 + 4 (3.7)
Minimizing the errorleads to the followingsystem for determining C A2 and DA 4 as

functionof y:

(QoQij) (CA2) -<Q,jWio> (DA4) = (I-,ij_)_j>

-(QijWij) (CA 2) + (WijW_j) (DA') = -(_ijWij) • (3.8)

3.3. Dynamic Smagorinsky model using a "small field": a regularized multiscale model

The model by Hiughes et al. (2001a) corresponds to limiting the Smagorinsky model to

the small scales. The model has zero effect at large scales, and is an effective viscosity

at small scales. In our regularized version of the model (Winckelmans et al. (2001a)), we

achieve this by applying the dynamic Smagorinsky model to a regularized "small-scales
field" obtained as

ui-_ = ui - _i (3.9)

with _, = G * _ where G is a regular smoothing filter with a Fourier transform that goes
to zero at the LES cutoff wavenumber. A convenient second-order filter is the compact

discrete filter (thus easily applied in physical space). In one-dimension (l-D) it reads

7(x) = f(x) + (f(x + h) - 2f(x) + f(x- h))/4 = (I+ 62/4) f(x) • (3.10)

In Fourierspace,thisgives

1

_(k) = 1 - _ (1 - cos(kh)) = 1 - sin2(kh/2). (3.11)
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In 3-D, it is applied one direction at a time,

_, = (I + 52z/4) (I + 52/4) (I + 52/4) _, , (3.12)

so that

_ = _, - (I + 5_/4) (I + 5_/4) (I + 5_14) _,. (3.13)

The model for the SGS stress is thus taken as

aij = -2 CA 2 S_3 (3.14)

where = +
Notice that higher-order filters can easily be constructed by iterating the second-order

filter, thus still only requiring a stencil-3 wide discrete operation in each direction; see

Winckelmans et al. (2001a). For instance, the fourth order filter used in Stolz et al.
(2001),

"](x) = f(x) --k(-f(x + 2h) + 4f(x + h) - 6f(x) -b 4f(x- h) - f(x - 2h)) /16 (3.15)

and

_(k) = 1 - (3 - 4 cos(kh) + cos(2kh))/8 = 1 - (sin2(kh/2)) 2 (3.16)

is also obtainable from

f(x) = (I-(-52/4) 2 ) f(x). (3.17)

Equivalently, a filter of order 2n is obtained from:

leading to

7(z) = (s-(-52/4) ") f(z), (3.18)

_(k) = 1 - (sin 2 (kh/2))n . (3.19)

3.4. Dynamic Smagorinsky model using an "enhanced field"

Another view is to consider a model that is viscosity-like at large scales and more effective
at small scales. This is easily done by using the dynamic Smagorinsky model applied to an

artificial "enhanced field", see Winckelmans et al. (2001a). In the present implementation,

_i is replaced by

_ = [I + (I - G)] * ui = 2_i - ui. (3.20)

The model for the SGS stress is thus

--M S --e (3.21)a,j = -2 CA 2 Sij

where S_j = (0j_ + 0iu_)/2. Again, we here use the discrete filter, leading to

_ = 2_,- (I + 52/4)(I+ 5_/4)(I+ 5_/4)_,. (3.22)

Clearly, the model essentially behaves as a a fourth-order hyperviscosity at the small
scales.

4. Results

The turbulent channel flow at Re_ = 395 was investigated, with the different SGS

models but using the same LES code (thus allowing for self-consistent comparisons be-

tween the models). The reference DNS is that of Moser et al. (1999). The code is based
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FXGURE 1. Mean velocity: dynamic Smagorinsky model without (solid) and with sampling +
interpolation in y (dash); DNS data (solid circles).

on a pseudo-spectral method in the streamwise, x, and spanwise, z, directions, and on

fourth-order spectral-like compact finite differences in the wall-normal direction, y. The

flow is driven by a constant mean pressure gradient. A semi-implicit second order time

integration scheme is used. The grid is stretched in y using a hyperbolic tangent function

with a stretching factor of 2.75. The grid resolution is set to (64x49x48) giving, after

de-aliasing, a resolved grid of (42x49x32). Preliminary runs were carried out with a grid

of (72x37x54) points, but the resolution in the wall-normal direction proved to be too

small to correctly capture the mean-velocity profile in the transition region. The x and

z resolutions were here also adapted to join in an effort of comparisons between different

codes on this particular flow, in collaboration with J. Gullbrand and F. K. Chow (whose

work is reported elsewhere in this volume).

4.1. Projection test operator in y

The dynamic procedure with a sampling procedure in y at the test level is more consistent

with the similarity hypothesis between the models at the LES grid and test levels. Better

results were thus expected. However, the results were worse for all models when the

sampling procedure in y was applied.

The results for the case of the dynamic Smagorinsky model are shown in figures 1 and

2. Both the mean velocity profile and the rms velocities are closer to the DNS data when

no "sampling + interpolation" is applied in y as part of the test projection operation.
This conclusion is also valid for the results obtained with the other models (not shown

here).
Those results have two consequences. The first one is the ineffectiveness of the sampling

+ interpolation procedure as a substitute to a true coarser discretization at the test

level. The interpolation applied to maintain the information darn all LES grid points

creates spurious information at high wavenumbers instead of preserving the cutoff effect

of the sampling procedure. This has a negative impact on the dynamic determination
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FIGURE 2. rms velocities: dynamic Smagorinsky model without (solid) and with sampling +
interpolation in y (dash); DNS data (solid circles).

of the model coefficient(s), and hence on the results obtained. One way to avoid this

interpolation issue would be to use sampling only, and thus to evaluate the dynamic

coefficient on the test-filtered (twice coarser) grid only. One would then interpolate the

dynamic coefficient back to the LES grid. This requires the definition of all the operators

(derivatives, products, etc.) at both the LES and test grid levels, and was not considered

in the present work (due to lack of time). The second consequence is the relatively small
impact of the two dynamic implementations on the mean results. The impact on the

value of the dynamic coefficient is however higher, with a maximal difference of roughly
60% in the center of the channel.

The following results all correspond to a dynamic procedure without sampling + in-

terpolation in the wall-normal direction.

4.2. Comparison o] the models

The mean velocity profiles obtained with the different models axe presented in figures 3

and 4. The regularized version of the Hughes et al. model performs best. See also the

good results reported in Hughes et al. (2001b) for decaying isotropic turbulence, and in

Hiughes et al. (2001a) for channel flow. This conclusion is however slightly contradictory

to the results obtained for more challenging (coarser grid) runs for decaying isotropic

turbulence in Winckelmans et al. (2001a). In that case, the lack of model dissipation at

the large scales was more crucial.

The results obtained with the dynamic model Smagorinsky + hyperviscosity are en-

couraging: the dynamic procedure was indeed successful in determining the two dynamic

coefficients. They are however also disappointing: the results axe no better than those

obtained using the dynamic Smagorinsky model alone. This is explained by the close cor-
respondence between the dynamic coefficients obtained for the Smagorinsky term. The
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FIGURE 3. Mean velocity: dynamic Smagorinsky model (solid); dynamic Smagorinsky + hy-
perviscosity model (dash); regularized version of Hughes model (chained dot); DNS data (solid
circles).

coefficients are similar up to y+ _ 100. The coefficient (CA 2) for the Smagorinky model
alone goes up to 1.0 x 10 -4 in the center region, while it goes to 0.6 x 10 -4 with the

added hyperviscosity term. This lower value is compensated by the dissipation of the

hyperviscosity term, leading to nearly identical results for the mean velocity profiles.

Better results are obtained when using the Smagorinsky model applied to the artifi-

cially enhanced velocity field, see figure 4.

The conclusions drawn from the mean-velocity profiles are also valid for the rms ve-

locities, see figures 5 and 6. The regularized Hughes model performs best. It correctly

reproduces the streamwise and normal rms velocities, yet it produces an overshoot of the

maximum near-wall value for the spanwise component. Similar behavior is reported by

Hughes et aL (2001b). The results for the Smagorinsky model and the Smagorinsky +

hyperviscosity model are essentially the same. Finally, the results for the Smagorinsky
model applied to an enhanced field are also quite good: this new model is promising.

However, the comparison of the rms velocities from the DNS with those calculated from

the LES (including the LES model contribution) is not entirely valid. Indeed, since the
--M

SGS models, aij, used here have a zero trace, one can only reconstruct, and thus fairly
compare with DNS, the deviatoric part of the Reynolds stress tensor, see Winckelmans et

al. (2002). Recall also that the trace of the Reynolds stress tensor is the DNS turbulent

kinetic energy, which is different from the resolved LES turbulent kinetic energy. The

fair comparison, on the deviatoric components, consists in comparing R DNS* (where *

means the reduced (traceless) part of the tensor) to R_ Es* - (_M>. The comparison on
the diagonal components (the "reduced turbulence intensities"), is presented in figure 7.

The previously drawn conclusions remain unchanged. This is so because, in the present

case, the resolved LES turbulent kinetic energy is still close to the DNS turbulent kinetic

energy.
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(solid); dynamic Smagorinsky + hyperviscosity model (dash); DNS data (solid circles).
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5. Conclusions

The assessment of some recent LES models carried out for decaying isotropic turbulence
was here extended to channel flow at ReT = 395.

Three models were investigated in addition to the Smagorinsky model: a regularized

version of the model by Hughes et al., a Smagorinsky + hyperviscosity model, and a

Smagorinsky model acting on an artificially enhanced velocity field. A dynamic version
of each model was developed and implemented.

A particular implementation of the dynamic procedure was also considered, where

"sampling followed by interpolation" is applied as a test projection in the wall-normal

direction (in addition to the usual test projection in the homogeneous directions using

the sharp cutoff in spectral space). No improvement in the results was obtained. It was

argued that the interpolation creates spurious information at high wavenumbers on top of

the cutoff effect achieved by the sampling. Another method that avoids the interpolation

part was proposed (not tested yet).

Significant improvements in the profiles of mean velocity, rms velocities, and reduced
turbulence intensities, as compared to the Smagorinsky model, are obtained when us-

ing the model of Hughes et al., and when using the Smagorinsky model acting on an

artificially enhanced velocity field. The results obtained using the Smagorinsky + hy-

perviscosity model are somewhat disappointing as no clear benefit is seen on the mean

profiles. The benefit of this model could possibly lie in better agreement with DNS data

on other quantities (such as two-point correlations and spectra). This deserves further

investigation.
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viscosity model (dash); regularized version of Hughes model (chained dot); DNS data (solid
circles).
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Tools for large-eddy simulation

By David A. Caughey t AND Giridhar Jothiprasad

A computer code has been developed for solving the incompressible Navier-Stokes

equations for test flows that will allow the comparison of various strategies for assessing

the accuracy of LES solutions for flows at large Reynolds number, where it is impractical
to make direct comparisons with DNS solutions for the same flow. The code includes

options for a conventional Smagorinsky subgrid model, as well as hyperviscosity dissi-
pative terms that will allow a greater separation of scales for high Reynolds number

flows. In this report, the code is validated for several simple, periodic flows, including
the Taylor-Green vortex and decaying isotropic turbulence, and preliminary results are

presented, showing good agreement for (forced, periodic) Kolmogorov flow in the limit of

high Reynolds number, on relatively modest meshes using the hyperviscosity dissipation.

1. Introduction

Large Eddy Simulation (LES) holds the promise of improved prediction of turbulent

flows at large Reynolds numbers relative to computations using the Reynolds-averaged
equations, with substantially less computational cost than that required for Direct Nu-

merical Simulation (DNS) since only the largest, most energetic, scales need to be re-

solved. Nevertheless, the computational resources required for LES computations for all

but the simplest flows remain substantial. The required resources are so great, in fact,

that most LES computations are performed at the limits of available resources, and it

usually is not clear to what extent the solutions are resolved. Furthermore, since the

accuracy of the computation is not assessed in any systematic way, the most frequently
used metric for the performance of LES is comparison with DNS computations which,

as a result of the computational resources required for DNS, necessarily limits these

assessments to flows at relatively low Reynolds numbers.

In order for LES to become useful for practical engineering problems, tools must be

developed that allow one to estimate the accuracy of the LES solution without having

to make a direct comparison with a DNS solution for the same flow. The availability

of such tools would free one from the need to make comparisons only at low Reynolds

numbers where DNS solutions are feasible, and permit the evaluation of LES at the larger

Reynolds numbers for which LES is most attractive, and where the separation between

the energetic and dissipative scales is large enough that the LES approach has some
theoretical basis.

The long-term objective of the authors' work is to develop tools suitable for assess-

ing the accuracy of LES solutions, especially for flows at large Reynolds number. As a

first step in this process, the authors have developed a computer code for solving the
incompressible Navier-Stokes equations, including additional hyperviscosity dissipation,

for test flows that will allow the comparison of various accuracy-assessment strategies.

The incorporation of hyperviscosity dissipation (based on the biharmonic of the velocity

field) is motivated by the desire to increase the separation of the energetic and dissipative

t Cornell University
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scales, so that the high Reynolds number limit of solutions can be studied on meshes of

relatively modest resolution.

In this report, validations of the code are presented for several simple, periodic flows,

including the Taylor-Green vortex and decaying, isotropic turbulence, and preliminary

results show good agreement for (forced, periodic) Kolmogorov flow in the limit of high
Reynolds number, on relatively modest meshes using the hyperviscosity dissipation.

2. Algorithm

In this section we describe a variant of the fractional-step method (Chorin (1968),

Temam (1969), Kim & Moin (1985)) used for the time-advancement of the incompressible
Navier-Stokes equations with a Smagorinsky model and added hyperviscosity dissipation.

The constant-density Navier-Stokes equations, with an added hyperviscosity, and the

continuity equation

Oui 0 (uiuj) Op 02u_ 04ui (2.1)
a--7+ o_ - ox_ + (v + vr) ax3oz-------_+ .4 ozjOzjOzzOzt

Ou----2'= 0 (2.2)
0x,

are discretized on a staggered grid. Velocities ui are defined at the centers of cell faces

having normals in the direction xi, and the pressure is defined at the cell center. The

equations are marched in time using an explicit approximation for the convective terms

and an iterative Alternating Direction Implicit (ADI) scheme for the viscous (and hyper-

viscous) terms. Such a fractional-step time-advancement scheme for (2.1) and (2.2) can
be written as

1
A---_ _H, {U n-1 } -]-ai{¢ n} = (2.3)

//4 [94 {_i} + D4 {u_'}]
2

u_+1 - ei
-- -Gi {6¢ n+l }, (2.4)

At

with

where

c{.-+*} =0 (2.5)
Cn+l = ¢_ + 6¢n+1 (2.6)

Hi {u) -- Spatial discretization of 0 (uiuj.______)
c_xj

0¢
Gi {¢} -_ Spatial discretization of c_x---_-

D2 {ui) = Spatial discretization of OxjOx----"_.

(_4U i

D4 {ui} -- Spatial discretization of
cOxjOxjcOxtOxt

Oui
C {u) - Spatial discretization of _x,"
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The convective terms H, {} are discretized to fourth-order spatial accuracy using cen-

tral differences, and the time advancement is carried out using a second-order Adams-

Bashforth approximation for the convective terms. The spatial discretization of the con-

vective terms is designed to be energy conserving (Morinishi _: Moin (1998)) in order

to achieve explicit control over the dissipation introduced in the numerical scheme. The

viscous diffusion terms D2 {} are discretized to fourth order spatial accuracy, while the

hyperviscous terms D4 {} are discretized to second order spatial accuracy, both using

central differences. These two terms are advanced in time using an iterative ADI scheme.

It should be noted that ¢ differs from the pressure by an O(At) term (Kim & Moin

(1985)).

The scheme has been implemented for periodic boundary conditions on a uniform

grid. Equation (2.5) can be used to eliminate u_ +1 from the divergence of (2.4), giving a
Poisson equation for 5¢ _+1

_ (2.7)
At

Further details of the spatial discretization can be found in Morinishi & Moin (1998).

The implicit equations arising at each time step are solved using an iterative ADI

scheme. We first define a splitting of the operators D2 {} and D4 {} into differences in

the xl, x2 and x3 directions and cross derivatives as follows,

D2 {u,} = D2z_ {u,} + D2_ {u,} + D2_3 {u,}

C_2Uz

D2_ {ui} - Spatial discretization of cgx_.

94 {ui} = D4_, {ui} + D4_: {ui} + Da_ 3 {u_} + 04 ..... {ui}

C_4Ui

D4._ {ui} - Spatial discretization of Ox---_-

04U_ 04Ui

D4 ..... {ui} -- Spatial discretization of 2 [cgx_Ox_ + Ox_cOx_ +

Let _I m] denote the approximation to fii at the mth iteration. Equation (2.3) can be
rewritten as

\ / 1 G, {¢_}}= <_H, {u'} - _H, {un-1} - +

_D2 _D2{up} +

2

..... +

(2.8)

The terms within angle braces do not change with iteration m, and can be grouped
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together to form the source term

u_ 3 g 1
Si{un:u n-l} --: _ + 2 ' {un} -- _g_ {u n-l} -Gi{¢n}

/I -_- 1/r -- Y4

+ --_-_2 {u_}+ vD4 {_}

Equation 2.8 then reduces to

(2.9)

\

// /'/4+,_[_.,+_., +_,] - y [_._+_, +_4,];{4m<-_I=_}2

(2.10)

___!rn] /1 ._. /'Jr -- U4

= Ri/_[ml u n un-1 l,
[, ' ' J

It is easily seen that the right-hand side of (2.10) is simply the residual evaluated at z2_m] .

Multiplying (2.10) by At and approximating the left-hand side using ADI gives

O-= (,-=T [(" + "_)D2., + T ,4 D2._+
(2.11)

/kt ) _[m] . n. n--llI- T [(//-{-//r) j_2=3 Jt-.4/_4z3] {'_Im+1] --_Im]} = At__i{_i ,u ,. f

Equation (2.11) requires inversions only of tridiagonal matrices, as opposed to the large

sparse matrices required in (2.10). When the coefficients u, and u4 vary spatially, the

left-hand side of Eq. 2.11 is further approximated by replacing the coefficients with their

corresponding spatial averages, while the right-hand side is computed exactly. It has been

found by numerical experimentation that three iterations are usually sufficient to reduce

the residual by at least four orders of magnitude.

3. Results

Here we present results of several flows to validate the computer code described in

the preceding section, and preliminary results to show its promise for computing flows

at high Reynolds number. All flows considered here are periodic and are solved in a

three-dimensional periodic box of edge size 27r.

3.1. Code validation

The periodic two-dimensional vortex problem was used extensively to validate the spatial

and temporal accuracy of the code. The initial conditions for a periodic vortical flow in

the xl-x2 plane are given by

ul = - cosxl sinx2,

u2 = cos x2 sin xl, (3.1)

u3 =0.

The numerical solutions obtained are compared with the known analytical solutions. In

order to completely validate the difference coding for all 3 directions, solutions for a
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periodic vortex in the x2-x3 plane also were computed. Although the test problem has

some symmetries, any serious error in the code could have been detected using this test
case.

Mesh refinement studies were used to verify the spatial order of accuracy, which was

confirmed to be fourth-order for the Navier-Stokes equations (i.e., without the hypervis-
cosity dissipation) and second order when the hyperviscosity terms are included. Simi-

larly, the temporal order of accuracy was verified to be second order.

3.2. Taylor-Green Vortex

Next, the code was used to carry out a DNS of the Taylor-Green vortex flow (Brachet et

al. (1983)). This flow is one of the simplest systems in which one can study the generation

of small scales and the turbulence resulting from three-dimensional vortex stretching. The
initial conditions for the Taylor-Green vortex flow are

ul = _ sin sin xl cos x2 cos x3,

32 = - _ sin cos x 1 sin X2 COS X 3 ,

33 =0.

The Reynolds number for this flow is defined as Re __ 1/_. The DNS of the Taylor-Green
flow was carried out on a 643 mesh for Re = 100, 200, 300 and 400. Since the smallest

scales generated in the Re = 400 simulation were not resolved on this mesh, the DNS

was repeated on a 1283 mesh. All computations were performed at a constant Courant
number C = 0.5.

The time histories of the dissipation rate are compared with results of the fully-resolved

spectral computations of Jeanmart (2002) in figure 1. The figure shows that the time
history of the dissipation rate is well predicted in our 643 simulations for the lower

Reynolds numbers, but that there are discrepancies between the present results on the
643 mesh and the reference computations in the vicinity of the maximum dissipation for
the computation at Re = 400; however, the present results agree well with the reference

computation when repeated on the 1283 mesh.

3.3. Decaying, isotropic turbulence

The case of decaying, isotropic turbulence allows comparison of results computed with

various subgrid-scale models to those of fully-resolved DNS computations for modest
Reynolds numbers. Two different subgrid-scale models were compared:

(a) Smagorinsky model: An eddy-viscosity model of the form,

= (crY) 2

where S_j is the local rate-of-strain tensor, A

1

(s js¢ (3.3)

is the mesh spacing, and the Smagorinsky

coefficient is taken to be C_ = 0.17, following Lilly's analysis (Lilly (1967)).

(b) Smagorinsky-type hyperviscosity model: A hyperviscosity model of the form,

34 = (C4A) 4 (SijS_j) ½ (3.4)

where Sij is the again the local rate-of-strain tensor, A is the mesh spacing, and the

(dimensionless) constant 6'4 _ 0.278 is chosen such that the flow is fully resolved on the
given grid. (Note: it is clear from Eq. (2.1) that the dimensions of v4 are length4/time.)
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FIGURE 1. History of dissipation rate for Taylor-Green flow at various Reynolds numbers.
Re = 100: solid line; Re = 200: broken line; Re = 400:643 grid is dashed line, 1283 grid
is dash-dotted line. Comparison with spectral computations of Jeanmart, shown as dotted lines;
dotted lines are invisible when overplotted with current results.

Large-eddy simulations (LES) of decaying, isotropic turbulence were performed on

a 643 grid using both these models. An under-resolved DNS was also carried out on

the 643 mesh. The initial conditions were provided by Alan Wray from a 2563 spectral

simulation of forced, isotropic turbulence (Wray 2002). The initial spectral field was first

truncated to 643 spectral modes and then appropriately transformed to physical space

to be used as initial conditions on the 643 staggered mesh. The results of the LES were

compared with a direct spectral simulation for decaying turbulence carried out by Wray
with the full 2563 spectral modes, using the same initial condition. Figure 2 compares

the time history of the turbulence kinetic energy for the various computations. For the
purposes of this comparison, only the kinetic energy in the first 643 modes of Wray's full

DNS are plotted. The figure shows that the results obtained using the Smagorinsky-type

hyperviscosity model agree best with results of the full 2563 simulation.

Figure 3 compares the energy spectra from the three different computations at a rel-

atively early time in the computations. It is seen that in the case where there was no

subgrid-scale model there is an accumulation of energy at the higher wavenumbers, since

the physical viscosity is unable to remove energy from the small scales at a sufficiently

fast rate. It is also seen that the two computations using subgrid-scale models were well
resolved on the 643 mesh.

3.4. Kolmogorov flow

Kolmogorov flow is an open flow in a periodic box, driven by a large-scale steady forcing

in the xl-direction given by,

fl = -Fsin (_fx2) ; _l -- 1; F -- 0.16 (3.5)
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FIGURE 2. History of the kinetic energy decay for isotropic turbulence. LES computation using:
no subgrid model (dotted line); Smagorinsky model (dashed line); and Smagorinsky type hy-
perviscosity model (solid line) carried out on a 643 grid. Reference DNS computation by Wray
using 2563 spectral modes (¢).

The high-Reynolds-number limit of this flow has been studied by Borue & Orszag (1996)
and Shebalin & Woodruff (1997). Breaking of the symmetries imposed by the forcing has

been studied by Jeanmart, Carati & Wincklemans (2002) (2002) in computations using

box sizes larger than the period of the forcing.

In order effectively to increase the extent of the inertial range, we use only hyperviscous

dissipation. Since the Kolmogorov flow is characterized by the amplitude of the force F,
the spatial frequency of the forcing function _/, and the hyperviscosity u4, we define the

following velocity and time scales and a Reynolds number based on the hyperviscosity

(Borue & Orszag (1996)).

(F_ °'s
Uo = 2.5 k_// (3.6)

1
to -- (3.7)

(F_S) °5
Uo

ae- (3.8)

This flow is a good test case for the following reasons:

(a) The flow has a statistically stationary state.

(b) The flow is believed to have a well-defined high Reynolds number limit (Borue &

Orszag (1996)), for which the turbulent intensities, energy dissipation rates, and various

terms in the energy balance equations have a simple coordinate dependence, a + b cos 2x2.

This makes Kolmogorov flow a good model to explore the applicability of turbulent

transport approximations in open flows.

(c) Since the sinusoidal forcing has only one spatial frequency (nf = 1) and a constant
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FIGURE 3. Comparison of the instantaneous energy spectra from the computations using: only
molecular viscosity (+), molecular viscosity plus the Smagorinsky model (x), and molecular
viscosity plus the Smagorinsky-like hyperviscosity model (D), at very early times.

amplitude F, the exact amount of energy input into the large scale can be calculated.

At a sufficiently high Reynolds number, when a statistically steady state is reached, the

amount of energy input into the large scales is equal to the amount of energy dissipated

e. This is one of the flows in which c can be estimated exactly and hence enables us to

estimate other length and velocity scales more accurately.

(d) The boundary conditions are periodic in all three directions, which means that the

existing DNS code could be easily modified to include the sinusoidal forcing.

While this flow has been studied extensively using DNS, generating such a flow in the
laboratory would be difficult. However, the flow in the vicinity of the inflection points of

the mean profile should be similar to that for homogeneous shear flow.

In the present LES computations, the flow was initialized to the solution of an analo-

gous laminar flow problem plus an added isotropic velocity fluctuation. The fluctuations

were found to eliminate the otherwise long transient time needed for the turbulent fluctu-

ations to develop and grow. The flow properties were averaged over planes containing the

statistically-homogeneous directions (xl and x3), and over time using a variant of mov-

ing averages. It was found necessary to average the flow quantities over a large number
of eddy turnover times to obtain statistically reliable profiles of mean velocity, velocity

autocorrelations, and Reynolds stress. The time averaging was begun only after the flow

had reached a statistically-stationary state. It has been observed by Borue & Orszag

(1996) that the statistically stationary state has a mean velocity profile that becomes
independent of the Reynolds number for sufficientlylargevalues of Reynolds number.

The presentsimulationswere carriedout on both 643 and 323 grids.Figure 4 show the

time historyof turbulence kineticenergy and dissipationrate,while figure5 shows the

instantaneousenergy spectra forthe flow using hyperviscositycomputations on the 643

grid.Figure 6 compares the mean velocityand velocitycorrelationsobtained from the

643 hyperviscositycomputation with the analyticalcurves found by Borue & Orszag
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FIGURE 4. Time history of development of mean quantities for the Kolmogorov flow hypervis-

cosity computations on a 643 grid. Upper curve is skewness, middle curve is average energy, and

lower curve is dissipation rate.
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FIGURE 5. Instantaneous mean energy spectra for the Kolmogorov flow hyperviscosity compu-

tations on a 643 grid. Spectra are plotted at times t = 2071 (+), 2089 (x), 2107 ((D), 2124 ([2]),
and 2143 (iX).

(1996) to fit the high Reynolds number limit. The agreement is quite good in spite of

the relative coarseness of the grid used here.
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4. Conclusions

As a first step in developing tools suitable for assessing the accuracy of LES solutions for

flows at large Reynolds number, the authors have developed a computer code for solving

the incompressible Navier-Stokes equations for test flows that will allow the comparison

of various accuracy-assessment strategies. The code includes a conventional Smagorinsky

sub-grid model, as well as hyperviscosity dissipative terms that will allow greater separa-

tion of the energy-containing and dissipative scales for high Reynolds number flows. The

code is validated for several simple, periodic flows, including the Taylor-Green vortex and

decaying, isotropic turbulence, and preliminary results show good agreement with the

high Reynolds number limit for (forced, periodic) Kolmogorov flow on relatively modest

meshes using the hyperviscosity dissipation. The benefits of using the Kolmogorov ftow

for these studies are described, and future results will concentrate on comparisons of

methods for accurately predicting the statistics of the energetic scales for this flow.
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Toward optimal LES on unstructured meshes

By A. Haselbacher t, R.D. Moser $, G. Constantinescu AND K. Mahesh ¶

A new approach for determining the correlation data required by the optimal-LES proce-

dure of Langford and Moser (Optimal LES formulations for isotropic turbulence, J. Fluid

Mech., 398, 321-346, 1999) is presented. Based on Kolmogorov's theory for isotropic tur-

bulence, the new approach leads to stencil coefficients in terms of integrated multi-point
correlations. The explicit dependence of the optimal-LES method on DNS data is thus

eliminated, and its applicability is extended to high Reynolds-number flows in com-

plex geometries. A preliminary verification of the new optimal-LES method for decaying
isotropic turbulence showed good results for decay rates.

1. Introduction and Motivation

Large-Eddy Simulation (LES) is a computational technique for turbulent flows in which
only large scales are resolved and the effect of the unresolved small scales is modeled.

The reduced resolution makes LES an attractive approach for the analysis of engineering

applications, in which the large scales often dominate momentum and heat transfer.

The separation of scales is commonly achieved through a filter operator. The lack of

an unambiguous separation of the resolved and modeled scales leads to many challenging

issues, including: the precise definition of the filter operator, the construction of accurate

numerical methods, and, for inhomogeneous flows, the formulation of subgrid-scale mod-

els and the presence of commutation errors. These issues often involve both numerical
and physical aspects and it can be difficult to isolate their effects with certainty and
generality.

In an effort to address these issues, Langford & Moser (1999) introduced the concept of
an "ideal LES" which is the best possible approximation, given that filtering incurs a loss

of information. The ideal LES, based on the conditional average, can be proved to yield

accurate large-scale one-time statistics and to minimize the error of large-scale short-time

dynamics. However, the conditional average defining the ideal LES is impractical to com-

pute because the condition is on the entire LES field. To reduce the computational cost

to a practical level, the conditional average is approximated using stochastic estimation,

see Adrian (1995), resulting in an approximation to the ideal LES called "optimal LES".

The optimal-LES technique was applied to forced isotropic turbulence at Rex = 164

by Langford & Moser (1999) and to turbulent channel flow at Rer = 587 by VSlker

(2000). In these computations, the correlations required by the stochastic-estimation
procedure were determined from Direct Numerical Simulation (DNS) data. This places

an undesirable restriction on optimal LES because DNS data is available only at relatively

low Reynolds numbers and for simple geometries.

t Center for Simulation of Advanced Rockets, University of Illinois at Urbana-Champaign
:_ Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign
¶ Aerospace Engineering and Mechanics, University of Minnesota
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The goal of the present work is to extend the applicability of optimal LES to high-

Reynolds number flows and to complex geometries. To achieve this goal, we propose a new
approach in which the correlations required by the stochastic-estimation procedure are

computed from turbulence theory. This approach was demonstrated for a model equation

in one dimension by Balakrishnan & Moser (2001). More specifically, the present work

extends the optimal-LES method to formally infinitely high Reynolds numbers by using

results from Kolmogorov's theory for isotropic turbulence. This article describes this

extension and presents results of a preliminary verification on unstructured grids.
The remainder of the article is structured as follows: Section 2 describes the finite-

volume optimal-LES approach and explains the determination of the stencil weights using

isotropic turbulence theory. The computational approach is outlined in section 3, which

includes a description of the implementation of the finite-volume optimal-LES method

on unstructured grids. Results are presented and discussed in section 4. Conclusions are
drawn in section 5.

2. Finite-volume optimal-LES formulation

The finite-volume optimal-LES formulation was originally developed by Langford (2000)
and is outlined in subsections 2.1 and 2.2. The current formulation is restricted to incom-

pressible flows. The new approach of obtaining the correlation data from Kolmogorov's

theory of isotropic turbulence is described in subsection 2.3.

2.1. Theoretical formulation

For incompressible flow, the momentum equations can be expressed in integral form as

dw,
A 3

- _pni dx +"_ + uius dx = ,s v-_xjn j dx, (2.1)

where the cell-averaged velocity is defined by

'Lwi = _ ui(x) dx, (2.2)

and u8 = uini is the velocity along the outward-directed unit normal vector with com-

ponents ni, the density has been absorbed into the pressure, u is the kinematic viscosity,

and x = {xl,x2,x3} t is the position vector. The volume of the integration region is
denoted by A 3, so that A may be interpreted as the cell width for uniform hexahedral

grids. The subscripts s and v indicate surface and volume integrals, respectively.

In the finite-volume optimal-LES method, the cell-averaging defined by (2.2) is re-

garded as the filtering operation. It is assumed that the filter width is in the inertial

range. In the following, wi and ui are referred to as filtered and unfiltered values, respec-

tively.

To evolve the filtered values, the fluxes of unfiltered variables appearing in (2.1) must

be expressed in terms of filtered values. Thus the flux is estimated in terms of a quadratic

expression of the filtered values,

jfsui(x)us(x)dx = E Lij(s,v) L uj(x)dx

+ _ Qis_(s, vl,v2) uj(xl)dx 1 uk(x2)dx 2,
?21 _t_ 2 1 2
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where the functional dependences of the velocity components were added to indicate the

surfaces and volumes over which they are integrated.
Before addressing the determination of the estimation coefficients L and Q--which

may also be interpreted as stencil weights--we draw attention to the following point: in

contrast to conventional LES approaches, (2.1) is not space-filtered independently of the

numerical discretization, the fluxes are not cast in terms of filtered values, and we do not

explicitly define a subgrid-scale term. Instead, the optimal-LES method approximates

the combination of fluxes and subgrid effects in an optimal way. The reasoning is that

conventional finite-volume methods evaluate fluxes based on approximations derived from

Taylor-series expansions, and thus require the cells to be small compared to characteristic

length scales of the underlying functions. This requirement is violated in LES, so the

definition of subgrid effects depends on the order of the flux approximation.

2.2. Stencil-weights construction

To determine the unknown stencil weights L and Q, we take moments of (2.3) and
ensemble-average to obtain the system of equations,

I_(v',s) = E Lij(s,v)I_j(v',v) + E Qi3k(s'vl'v2)I_J k(v''vl'v2) (2.4)
V Vl _V2

4 I t

I_rni(Vl, V2, S) = E 3 t tL_(s, v)Xi,,j("1,v2,_) + __, Q,_k(_,_1,v2)ZL, k(v_,_;, vl, v2) (2.S)

where the integrated correlations 11 to 15 are given by,

6,_jk (Vl, V2, Vl, V2) = u_(xl')um(x2')W(xl)uk(x2)) dx 2 dx 1 dx 2' dx 1' (2.10)

Thus, three correlation tensors are needed to determine the estimation coefficients,

R,j (rI) = (u,(x)uj (x1)>, (2.11)
T, jk (r 1, r 2) = (ui (x)uj (x 1)Uk (x2)), (2.12)

FijkZ (r 1 , r 2 , r 3) = (u,(x)uj(xl)uk(x2)uz(x3)), (2.13)

where homogeneity was assumed in order to express the correlations in terms of separa-
tion vectors r i ----x - x i.

2.3. Determination of correlations

To determine the correlations given by (2.11)-(2.13), the spatial separations are assumed

to be small enough to be in the Kolmogorov inertial range of isotropic turbulence at an
infinite Reynolds number. Thus the correlations are represented by isotropic tensors, and
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we use the expressions for the second- and third-order longitudinal structure functions,

S2(r1) = ((ulj(x) - ult(xl)) _) = C1_2/3(rl)_/3, (2.14)

S3(r1) = ((_H(x) - _]t(xl))) = - _-_rl, (2.15)

where r i = I[ri[[ is the magnitude of the separation vector, ull is the velocity component
in the direction of the separation vector, e is the rate of dissipation of turbulence kinetic

energy, and C1 _ 2.0 is the Kolmogorov constant.

2.3.1. Two-point second-order correlation

The two-point second-order correlation is given by the well-known expression

[ ( ll(rl)2)J
1 , r_r3 _] (2.16)

R,j(r 1)=u 2 fS,j+_ry 5ij ,

where u 2 is the variance, f(r 1) = (Ull(X)Ull(X + rX))/u 2 is the longitudinal correlation
coefficient, and 6_ is the Kronecker delta. The longitudinal correlation coefficient can be
determined from (2.14), which allows (2.16) to be rewritten as

R,j(rl) =u2,_j + _e2/3(rl)2/3 ( rlr_ ) (2.17)\(rl)_ 4_j ,

and hence 12 can be computed.

2.3.2. Two-point third-order correlation

The most general isotropic third-order tensor which satisfies the continuity constraint

and is symmetric with respect to exchanging the i and j indices is given by

_ _ r_ _ + (r_h' - h_r_r3r_ (2.1S)
T/_k(0, rl) = _x .r___ + h ,k _-i- + _krl ] --, (rx)3

where h(r x) = (u_l(x)ull (x + rl))/u 3 is the longitudinal correlation coefficient. By con-
sidering the tensor

B,_.k (r _) = ( (u,(x _) -- u,(x)) (_(x _) -- _(x)) (u_(x _) -- u_(x))) (2.19)

= 2 (T_jk (0, r 1) + Tik_ (0, r 1) + Tjki(0, rl)), (2.20)

it can be shown that

_I_i_.I

$3 (r 1) = Bijk (r 1 ) "_ "j -_________k= _ 12h(r 1). (2.21)
r 1

Having expressed h(r 1) in terms of the third-order longitudinal structure function, (2.15)
can be recast as

Tijk(0,r 1) = _-_ 5iirl - _ (SikrJ + 5jkr , (2.22)

from which 11 can be computed.

2.3.3. Three-point third-order correlation

We have so far been unable to find or derive an expression for the three-point third-
order correlation. Fortunately, we can circumvent this issue by computing I a directly
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from filtered data as

= }
= (wt (x')w 3(x m)wk (x2) } • (2.24)

We thus propose to compute 13 dynamically during the calculation from cell-averaged

data. Note that this approach can in principle be applied to all pure volume integrals.

In (2.24) and all subsequent expressions involving averages of cell-averaged values, the

angled brackets denote a volume average.

2.3.4. Fourth-order correlations

The quasi-normal approximation is invoked to determine the fourth-order correlations.

The fourth-order correlations are thus expressed in terms of the second-order two-point
correlations as

F,3 kl ( rl , r2, r3) = Rij (r 1 ) Rkl (r 3 -- r 2 ) -4- Rik (r 2 ) Rjl (r 3 -- r 1 ) + Ril (r 3 ) R 3 k ( r2 -- rl ). (2.25)

Hence 14 and 15 can be determined from (2.25) and (2.17).

2.4. Scaling of integrated correlations

The integrated correlations depend on the geometric configuration of the volumes over

which they are integrated, and on the flow solution via u 2 and e. These dependencies

can be parameterized through a scaling. However, because of the existence of two length
scales, i.e., the filter width A and the energy-containing length scale u3/e, not all the

quantities are scaled consistently.

Based on the forms of the various approximations to the correlations, the following

scaled quantities are defined (dependencies and subscripts are suppressed for simplicity

of notation):

11
_T_= -- (2.26)

cA6 '

12
i 2 - (2.27)

U2A6

p 13
_-- eA1--'---"_, (2.28)

T4= 14
u4As , (2.29)

P = 15
u4A12, (2.30)

L = Lu--_2, (2.31)

(_ = QA 4. (2.32)

Then (2.4) and (2.5) can be rewritten as

~1 !
I,,(v ,s)= _ L,j(s,v)i_j(v',v)+ E Q,j,(s, vl,v2)_}k(v',vl,v2) (2.33)

W IJ1 1_2

i_mi(vl,v,2,s)'4, = -3 ' ' - 1,v2) Imjk(Vl,V2,Vl,V2)(2.34)X_ t_(S,v)Ximj(V_,,_,_)+_ V,_(_,v _ ' '
12 121_I)2
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where A = Ae/u 3, the ratio of the filter width to the large turbulence length scale, will

generally be small. In the limit A --+ 0, Q can be determined independently of L.

Furthermore, the integrated correlations depend on distances separating the surfaces

and volumes over which they are integrated. Let p be the radius of the smallest sphere

containing the volumes and surfaces over which the correlations are integrated and define

= p/A. Then the integrals can be written in the following forms

i 1 = i10_

12 = i 2° + (£#)2/3i21

i 3 = Po D

i 4 = i40 + (A#)2/3i 41+ (A#)4/3i 42

i_ = i50 + (_Z)2/3isl + (A_)4/3i52

Given the expressions for

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

I az stated above, the expressions for i _z are easily deduced.

2.5. Estimation o/ kinetic energy and dissipation rate

Equations (2.17) and (2.22) depend on estimates of the turbulent kinetic energy and its

dissipation rate.

The turbulent kinetic energy is estimated from filtered data as

1

k _ 5<wiw_>. (2.40)

The justification for this approximation is that most of the energy is contained in the

large scales. The variance is deduced from u 2 = 2k/3.

Two approaches to estimating the dissipation rate were investigated. The first approach

is based on the observation that i s can be computed from

i_(v',v) = (wl(x')wj(x)>

which gives, on substitution into (2.36),

<w,(x')wj(x)> = lifo + (_1_/3i#"
u 2

Contracting and using the definitions of # and A leads to

(2.41)

(2.42)

e= P \ I_' (2.43)

Since p,/_2o, and/_21 are specified by the geometric configuration of the cells over which

the integrals are evaluated, e as given by (2.43) is a function only of the variance and

the two-point second-order correlation. The accuracy of (2.43) was evaluated a priori on
a 323 grid using a single filtered velocity field of a DNS of forced isotropic turbulence

at Rex = 164. Figure 1 demonstrates that reasonably accurate approximations can be
obtained if r 1/A > 3, keeping in mind that (2.43), based on the assumption of an infinite

Reynolds number, cannot be expected to reproduce the dissipation rate of the DNS

exactly. It is worth noting that (2.43) exhibits the correct dynamic behavior because it

can be shown that {wl (x')wl (x)) = u2/_2° for uniform flow fields, and hence the dissipation

vanishes as required.
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FIGURE 1. Behavior of correlation coefficient and dissipation-rate estimate given by (2.43) with

non-dimensional separation distance rl/A. ---- : Dissipation rate from filtered DNS of forced

isotropic turbulence, o: computed correlation coefficient (wl(x')wz(x))/u 2, A : estimated dissi-

pation rate e.

The second approach to estimating the dissipation rate is based on the relation

k3/2

_ --_--, (2.44)

where £ is a length scale of the large-scale motion.

3. Computational approach

In the present work, the optimai-LES method was implemented in a compressible

unstructured-grid code based on the cell-centered finite-volume method. The unstruc-

tured code allows for grids composed of arbitrary combinations of tetrahedra, prisms,

pyramids, and hexahedra, but only uniform hexahedral grids are considered in this study.

3.1. Implementation of optimal-LEE method on unstructured grids

The implementation of the optimal-LES method on unstructured grids consists of three

steps. The first step involves the construction of the stencils at each face. For stencils

of only two cells per face an explicit construction is not necessary, because these cells

can be obtained from the face-to-cell list used in the flux computation. If the stencils

are to contain n > 2 cells, an Octree-based approach, see, e.g., Knuth (1998), is used to

determine a set of candidate cells. The candidate cells are sorted by increasing distance

from the face centroid and the closest n cells are chosen. Furthermore, stencil shapes
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can be influenced depending on local cell topologies. For example, by considering the
scalar product of the face normal vector and the position vector between candidate cell

centroids and the face centroid, locally one-dimensional stencils may be constructed.

In the second step, the integrated correlations are evaluated using cubature. This
entails the evaluation of d-dimensional integrals of tensor functions of order p. Given the

restriction to hexahedral cells in the present work, the DCUHRE package of Berntsen et

al. (1991) is used for the cubature. The computational cost of evaluating the integrals can
be reduced by taking into account the symmetries of the tensors, as well as additional

symmetries which arise if two or more cells coincide. On non-deforming grids, the first
two steps can be completed in a preprocessing phase.

The third step concerns the actual determination of the stencil weights during a com-

putation. This involves the estimation of the turbulence kinetic energy and its dissipation
rate as described in subsection 2.5, after which the integrated correlations/_a_ are com-

puted from (2.35)-(2.39). The stencil weights follow by solving the linear system given

by (2.33) and (2.34), and using (2.31) and (2.32). The fluxes are then determined from
(2.3).

3.2. Numerical method

The Navier-Stokes equations are integrated in time using the classical fourth-order accu-

rate Runge-Kutta method. The viscous fluxes are computed using face-gradients calcu-
lated from a least-squares reconstruction. The optimal-LES approach is applied only to

the momentum equations; the continuity and energy equations are approximated with a
centered discretization.

Because we simulate the decay of incompressible isotropic turbulence using the com-

pressible Navier-Stokes equations, dilatation damping is employed to prevent density fluc-

tuations from contributing significantly to the turbulent kinetic energy. This is achieved

by modifying the viscosity multiplying the divergence in the stress tensor,

2 . ., cguk
r, 3 = 2#S O -- g(# -f # )-_xkOij, (3.1)

where/_ is the dynamic viscosity, Sij is the strain tensor, and #* is the additional viscosity
used to damp acoustic waves. A value of #* = 10# is used in this study.

4. Results and discussion

The decay of isotropic incompressible turbulence was chosen for the preliminary ver-

ification of the optimal-LES approach based on the theory of isotropic turbulence. The

calculation domain is a cube of edge length 27r discretized with 323 cells.

4.1. Illustration of stencil weights

It is instructive to briefly describe the stencils obtained using the finite-volume optimal-

LES approach. Using the abbreviations introduced by Langford (2000), namely

and

where the superscripts denote the cells as indicated in figure 2, an approximation of the

normal momentum flux can be expressed as



Toward optimal LES on unstructured meshes 137

FIGURE 2. Illustration of cell configuration for stencil of two hexahedral cells. The arrow
indicates the direction of the face-normal vector.

_/_x_-_:_4_:÷047_0_÷04:00(_÷_)-000_(_÷_)
+ w_-- 0.1903 wl -

A '

and an approximation of the tangential momentum flux is given by

(A2 u2ul dx = 1.9468 w+ +2 w_- w + w: - 0.0840 (w-(w + + w+w;)

- o.o788w+ - w;
A

For comparison, note that the traditional finite-volume schemes used for LES compu-

tations would probably employ a purely-centered approximation given by, for example,

_,_ _ e_--o.sooo_÷o.sooo_,
,IS

and

The most obvious difference is that the optimal-LES stencils axe not consistent. As

stated in subsection 2.1, the requirement of consistency does not apply to LES because

the cells are not small compared to the characteristic length scales of the turbulence.

Furthermore, consistency is irrelevant because the stencil weights include the model term.

The diffusive contribution to the fluxes is due to the linear term in (2.3). Langford (2000)

discussed finite-volume optimal-LES stencils in detail.

4.2. Simulation of decaying isotropic turbulence

Before we turn to a presentation and discussion of the results, two issues merit special
attention. The first issue concerns the dynamic computation of y3 using (2.24). We have
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thus far been unable to evaluate _3 accurately using spatial averaging; it was not possible

to discern a non-zero entry pattern reliably. The present results have therefore been

obtained by setting _3 = 0. We will revisit the dynamic computation of _3 in the future.

The second issue is the estimation of the dissipation rate. The use of (2.43) leads to

rapid growth of turbulent kinetic energy after an initial period of decay. Although the

dissipation rate increased in conjunction with the growth of kinetic energy, the increase

appeared to be too slow to prevent blow-up. Hence it seems that the coupling of the

dissipation rate given by (2.43) to the turbulent kinetic energy is too weak. To proceed

with the preliminary investigation, we have thus used (2.44) with a constant of propor-

tionality C = 10 and £ = 2r.. A constant length scale is obviously a crude approximation

to the growth of the integral length scale as the turbulence decays, but sufficient for

this preliminary investigation. The large value of the coefficient is a consequence of the
definition of £.

The decay of the normalized turbulence kinetic energy and its dissipation rate is de-

picted in figures 3 and 4, in which the abscissae are given by the physical time normalized

by the eddy-turnover time at t -- 0. For comparison, the decay rates given by the re-

spective analytical decay laws are indicated. It can be seen that the decay rates of both

quantities are close to the typical values of the decay-law exponents after an initial ad-

justment period. The decay rate of the dissipation rate exhibits a gradual change toward
the end of the simulation, which we attribute to the choice of a constant length scale.

The three-dimensional energy spectrum at teo/ko = 5.6 is depicted in figure 5. The

pronounced roll-off at high wavenumbers is unexplained at present. Separate investiga-

tions have established that the roll-off is not influenced by the physical viscosity or the
additional viscosity coefficient used for dilatation damping.
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5. Conclusions and further work

A new method of determining the correlations required by the optimal-LES approach

has been presented. The new approach is based on Kolmogorov's theory for isotropic

turbulence and leads to stencil coefficients which are determined from integrated multi-
point correlations. By using this approach, the explicit dependence of the optimal-L_S
method on DNS data is eliminated and the applicability is extended to high-Reynolds-

number flows in complex geometries.

The new optimal-LES method was implemented in an unstructured finite-volume code.

A preliminary verification for decaying isotropic turbulence gave satisfactory results

for decay rates of the turbulence kinetic energy and its dissipation rate. The three-

dimensional energy spectrum indicates that further work is required.

Further work will include the following:

• An investigation of the reasons for the pronounced roll-off in the three-dimensional

energy spectrum at high wavenumbers.
• An analysis of (2.43) using DNS data.

• An investigation into averaging techniques which allow a robust and accurate dy-
namic determination of _3.

• An extension of the evaluation of the integrated correlation to arbitrary unstructured

grids including tetrahedral, prismatic, and pyramidal cells.

• An analysis of the accuracy of the isotropic approximations in inhomogeneous flows.

• An extension of the finite-volume optimal-LES approach to compressible flows, for

which an approximation of the mass flux and correlations involving the pressure and

temperature are required.
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LES Numerics

By S. Scott Collis

In the 1990's, the advent of the dynamic procedure for subgrid-scale modeling led to

the application of large eddy simulation (LES) to an increasingly wider range of problems

within the research community. Likewise, the success of LES in research-type problems

has encouraged industry to explore the use of LES for particularly difficult and important

flow problems that cannot be accurately predicted with RANS models. As LES has

moved out of the researcher's computational box to the world of industrial applications,

a number of challenges with regard to accuracy, robustness, and practicality has been
revealed. Discretizations, such as global spectral methods, that had before been the

norm were replaced with low-order numerical methods and the interaction of numerical

errors with subgrid scale models, especially when using a dynamic procedure, can prove
disastrous. Practical issues that heretofore had not been of primary concern -- such as

grid generation, robustness, and software supportability -- also become important when
LES is used as a predictive tool for engineering applications. In essence, all the issues

raised above are the bailiwick of LE$ numerics and the three projects in this section

each strive to expand the domain of LES to more complex situations.

One approach to extend LES to complex flows is to take an existing industrial flow

code that is primarily used for RANS simulations and modify it to support LES. This

is the direction explored by Benhamadouche, Mahesh, and Constantinescu who have

modified a collocated finite-volume code for use in LES. One of the key findings of this

work is that the low-order, upwind discretizations commonly used for industrial RANS

codes are not appropriate for LES since they result in excessive dissipation. To overcome

this, Benhamadouche et al. modified their industrial code to support a convective flux

treatment that is approximately energy-conserving, and found that this approach leads
to significant improvements in robustness and accuracy, critical for use in LES. They
also considered the influence of time discretization errors as well as errors that arise due

to the use of a fractional-step procedure for enforcing incompressibility. By application

of the modified code to a range of test problems, including a coaxial combustor, they

demonstrate that, with modest changes, an existing industrial finite-volume code can be

made suitable for LES in complex geometries using unstructured grids.

The opposite approach is taken in the second project, by Collis, who has developed a

new flow solver specifically designed to support high-accuracy turbulence simulations in

complex geometries using unstructured meshes. This approach utilizes a relatively new

discretization, at least for turbulence simulation, called discontinuous Galerkin (DG)

that offers potential advantages that can be utilized to make turbulence simulation more

practical. In particular, a DG discretization provides high-order (spectral) accuracy on

unstructured meshes, local hp-refinement, weak imposition of boundary conditions, local

conservation, and orthogonal hierarchical basis that support multiscale turbulence model-

ing. Collis has implemented this DG method in an object-oriented software environment,

which offers supportability and flexibility that are not commonly found in research codes

but axe of key importance for industrial applications. This implementation is applied to

vortex shedding from a circular cylinder, and to fully-developed turbulent channel flow

where it is shown that the weak imposition of wall boundary conditions that naturally
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arises in the DG method may have significant advantages in the context of wall modeling
for LES.

In the third project, Pascarelli, Iaccarino, and Fatica also extend the class of flows

for which LES can be applied by developing numerical methods to support LES for

submerged objects near a free surface. They accomplish this by constructing linearized

boundary conditions at the free surface which are coupled with the Navier-Stokes equa-

tions for the flow variables while the submerged object is represented using an immersed

boundary method. Doing so yields a numerical method that allows for both fully- and

partially-submerged objects, and the technique is demonstrated both for flow over a

submerged hydrofoil and flow over a partially-submerged square cylinder. While both
these demonstration cases are at low Reynolds numbers, future work will apply the same

techniques for turbulent flows using LES.

S. Scott Collis
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Colocated finite-volume schemes for large-eddy
simulation on unstructured meshes

By S. Benhamadouche _, K. Mahesh :_ AND G. Constantinescu

Code_Saturne ® is a finite-volume, unstructured-grid code developed at 1Slectricit@ De

Prance (EDF), which solves the Reynolds-averaged Navier-Stokes equations for incom-

pressible flows. The code has been extensively benchmarked for a variety of industrial

applications. The solver has been extended at EDF to solve large-eddy simulation equa-
tions, and we found that the numerical methods used in the base RANS code are not

directly applicable to LES. This paper uses Code_Saturne to investigate the performance
of several numerical schemes for LES of different academic and industrial flows. In par-

ticular, the conservation of global kinetic energy and robustness of several numerical

schemes are compared and discussed. Finally, Code_Saturne with non-dissipative numer-

ical methods is validated for the swirling flow in a coaxial geometry corresponding to

the experiments of Sommerfeld & Qiu (1991). Also, the role of the subgrid-scale (SGS)

model is investigated through simulations without a SGS model (coarse DNS), with a
constant Smagorinsky model and with a dynamic Smagorinsky model.

Introduction

The objective of this work is to use an industrial code (Code_Saturne ®) developed at

EDF to perform large-eddy simulation and to test several numerical schemes for LES. We

adopt the point of view that LES requires non-diffusive numerical schemes, and therefore

the numerical method used in the base RANS solver cannot be directly applied to LES.

Recently Mahesh et al. (2001) developed an algorithm for unstructured grids that is dis-
cretely energy-conserving in the absence of time-splitting errors. Good prediction for a

wide range of flows, including that in a Pratt & Whitney gas-turbine combustor, was

reported. Also, an LES version has been developed at EDF with Code_Saturne (Ben-

hamadouche et al. (2002)) and several tests have been done to improve the numerical

schemes (Garibian et al. (2001)).

In this paper, we use Code_Saturne to evaluate the effect of the numerical method on

discrete energy conservation. The effect of discrete time steps on both convection and

pressure-gradient terms is considered. Results from the evaluation are used to decide
upon a suitable scheme for LES using Code_Saturne, which is then applied to LES of the

flow in a coaxial combustor geometry.

This paper is organized as follows. Section 1 describes the numerical schemes that

are evaluated. The convection and pressure-gradient terms are discussed in subsections
1.1 and 1.2 respectively. Section 2 compares the different formulations for the Taylor

problem and for isotropic turbulence. Code_Saturne is used to simulate the flow in a

coaxial combustor geometry in section 3 and the results compared to experiment and

results on the same grid using CDP, the unstructured solver developed by Mahesh et al.

(2001).

t Electricit_ De France / UMIST (Manchester)
:_ University of Minnesota
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st]

FmURE 1. General view of a cell face

1. Numerical schemes

Code_Saturne solves the conservative form of the incompressible Navier Stokes equa-

tions (1.1). The code has the capability to use unstructured grids with cells of arbitrary

shape.

0u [0-7 + div(u ® u) = -grad(p) + div (u + vt)(grad(u) + gradT(u) (1.1)

div(u) = 0 (1.2)

The following discussion focuses on two terms of the Navier-Stokes equations, the

convection term and the pressure-gradient term.

1.1. Convection term

Two convection schemes have been tested. The first one is the default scheme used in

Code_Saturne with RANS models and previous LES. It uses weighted coefficients and

a reconstruction technique which is needed to account for the non-orthogonality which

may occur at a cell face (figure 1). To evaluate the fluxes on the faces of a cell f_i, one

has to compute the value of the velocity components at the center of the face F (cells

f_1 and _g share face F in figure 1), u_,f.

JO IO
U,,F = _ U,,l + _ u_,j + (grad(ui))o.O--_ (1.3)

The main advantage of this scheme is that it maintains second-order accuracy in space

on irregular Cartesian meshes and takes into account the geometrical non-orthogonality

on unstructured meshes. However, the computation of (grad(u_))o in (1.3) is expensive

if one wants to calculate this term implicitly at each time step.

The second scheme is easier to implement and has some interesting properties. It uses

a symmetric formulation at the face, in which the velocity components at the face center

are given by:

1 1

Ui,F = _Ui,l + _Ui,Z (1.4)
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One can show, using discrete mass continuity, that the convection term which results

from the discretization of the corresponding operator and use of (1.4) discretely con-

serves kinetic energy, provided that the transported velocity is estimated at n + ½ with a
Crank-Nicolson time-advancing scheme. This scheme, when tested for several canonical

flows, shows good robustness. Note that in the algorithms where reconstruction is used

for the convective term it is also used to calculate the quantities needed to estimate the

other operators in the momentum equations (gradient, diffusion, ...). When the sym-

metric formulation for the convection term is used, no reconstruction is done for any

of these fluxes. An intermediate scheme which uses the weighted coefficients (see (1.3)),

but without the extrapolation with the gradient (the term (grad(ui))o.O--_ in (1.3)), was
found to be unstable and will not be discussed in detail.

1.2. Pressure-gradient term

Two algorithms have been also tested in Code_Saturne to insure the pressure/velocity

coupling. The first algorithm is used by default in the code and employs Rhie & Chow's
interpolation method. The pressure-velocity coupling is insured via the explicit pressure

gradient at the previous time level in the momentum equations and by a projection

method (SIMPLEC algorithm). The parameter c_ is set to 1 in (1.5), and grad c and gradi
stand respectively for the cell and the face gradient in (1.5) and (1.6). This algorithm

will be called Algl.

-- U rt

At
+ ... = -gradc(p '_) + ... (1.5)

div[At gradf(Sp)] = div(_ + a At gradc(p '_) - a At gradf(pn)) (1.6)

The second algorithm (used also in CDP) does not take into account the explicit pres-
sure gradient (cell gradient) in the momentum equations (see (1.7)). As the divergence of

the pressure cell gradient may introduce odd-even decoupling on regular cartesian meshes,

that is why this algorithm does not explicitly need the Rhie & Chow interpolation in

the correction step (1.8). Odd-even decoupling will not occur as long as the Laplacian is

coupling the cells (the same one used in the previous algorithm). This algorithm will be

named Alg2.

_ U n

A------_" + .... = ... (1.7)

div[At grad!09"+1)] = div(U) (1.8)

Moreover, for the correction step, two approaches are possible to correct the velocity.

If p stands either for 5p or pn+l (resulting from the discrete Poisson equation), one has
to correct the velocity field _ obtained from the predictor step :
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u n+l = _ - At grad(p) (1.9)

To compute grad(p), one can directly use Gauss' theorem to calculate the pressure

gradient (in this case the correction step is u n+l = _ - At gradcp), or a least-squares

method to minimize the difference between estimating the normal gradient of the pressure

at the faces directly and using the pressure gradient at the cell centers. In the latter case,

one has to solve (1.10) locally at each cell, where the unknown is 5u, S the surface of

the face between the neighbors I and J, and n the normal to the face. In this case, the
velocity is corrected with u _+1 = fi - 6u.

_P 2

Ej(6u(I).n(F) - At _n (F))S = 0 (1.10)

2. Inviscid test cases

Several test cases have been considered. Inviscid flows have been chosen to check the

conservation properties for kinetic energy and the robustness of the algorithms. The in-
terest in inviscid flows is also motivated by the fact that high-Reynolds-number turbulent
flows are close to this inviscid limit.

2.1. Simulations on unstructured meshes with Cartesian topology

In the case of uniform Cartesian grids, the two convection schemes give exactly the same

result (because the faces are equidistant from the cell centers and the mesh is orthogonal).
In addition, the two pressure-correction schemes described before are equivalent. Two

test cases have been computed on Cartesian grids: 2D Taylor vortices and Homogeneous
Isotropic Turbulence (HIT).

2.1.1. Taylor vortices

The fluid domain is a square whose side is 2_r. The mesh contains 32 × 32 elements.

Before analyzing the results obtained with the different algorithms proposed in this work,

it is interesting to look at the performance of the usual algorithm used for RANS calcu-

lations. In this algorithm, the convective terms are evaluated using a blending of 20 %
upwind and 80 % second-order-accurate central differences. This kind of scheme is typi-

cally used in RANS calculations but is not suitable for LES. Indeed, as one can clearly
observe in figure 2, the effect of upwinding is to dramatically increase the numerical

dissipation leading to a sharp decrease of the total kinetic energy. This result is obvi-

ously wrong, because for this inviscid periodic flow the total kinetic energy is supposed

to be constant in time. Therefore, in the following, only fully-centered schemes will be
considered.

Next, Algl and Alg2 are tested. Several time steps have been used and the total kinetic

energy is plotted in figure 3 for a minimum (At = 0.005) and a maximum time step

(At = 0.1). Figure 3 shows that the conservation of kinetic energy in both algorithms

is not exact, due to time-splitting errors. Alg2 is more dissipative than Algl because

the pressure is not included in the momentum equation during the prediction step. It

is interesting to point out that simulations carried out with an explicit version of CDP

showed better results for the conservation properties, comparable to those of Algl. This

is due to the fact that, because the convection term is treated explicitly, it contains the
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FIGURE 2. Taylor vortices - Evolution of kinetic energy with upwinding - At = 0.1 : o,
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pressure from the previous corrector step, so in a sense the explicit version of CDP is

closer to our Algl. The other observation to be made is that in most LES simulations

of complex flows (e.g. see section 3 and Mahesh et. ai (2001)), the nondimensional time

steps at which the calculations are run are considerably smaller than the time steps

considered in these model problems; thus in most of these cases the time-stepping errors

are not important even for Alg2.

Note that absolute conservation cannot be achieved in a colocated arrangement be-
cause of the Laplacian used in the Poisson equation. The mass flow contains the normal

derivative (face gradient) of the corrected pressure (either 5p or p,_+l) and the corrected

velocity contains the cell gradient of this pressure. This is the case in both Algl and

Alg2. Figure 4 shows the time derivative of kinetic energy and the decay in energy due

to the pressure gradient term for Alg2, with a very large time step At = 0.1. It shows

that the term which is responsible for the loss in kinetic energy is the convection term,

because the pressure term does not dissipate kinetic energy. Thus, the result of keeping

the pressure gradient in the momentum equation even with the Rhie & Chow interpola-
tion is to improve the conservation of the total kinetic energy. This is confirmed by the

Homogeneous Isotropic Turbulence test case discussed next.

2.1.2. Homogeneous Isotropic Turbulence

A 323 mesh has been used in this case. The initial velocity field is generated using

Comte-Bellot's experiment (AGARD (1998)). The viscosity is set to zero and the kinetic

energy is computed at each time step. Figure 5 shows the decay of turbulent kinetic

energy (which is the total kinetic energy in this case) using Algl and Alg2 and two

different time steps. One can notice that the same behavior as in the previous test case is
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observed; klg2 dissipates more energy than Algl. The channel flow (Rer = 180) test case

has been computed with the two algorithms as well. The same behavior was observed.

2.2. Simulations on _lly-unstructured meshes

The 2D flow corresponding to the Taylor problem has been simulated on a fully-unstruc-

tured mesh. This mesh is coarse and distorted and is representative of typical meshes

used in industrial applications. In this case, both the effects of the convection scheme

and of the pressure-correction algorithms described above can be tested.

In figures 6 and 7, all the cases have been run with the correction step based on the

cell gradient. The effects of estimating the pressure gradient at cell centers using a least

squares method will be discussed later. The simulations in figure 6 have been carried out

with the reconstruction technique for the convection term - see (1.3). The calculations

appear to be stable with both Algl and Alg2 when a relatively small time step is used.
The numerical diffusion due to the projection step in this case is sufficient to dissipate the

increase in the total kinetic energy. When the time step is decreased by a factor of 20, the

calculations become unstable. This shows that for the inviscid case, the reconstruction
method can entail an unstable computation.

Figure 7 shows the same case with smaller time steps, computed without any re-

construction technique - see eq. 1.4) - when the convection scheme is symmetric. The
calculation is stable and visualization of the velocity field shows that the shape of the

Taylor vortices is conserved in time. This proves that using this algorithm one can get

robustness while maintaining accuracy, which is the main goal we want to achieve in
simulations of complex flow of industrial interests using Code_Saturne. Note that the
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least-squares method used to reconstruct the pressure gradient at cell faces in the cot-

rector step diverges, even when the symmetric formulation to compute the face velocity
is used in the discretization of the convective terms. This seems to contradict the experi-

ence with CDP, which also uses this scheme and has shown good robustness when used

to calculate a wide range of flows in complex geometries at high Reynolds numbers.

3. Turbulent cases - flow in a coaxial combustor geometry

The flow considered here consists of a primary jet issuing out of the core, and a swirling

jet issuing out of an annular section around the core. These two streams of fluid mix as

they enter the main coaxial combustor chamber. The flow is turbulent in both streams,

with the Reynolds numbers around 26,000. As a result of the swirl, the streamlines

diverge rapidly as they enter the main combustor chamber, and a recirculation region is

set up. This is clearly visible in the contours of the instantaneous streamwise velocity

component shown in figure 8. Sommerfeld & Qiu (1991) provide detailed measurements

of this flow, including mean velocity components and their turbulent fluctuations at
several stations inside the main combustor chamber. The inlet conditions are generated as

explained in Pierce & Moin (2001) using a separate LES calculation. The inlet database,

computational flow domain, mesh and the flow conditions are identical to those used in

a simulation using CDP. The mesh in the present calculations contains 1.6 million cells.

The main purpose of this simulation is to show that the algorithms implemented in

Code_Saturne can accurately simulate turbulence in complex configurations, are robust at

high Reynolds numbers on fully unstructured meshes, and have an accuracy comparable
to that of second-order-accurate structured codes and other unstructured solvers, in
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particular CDP, which uses an algorithm similar to Alg2 and a symmetric formulation
to evaluate the face velocity. In addition, sensitivity of the solution to the SGS model

will be examined. Three simulations were performed using Code_Saturne, one in which a
constant Smagorinsky SGS model with Cs = 0.08 was used, one in which no SGS model

was used (coarse DNS) and, finally, one using a Smagorinsky SGS model with a coefficient

calculated dynamically (we implemented the model described in Lilly (1992), with local

averaging instead of the averaging in the homogeneous direction usually performed in

structured codes). The algorithm employed in these simulations (Algl) is the one that

uses the R.hie & Chow interpolation and the symmetric formulation for the convection

terms. No reconstruction technique was used.

A parallel version of Code_Saturne has been installed on an Origin 2000 machine and

run on 32 processors to carry out these calculations.

The code was first run for approximately 100 nondimensional time units, defined with

the mean inlet velocity in the core region and the annulus radius. Then statistics were

computed over approximately the next 50 time units. Based on experience using CDP,
these time intervals were found sufficient to eliminate the transients and to obtain con-

verged statistics for this flow. As results using a second-order structured code and CDP

were found to be very close (see Mahesh et al. 2001), we decided to plot only the experi-

mental data, the results obtained with CDP, and the results of the three simulations per-

formed with Code_Saturne. Figures 9, 10, 11, 12, 13 and 14 show, respectively, the mean
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FIGURE 8. Instantaneous axial velocity with the dynamic model in Code_Saturne -
Sommerfeld case

axial velocity, the mean fluctuations in the streamwise direction, the mean azimuthal

velocity, the mean fluctuations in the azimuthal direction, the mean radial velocity, and
the mean fluctuations in the radial direction.

Two-dimensional contour plots of the instantaneous and mean streamwise velocity (not
shown) clearly show that in the simulation using the constant-coefficient Smagorinsky

model the size of the recirculation bubble is not predicted correctly: the reattachment

length of the detached shear layers is about 50% higher than that obtained from the

experimental data or from the results obtained using CDP. This can be also inferred by

comparing the location of the zero-velocity contour from the line plots of the streamwise

velocity shown at different stations inside the main combustor chamber in figure 9. The

other profiles also show a very poor level of quantitative prediction of the experimental

measurements in contrast to the results using CDP.

As the prediction of this flow with CDP was shown to be very successful and the
numerical methods used in the two codes are fairly similar, we suspected that the SGS

model was responsible for the poor level of agreement with the experiment shown by
the first calculation with Code_Saturne. Next we run a simulation without any SGS

model (coarse DNS). This gave much better results, but a small overestimation of the

recirculation zone compared to the experiment can still be observed from the line plots

in figure 9. The other profiles also show a clear improvement in the prediction of the

other velocity components and their turbulent fluctuations.
Finally, a calculation using a dynamic Smagorinsky model was run. Though the results

show good agreement between CDP and this simulation for global quantities such as
the size of the main recirculation region and the reattachment length on the lateral

walls of the combustor, small differences remain when we compare the velocity statistics.

Though some profiles obtained from the calculation with Code_Saturne are closer to the
experimental data, on average CDP does a better job in predicting the flow, especially
for the turbulent fluctuations. The differences between CDP and Code_Saturne results

can be due to the different algorithms (CDP uses Alg2 for the pressure correction) and

to the somewhat different implementation of the dynamic model (explicit filtering).

4. Conclusions

Code_Saturne is an unstructured code, developed at EDF, which has been extensively

validated using PANS models (k -¢ and RSM models). These turbulence models do
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not require strictly non-dissipative schemes. We extended Code_Saturne to solve the LES

equations and noted that the numerical scheme must be non-dissipative. The use of

non-dissipative schemes for high-Reynolds-number simulations is challenging because of

the robustness problems. The proper way to address these problems is to try to insure

conservation of kinetic energy, in a discrete sense, as accurately as possible. Several

schemes have been tested in the present work, and we have shown that the usual Rhie

& Chow interpolation for the pressure-gradient term is fairly acceptable for complex

applications when only the mean quantities and Reynolds stresses are important. The

convection term is more important; for fully-unstructured meshes, it has been shown that

the use of the symmetric formulation for the convection term is more stable, as one can

prove that the convection terms can be discretized in a way that fully conserves kinetic

energy if the time-splitting errors are negligible. This study converged to a non-dissipative

algorithm which was implemented in Code_Saturne and validated for several canonical

flows as well as more complex turbulent flows. Future work will consist in applying this

algorithm to simulate other complex flows of interest to EDF.
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Discontinuous Galerkin methods

turbulence simulation

By S. Scott CoUis t

for

A discontinuous Galerkin (DG) method is formulated, implemented, and tested for sim-

ulation of compressible turbulent flows. The method is applied to turbulent channel

flow at low Reynolds number, where it is found to successfully predict low-order statis-

tics with fewer degrees of freedom than traditional numerical methods. This reduction

is achieved by utilizing local hp-refinement such that the computational grid is refined

simultaneously in all three spatial coordinates with decreasing distance from the wall.

Another advantage of DG is that Dirichlet boundary conditions can be enforced weakly

through integrals of the numerical fluxes. Both for a model advection-diffusion problem

and for turbulent channel flow, weak enforcement of wall boundaries is found to improve

results at low resolution. Such weak boundary conditions may play a pivotal role in wall

modeling for large-eddy simulation.

1. Introduction

In this paper we formulate, implement, and apply a discontinuous Galerkin (DG)

method for the simulation of compressible turbulent flows. Discontinuous Galerkin can

be thought of as a hybrid of finite-volume and finite-element methods that has a number

of potential advantages including: high-order accuracy on unstructured meshes, local hp-

refinement, weak imposition of boundary conditions, local conservation, and orthogonal

hierarchical bases that support multiscale turbulence modeling (Hughes et al. 2000; Collis

2001, 2002). The interested reader should consult the review of Cockburn (1999) and
Cockburn et al. (2000) for a recent update on the status of discontinuous Galerkin. Since

the DG method is ideally suited for hyperbolic or nearly hyperbolic systems, we believe

that DG may be a particularly attractive method for high-Reynolds-number compressible

turbulent flows in complex geometries. This paper takes a first step in applying DG

to turbulent flows by considering low-Reynolds-number DNS of compressible turbulent

channel flow. We note, before proceeding, that there is considerable ongoing research on

DG methods (see Cockburn et al. 2000) and we have greatly benefited from the work of

Cockburn and co-workers, Karniadakis and co-workers, and Bassi and Rebay.

2. Formulation

Consider the compressible Navier-Stokes equations in strong form

U,t + Fi,i - FiV,i = S in _, (2.1a)

V(x,O) = Uo(z) at t = 0, (2.15)

where U = {p, pu, pe} T is the vector of conserved variables, p is the fluid density, u is the

fluid velocity vector, and e is the total energy per unit mass. The inviscid and viscous

t Rice University, Houston, TX 77005, USA
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f2 = f_1 + f_2

+_n
Ubc

FIGURE 1. Schematic of DGM discretization

flux vectors in the ith coordinate direction are T'i(U) and Fv(u), and S is a source

term, including body forces in the momentum equations and a heat source in the energy

equation. Equation (2.1a) is solved subject to appropriate boundary conditions, which

must be specified for each problem of interest; a state equation, such as the ideal gas

equation; and constitutive laws that define fluid properties such as viscosity and thermal
conductivity as functions of the conserved variables. Due to space limitations, we do not

explicitly define the flux vectors, state equation, or constitutive relations, but instead

refer the reader to standard texts such as Hirsch (1988).

The fixed spatial domain for the problem is denoted by f_, which is an open, connected,

bounded subset of _/a, d = 2 or 3, with boundary 0[2. Let Ph be a partition of the domain
f2 into N subdomains f2_ where

N

_= U_e and f_eNf_y=O for e#f. (2.2)
e=l

Starting from the strong form of the compressible Navier-Stokes equations (2.1a), we

consider a single subdomain, f_, multiply by a weighting function W which is continuous

in f_e, and integrate the flux terms by parts

/ /+ w i(F, - Fz)) ex + - e8= W Se8 (2.3)
f_e Of_. f_

where Fn = Fini. If the solution were assumed to be continuous and this equation

were summed over all the elements in Ph, then all the flux terms would telescope to

the boundary 0f_ and we would obtain the standard continuous Galerkin form of the

compressible Navier-Stokes equations. However, in discontinuous Galerkin, one instead

allows the solution and weighting functions to be discontinuous across element inter-

faces (see figure 1) and the solutions on each element are coupled using appropriate

numerical fluxes for both the inviscid flux F,_(U) _ F_(U-, U +) and the viscous flux,

F_(U, U,j) --+ _(U-, U 5, U +, U+). Introducing numerical fluxes and summing over
all elements yields

N

wru,t + W,_(Fz - Fd dx +
e=l _eN N

E / WT (_'n(U-'U+) - F:(U-'U'd 'U+'U+)) ds = E f WTSds (2.4)
e=l Of_, e=l ne

where the U + and U- states are defined in figure 1. For an element edge on the physical
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boundary c9_, U + = Ubc. Likewise, for inter-element boundaries, U + comes from the

neighboring element. Thus, all interface and boundary conditions are set through the

numerical fluxes. Rewriting (2.4) in a more compact notation, the discontinuous Galerkin
method is:

Given Uo = U0(x), for t E (0, T), find U(x,t) E ]2(Ph) x HI(0, T) such that U(x,0) =

Uo(x) and

BDa(W, U) = (W, S) VW• V(Ph), (2.5)

where Y(Ph) is the broken space defined in Baumann & Oden (1999). If Y(Ph) is restricted

to a space of continuous functions, then one recovers the classical continuous Galerkin

approximation upon using the consistency properties of the numerical fluxes (Cockburn

1999).

While there is a wide range of choices for both the inviscid and viscous numerical

fluxes (see Cockburn (1999) for a thorough review), we have initially chosen to use a
Lax-Friedrichs method for the Euler flux

1

Fn(U-, U +) = 5 (F_(U-) + F_(U+)) + Am (U- - U +) (2.6)

where Am is the maximum, in absolute value, of the eigenvalues of the Euler Jacobian

An = OFn/OU.

For the numerical viscous flux, we use the method of Bassi _: Rebay (1997). First, a

"jump savvy" gradient of the state, crj -_ U,_ is computed by solving

N N N

e=l f2e e=l f_e e----1 Of-re

VV • Y(Ph) (2.7)

for each direction, j, where

1 (v- + v+)

The Bassi-Rebay viscous flux is then computed using

(2.8)

^v 1 (F_(u-, _7) + F_(U+,_))F_(u-, _7, u+, _) = _ (2.9)

While this method is known to be only "weakly stable," (Arnold et al. 2002) we have

not encountered any difficulties for the problems considered here, and this method has

been used successfully in the past (Bassi & Rebay 1997). In the future, we will consider
other, provenly-stable, numerical fluxes for the viscous terms, and the reader is referred

to Arnold et al. (2002) for an extensive discussion of the advantages and disadvantages

of a wide range of viscous fluxes for use in discontinuous Galerkin discretizations.

In setting boundary conditions weakly through the numerical fluxes, one must con-

struct a state, Ub¢, that enforces the appropriate boundary conditions, and Atkins

(1997) provides a discussion of the important issues involved in selected Ubc. For the
Navier-Stokes calculations reported here, we use the following approach. At far-field

boundaries Ubc is set to freestream values. At isothermal wall boundaries, we evaluate

Ubc separately for the convective and viscous fluxes. Let ql = (u-n_ - v-n_)ny and
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q2 = (v-n_ - u-ny)n_ then the reconstructed state at a wall for the convective flux is

Ubc = P- ql (2.10)
P- q2

p-e- + 0.5p-(q_ + qD

This state enforces the no-penetration condition which is appropriate for both inviscid

and viscous calculations. For the viscous flux, the no-slip condition is enforced using

P-Tw/('7(7- 1)M 2)

where Tw is the prescribed wall temperature, 7 is the ratio of specific heats, and M is
the reference Mach number.

By way of summary, the discontinuous Galerkin method is a hybrid of finite-element
and finite-volume methods, where solutions are continuous within an element but dis-

continuous across element interfaces, and elements are coupled via numerical .fluxes on

element interfaces. Discontinuous Galerkin has several potential advantages including:
(1) Spectral accuracy on arbitrary meshes, (2) Local hp-refinement, (3) Boundary con-

ditions are imposed weakly through numerical flux, (4) Local conservation allows for

different fidelity models on neighboring elements, (5) Orthonormal hierarchical basis on

each element readily supports multiscale turbulence models, and (6) DG works best near

the hyperbolic limit making it potentially valuable for high Reynolds number turbulence.
A thorough review of the DG method is available (Cockburn 1999) while a more com-

plete description of DG for turbulence simulation including a discussion of multi-scale
turbulence modeling is given in (Collis 2002).

3. Discretization and implementation

For every element fie E :Ph we define the finite-dimensional space Pp_ (gt) of polynomials

of degree <_ Pc defined on a master element _. Then

{¢1¢= -I "= ,¢ • Pp, (_t)j (3.1)

where Ja, is the Jacobian of the transformation of element _e to the master element
and

where m is the number of conserved variables; m = 5 in three dimensions.

Thus, the semi-discrete discontinuous Galerkin method is: Given U0 = Uo(x), for

t • (O,T), find Uh(X,t) • _2p('Ph) x HI(O,T) such that

BDG(Wh, Vh) : (Wh, S), VWh • "Pp(:Ph) • (3.3)

We utilize the family of orthogonal, hierarchical bases formed from tensor products of

Jacobi polynomials, as described in Karniadakis & Sherwin (1999), which are supported

in a wide range of elements types in two and three dimensions. For time advancement,

we currently use the third-order TVD-RK method (Shu 1988; Shu & Osher 1988)
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The DG formulation presented above has been implemented using object-oriented pro-

gramming (OOP) in fully modern ANSI/ISO C++ using the Standard Template Library

and generic programming concepts. For efficiency, all kernel computations are performed

using the ATLAS library, and the code runs on a number of operating systems includ-

ing Linux, Windows, and SGI Irix. The code is implemented as an element library that

supports all the operations required for discontinuous Galerkin, and we have used this

library to implement specific solvers for advection-diffusion, Burgers, wave, linearized-

Euler, Euler, Navier-Stokes equations. Due to the inherent locality in the discontinuous
Galerkin discretization, parallel implementation is particularly easy and efficient. We use

the MPI-2 library (including parallel MPI-IO) and parallel efficiency results are shown

in figure 2 for our Pentium IV Beowulf cluster demonstrating excellent scaling.

4. Weak boundary conditions

One of the issues that arises in using discontinuous Galerkin methods is that Dirichlet

boundary conditions are most naturally enforced weakly through the numerical fluxes.
While similar "weak" boundary conditions have been used for far-field nonrefiecting

boundary conditions in finite-difference discretizations (see e.g. Poinsot & Lele (1992);

Thompson (1987)) the use of weak boundary conditions for wall-type boundary condi-
tions is less common, especially in the flow physics community. In the computational

mechanics and applied mathematics communities there has been prior work on weak

enforcement of Dirichlet boundary conditions in the continuous Galerkin method by

Babuska (1973) and Nitsche (1971) and these methods are related to discontinuous

Galerkin (Arnold et al. 2002). Likewise, the recent work of Layton (1999) provides the-
oretical considerations for weakly enforced Dirichlet boundary conditions for the Stokes

problem that are motivated by observations of improved solution quality compared to

hard Dirichlet boundary conditions.

While one can always set "hard" Dirichlet boundary conditions in any discretization

(including DG), it is interesting to compare the performance of hard boundary conditions

with weak enforcement through the numerical fluxes as described above. As an example,

consider the simple steady forced advection-diffusion problem

u,= = 1 + _u,== (4.1)

with boundary conditions u(0) = u(1) = 0 and diffusivity v = 0.01. Figure 3 shows re-

sults computed using a discontinuous Galerkin discretization with two p = 6 elements and
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FIGURE 3. Weak (a) and hard Co)Dirich]et boundary conditions for an advection-diffusion problem

BC L,:¢ L2 H1
Weak 0.374 0.0198 2.00
Hard 0.251 0.0850 3.35

TABLE l. Errors in advection diffusion solutions

both hard and weak enforcement of the Dirichlet boundary conditions. This discretiza-

tion was intentionally selected to be coarse in order to highlight the differences between

the two solutions. One clearly sees that oscillations are more pronounced when a hard

boundary condition is used. Conversely, while oscillations are less in the weak case, the

boundary condition on the right side (inside the boundary layer) is only approximately

satisfied; u(1) -- 0.374 instead of zero. Table 1 compares the error in the solution in the

L_, L2, and /-/1 norms. Consistent with the graphical results, the solution with weak

Dirichlet boundary conditions has four times less error in L2 and is also better in H1.

However, the solution with weak boundary conditions is slightly worse in Loo and this is

directly due to the error in the boundary value. Discarding a small region near x = 1, the

weak solution is also better in Loo. While these results are certainly not conclusive, they

are indicative of the potential benefit to be gained from weak enforcement of Dirichlet

boundary conditions that are naturally obtained from a DG discretization. Philosoph-

ically speaking, one should not enforce boundary conditions any more accurately then

the error in the interior solution. Doing so tends to over-constrain the interior solution,

typically leading to oscillations as seen in figure 3(b). By weakly enforcing boundary

conditions one obtains solutions that still feel the influence of the boundary through the

numerical fluxes, but in a manner that is consistent with the accuracy of the interior

solution, leading to improved solutions away from the wall. Given the importance of wall

boundary conditions for near-wall turbulence, we will pay particular attention to the

success of the weak boundary condition throughout the following discussion.

5. Flow over a circular cylinder

Before applying our DG formulation to a turbulent flow, we begin by considering a
benchmark problem of both steady and unsteady flow over a circular cylinder.
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DG DG FD Experiment
Re p = 4 p -= 6 6 th order

s/d Cd s/d Cd s/d Cd s/d Cd
20 0.96 2.125 0.96 2.124 0.93 1.98 0.9 2.01
40 2.39 1.589 2.39 1.589 2.36 1.50 2.1 1.48

TABLE 2. Drag and separation length for laminar flow over a circular cyhnder, with comparison to prior
computauons and experiments. The computational and experimental data are taken from Visbal (1986).

5.1. Steady flow

Consider the steady, laminar flow of air past an isothermal circular cylinder kept at

the freestrearn temperature. The freestream Mach number is M = 0.2 and results are

reported for two Reynolds numbers: 20 and 40. By considering a series of different domain

sizes, we eventually selected a domain of f_ = [-15, 30] x [-30, 30] as sufficiently large to

prevent adverse influence on the net drag and length of the separation bubble. A block

structured mesh using 812 quadrilaterals was generated using a special purpose grid

generator (Tezduyar 1991) and each quadrilateral has polynomial order of either p = 4

or p = 6. Table 2 compares the current DG results for the total drag coefficient, Cd, and

separation bubble length, s/d, with prior high-order finite-difference computations and

experiments. The DG results for both p = 4 and p = 6 are nearly identical, indicating that

these quantities are converged. The DG results are within about 7% of the experimental

results, which is a negligible difference given the difficulty of performing measurments

at such low Reynolds numbers. Comparing the DG results to the prior finite-difference

calculations of Visbal (1986) yields a difference of about 6% in Cd and less than 3% in s/d.

Interestingly, Morgan et al. (2002) recently performed simulations using a block-parallel

version of the same solver used by Visbal (1986) and they report up to 3% difference in

both s/d and Cd. While the source of the discrepencies between these three codes is not

known, the DG results are converged with regard to both domain size and resolution.

5.2. Vortex shedding

Next, consider unsteady vortex shedding from a circular cylinder. The Reynolds number

based on diameter and freestrearn velocity is Re = 100, the freestream Mach number is

M_ = 0.2 and an isothermal condition is enforced at the cylinder surface .with T_ = T_.

We have performed simulations over a range of domain sizes and have investigated both

h and p-refinement to establish the convergence properties of the method. For brevity,

we show results only for a relatively large rectangular domain, of size xl E [-15, 30] and

x2 E [-30, 30], using 812 quadrilateral elements with a tensor-product basis of Legendre
polynomials on each element, where the polynomial order varies from p = 5 to 8. We note

in passing that this domain was found to be sufficiently large to prevent far-field boundary

influence on the solution. Table 3 documents the convergence of the Strouhal number

St, peak-to-peak lift coefficient ACt, and average drag coefficient Ce with polynomial
order. We see that even with p = 4 all quantities are accurate to three significant figures.

When p = 8 the average drag coefficient is converged to at least 5 significant figures.

The converged Strouhal number is St = 0.1653 which is in excellent agreement with

the experimental value of 0.165 (Williamson 1989). For both the steady and unsteady

cylinder flows, the weak implementation of wall boundary conditions is found to provide

excellent results, even for rather coarse discretizations.
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p St /xC_ Cd
4 0.1652 0.6951 1.4104
5 0.1652 0.6953 1.4105
6 0.1653 0.6958 1.4106
7 0.1653 0.6960 1.4107
8 0.1653 0.6960 1.4107

Expt 0.165 - -

TABLE 3. Convergence with polynomial order for vortex shedding from a cxrcular cylinder at Re = 100.
tExperimental data is from Williamson (1989)

FIGURE 4. Cross-stream (z-y) quadrature grid for the stretched mesh with p = 5, 4, 3.

6. Fully-developed channel flow

We now consider fully-developed turbulent flow in a plane channel with coordinates

x = xl in the streamwise direction, y = x2 in the wall-normal direction, and z = x3 in the

spanwise direction. The flow is assumed to be periodic in the streamwise and spanwise
directions where the box size is selected so that the turbulence is adequately decorrelated

in both directions. Coleman et al. (1995) provide excellent documentation of DNS results

for compressible channel flows at low ReT.

As a first step towards utilizing DG for turbulent flows, we have performed DNS at

Rer = 100 with a centerline Mach number of Mc = 0.3 so that comparisons can be made

directly to prior incompressible results (see e.g. Kim et al. (1987); Moser et al. (1999)).

Following Coleman et al. (1995), we use a cold, isothermal wall so that internal energy

created by molecular dissipation is removed from the domain via heat transfer across

the walls, allowing a statistically steady state to be achieved. The bulk mass flow is held

constant by the addition of an xx-momentum source on the right-hand side of (2. la).

The computational domain is (47r, 2,47r/3) and this is discretized with an array of

8 x 8 x 8 elements yielding a total of 512 elements. Exploiting the flexibility of the DG
discretization, we use both h and p refinement to more efficiently resolve flow features

near the wail. In particular, two wail-normal distributions of elements are investigated.
We first use a stretched mesh in the wall-normal direction where the grid points are given

by

tanh(cs (2j/N_ - 1))
+1, / = 0,1,...,Nu (6.1)

YJ = tanh c8

where N_ = 8. For this mesh, we reduce the polynomial order away from the wall,

starting with two layers of p = 5 elements, then a layer of p = 4 followed by a layer

of p = 3 elements near the centerline. Thus, moving from the bottom wall to the top
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FIGURE 5. Discontinuities in instantaneous and averaged mean-flow profiles, Re,. = 100:
(a) instantaneous u, (b) instantaneous p, (c) average u, (d) average p.

wall, the element order varies like: {5, 5, 4, 3, 3, 4, 5, 5} resulting in a total of 79,488

degrees of freedom. Note that the flexibility of the DG method makes it possible to

coarsen simultaneously in all three coordinate directions as one moves away from the

wall. The crossflow quadrature grid for the stretched mesh is shown in figure 4. We also

have performed simulations using a uniform h mesh in the wall-normal direction but

again with variable p order. For this mesh, two p distributions were considered: a low-

resolution case with p ={5, 5, 4, 3, 3, 4, 5, 5} yielding 79,488 degrees of freedom and a

high-resolution case with p ={6, 6, 5, 4, 4, 5, 6, 6} resulting in 131,456 degrees of freedom.

In all cases, we use third-order TVD-RK time advancement with At = 0.0001. This time
step is a factor of 10 smaller than that typically used in our incompressible code (Collis

et al. 2000) because the incompressible code treats wall-normal viscous terms implicitly.

We are currently enhancing our DG code to support implicit time-advancement.

We also note that computing turbulence statistics from a DG solution requires a sub-

stantial coding effort, so that currently we compute only mean and rms quantities. Higher-

order statistics and spectra will be presented in the future.

We begin by plotting typical instantaneous and average u and p profiles for the

stretched mesh solution in figure 5. In plotting all the results shown in this paper, no

smoothing or other postprocessing has been done to remove the discontinuities inherent

in a DG discretization. Thus, we can clearly see discontinuities in the instantaneous pro-
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FIGURE 6. Mean and rms velocity profiles in wall units for the stretched mesh: -- DG,
.... incompressible DNS,- ....... law of the wall.

files, especially in p near the center of the channel. However, after averaging, both the
streamwise velocity and density profiles are smooth. One of the nice features of DG is

that if the solution is known to be smooth, then visible jumps in the solution are indica-
tive of low resolution. Thus, with the stretched mesh, the instantaneous turbulent flow

near the center of the channel is only marginally resolved, although near the walls even
the instantaneous profiles appear smooth, indicating good resolution there. However, it is

important to note that even though the resolution near the centerline may be marginal,
the mean flow is well represented.

Evidence to support this claim is given in figure 6 which shows the mean and rms

velocity profiles in wall units, compared to a reference incompressible DNS at the same

Rer (Chang 2000). Both the mean and rms velocities are in excellent agreement with

the incompressible DNS. Likewise, no discernible discontinuities are observed in either

the mean or the rms profiles. We recall that the DG discretization uses 79,488 degrees of

freedom and is formally between 4th- and 6th-order accurate, depending on the local poly-

nomial order. For comparison, the incompressible DNS uses a hybrid Fourier-Galerkin

method in the planes and second-order finite-volume method in the wall-normal direction

and uses 336,960 degrees of freedom after dealiasing. Thus, the DG solution uses a factor

of 4.2 less degrees of freedom (1.9 if dealiasing is not used in the incompressible case).

On the stretched mesh, the average slip in the streamwise velocity at the wall is 0.002%
A+of the centerline velocity where the first collocation point is yw = 0.7 from the wall. t

To determine how the weak wall boundary condition influences the solution at coarser

resolution (near the wall) we now consider results using a uniform mesh in the wall-
normal direction. Figure 7 shows the mean streamwise velocity profiles in wall units as

compared to the reference incompressible DNS, for both the low- and high-resolution

cases. Interestingly, we see that the profiles are in excellent agreement with the reference
solution. Such overlap clearly indicates that the mean shear stress is well predicted in

both cases. However, careful examination of figure 7 does show that the law of the wall
u + = y+ is not perfectly satisfied at small y+ because the flow slips at the wall. For the

low resolution case, the slip velocity is 1% of the centerline velocity with Ay+ = 2 while
for the higher resolution case there is 0.68% slip with Ay+ = 1.6. As expected, as near-

wall resolution is increased, the amount of slip is reduced as the enforcement of the wall

t For reference, the centerline velocity is approximately 16u_ at Re_. = 100.
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boundary condition improves (this is especially true for the stretched mesh). Importantly,

the mean shear and the majority of the mean velocity profile are well predicted even for

the lowest-resolution case when Ay+ = 2, which is less than many RANS models allow.

Similar behavior is found for the rms velocities, as shown in figure 8 for the low- and

high-resolution uniform-mesh cases. One can clearly see the slip in the streamwise rms
velocities at the wall. For the low-resolution case u+ms = 0.65 at the wall, while for the

high-resolution case u+m, = 0.48 at the wall. For reference, the stretched-mesh solution

has u+m, = 0.0062 at wall. Again, as resolution is increased in the near-wall region, the
no-slip boundary condition is enforced to a higher accuracy. Importantly, with the ex-

ception of a region very close to the wall, both the mean and rms profiles throughout

the channel are well predicted for all cases. Our prior experience with hard boundary

conditions has shown that mean shear and rms profiles (i.e. turbulence production) are

incorrectly predicted at low resolutions. Conversely, by enforcing the wall boundary con-

ditions weakly through the numerical fluxes, the influence of the wall on the flow is

correctly simulated in the form of net shear stress and turbulence production, even at

resolutions for which the wall boundary values are inaccurate.
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7. Conclusions

A discontinuousGalerkin method isformulated and implemented forsimulationofcom-

plex,turbulent,compressibleflows.The implementation isvalidatedforboth steady and

unsteady separated flowover a circularcylinder,with resultsinexcellentagreement with

priorcomputations and/or experiments.An important featureofdiscontinuousGalerkin

isthe abilityto enforceDirichletboundary conditionsweakly, through numerical fluxes

at the wall.The advantages ofthisapproach are demonstrated for a simple advection-

diffusionproblem, where ititshown that enforcement ofa weak boundary conditionleads

to a significantreductionin oscillationsin the computed solution,resultingin a factor

of4 times lesserrorinthe L2 norm. Applying DG to simulate fully-developedturbulent

flow in a plane channel at low Reynolds number Re_ = I00 leads to resultsin excel-

lentagreement with a referenceincompressibleDNS. The advantage of weak Dirichlet

boundary enforcement isalsodemonstrated for thisflow,where itisshown that accu-

rateprofilesof net shear stress,as well as mean and rms velocity,are obtained at low

resolution--evenresolutionforwhich there issignificantslipat the wall.In thiscontext,

weakly enforced wall boundary conditionsmay play a usefulrole in wall modeling for

large-eddysimulation,where the wall-model isgiven by a particularnumerical fluxused
at the wall.
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Toward the LES of flow past a submerged
hydrofoil

By A. Pascarelli t, G. Iaccarino AND M. Fatica

The fluid flow past a body placed in a steady stream close to a free surface is the object

of the current investigation. The viscous, incompressible Navier-Stokes equations, sup-

plemented by linearized dynamic and kinematic boundary conditions at the free surface,

are solved so that the water-surface elevation can be integrated into the solution and

solved for, together with the velocity and pressure fields. The potential and limitations
of the method will be illustrated and discussed.

1. Introduction

Incompressible viscous fluid flows bounded by a free surface have a number of interest-

ing properties. The free-surface boundary is in motion, its location is part of the solution,

and the relative velocity between the fluid and surface interface must vanish. In addition,

the tangential stress at the surface must vanish, and the normal stress must balance the

ambient pressure above the surface. As a result, when a vortex interacts with a free sur-

face, the velocity field is significantly altered and this results in a complex structure and

dynamics. For a free surface without contamination or external shear stress (idealized
free surface), the vorticity at the free surface depends on the shape of the boundary (and

on the assumed boundary conditions). If the free surface can be considered fiat (i.e.,

of negligible deformation) the vortical field close to the interface is very similar to that

near a free-slip plane. For a shear-free interface in which no deformations are allowed,

the tangential vorticity (and its fluctuations), but not necessarily the flux of vorticity,

vanishes at the free surface. The boundary condition of zero shear stress at a clean free

surface requires that vortex lines which terminate at the free surface be normal to the
surface. In the case of a shear-free deformed free surface, however, the vorticity at the

free surface is nonzero and the surface acquires a solid body rotation due to the boundary

condition allowing motion parallel to the surface. For example, in the interaction of a

vortex pair with a free surface (see figure 1), the surface renewal produced by vortices
with vorticity parallel to the surface already shows that the surface deformation will be

an important feature of the turbulent transport at the interface. The aim of this work

is to investigate the characteristics of the complex viscous interaction of the free surface
with the wake of an isolated lifting hydrofoil submerged at relatively shallow depth, for

moderate Froude numbers. This investigation is a precursor to a turbulent flow study at

Re = 30,000, planned as a follow-up.

t INSEAN - Roma, ITALY
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FIGURE 1. Sketch of a vortex pair impinging on a free surface.
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2. Mathematical model

2.1. Governing equations

In Cartesian coordinates xi (i = 1, 2, 3) - (x, y, z) the governing equations for an incom-

pressible viscous flow, in the presence of body forces, of a layer of fluid of uniform depth

H can be written in the following form

Ouj _ Oui _ 10p 10ajig;7 j-0, +I, (2.1)

where the summation convention applies to repeated indices. Here, p and _ = #/p are the

(constant) fluid density and kinematic viscosity respectively, t is the time, and u, (i =

1, 2, 3) - (u,v,w) are the Cartesian fluid-velocity components. The vertical coordinate

z - x3 is positive measured upwards from the flat, horizontal solid bottom surface, z = H

coincides with the undisturbed free surface level, while z = 0 corresponds to the position

of the solid bottom. Let F(x, y, z, t) = 0 be the free-surface equation. Assuming no wave

overturning or breaking, F = F(x, y, z, t) is a single-valued function of x and y and can

be expressed as

F(x, y, z, t) = rl(x, y, t) - (z - H) = 0 (2.2)

where 7/is the displacement of the free surface about the horizontal plane z = H. Relating

the modified, or hydrodynamic, pressure p to the pressure P by p = P + pg_?, g being

the acceleration due to gravity, gravity effects appear only in the dynamic free-surface

boundary condition. Like P, p appears in the equations through its gradient and is
thus defined to within an arbitrary constant which is fixed by boundary conditions. The

nonlinear advection term is written in conservation form. The viscous stress tensor aji is

expressed as a function of the strain-rate tensor Sij = (Oui/Oxj + OuffOxi)/2, according

to cqj = 2#Sij. The source term fi represents a body force per unit mass, arising from
the immersed-boundary technique described below, which may vary as a function of time

and space.
In flow problems involving free surfaces, part of the boundary of the computational

domain (corresponding to the free surface) is unknown, and must be determined as part
of the solution. On the free surface, two boundary conditions should be satisfied. The

first boundary condition is determined from the balance of the stresses acting on the
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interface between the upper and lower fluid layers, in the normal and tangential direc-

tions (so-called "dynamic" boundary condition). The specification of this force balance

must depend on the nature of the particular physical situation being modelled. In this

study, the free surface is considered as an uncontaminated free boundary between two

immiscible fluids (water and air) on which no tangential stresses are imposed on its air-

side. Moreover, given the water/air density ratio p/pa _ 820, we further assume the

upper fluid layer light enough to cause no significant variation in hydrostatic or dynamic

pressure, and both density and viscosity of the air phase are set to zero (vacuum ap-

proximation). For dynamic boundary conditions at a liquid-gas interface, with negligible

viscous stresses in the gas and gradient of surface tension, we have, in general,

-P + a_ = -Pa + asks, a_ l) = 0 l = 1, 2 (2.3)

Here Pa denotes the external pressure, which we set to an arbitrary constant, say P_ = 0.

as is the (constant) surface tension coefficient (in units of force per unit length), ks is the

local interfacial curvature, an niajinj and a_ l) -(0 l 1, 2 are the normal and

the two tangential components of the viscous stress vector at the interface, in which n_,

tl z) are the/-direction components of unit vectors, the outward normal to the free surface

and the two tangential to the free surface in the (x, z)- and (y, z)-planes, respectively.

The second boundary condition at the free surface (called "kinematic") is formu-

lated by considering that a fluid particle on the free surface remains on it, i.e. u • n =

-(OF/Ot)/JVFJ where everything is evaluated at the exact position of the free sur-

[ 2] 1/2face, F(x,y,z,t) = O, and ]VFJ = (OF/Oxi) . For a free surface given by (2.2)

we have n(x,y,z) =_ [-rl_,-rly, 1] (772+ 772+ 1) -1/2, t_(x,y,z) =_ [1,0,rlz] (7/2 + 1) -1/2,

tV(x,y,z) =_ [0, 1,fly ] (r/_ + 1) -1/2, and

_(1 + _) - 2_ + _(1 + _)
ks :

(1 +772 -t-7/2/3/2

Therefore, executing the dot product u - n the above condition can be rewritten as

w=vt+Url_+Vrly on z=rl+H (2.4)

Equation (2.4) represents a non-linear boundary condition; the wave elevation rI is an

unknown function of time and space and must be determined as part of the solution.

The dynamic boundary conditions are written as

(_ + _ + 1)
(2.5)

for the normal direction and

(1- _) (_ + _) + _ (_ - ,_) - _ (_ + _) - _ (_z+ _) = 0 (2.7)
for the tangential directions. Again, note that each term is evaluated on the interface, z =

7/+ H. Neglecting effects of nonlinear self-interactions of surface waves, we assume that
the wave elevation in the physical region is small (Ir/I << 1), and the interracial boundary

conditions are linearized by assuming a free-surface deformation of order e ,_ O(Fr 2) and

a free-surface boundary layer of thickness 5 ,-, O(Re-1/2), with 52 << e << 5 << 1: see Tsai
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& Yue (1995). Upon Taylor expansion about z = H and using continuity we obtain the
kinematic boundary condition to be enforced at the undisturbed free surface,

w=r/t+(u_)_+(v_)y on z=H. (2.8)

Finally, for small slopes n _ [-77z,-_y, 1], t (1) __ [1, 0, r_], t (2) __ [0, 1, _y], and ks -

y_ + yuy, so that the balance of the normal and the two tangential stress components

at the unperturbed interface z = H may be described conveniently by

p = pg77 + 2pvwz - as (_z_ + _yy) on z = H (2.9)

(uz + wx) = 0 on z = H (2.10)

(Vz + wy) = 0 on z = H (2.11)

Conditions (2.9)-(2.10)-(2.11) allow a velocity across the boundary.

Usually, all the variables are made dimensionaless by a characteristic flow velocity uref

and a characteristic length scale Irel. The case-specific nondimensional groups in these
flows are the Reynolds number, the Froude number and the Weber number. The relevant

nondimensional parameter is the Reynolds number, defined as Re = Ureflre$/_, whereas

the effect of the free-surface boundary condition is expressed in terms of the dimensionless

Froude number, Fr u_f/_, and Weber number, We 2= = plrefu_f/(rs, which will
appear in the condition (2.9). The Froude number is (the square root of) the ratio

of inertia to gravity (or buoyancy), and, since it compares a given characteristic flow

velocity to that of (long-wavelength) gravity waves, it directly relates to the speed of

a surface disturbance. The Weber number represents surface-tension effects on the free

surface. Capillary effects are negligible when the Weber number is large. The case of

a free-slip plane surface corresponds to the limit Fr = 0 of the present problem. In

such a flow, in which the gravity g is infinite, inviscid no-stress boundary conditions (i.e,

uz = vz = w = 0, and p_ = 0) are imposed at the interface corresponding to the "free

surface", and the physical phenomena observed there will be expected to be independent

of groups such as the Froude and Weber numbers. The boundary conditions at the free

surface influence quantities that involve derivatives of the velocity, which for example has

interesting consequences for the vorticity at the free surface. It is of interest to note that

while tangential vorticity at a flat free surface is always zero, the zero-stress boundary

conditions (2.10)-(2.11) yield surface vorticity components

wx=w_-vz=-2vz=2wy on z=H (2.12)

wy=Uz-Wx=2uz=-2w_ on z=H. (2.13)

2.2. Discretization method

The governing equations, supplemented by linearized dynamic and kinematic boundary

conditions at the free surface, are solved by a fractional-step/finite-difference algorithm

based on a staggered-grid formulation (Chorin 1967, Kim & Moin 1985). The overall

accuracy of the method is second order in time and space. It is close to the method

presented in Shen et al. (1999); however the equation of energy conservation has been

explicitly taken into account in the numerical discretization. An immersed-boundary

technique is used to handle the presence of the solid body in the fluid stream. The

"direct forcing method" proposed by Fadlun et al. (2000) has been implemented. The

discussion here is purposely kept brief because a complete description can be found in

Pascarelli et al. (2002) and Fadlun et al. (2000).
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FIourtP. 2. Geometry of the flow past a submerged hydrofoil.

3. Results

3.1. Flow over a submerged hydrofoil

We consider the flow of water around an hydrofoil which is below a free surface. The hy-

drofoil section considered is NACA 0012 with an angle of attack of 5 °. The arrangement

consists of a two-dimensional open channel whose upper boundary is a free surface. In this

system, quantities are nondimenzionalized with the chord length of the body (l_e/= L)
and the uniform inflow velocity (Uref = Ui,O. Based on these scales the relevant non-

dimensional parameters include the Reynolds number Re = UinL/v, the Froude number

Fr = U,,_/x/'_, and the Weber number We = pLUSh�as. Other geometric parameters in

this problem are the upstream length Lu and the downstream length Ld. This problem
reproduces the case studied experimentally (Duncan (1983)) and modelled numerically

by several authors (Hino, Martinelli & Jameson (1989), Muscari & Di Mascio (2002)) at

Re = 1.624 x 105, Fr = 0.5672 and We = 1784. At any fixed dimensionless depth of

submergence 7 = A/L, the wave amplitude (and hence wave resistance) possesses a max-

imum as a function of Proude number based on submergence depth FrA = Uin/(gA) 1/s.

When that maximum is sufficiently low, linearization is justified. In our simulations the

body centre is submerged at mid-chord by 7 = 1.034. At this submergence the leading

wave does not break. For our purposes, it is convenient to consider the situation from

a frame of reference that is at rest with the body. The domain is 18.5 units in length

(the upstream boundary is 6 units upstream of ht eleading edge) and 4 units in depth.

In order to prevent any reflection of waves into the solution domain, an artificial damp-

ing function for 0 is used at the downstream boundary. The damping length is set to

ld = 2L. Non-uniform mesh distributions are used in both x- and z-directions, with grid

clustering near the body surface. With the same Froude and Weber numbers, this flow

was investigated in the Reynolds number range from 500 to 10000, far lower than the

reference experimental data, but only results for the most interesting cases are reported

here. Figure 3 shows the wave profiles for different Reynolds numbers. Viscous effects sig-

nificantly affect the wave amplitude. Unfortunately, no experimental date are available

for low Reynolds number to compare with the results. For the 2D simulations, a total of
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FIGURE 3. Submerged NACA 0012. Wave profiles for different Reynolds numbers.
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FIGURE 4. Vorticity contours for flow over submerged NACA 0012 at t = 45: (a) Reb = 5000;

(b) Reb = 10000. Only part of the domain is shown.

nx = 780 computational cells are used in the x-direction, while the total number of cells

in the vertical direction is nz = 200. 4246 grid points are placed within the body. As also

observed by Chen & Chwang (2002) as the Reynolds number is increased up to 5000 the

von Kazman street converges to an oscillatory motion. For Re = 10000, the flow reaches a

transitional stage and transition is about to occur. The instantaneous vorticity contours

for Re = 5000 and Re = 10000 are shown in figure 4 (a) and in figure 4 (b), respectively.

Finally, the force coefficients for the two Reynolds numbers are plotted in figure 5. It is

clear from figure 4 (b) that, despite the dense grid clustering around the body, which also
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FIGURE 5. Variation of force coefficients during early wake formation with time from an
impulsive start. (a) Drag coefficient and (b) lift coefficient: -- Re = 5000; --- Re = 10000.

restricts the computational time step, the mesh resolution is not sufficient even at the

moderate Reynolds number Re = 10000 and spurious numerical oscillations are detected.

The absence of any artificial control (numerical dissipation) of the odd-even decoupling
in the solution results in a serious issue when an advection equation for the free surface

is solved along with the flow field. The occurence of wiggles in the velocity field at time
t '_ may affect the solution quality at the vnext time step through the Dirichlet boundary

condition on the pressure field. We found that lack of resolution can result in numerical
oscillations that can obscure the flow field.

3.2. Flow around a free-surface-piercing square cylinder

As an example of further applications of the present simulation technique the free--surface

flow resulting from a partially-submerged square cylinder is considered.

The study of this flow is extremely complicated because of the strong interaction
between the free surface and the solid object; in the previous case, only the effect of the
presence of the submerged body (via the pressure and eventually the vorticity) was felt

on the free surface.

The immersed-boundary technique employed here provides a very natural framework

to treat problems involving partially-submerged bodies. Using the same assumptions as

previously, only the part of the fluid up to the free-surace is considered. The solid body is

represented through a "direct" forcing on the velocity field (in the momentum equations)

whereas the pressure field is obtained solving the unmodified elliptic equation arising from

the fractional-step procedure. The same treatment is applied to the kinematic boundary
condition ori the free surface, which accounts for the presence of the cylinder directly

through the velocity field in 2.9.

Only proof-of-concept simulations have been carried out so far; a low Reynolds number

(Re = 500) is considered and the free surface elevation is shown in figure 6.

Further analysis will be required to verify the accuracy of the present linearized free-

surface boundary conditions in the presence of surface-piercing bodies.
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FIGURE 6. Wave elevation for a surface-piercing square cylinder: (a) Side View; (b) View from
behind.
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Fundamentals

By Javier Jim_nez

It would be disingenuous to pretend that a section named "Fundamentals" is anything

but a collection of the projects which did not easily fit anywhere else in these proceedings.
A look at the titles only reinforces that impression. There is a paper on the structure

of near-wall turbulence, another one on modelling magnetohydrodynamic flows, a third

on the effect of wall-bounded shear turbulence on particle dispersion, a fourth on the

influence of porous walls on turbulence statistics, and a final one on the dynamics and

chemistry of aeroplane contrails. Besides the probably coincidental fact that three of the

five papers concern themselves with wall turbulence, and the more predictable one that

they all deal with turbulent flows, there is little connection among the various topics.

But it is a characteristic of human mind, probably more marked in those who have

devoted time to the study of turbulence, to find patterns in seemingly chaotic situations,
and we should ask ourselves whether there is something to be learned from this section

as a whole, beyond what can be found in the individual papers. We should in particular

reflect on why the section exists, and on why these papers are here.

A possible explanation, easily dispelled, is that these are the projects which nobody else

wanted, on account of not being interesting enough, or of being marginal to turbulence

research. Reading the papers shows that the opposite is true, and that they all deal with

important open problems, all of which are likely to increase in importance in the future.

We should also resist the assumption, implicit in the title, that this section is exclusively

devoted to basic research. With the possible exception of the paper by Kawahara el al.,

all the others start by listing the applications which motivate them, ranging from the

control of hypersonic vehicles to environmental modelling.

But there is something that sets these projects apart and which prevents them from be-
ing included in other sections. A look at the proceedings of previous summer programmes

gives us some historical perspective. Turbulence research has changed during the lifetime

of the CTR. While exploratory papers were the norm in the first summer programmes,
they are exceptional now. "Fundamental" papers were then scattered among the differ-

ent topics, but are now few enough to be collected into a single "topic". Turbulence is

drifting towards "big science" carried out by coordinated teams, after being during most

of its history a realm of individual researchers and of personal projects.
This is not a trend that necessarily has to be resisted. As peripheral questions gradually

become better understood and as we meet the harder "kernel" subjects, it is probably

unavoidable that the attacks should become more focused, and that the research groups

should get larger. It can in fact be argued that some activities, such as direct numerical
simulations and the analysis of the resultant data, have already become too large for

single teams or institutions, and that they will in the future have to be organized as

cooperative projects. The Centre for Turbulence Research was actually created fifteen

years ago as a first step in the direction of cooperative analysis, but it is remarkable how
little DNS can be found in the latest summer proceedings.

Other scientific disciplines, notably molecular biology and particle physics, have taken

that route and emerged in many ways stronger. But it is crucial to make sure that the
reductionist trend does not become exclusive, and that exploration continues. Turbulence
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is an aggregative science, encompassing many phenomena and applicable to many fields.

It is important that, even as the subject "implodes" towards the solution of a few core

questions, it continues to expand in search of new ones. Such explorations at the edges

of a research field necessarily have a scattershot appearance, and it is difficult to tell

whether any particular shot is aimed towards a leading or towards a marginal frontier

but, as with newborn babies, one of them surely holds the keys to the future. This section

is the exploratory part of the current turbulence proceedings.

Javier Jim6nez
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Characterization of near-wall turbulence in terms

of equilibrium and periodic solutions

By Genta Kawahara t, Javier Jim6nez :_, Makoto Shiba ¶ AND Mark Simens I]

Near-wall turbulence in the buffer region is qualitatively characterized in terms of recently-

found nonlinear three-dimensional solutions to the incompressible Navier-Stokes equa-

tion for wall-bounded shear flows. Jim_nez & Simens' (2001) traveling-wave solution for

an autonomous wall flow, Nagata's (1990) steady and Kawahara & Kida's (2001) periodic
solutions for a plane Couette flow are considered for characterization. These equilibrium

and periodic solutions are classified into two families, of which one is dominated by

streamwise vortices, and the other by streaks. The former family, which is composed of

autonomous solutions, Nagata's upper-branch solutions and time-periodic solutions, is

similar to fully-turbulent simulationss in the near-wall region.

1. Introduction

Since the famous 1883 experiments by Reynolds, wall-bounded turbulent flow has been

one of the main subjects of turbulence research. The lack of a simple spatio-temporal
characterization of turbulence has, however, impeded the elucidation of the structural

and dynamical properties of near-wall turbulent flows.

Recently, several nonlinear equilibrium solutions of the three-dimensional Navier-

Stokes equations have been obtained numerically for wall-bounded shear flows, such

as plane Couette flow (Nagata 1990), plane Poiseuille flow (Toh &: Itano 1999; Waleffe

2001), and an autonomous wall flow (Jim_nez & Simens 2001). The equilibrium solutions
of these systems exhibit a similar structure in physical space (see Waleffe 1998; Kawahara,
Jim_nez, Uhlmann _: Pinelli 2002), which takes the form of wavy low-velocity streaks

flanked by staggered streamwise vortices of alternating signs. These solutions are unsta-
ble at the Reynolds numbers where turbulence is observed, and they represent saddles in

phase space, in the neighbourhood of which a turbulent state could spend a substantial

fraction of time. Their structure closely resembles the spatially-coherent objects observed

in the near-wall region of turbulent flows.

More recently Kawahara & Kida (2001) have numerically extracted a periodic saddle

orbit embedded in low-Reynolds-number plane Couette turbulence, which well charac-

terizes not only spatial but also temporal coherence of near-wall turbulence, i.e. a full

regeneration cycle of low-velocity streaks and streamwise vortices. Besides, the mean ve-
locity profile and the root-mean-square velocity fluctuations of plane Couette turbulence

agree very well with the temporal averages of those of the periodic solution.
Of these solutions, those which are obtained as equilibrium and periodic solutions of

the Navier-Stokes equations usually form parametric families, while those educed from

turbulent flows have parameters which fall in definite ranges. The best-known case is

t Kyoto University
:_ Also at Universidad Polit_cnica de Madrid
¶ Ehime University
I[ Universidad Polit_cnica de Madrid
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of course the spanwise-wavelength selection mechanism that results in the mean streak

separation of z + _ 100, but equally intriguing is the observed x + _ 300 streamwise sepa-

ration between vortex pairs within the same streak (Jim_nez & Moin 1991). Although the

similarities observed between the theoretical and educed structures are striking, and def-

initely suggest that they are related to each other and to self-sustaining wall turbulence,
the exact nature of this relation is still unclear.

The main objective of this work is to clarify this relation. We shall put together several

of the known equilibrium and periodic solutions for wail-bounded shear flows. Traveling-

wave solutions for an autonomous wall flow (Jim_nez & Simens 2001), steady (Nagata

1990) and periodic (Kawahara & Kida 2001) solutions for a plane Couette flow will be

compared and checked against those of real near-wall turbulence.

The numerical methods used to recompute some of these solutions are described in

section 2. Comparisons between the different equilibrium and periodic solutions are made

in section 3, and their relation with fully-developed turbulence is discussed in section 4.

Finally some conclusions are offered in section 5.

2. Equilibrium and periodic solutions

2.1. Autonomous solutions

The permanent solutions described below as 'autonomous' are computed using a slightly
modified version of the numerical scheme described by Jimdnez & Pinelli (1999) and by

Jimdnez & Simens (2001). The Navier-Stokes equations are integrated in the form of evo-

lution equations for the wall-normal vorticity wy and for ¢ = V2v, using a pseudospectral

code with Fourier expansions in the two wall-parallel directions and Chebychev polyno-

mials in the wall-normal direction y, as in Kim, Moin & Moser (1987). At each time step

the right-hand sides of the tyro evolution equations are multiplied by a damping mask

1 - At F(y), where

F(y)=O if y<51, F(y)=I/T if y>62. (2.1)

The two limits of F(y) are connected smoothly by a cubic spline. For the solutions used

in this paper, 62 = 1.5 51. This mask can be interpreted as a linear dissipation for each

of the two evolution variables, acting only above y = 61. The equations being solved are,

to numerical accuracy,

Otw = N - F(y)w. (2.2)

where w stands for any of the two evolution variables, and N represents the full right-hand

side of the Navier-Stokes equations. The evolution equations are not modified below the

mask lower limit 61, but F is chosen large enough for all the vorticity fluctuations to be

effectively damped above y _ (51 + 52)/2. Irrotational fluctuations are not affected, and

the outer edge of the Navier-Stokes layer is bounded by a potential core which prevents

the formation of viscous boundary layers at the mask boundary.

While the flows in Jim_nez & Pinelli (1999) and in Jim_nez & Simens (2001) were

integrated at constant mass flux in a channel, the present computations were initially
carried out at constant driving stress in a 'semi-infinite' domain. No-slip, impermeable

boundary conditions were imposed at y = 0, and the velocities were matched to outer

potential fluctuations extending to infinity from the edge of the computational domain,

y = h > 52, using the method introduced by Corral & Jim_nez (1995). This driving

mechanism is free from the complications of a 'second wall' across the potential layer,

and in particular from the effect of a mean pressure gradient, and should in principle be
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Urea x _lrn+a_

167 180 38.4 13.2 2.54 0.592
151 180 42.0 13.2 2.51 0.578
167 180 42.0 12.8 2.59 0.598
188 180 42.0 12.6 2.71 0.615
188 180 45.6 12.4 2.84 0.612

TABLE 1. Parameters of the autonomous simulations used in the text. L_ and Lz are the box
! t

dimensions, Uc is the phase velocity, and um_, v,_ are the two parameters used below to
characterize solutions.

preferable to simulations involving two-walled channels. The Reynolds shear stress, for

example, is constant across the Navier-Stokes layer, instead of varying linearly across the

channel and the only parameter in the problem is the Reynolds number 5+ . In this paper

the superscript + is attached to wall variables that are normalized with the kinematic

viscosity v and the friction velocity u_. The driving mechanism was successfully used in

Jimdnez, Flores & Garc_a-Villalba (2001) to simulate autonomous wall flows in a large,

but shallow, computational box.

In the present case however this driving mechanism failed to reproduce the simple

solutions found by Jimdnez & Simens (2001). The flow passed directly from fully-chaotic

(minimal) turbulence to laminar decay, upon minor changes of the mask height or of the
box dimensions.

It was therefore decided to reintroduce some pressure effects. The basic structure of

the code is maintained, and in particular the driving mechanism for the mean flow is still

a mean shear away from the wall, instead of an imposed mean pressure gradient. The

mean velocity profile tends to linear, rather than to parabolic, away from the wall. The

potential fluctuations in the masked region, however, instead of being defined as decaying

at y --+ co, are required to match a no-stress impermeable boundary at y = H > h. The

vertical structure of the potential wall-normal velocity Fourier mode with streamwise and
spanwise wavenumbers c_ and _ is, for example, proportional to sinh[(a 2 + _2)1/2 (y _ H)],

instead of to exp[-(a _ + _2)1/2y]. All the cases presented in this paper were computed

with H = 2h and with the viscosity adjusted so that h+ = 120.

This modification introduces a fluctuating pressure gradient which maintains the in-

stantaneous mass flow constant across the domain (0, H). It was found to be sufficient
to restore the existence of simple solutions, with a complex bifurcation structure which

will be discussed elsewhere. The significance of this observation is not clear, although it

is not surprising that the dynamical properties of constant-mass and constant-stress sim-
ulations should differ in such small computational domains. Here we only use solutions

which behave like permanent waves. Their computational parameters are summarized in

table 1, where Lz and Lz are the box dimensions, Uc is the phase velocity, and u_,az, v_n_
are the two parameters used below to characterize solutions. Because of the presence of

a required fluctuation of spatially-constant pressure gradient, these flows are classified

below as part of the Poiseuille family.

2.2. Plane Couette solutions

Here, Nagata's (1990) steady solutions of the incompressible Navier-Stokes equation for

a plane Couette flow are recomputed by the Newton-Raphson method (see Shiba 2001 for
detailed numerical procedures). It is well known that a laminar plane Couette flow is lin-
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FIGURE 1. The dimensionless wall shear rate for Nagata's solution versus the spanwise period
L=. The Reynolds number Re and the streamwise period L= are fixed as Re = 400 and L= = 21rh.

early stable for all finite Reynolds numbers. Nagata's upper and lower solution branches
appear subcritically at Re _ 125 from saddle-node bifurcation, where Re = Uh/_ is the

Reynolds number, U and h denoting half the difference of the two wall velocities and half

the wall separation, respectively. In general, the upper-branch (or lower-branch) solutions

generated from the bifurcation have a larger (or smaller) deviation from a laminar state.

As in Ehrenstein & Koch (1991), the flow is decomposed into a laminar part and a

deviation from it, and then the latter is obtained numerically by solving steady nonlinear

equations for the streamwise velocity uo (y) averaged over a plane parallel to the wall, for

the wall-normal vorticity _y(x, y, z), and for the Laplacian of the wall-normal velocity,

¢ = V_v(x, y, z). The solutions are assumed to be spatially periodic in the wall-parallel

directions, and they are expressed as double Fourier expansions in these two directions.

In the expansion with respect to the wall-normal dimensionless coordinate y" (= y/h),

where the plane y = 0 is now the midplane of the channel, we use the two kinds of

modified Chebychev polynomials as

(1 - y.2) T_(y*) for uo and _ (2.3)

and

(1 - y.2)2 Tl(y*) for v, (2.4)

respectively, to satisfy the wall boundary conditions

Ov

uo=_--v= 0y=0 aty" =+l, (2.5)

where Tl(y*) is the/th-order Chebychev polinomial. The collocation method with grid

points y* = cos[mlr/(M+l)], (m = 1,2,..-, M) is used to construct a system of quadratic

equations for the Fourier-Chebychev-Fourier coefficients, which is solved by the Newton-

Raphson method. The arc-length method (see Ehrenstein & Koch 1991) is applied to
track the nonlinear solutions, with the parameters, i.e. Re, L= or Lz, being changed

independently.

The Nagata solutions are known to have two spatial symmetries (see Nagata 1986,

1988, 1990): (i) the reflection with respect to the plane of z = 0 and a streamwise shift

by a half period L=/2

(u,v,w)(x,y,z) = (u,v,-w)(x + L=/2, y,-z), (2.6)
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L+_ L + Re_ '+ '+Urnax Vrnax

217 76.2 34.6 2.79 0.887
223 89.8 35.4 2.84 0.892
220 99.9 35.0 2.84 0.840
220 110 35.0 2.85 0.768
221 121 35.2 2.97 0.674
219 132 34.9 3.42 0.534

TABLE 2. Parameters of Nagata's upper-branch solutions represented by • in figure 1.
Re_ = u,h/v is the Reynolds number or half the wall separation in wall units.

t+

151 53.5 24.1 3.20 0.302
148 58.9 23.6 3.70 0.230
156 66.7 23.6 4.16 0.194
149 74.0 23.7 4.50 0.179
151 83.3 24.1 4.85 0.170
155 92.2 24.6 5.09 0.169

TABLE 3. Same as table 2 but for the lower-branch solutions represented by • in figure 1.

+ L,+ + -'--+ -"--+7.1,max V max

190 130 34.4 188 3.18 0.741
154 105 27.9 299 4.62 0.231

TABLE 4. Parameters of two kinds of periodic solutions (Kawahara & Kida 2001). T + stands
_.-"_-+ _ ,+ ,+for the time period of the solution, u ,_az and v ma_ are the time averages of u,,_ and v,_x.

and (ii) the 180 ° rotation around the line x = y = 0 and a spanwise shift by a half period

Lz/2

(u,v,w)(x,y,z) = (-u,-v,w)(-x,-y,z + Lz/2), (2.7)

where u and w are the streamwise and the spanwise components of the velocity deviation.

Note that these two symmetries were observed to appear approximately in minima] plane

Couette turbulence (Hamilton, Kim & Waleffe 1995) as well, without being imposed on

the flow (Coughlin, Jim_nez & Moser 1994; Kawahara & Kida 2001). These symmetries

have also been imposed on the time-periodic solutions below.

Figure 1 shows the dimensionless wall shear rate, duo/dyly=±h/(U/h ) + 1, averaged
over the wall as a function of the spanwise period of the solution, Lz. The symmetry

(2.7) implies that the averaged velocity gradients on the lower and upper walls are equal
to each other. The Reynolds number Re and the streamwise period Lz have been fixed as

Re = 400 and Lx = 27rh. Both the upper and the lower branches have a higher shear rate

compared with that for a laminar state, i.e. unity. The computational parameters for the

upper and the lower solutions, which will be compared with the autonomous and periodic
solutions or with the turbulent solutions, are summarized in tables 2 and 3 respectively.

The two kinds of time-periodic solutions for a plane Couette flow are taken from Kawa-
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FIGURE 2. The dimensionless wall shear rate for the Nagata's solution versus the relatively
small streamwise period L=. The Reynolds number Re and the spanwise period Lz are fixed as
Re = 400 and Lz = 1.2_h. The dashed vertical line denotes the period of L= = 1.755_rh, for
which the two kinds of time-periodic solutions were found by Kawahara & Kida (2001) at the
same values of Re and L=. The upper long (or lower short) thick line on the vertical represents
the wall shear variation of the time-periodic solution with the period T+ = 188 (or T + = 299).

hara & Kida (2001) to be compared with the other solutions. Their periodic solutions

have been obtained for the conditions Re = 400, L= = 1.755=h and Lz = 1.21rh, which

are essentially the same as those of minimal plane Couette turbulence in Hamilton, Kim

& Waleffe (1995). The parameters for the periodic solutions are summarized in table 4.

As can be seen from figure 2, there is no Nagata steady solution at the conditions, for

which time-periodic solutions were observed in Kawahara & Kida (2001). The wall shear

rate of the periodic solution with period T + = 188 is roughly the same as that of Nagata's

upper branch. The other periodic solution with T+ = 299 has a lower wall shear rate,
close to Nagata's lower branch. Hereafter, the former solution is referred to as the 'up-

per' periodic solution, while the latter is called the 'lower' periodic solution. The upper

solution exhibits a full regeneration cycle of near-wall coherent structures, and also well

represents the low-order turbulence statistics of a minimal plane Couette flow (Kawahara

& Kida 2001).

3. Classification of solutions

In this section, we compare the equilibrium and periodic solutions described in the

preceding section. The streamwise and wall-normal rms velocities, u' and v', for the upper

solutions as well as for the autonomous solutions, are shown in figure 3, while those for

the lower solutions are shown in figure 4. It can be seen that the rms velocities of the

autonomous solution, Nagata's upper-branch solution and the upper-periodic solution

are roughly consistent, but that they are very different from the lower-branch and lower-

periodic solutions. The profiles of the autonomous and upper-periodic solutions in figure 3

seem to be qualitatively similar to those of near-wall turbulence, and the similarity will be
discussed in the next section. The lower solutions, on the other hand, have stronger u '+

and weaker v '+ , which implies that they are dominated by streaks rather than streamwise

vortices and so are in a relatively quiescent state.

Since significant differences in the rms velocities are observed between the solutions, we
next use the maximum rms velocities in the streamwise and wall-normal directions, 'Urnaz

and 'Vrnaz , to characterize them. It turns out from figure 5 that all the solutions are clas-
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FIGURE 3. Rms velocities for the autonomous solutions, Nagata's upper branch, and the upper

cycleversusy+. (a)The streamwisecomponent. (b)The wall-normalcomponent. ---- ,the

autonomous solutionsfrom tableI;-- ,Nagata'supper-branchsolutionsfrom table2;• ,
the upper cycle with the period T + = 188 from table 4.
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sifted into two families. One of them is the vortex-dominated family, which is represented

by larger vma_'+ , and is composed of the autonomous, upper-branch and upper-periodic

solutions. The other is the streak-dominated family, which is composed of Nagata's lower

branch and the lower periodic solution. The same separation into families is found if we

replace v_a x by the maximum of the streamwise rms vorticity w_ (not shown here). This

means that the former family is actually dominated by streamwise vortices. In this figure

we have added two of Nagata's solutions for different values of Re and L=. They have

been tracked by changing Lz for fixed Re and L= in the same way as in figure 1. The

open circles and diamonds represent the upper and lower branches for Re = 600 and

Lx = 27rh. The solid circles and diamonds represent the upper and lower branches for

Re = 400 and L_ = 37rh. Since the separation into two branches persists even when the

parameters are changed, we can assume that it is an intrinsic property of the solution.
The simple solutions discussed here have distinct natures, e.g. either (i) autonomous

or Couette flow, and (ii) steady, traveling-wave, or periodic. It is remarkable that all the

solutions are classified into just two families.

Let us further compare the autonomous and upper-cycle solutions, which have been

classified into the same family. Figure 6 shows these solutions on the plane whose coor-

dinates are the total turbulent production and dissipation rates, P+ and D +, which are

respectively defined as the integrals of the turbulent production and dissipation with re-

spect to y+ up to y+ = h + (up to 5+ in the autonomous case). Note that the autonomous

solutions, though in equilibrium, are not in energy balance because of the presence of

explicit filtering (2.1). Since the filter is responsible for part of the energy dissipation, the

production exceeds the dissipation in the autonomous flows themselves. The autonomous

solutions are roughly aligned along the periodic orbit in the production phase in which

P+ > D +. In figure 7, we compare the spanwise rms velocity for the autonomous solu-

tions with that averaged over one whole period for the periodic solution, as well as with

that averaged only in the production (or dissipation) phase, P+ > D + (or P+ < D+). It

is clear that the autonomous solutions are closer to the time average of the upper cycle
solution in the production phase than to the average over the whole period. The striking

difference in w' between the production and the dissipation phases is also quite interest-

ing. No significant difference in the other two components of rms velocities is observed.
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FIGURE 4. Rms velocities for Nagata's lower branch and the lower cycle against y+. (a) The

streamwise component. (b) The wall-normal component. _, Nagata's lower-branch solutions

from table 2; • , the lower cycle with the period T + = 299 from table 4.
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FIGURE 5. Classification into upper and lower solutions in terms of the maximum streamwise
' ' The solid large and small loops represent theand wall-normal rms velocities, Urnaz and vrnaz.

upper and lower periodic solutions with T + = 188 and 299 in table 4, respectively. The dashed

loop represents the Nagata steady solution for Re = 400 and L= = 2_rh in figure 1. A, the

autonomous solutions from table 1; •, Nagata's upper-branch solutions from table 2; •, Nagata's

upper-branch solutions for Re = 400 and L= = 3_rh; o , Nagata's upper-branch solutions for

Re = 600 and L= = 27rh. • , Nagata's lower-branch solutions from table 3; ¢ , Nagata's

upper-branch solutions for Re = 400 and L= = 31rh; <> , Nagata's lower-branch solutions for

Re = 600 and L= = 2_rh.

Enhancement of the spanwise fluid motion is considered to be closely related with the

sinuous instability of streaks (Kawahara, Jim_nez, Uhlmann & Pinelli 2002).
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FIGURE 6. Total turbulent production and dissipation rates for the autonomous and the upper
periodic solutions. • , autonomous solutions from table 1; --.--, the upper periodic solution
with T+ = 188 in table 4. The production and dissipation are in balance on the dashed diagonal.
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FIGURE 7. Spanwise rms velocities for the autonomous and the upper periodic solutions against
y+. ---- , the autonomous solutions from table 1; ----- , the whole time average of the upper
periodic solution with T+ = 188 in table 4. _ , the time average of the upper periodic
solution in a production phase P+ > D+; ........ , the time average of the upper periodic
solution in a dissipation phase P+ < D +.

4. Comparison with turbulent flows

After the classification in the previous section of the different simple solutions of the

Navier-Stokes equations, it is interesting to inquire about their relation with fully devel-

oped turbulence in channels with large computational boxes (del Alamo & Jim_nez 2001).

We will use for that purpose the same two quantities u_ax, V'_a x used above for the char-

acterization of the simple solutions although, to make them comparable in both cases,

we will refer them to boxes of comparable sizes. Thus, when computing the statistics of
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FIGURE 8. Comparison between turbulent and simple solutions. (a) Poiseuille flows. _ ,
full channels from del /klamo & Jim_nez (2001). The statistics are taken over sub-boxes of size
L + x L + _ 380 x 180. Re_ = 550, 180, decreasing from top to bottom; .... , minimal channels
in boxes of approximately the same size as above. From top to bottom, Re_ = 180, 120, 85;
........ , Couette flows from (b), included for comparison; • , autonomous permanent waves from

table 1. (b) Couette flows. ---- , minimal flows, L + x L + _ 350 x 150. From top to bottom,

Re_ = 115, 34. -....... , Poiseuille flows in (a); --.-- , the upper cycle with T + = 188 from
table 4; _A--, the Nagata's upper branch from table 2.

full-sized turbulent channels, which have boxes of the order of L + × L + _ 10,000 × 5,000,

we will divide each wall of the large box into sub-boxes of size comparable to the wave-

lengths of the simple solutions, and the rms velocity fluctuations computed over those

sub-boxes are used for the comparison.

Each sub-box is characterized by its maximum rms intensities, and the values for dif-

ferent sub-boxes and for different times are summarized as a joint probability density

function of the two quantities. Figure 8 shows probability isolines containing 75% of

the samples for each flow, compared with the single points characterizing the instanta-

neous values of the different upper-branch solutions. It is clear that the p.d.f.s of the

full flows converge towards the simple waves as the Reynolds number decreases. Both

in the Poiseuille flows in figure 8(a) and in the Couette flows in figure 8(b), the lowest

Reynolds number used for the turbulent simulations is very close to the minimum value
below which turbulence cannot be sustained.

It is interesting that full-sized and minimal Poiseuille flows have slightly different be-

haviour as the Reynolds number increases, although this may not be too significant,

because the statistics are fairly sensitive to the size of the box over which they are

compiled. The scatter in ureaz' increases markedly as the box in made narrower, clearly

because the samples are taken over smaller pieces of the same large streaks. The same

probably because the scale of the v features is alwaysvariability does not extend to vmaz,

smaller than the sampling boxes being used (del Alamo & Jim_nez 2001). Note also that

Couette and Poiseuille flows diverge at low Reynolds numbers, which is not surprising

since the interactions between the two walls are substantial in that limit, but that their

statistics tend to converge at higher Reynolds numbers.

Since v _ peaks fairly far from the wall, the maxima in the higher-Reynolds number
channel in figure 8(a) were computed only for the layer below y+ = 180, despite which

the maximum wall-normal velocity increases with Re_.. Similar results are obtained by

using w_, instead of v', to characterize the strength of the vortices, which supports the
conclusion that the vortices get stronger. This is probably independent of any interaction
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with the external flow, since Jimdnez & Pinelli (1999) observed that the peak vorticity

fluctuations in minimal channels increased with Reynolds numbers in the range Re_ =
200 - 600, even if there was essentially no outer flow in those cases.

Note that lower-branch solutions have not been included in figure 8. Although Kawa-

hara & Kida (2001) found that minimal Couette flow occasionally visits solutions in that

branch and then becomes strongly turbulent, the same could not be confirmed here for

other cases, and may be a peculiarity of flows on the verge of relaminarization.

5. Conclusions

We have shown that severalknown simple solutionsto the Navier-Stokes equations,

particularlythose which correspond to permanent waves and to limit cycles in au-

tonomous flows(Jimdnez & Simens 2001),and Couette flows,can be classifiedintoupper-

and lower-branchfamilieswhich agree fairlywellwith the corresponding branches of the

Couette waves found by Nagata (1990).The velocitystatisticswithin each branch are

reasonably consistent,even though the base flowsare quitedifferent.

Although Kawahara & Kida (2001)found that minimal Couette turbulence intermit-

tentlyvisitsthe lower-branchsolutions,the same does not seem to be true in flows at

somewhat higher Reynolds numbers, or in largerboxes, although occasionalexcursions

cannot be ruled out. This could be interpretedto mean that the lower branch, which

should be the saddlepoint which Toh & Itano (1999),Itano & Toh (2001)and Kawahara

& Kida (2001)found to be involvedinthe transitionto fullyturbulentstates,represents

an occasionaltendency ofminimal turbulenceto relaminarizeand retransition,but that

these eventsare not allowed at higher Reynolds numbers, or in largerboxes, because of

the higher levelof ambient perturbations.

Fully-turbulentflows,when analyzed over sub-boxes of sizeconsistentwith the wave-

lengthsofthe permanent waves, have been shown to tend tothe upper-branch solutions

as the Reynolds number decreases,both inPoiseuilleand in Couette flows.A reasonable

interpretationisthereforethat the permanent waves and cyclesin that branch embody

the nonlinearregenerationcycleofnear-wallturbulence that has been describedin the
past by many investigators.

Waleffe(1998,2001) alsoreported the structuralsimilaritiesof hisupper-branch equi-

libriumstateswith near-wallturbulence,although he presentedno statistics.Because we

were not able to reproduce his solutionswithin the time ofthe summer school,they are

not included inthe presentcomparison.
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MHD turbulence in the presence of a strong
magnetic field

By S. C. Kassinos, B. Knaepen AND D. Carati

We consider the case of homogeneous turbulence in a conducting fluid that is exposed to

a uniform external magnetic field. When the magnetic Reynolds number is vanishingiy

small (Rm <(<_1), the induced magnetic fluctuations are much weaker than the applied
field, and in addition, their characteristic time scale based on their diffusion is much

shorter than the eddy turnover time. In this case, it is customary to simplify the governing
MHD equations using what is known as the quasi-static (QS) approximation. In practice,

the QS approximation is often used even when Rm is moderately high, where its validity
is unclear. Here we introduce a new approximation, which we have called the Quasi-

Linear (QL) approximation, which is designed to be valid for both small and moderate

Rm. The accuracy of both approximations is systematically studied in a series of direct

numerical simulations (DNS) of decaying MHD turbulence, in which their predictions

are compared with those of the full system of MHD equations. Both approximations are

satisfactory for Rm < 1, but the QL approximation is clearly shown to be much more

accurate for moderately high values, 1 £ Rm < 10.

1. Introduction

1.1. Motivation and objectives

The interaction of the turbulence in a conducting fluid with an externally-applied mag-

netic field at low magnetic Reynolds numbers is important in both Magnetohydrody-

namic (MHD) and Magnetogasdynamic (MGD) applications. MHD applications include
the use of electromagnetic brakes to control flow unsteadiness during continuous steel

casting, and flow-control schemes for submarines. MGD applications involve advanced
flow control and propulsion schemes for hypersonic vehicles. In MGD applications, fluid

conductivity arises due to thermal ionization of the incoming flow, which in addition can
be seeded if desired.

CFD codes used for the prediction of MHD and MGD flows rely on simple turbulence

models, like k-e models, with additional ad hoc modifications to account for the effects

of the magnetic field. This approach neglects the important dynamical role that the

structure of the turbulence plays in the interaction between the turbulence and the

applied magnetic field. Unfortunately, simple closures using ad hoc MHD modifications

cannot account for structural effects and, as a result, they tend to be flow-specific, lacking

any degree of generality.

Structure-Based Models (SBM) are by construction able to account for the dynamical

effects of the energy-containing turbulence structure. Preliminary work in the case of

homogeneous unstrained MHD turbulence (Kassinos & Reynolds 1999), has shown that

SBM are well suited for use in the prediction of MHD and MGD applications. The task

of developing turbulence SBM or other closures for MHD and MGD applications can be

simplified by taking advantage of approximations to the governing equations that are

valid for the flow regimes that are typically encountered in technological applications.
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The objective of this work is to explore two different approximations that can be

used for flow regimes of relevance to MHD and MGD applications. For vanishingly small

magnetic Reynolds numbers (Rrn <:< 1), the induced magnetic fluctuations are much
weaker than the applied field and their characteristic time scale, based on their diffusion,

is much shorter than the eddy turnover time. A classical approximation for decaying MHD
turbulence at low Rm is the Quasi-Static (QS) approximation. As recalled in section 3.1,

in this approximation, the induced magnetic field fluctuations become a linear function

of the velocity filed. In practice, the QS approximation is often used for the prediction of

flows even where 1 < Rm < 10, and therefore here we seek to establish the exact range of
validity of the QS approximation. In section 4.1, we also introduce a new approximation,

which we have called the Quasi-Linear approximation (QL). The QL approximation is

designed to be valid even when the Rein is moderately high. Thus, we seek to establish

the range of validity of the QL approximation and also to compare the relative accuracy

of the two approximations.

We start by discussing the relevant dimensionless parameters that characterize MHD

and MGD flows in greater detail. In section 3.1 we introduce the governing equations
and the simplifications associated with the QS approximation. The numerical code and

initial conditions used for the numerical experiments are described in section 3.2, while

section 3.3 is devoted to a discussion of the results pertaining to the QS approximation.

This is followed in section 4.1 by a detailed description of the QL approximation and

in section 4.2 by the description of its predictions. A concluding summary is given in
section 5.

2. Dimensionless parameters

The effects of a uniform magnetic field applied to unstrained homogeneous turbulence
in an electrically conductive fluid are characterized by two dimensionless parameters, the

first being the magnetic Reynolds number

vL = (v)(L 2.R :7 Z 7 -7. (2.1)

Here v is the r.m.s, fluctuating velocity

v = v/-_.i/3, R_j = uiuj, (2.2)

where ui is the fluctuating velocity, and L is the integral length scale. _? is the magnetic

diffusivity

= 1/(a#') (2.3)

where a is the electric conductivity of the fluid, and #* is the fluid magnetic permeability

(here we use #* for the magnetic permeability and reserve # for the dynamic viscosity).

Thus the magnetic Reynolds number represents the ratio of the characteristic time scale

for diffusion of the magnetic field to the time scale of the turbulence. In the case of

vanishingly small Rrn, the distortion of the magnetic field lines by the fluid turbulence is

sufficiently small that the induced magnetic fluctuations b around the mean (imposed)

magnetic field B are also small.

One can also define a magnetic Prandtl number representing the ratio of Rrn to the
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hydrodynamic Reynolds number ReL

u Rrn vL
]/Urn -_ -- , Re L = --. (2.4)

77 ReL u

The second relevant dimensionless parameter is the magnetic-interaction number (or
Stuart number),

aBeL T
iv =_ - (2.5)

pv Trn

where B is the magnitude of the magnetic field and p is the fluid density. N represents

the ratio of the large-eddy turnover time r to the Joule time 7-rn, i.e. the characteris-

tic time scale for dissipation of turbulent kinetic energy by the action of the Lorentz

force. N parametrizes the ability of an imposed magnetic field to drive the turbulence

to a two-dimensional three-component state. Under the continuous action of the Lorentz

force, energy becomes increasingly concentrated in modes independent of the coordinate

direction aligned with B. As a two-dimensional state is approached, Joule dissipation

decreases because fewer and fewer modes with gradients in the direction of B are left
available. In addition, the tendency towards two-dimensionality and anisotropy is contin-

uously opposed by non-linear angular energy transfer from modes perpendicular to B to

other modes, which tends to restore isotropy. If N is larger than some critical value Arc,

the Lorentz force is able to drive the turbulence to a state of complete two-dimensionality.

For smaller N, the Joule dissipation is balanced by non-linear transfer before a complete

two-dimensionality is reached. For very small N (N _< 1), the anisotropy induced by the

Joule dissipation is negligible. Here we consider N in the range 1 - 50.

In MGD applications relying on thermal ionization without artificial flow seeding, the

magnetic Reynolds number ranges from Rm "_ 10 -3 to Rm _" 5 depending on the vehicle

speed. The magnetic-interaction or Stuart number is typically of order unity.

3. The Quasi-Static approximation

3.1. Equations and assumptions

If the external magnetic field B_ xt is explicitly separated from the fluctuations b_, the

MHD equations can be written as

1
--(R_._t + bj)Oj(B_ zt + bi) + uAui, (3.1)

OrB'St + b,) = -ujOj(B_ _t + bi) + (S; _t + bj)Ojui + _A(B_ _t + bi), (3.2)tk i

where p is the sum of the kinematic and magnetic pressures, u is the kinematic viscosity,
p is the fluid density, #* is the magnetic permeability and _ is the magnetic resistivity.

Since here we only consider homogeneous and stationary external magnetic fields, (3.1)

and (3.2) reduce to

1 1
--_e.xtO._. + uAui, (3.3)

atbi = -ujajb, + bjaju, + B_=tOju, + _?Ab,. (3.4)

For flows at low magnetic Reynolds number, (3.4) can be simplified considerably (see

e.g. Roberts 1967). Indeed, by definition, the limit /_ << 1 describes flows for which
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non-linear terms resulting from magnetic fluctuations are negligible when compared to
the dissipative term in (3.4). This is easily seen by adopting the traditional scalings,

vb vb r_b
]]ujO_b,]] = Z' ]]bjOju,]] = --_, ]l_Abil] = -_, (3.5)

where b = v_gbibi, and noting that

Rm- vL _ [lugjbi[I [[b303ui{J (3.6)
n II_Abiil HT?AbiH "

In place of (3.4) we thus have, in the limit R,_ << 1,

Otbi = _j _ui + 7?Abe. (3.7)

The so-called quasi-static (QS) approximation (Roberts 1967) is obtained by further
assuming that Otbi _, 0 in (3.7). To understand how this comes about, let us consider the

time scales of the two terms on the right-hand side of (3.7). Since B ext is independent
of time, the time scale of Next,q_ _,jui is T = L/v, while the time scale of the diffusion term
can be identified with the damping time 7-* = Le/_?. The ratio of these two time scales
is then

T*
7 = rim, (a.s)

indicating that at low magnetic Reynolds number, diffusion time is much smaller than

large-eddy turnover time. This justifies the assumption Otbi _ 0 since the magnetic

fluctuations then adapt instantaneously to the slowly varying velocity field and reach

their asymptotic values for which Otb_ ,_ 0 (see section 4.1 for more details). In the QS
approximation, we thus have

z?Abi r, ext ,,=-gj aju,. (3.9)

Using a Fourier representation for u_ and bi, this equation is readily solved and yields

bi(k, t) = i (B_'tkj) ui(k, t), (3.10)
r/k 2

where we have defined

udk, t) = _-_ui(x,t)e -ik'x, bi(k,t) = _bi(x,t)e -ik':. (3.11)

Since bi is now expressed completely in terms of ui, the evolution equation for the velocity

field can be explicitly closed. In Fourier representation one gets,

(B ext • k):
Otui(k,t) = -Oip'(k,t) - [ujOjui](k,t) - a ui(k,t) - uk2ui(k,t), (3.12)

pk 2

where p' = p/p (consistently with the small magnetic fluctuations assumption, the

second-order term bjOjbi does not appear in (3.12)).

To summarize, two simplifications are needed in order to reach (3.12). The first consists

in neglecting the non-linear terms ujOjbi and bjO_bi in (3.4). The second is obtained by

discarding the time derivative of bi in (3.7). These two simplifications are consequences
of the assumption Rm << 1 and one should thus expect them to break down when the

magnetic Reynolds number is increased. In the next sections, we test the QS approxima-

tion by comparing its predictions to those obtained using the full MHD equations (3.3)

and (3.4).
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3.2. Numerical code and initial condition

To test the range of validity of the QS approximation, we have used two different pseudo-

spectral codes. The first one simulates the full MHD equations (3.3) and (3.4), while the

second one simulates (3.12). All the runs presented here have a resolution of 1283 cube

Fourier modes in a (27r) 3 computational domain.

The initial condition for the velocity field is common to both codes. The field is initial-

ized in Fourier space and the mode amplitudes are set to match the spectra (see Rogallo
1981 for details),

E(k) = 16 v° k 4 exp(-2k2/k,2), (3.13)
kp 5

where we have arbitrarily set v0 = 1 and kp = 3. In order to let the higher-order statistics
develop, the flow is then evolved (without any external magnetic field) until the skewness

reaches its peak value. At that time, hereafter referred to as to, the external magnetic
field is switched on.

For the full MHD case, an initial condition for b, has to be chosen at t = to. Here we

have made the choice b,(to) = O. In other words, our simulations describe the response

of an initially non-magnetized turbulent conductive fluid to the application of a strong
magnetic field. The corresponding completely-linearized problem has been described in

detail in Moffatt (1967). For the QS approximation case, an initial condition for bi is

of course not required since the equation for the velocity field is completely closed. In

this case, the initial condition is in fact implicitly given by (3.10) at t = to. One could

then argue that the two codes do not simulate the same flow since they do not have

the same initial condition for the magnetic field. However, the independence of the QS

approximation of the initial magnetic field is precisely one aspect that is interesting to

test. If the flow behaves according to the QS approximation, the magnetic field (using

full MHD) should very rapidly converge to the value given by (3.10).

The only free parameters that remain to be specified are the kinematic viscosity v,

magnetic diffusivity _ and external 'magnetic field' strength BeXt/vr_'p (by convention
we chose the magnetic field to be orientated in the z direction). The kinematic viscosity
is u = 0.003 for all the runs and the rest of the parameters are specified in table 1,

along with the corresponding values of the interaction number and magnetic Reynolds

number at t = to. These last two quantities are calculated using (2.1) and (2.5), taking

into account the fact that at t = to (i. e. at the end of the initial decay during which

B *xt = 0), we have v(to) = 0.984 and L(to) = 0.787.

All the runs can be grouped according to the initial value of the Stuart number. For

the first five runs we have N(to) = 1; for the next five N(to) = 10 and finally for runs

11-15 we have N(to) = 50.

3.3. Results

In this section we present some results obtained by performing the simulations detailed

in section 3.2.

3.3.1. Kinetic energy decay

In figure 1 we present the time evolution of the normalized kinetic energy,

1 1

EK -- EK(O) / dx_ui(x)ui(x). (3.14)
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Se_

1 7.75 3.11 1 0.1

2 .387 .696 1 2.0

3 .258 .568 1 3.0

4 .155 .440 1 5.0

I 5 .0775 .311 1 10.0

I 6 7.75 9.84 10 0.1

1_l.3s7 2.2ol _o I 2.0

8 .258 1.80 10 3.0

9 .155 1.39 10 5.0

10 .0775 .984 10 10.0

11 7.75 22.0 50 0.1

12 .387 4.92 50 2.0

13 .258 4.02 50 3.0

14 .155 3.11 50 5.0

15 .0775 2.20 50 10.0

TABLE 1. Summary of the parameters for the different runs performed

From (3.12), it is clear that the behavior of ui in the QS approximation does not depend

on the magnetic Reynolds number but only on the Stuart number (all other parameters

being constant). The reason for this is of course that the QS approximation corresponds to

the implicit limit Rm _ 0. As expected, in each set of runs at fixed N(to) the agreement

between full MHD and the QS approximation gets better as the Reynolds decreases. At

Rm = 0.1 the agreement is nearly perfect. At intermediate values, Rm -- 2 and above,

there is a quite severe discrepancy: the rate at which the QS approximation dissipates

kinetic energy is too high.

It is also interesting to note that the difference between full MHD and the quasi-static

approximation at higher magnetic Reynolds numbers is not very sensitive to the value
of the Stuart number.
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3.3.2. Magnetic energy decay

The difference between full MHD and the QS approximation can result only from the

fact that the quasi-static approximation predicts the magnetic fluctuations incorrectly.
In order to assess this, we can define two normalized magnetic energies for each full-MHD
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run: one obtained from the velocity field through (3.10),

ext 2

1 [ -al(B; ks)EM1
EMI(tO) _ dk T]2k 4

lu,(k, t)l e , (3.15)

and one computed directly from the magnetic fluctuations.

1

EM2- Era(to) f dk_ Ib'(k't)12" (3.16)

Ideally, we should have EM1 = EM2.

The comparison between (3.15) and (3.16) for different runs is displayed in figure 2. We

observe that at magnetic Reynolds number Rm = 0.1, (3.15) and (3.16) predict similar

values soon after the field is switched on. This indicates that, in a very short time, the

magnetic fluctuations forget their initial state and 'align' with the predictions of the

QS approximation (3.10). This is entirely in the spirit of the assumption that at low

magnetic Reynolds number the time derivative in (3.7) can be neglected (or rather that

it is significant only during a very short transient time). At higher values of the magnetic
Reynolds number the transient time becomes longer and the 'true' energy content of the
fluctuations never reaches values comparable to those predicted by the QS expression.

The same conclusions hold for the runs at Stuart number N = 50 (not displayed).

As one expects, this discussion indicates that neglecting the time derivative of b in the

induction equation is problematic when the magnetic Reynolds number is increased. In

the next section we study this question in more detail.

4. The Quasi-Linear approximation

4.1. Governing equations

As was recalled in section 3.1, the final quasi-static induction equation is obtained by

dropping the time derivative of the magnetic field in (3.7). The discussion of the previous

section suggests that keeping this time derivative might be crucial when the magnetic
Reynolds number is increased.

We thus introduce an intermediate approximation which is obtained by considering

the following simplified MHD equations:

1
OtUi _-" --Oi(p/ p) --UjOjUi "_- -- _e'xt _'h" + V AUi, (4.1)

O_bi= B_ta ua _ i + _?Abi. (4.2)

We call this approximation the quasi-linear (QL) approximation since we discard only

the non-linear terms involving the magnetic field and keep the non-linear convective term

in the velocity equation.

If Otbi is neglected in (4.2) one immediately recovers the quasi-static approximation.

In fact, (4.2) is nothing else than a 'heat' equation for the magnetic field with a source

term given by B_XtOjui. In Fourier space the solution of this equation is easily obtained
and reads,

fbi(k, t) = bi(k, O)e -_k=t + i drkjB_Xtui(k, r)e -nk2(t-r). (4.3)

From the first term on the right-hand side of (4.3), we see that the initial condition

for bi gets damped more rapidly with increasing magnetic diffusivity (if v and L are
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I ui(k,_)
I

I

I

e-nk2(_-_)

0 t _-

FIGURE 3. Evaluation of b,(k, t) in the quasi-linear approximation.

constant this is equivalent to a decrease in the magnetic Reynolds number). Note that
with the initial condition we have chosen for the magnetic field, i.e. bi(0) -- 0, this first

term vanishes. At high magnetic diffusivity the integral in (4.3) converges to (3.10) and

the QS approximation holds. More explicitly, we have the situation depicted in figure
• . . 2

3. The interval between the dashed hnes represents the support m which exp -vk (t-y)

is significant and thus where there is some contribution to the integral of (4.3). As

increases, this interval gets smaller, and u_(k, t) may be assumed constant in that short

period of time. The integration is then immediate and one gets (3.10). Thus, the time

history of ui(k, t) plays a role only when _? is small, in which case the exponential has a

wider support.

4.2. Results

In order to compare the QL approximation with full MHD, we have performed the same

numerical simulations as described in section 3, but this time using (4.1) and (4.2) instead

of the QS approximation. The only points we mention here are first, that (4.2) needs an

initial condition, so to be consistent with the full MHD case we have set b_(0) = 0; and
secondly, we have increased the magnetic Reynolds number as far as Rm = 10 for the

results presented in this section.

4.2.1. Kinetic energy decay

In figure 4 we present the time history of the kinetic energy (as defined by (3.14))

obtained from both full MHD and the QL approximation. As is obvious from the graphs,

the quasi-linear theory predicts this diagnostic extremely well, even at magnetic Reynolds
number up to Rrn = 10. The improvement over the quasi-static approximation (also

shown in the graphs) is evident.

4.2.2. Magnetic energy decay

Figure 5 represents the time evolution of the energy of the magnetic fluctuations (de-

fined by (3.16) without the normalization factor) for various values of the Stuart number

and magnetic Reynolds number. Each graph contains one curve for the full MHD case

and another for the QL approximation case. The agreement is excellent at magnetic

Reynolds number Rrn = 2 and degrades only slightly for higher values. It is interesting
to note that, as the Stuart number is increased, the agreement between full MHD and

the QL approximation gets better. As in the case of classical homogeneous sheared flows,
we thus see that the further away from equilibrium the flow is, the better it is described
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by a linear theory. The role of increased shear is played here by the increasing external

magnetic field.

5. Conclusions and future plans

By studying the case of decaying homogeneous MHD turbulence, we have established

that the Quasi-Static (QS) approximation is valid for Rm < 1, but progressively deterio-

rates as Rm is increased beyond 1. The magnetic Stuart number does not seem to have

a strong effect on the accuracy of the QS approximation. That is, at a given Rrn, the
accuracy of the QS approximation is roughly the same for N = 1 as it is for N = 50. The

QL approximation, as we expected when we proposed it during the Summer Program,

performs like the QS approximation for Rm < 1, but has the advantage that it retains
excellent agreement with full MHD for 0 < Rm < 10 at least. It should be noted that

Rm = 10 is the highest value of the magnetic Reynolds number that we tested during
the Summer Program.

In terms of computational costs, the QS approximation is clearly the cheapest of the

three methods used during our study. It has fewer non-linear terms to evaluate, and the

time step needed to advance the flow is governed by the time scale of the velocity field

which, for most industrial cases involving liquid metal, is significantly longer than the

time scale of the underlying magnetic field.

However, as we have demonstrated, the QS approximation becomes inadequate for

conductive flows with moderate magnetic Reynolds numbers such as are, for instance,

encountered in MGD applications involving hypersonic vehicles. We have studied another

approximation, the QL approximation, for use at higher Rm. As with the QS approxi-

mation, this approximation assumes small magnetic fluctuations but it tries to resolve

the time dependence of these fluctuations explicitly. Our numerical simulations indicate

that the QL approximation should be adopted in place of the quasi-static approxima-

tion for flows with a moderate value of the magnetic Reynolds number, since in. those

cases it compares much better with full MHD. In terms of computational cost the QL

approximation does not depart enormously from full MHD, but nevertheless allows a
reasonable gain since fewer non-linear terms need to be evaluated. The appeal of the

QL approximation lies more in the prospect of simpler turbulence models for conductive
flows at moderate magnetic Reynolds number. Indeed, the structure of equations (4.1)

and (4.2) is simpler than that of the full MHD equations. We thus have a strong hope

that devising turbulence models in the framework of the QL approximation should be an

easier task. This question will be examined in the coming months and will undoubtedly

benefit significantly from the work we have produced during this 2002 Summer Program.
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Characteristics of scalar dispersion in
turbulent-channel flow

By Juan C. del ._.lamo t AND Javier Jim6nez :_

The dispersion of a passive scalar by wall turbulence, in the limit of infinite Pecl_t

number, is analyzed using frozen velocity fields from the DNS of del ._lamo & Jim_nez

(2001). The Lagrangian trajectories of fluid particles in these fields are integrated and

used to compute the first- and second-order moments of the distribution of fluid-particle
displacements. It is shown that the largest scales in the flow dominate turbulent diffusion,

and the computed dispersion is in good agreement with measurements in the atmospheric

boundary layer. This agreement can be understood by noting that the lifetimes of the

large structures are much longer than the time scale of the transition from linear to Gaus-

sian particle spreading in the cross-stream plane. Numerical experiments on computing
the Lagrangian trajectories in reference frames moving at different velocities suggest that

this transition is controlled by the difference between the mean streamwise velocity and

the phase speed of the large-scale structures of the cross-stream velocity field. In the

streamwise direction, the effect of the mean shear dominates and produces elongated

scalar patches, with dispersion exponents which are different from the transverse ones.

1. Introduction

The prediction of diffusion characteristics in turbulent shear flows, particularly in those

near walls, is a notoriously difficult problem. While, for example, the width of a contam-

inant plume follows a Gaussian spreading law relatively well in isotropic turbulence, or
even in wall-bounded flows far enough from the source, this is not true closer to the source
(Nokes & Wood 1988), near the wall, or in atmospheric flows. This is an important con-

sideration in many practical applications, such as the prediction of dispersal of pollution
from industrial plants, or of hazardous substances from either accidental or malicious

releases. There are many other problems in which this subject is important, apart from

the ones already mentioned. For instance, the diffusion of odors in the atmosphere is

known to affect the migrational patterns of some insects, and it is not known whether

similar effects occur in other anisotropic flows, such as near-surface ocean turbulence,

where it could influence the rate of decay of the thermal wake of vehicles. The solution

to these problems is typically estimated using empirical laws (Brown et al. 1997), or

computed from semi-empirical models (Hanna et al. 1999). Many of these models are

used for regulatory purposes, and the fact that some of them produce different results

for the same input data is an indication of the difficulty of the problem. This has led
to the development of standardization programs (Olesen 1995) with the purpose of es-

tablishing systematic procedures for the development and testing of dispersion models,

based on compilations of meteorological data from field experiments. However, due to the

inherent difficulty of performing such experiments, the data sets are scarce, the number

t School of Aeronautics UPM, 28040 Madrid, Spain.
:_ Also at School of Aeronautics UPM, 28040 Madrid, Spain.
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Case U,_d_/Ub Spatial Resolution No. of Fields No. of Particles per Field

1 0 full 1 2 × 105
2 0.84 full 1 2 × 105
3 0 A¢, Az > 0.25h 3 2 x 105
4 0.84 A_, At > 0.25 h 3 2 × 105

TABLE 1. Summary of computed cases.

of measured magnitudes is limited, and some of the data sets are of doubtful accuracy
(Olesen 1994).

Since the atmospheric effects are observed over scales of hundreds of meters, and there

are sound theoretical reasons to expect small-scale turbulence to produce Gaussian diffu-
sion at such long distances, it is tempting to conclude that the reason for the anomalous

spreading is the presence of very large anisotropic scales (VLAS) in turbulent wall flows.
Recently we have performed a direct numerical simulation of turbulent channel flow at

moderate Reynolds number, which we believe to be the first which has both a Reynolds

number high enough to observe some scale separation and a computational domain large

enough not to interfere with the dynamics of the largest scales. The present work, which

used flow data from this simulation, is intended to be a first step in using direct numerical

simulation in research on atmospheric dispersion, which might contribute to diminishing

the current experimental uncertainties.

2. Computing dispersion from fi'ozen fields

We will consider the release of a passive scalar into turbulent channel flow in the limit

of infinite Pecl@t number Ubh/D (here Ub is the bulk mean velocity in the channel, h

is the channel half-width, and D is the kinematic diffusivity of the scalar). In that case

the dispersion of the scalar is controlled by the Lagrangian trajectories x of the fluid

elements that transport it, given by

dx

d-_ -- u(x(t), t). (2.1)

The main difficulty of computing the Lagrangian trajectories of fluid particles lies in

knowing the unsteady three-dimensional velocity field u(x, t), which has to be computed

from the continuity and Navier-Stokes equations, leading to a problem much more ex-

pensive than the integration of (2.1) itself. Due to the preliminary nature of this work,

and in order to avoid the computational expense of integrating in time the Lagrangian

trajectories coupled with the velocity field, we have decided to calculate the former using

frozen velocity fields which were already available from the DNS of turbulent channel flow

by del 2_lamo & Jim_nez (2001). This simulation was performed at a Reynolds number

Re_ ---- 550 based on the friction velocity u_ and on the channel half-width h, and its

most important characteristic is that the computational domain is large enough not to

interfere with the largest scales in the flow, which will allow us to study their effect on

the scalar dispersion. The size of the numerical box is Lx x L_ x Lz = 81rh x 2h × 4_rh in

the streamwise, wall-normal and spanwise directions, respectively. In isotropic turbulence

the frozen-field approximation would be reasonable for times much shorter than the char-
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FIGURE 1. --, phase velocity Uc of the large-scale spanwise velocity component as a function
of wall distance. Only structures such that As, Az _>0.25 h are taken into account. ---- , advection
velocity U_dv of the frozen fields.

acteristic lifetime of the eddies, which is proportional to their turnover time. However,

this might not be true in wall turbulence, where the flow features are known to travel

in the streamwise direction with an advection velocity of the order of U_ (Wills, 1964).
This advection velocity, acting on scales of length A, introduces a convective time scale

Tc _ A/Ub which is always shorter that the eddy-turnover time TL _ A/ur. We have
tried to take into account the effect of the mean advection by integrating the Lagrangian

trajectories from the frozen velocity fields in a moving reference frame,

dx

d--_ = u (x(_-) - TVadv, tO). (2.2)

Here u(x, to) is the instantaneous frozen velocity field at t = to, and Uadv = (Uadv, O, O)

is the velocity of the reference frame, which can be interpreted physically as a choice for

the convection or 'advection' velocity of the frozen fields. This choice affects the paths of

fluid particles by modifying their velocities relative to the turbulent structures. In order

to evaluate the effect of the convection velocity of the frozen fields in scalar dispersion,

we have integrated (2.2) for two different values of Uad_. In one case we have chosen

Uadv = 0, while in the other we have set it equal to the representative phase velocity of

the large energetic scales in the flow, which have widths and lengths of the order of or
larger than h (del Alamo & Jim_nez 2001). There are several possible ways to compute
the phase velocity of a flow variable (Wills, 1964; Hussaln & Clark 1981; del Alamo &

Jim_nez 2002): this is the usual definition of convection velocity. Here we have computed

it from the frequency-wavenumber power spectrum P(w, kx, y) as in Wills (1964), where

the phase velocity is defined as the velocity Uc(y) of the moving reference frame for which

the integral time scale

TL(kz,y)= P(-Uckx,kz,y) (2.3)

is a maximum. The frequency-wavenumber power spectrum has been computed using
time histories of velocity fields that were available from the DNS, as was done by Choi
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FIGURE 2. Lagrangian time scale UbTL/h of the spamwise velocity, low-pass filtered in z

(Az > 0.25 h), as a function of the strearnwise wavelength Ax and wall distance y.

& Moin (1990). In the present case, the minimum and maximum frequencies imposed

by the temporal sampling are w,_in = O.14Ub/h and w_x = 71Ub/h. Due to storage
limitations, the time histories of the velocity field were spatially filtered by removing all

the length scales either shorter or narrower than 0.25 h using a Fourier cut-off filter. Figure

1 displays the average phase speed of the low-pass-filtered spanwise-velocity fluctuations
as a function of wall distance, and non-dimensionalized with the bulk mean velocity Ub

(solid line), together with its average across the channel width (dashed line)

1 /o_hUadv = _-_ Uc(y)dy = 0.84Ub.

We have chosen this value as the advection velocity of the frozen fields to be used in

(2.2) for our second set of numerical experiments. Kim & Hussain (1993) computed the

propagation speeds of several turbulent magnitudes, including the velocity components,

in a fully-resolved Re_ = 180 channel. They obtained a phase velocity of w in the near-

wall region approximately equal to 10 u_, which is the same as we have measured in the

low-pass-filtered Rer = 550 channel. In the outer region, however, they obtain convection

velocities approximately 10% higher than we do, and which are closer to the local mean

velocity in their case than in ours. This is not surprising. If we believe that turbulent

structures propagate roughly at the average streamwise velocity that they feel, then the

smaller scales should follow the local mean velocity better than the large ones.

The integral time scale TL in (2.3) measures the characteristic time associated to the
turbulent fluctuations of a given magnitude with a certain length Ax = 2rr/kx at a given

wall-distance, and in a reference frame moving with their local advection velocity. This

magnitude can be interpreted as the Lagrangian time scale seen by an observer following

the mean trajectories of the eddies or, in other words, as the typical lifetime of the

structures of a given length. The Lagrangian time scale of the fluctuations of spanwise

velocity has been represented in figure 2, low-pass filtered in z, as a function of streamwise

wavelength _ and wall distance y. The figure shows that the lifetimes of the large scales

of w can be very long, even comparable to a 'wash-out' or 'through-flow' time 81r h/Ub.
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The values of TL for the other two components of velocity, not shown here, are similar,

and give an a priori estimate of the longest intervals of time for which we can expect

the integration of (2.2) to provide reasonably accurate results. Note that this prediction

would only be true if the large scales controlled the characteristics of dispersion. In order

to analyze their importance in this phenomenon, we have solved (2.2) using both fully-

resolved and low-pass-filtered fields. Overall, we have integrated (2.2) in four different

cases, depending on the choice of Uadv and of the spatial resolution. These cases have
been summarized in table 1, indicating the number of different fields that have been used

for each case, as well as the number of trajectories that have been computed per field.

The time discretization is fourth-order Runge-Kutta, and third-order B-splines have been

used to interpolate the velocity field from the collocation points of the DNS.

3. Results. One-point statistics

The single-particle statistics (xi) and ai = ((zi - (x_))2) 1/2 are of great interest because

they indicate respectively the mean displacement of the center of a typical scalar patch
and its size in the three spatial directions, and also because the latter is often measured as

a function of the former in field experiments, which will allow us to test the approximation

(2.2). These magnitudes are functions of the initial position Y0 of the fluid element, of its
instantaneous position y, and of time. Operating on (2.1) it is possible to obtain (Hunt

1985) that

' f0Zti(y) i(YO) pii(rz -- rUaav,rz,yo,y,t - r)dr, (3.1)

where Pii is the two-point autocorrelation coefficient of the ith-component of the velocity

vector. This magnitude is a function of the strearnwise and spanwise separations rz and

rz, of the initial and instantaneous wall distances, and of time. Note that the frozen-field

approximation is equivalent to setting t- r = 0 in Pii in (3.1). For times and spatial

separations short compared with the corresponding integral scales, the velocity field is

almost fully correlated, Pii _ 1, and Yo ._ y. We then have

ai _ u_(yo)t ~ (x) _. U(yo)t. (3.2)
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On the other hand, for very long temporal and spatial separations-the velocity field is

approximately decorrelated, Pi, _ 0, and the integral on the right-hand side of (3.1)

is roughly independent of its upper limit. We then obtain the Gaussian spreading law

ai ._ ((x)h) 1/2. Both asymptotic behaviors can be observed in figure 3, where the solid

curves show a_ from case 2 as a function of the mean streamwise displacement for ten

equispaced intervals of initial wall distance, from the wall to the center of the channel. In

figure 3(a) we have used the channel half-width as the length scale for az and (x), while

in figure 3(b) we have scaled a_ with w'(yo)t and (x) with U(yo)t. The figures show that

in the short-range limit, the curves representing az are parallel to the dashed line with

logarithmic slope 1, while far away from the release point the curves are roughly parallel

to the dashed line with logarithmic slope 1/2. It can be observed in figure 3(b) that the

scaling (3.2) gives a good collapse of the plume widths corresponding to different release

points, at least at short distances from the source. As expected, the collapse worsens

beyond the turning point in the curves, where their slope starts decreasing and (3.2)

is no longer valid. The characteristic position of this turning point is a measure of the

shortest integral scale involved in the dispersion process.

Equation (3.1) also suggests that the large scales may play an important role in tur-
bulent dispersion. Coherent structures with ,k=/h > 2 and ,kz/h _ 1 - 2 are known to

be correlated right across the channel half-width and to contain a large fraction of the
turbulent kinetic energy (del Alamo & Jim_nez 2002), which suggests that they should

contribute substantially to the right-hand side of (3.1). Figure 4 displays the fraction

F of the total streamwise (solid line), wall-normal (dashed line) and spanwise (dotted

line) contributions to kinetic energy contained in the cut-off filtered fields, as a function

of wall distance. The figure shows that the structures which are longer and wider than
0.25 h contain most of the kinetic-energy contributions of u and w in the outer region of

the flow, and hence could be expected to produce values of ax and az similar to the ones

generated by the full fields. On the other hand, the small scales of v contain relatively

more kinetic energy than those of u and w, suggesting that the value of a u computed
from the filtered fields will be less accurate than that obtained from the full fields. This
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is actually what is observed in figure 5, where we have plotted the three components of

a (from top to bottom ax, az and a_) computed from the full (case 2, solid lines) and
the filtered (case 4, dashed lines) moving frozen DNS fields. In figure 5(a) the patch size

has been averaged for fluid particles released in the near-wall region (y+ < 100), while

in figure 5(b) the average has been performed for initial positions in the outer region

(0.2 < yo/h < 1). The results from the filtered fields compare fairly well with those
from the fully resolved ones in the outer region, while they underestimate the different

components of the r.m.s, in the near-wall region. Note that the agreement between the

different sets of data is better wherever F is higher, and vice versa, supporting the argu-

ment above. These observations agree with the previous work of Armenio et al. (1999),

who performed a similar analysis using time-evolving velocity fields, with application to
LES modeling. The results from the stationary frozen DNS fields (cases 1 and 3), not

shown here, behave in the same way as those we have presented in figure 5.

Note that the standard deviations in figure 5 are always much smaller than (x), im-

plying that the basic motion of the particles is advection by the local mean velocity,

(r_) m U(y0)r, while the spreading around that position is slow.

Figure 5 also shows the relative magnitudes of a along the different axes, which give an
idea of the evolution of the shape of a typical scalar patch with distance from the source.

In the short-range region the three standard deviations grow at the same rate, and a

typical cloud of scalar would initially conserve its original shape as it moved away from

the release point. However, after the cloud has traveled a certain distance it would start

elongating very rapidly, as we can deduce from the increase in the slope of a_ that takes

place at large distances, seen in the figure. Comparison of figures 5(a) and 5(b) indicates

that this phenomenon occurs at a smaller distance from the source for lower values of

yo, and this is more apparent in figure 6. This figure displays the logarithmic slope of

ax (from case 2) as a function of time for ten equispaced intervals of Y0. The slope of

ax increases and reaches a maximum value after times which are longer as the curves

move from the left to the right, corresponding to increasing values of Y0. There are strong

reasons for believing that this effect is due to the mean shear. Scaling the time with 0_U,

as in figure 6(b), collapses the position of the maxima of the different curves, indicating
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that the time scale associated with this phenomenon is the inverse of the mean shear.

Also, in a different numerical experiment, we integrated (2.2) using fields from which we

had removed the mean velocity profile, and the resulting az behaved in the same way

as au and az, without the transient increase in slope. Tennekes & Lumley (1972) show

that in a flow subjected to a uniform shear S, the dispersion in the streamwise direction

increases asymptotically with time as (St) 3/2. This value of the logarithmic slope lies

roughly in the center of the set of different maximum values that we obtained from the

DNS fields, and the scatter in the numerical values might be explained by the fact that

O_U is not uniform in a turbulent channel.

3.1. Comparison with atmospheric data

In section 2 we discussed the a priori validity of our study, obtaining a rough esti-

mate of the longest time intervals for which we could expect reasonable results from

the model problem (2.2). Here we analyze the frozen-turbulence approximation a pos-

teriori, by comparing the computed dispersion characteristics with those measured in

the atmospheric boundary layer. Figure 7 shows the r.m.s, spanwise displacement of

fluid particles as a function of their mean streamwise displacement. The symbols come

from field experiments, most of which were compiled by Nielsen et al. (2002) and Olesen

(1995). The atmospheric data sets are difficult to compare among themselves and with

the numerical results. In general, the experiments consist of releasing a passive tracer
from a smokestack and measuring its near-ground concentration along arcs situated at

increasing distances from the release point. However, neither the releases nor the mea-
surements were performed at the same ground distances in the different experiments;

the monitoring procedures also differed, and so did the topological and meteorological

conditions. Thus, any quantitative conclusion from the observations of figure 7 should
be taken only as a guideline, as is also suggested by the scatter of the data in the figure.

The solid line comes from our numerical results with Uadv = 0.84 Ub, while the dashed

line corresponds to Uaa_ = 0. In both cases we have represented the average values over

the interval of particle positions y/h < 0.1, in order to compare with the atmospheric

near-ground measurements. It should be noted however, that the numerical results con-
tain the contributions from particles released at all possible wall distances across the
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channel, while in the experiments the particles were released at a single distance above
the ground. Even so, the agreement between the numerical and the experimental results

is reasonably good for the results from the moving fields. They somewhat underestimate

az at large streamwise distances, but this could be because the atmospheric data in the

corresponding experiment (the Copenhagen data set, represented by squares) were taken

under unstably-stratified atmospheric conditions, with Monin-Obukhov lengths of the
order of -100 m (Olesen 1994). The results from the stationary fields look qualitatively

correct, but they predict widths smaller than the experimental values. This is under-

standable considering that, since the particles move approximately with the mean flow
velocity, the mean streamwise separation that enters the correlation function in (3.1) is

(rx) _ U(yO)T, SO that the first argument in the autocorrelation coefficient of w is

In the stationary fields, fluid elements separate faster from their initial positions with

respect to the flow structures than in the moving fields, because the difference between

the mean velocity and that of the reference frame is higher in the former than in the

latter. This is true all across the channel, except in the near-wall region where U(yo)

is small. The fluid particles in the stationary 'snapshots' therefore feel a less-correlated

velocity field than in the advecting cases, leading to lower values of az. This argument

is supported by figure 8, which shows the logarithmic slope of az as a function of time

(figure 8 (a)) and as a function of I(rx ) - VUadv I (figure 8(b)), for five equispaced intervals

of Y0 from the wall to the center of the channel. In figure 8(a) the logarithmic slope of

az decreases faster with time for the stationary fields (case 1), plotted with dotted lines,

than for the moving ones (case 2), represented by solid lines. On the other hand, the

curves in figure 8 (b) collapse fairly well, except for the curve on the left-hand side of
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the plot which corresponds to yo/h = 0.2. This position is near the critical layer at
yc = 0.23 h, where U(yc) = U_av. In that region, the mechanism that we have just

described is weaker, and it is reasonable to think that the dispersion is dominated by the

turbulent velocity fluctuations and not by the mean advection. Note that in the case of

the stationary fields the critical layer is located at the walls, which may explain why all

the dotted lines collapse well in figure 8(b). The behavior that we have observed in figure

8 is common to the results from both the fully-resolved and the cut-off filtered fields.

As we have mentioned, the location of the point where the logarithmic slopes of av,_
decay from 1 to their asymptotic value of 1/2 is a measure of the integral scale most

relevant to turbulent dispersion in the cross-stream plane. The fact that the results from

the moving frozen fields, which neglect the time evolution of turbulent structures, are

able to predict the position of the turning region in the data from the field experiments,

can help us identify that integral scale. The large scales of w have lifetimes (see figure 2)

which are approximately 4 times longer than the time scale of to the decay of the slope

of a_ from the moving fields (figure 8(a)). This suggests that the temporal decay of the
turbulent structures may not be important in the decorrelation that the particles feel

as they move in the flow. On the other hand, the streamwise separation corresponding

to the transition of az shown in figure 8(b), is rz _ h. This length is essentially equal
to the position of the peak of the premultiplied energy spectrum of w (del _,lamo &

Jim_nez 2001), which is a measure of its streamwise integral scale. These observations

also apply to the wall-normal direction, for which the experimental information is much

scarcer than for the spanwise direction. They suggest that the transition in av,z may be

caused by the difference between the mean velocity of the flow, and the phase speed of

the velocity components in the cross-stream plane.

4. Conclusions

The results show that the large scales of turbulent channel flow play a very important

role in turbulent dispersion in the outer region of the flow, especially in the streamwise

and spanwise directions. These structures contain a large fraction of the turbulent kinetic

energy, and they are correlated across the full channel (del/klamo & Jim@nez 2002), so
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they are expected to contribute substantially to the standard deviations in (3.1). Filtered

velocity fields, retaining only structures with £_, £z > 0.25 h, produce more than 90% of

z_,z and roughly 80% of ay in the outer region. These results indicate that LES should

be a valuable tool in the study of scalar dispersion.

The transition from linear to Gaussian spreading is due to the decorrelation of the

velocity field along the Lagrangian trajectories of the particles. The lifetimes of the

large scales of the spanwise velocity axe roughly four times longer than the time scale

of the decay in the slope of the plume width from 1 to 1/2. Thus, the time evolution

of turbulent structures does not seem to be significant in the decorrelation process that

leads to Gaussian spreading and, to a first approximation, it may be possible to study

turbulent diffusion using frozen velocity fields. In fact, we have integrated the Lagrangian

trajectories of fluid particles from frozen velocity fields, obtaining values of az that agree

well with atmospheric measurements. The agreement is better when the trajectories are

computed in a reference frame moving with the average phase velocity of the large scales.

The stationary frozen fields, on the other hand, produce values of az smaller than those
from the field experiments. This is because the decorrelation times experienced by the

fluid elements in the stationary fields are shorter than those in the moving ones. In both

cases, the decay in the slope of az takes place when the streamwise separation of the

particles relative to the velocity fields, (r_) - TUadv, is roughly equal to the streamwise

integral scale of w. Since the particles move in the x direction approximately following the

mean velocity profile, their separation with respect to their initial positions is given by

(U(yo) - Uadv)_', suggesting that the main cause of the transition from linear to Gaussian

spreading is the difference between the mean streamwise velocity and the phase speeds

of the velocity components in the cross-stream plane.

The mean shear is the dominating mechanism in the streamwise direction. It generates

values of ax much greater than ay or a_, and leads to very elongated patch shapes.

Although this consideration is not important in the case of the dispersion of contaminants
from a continuous source, it may be fundamental in the case of discrete releases.
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The turbulent flow over a permeable wall

By W.P. Breugem t AND B.J. Boersma t

In this paper we discuss some turbulence statistics that are obtained from a Direct Nu-

merical Simulation (DNS) of a turbulent flow in a channel of which one wall is permeable

(porous, with zero net transpiration) and the other is impermeable. The flow within the

porous wall is modeled using the Volume-Averaged Navier-Stokes equations (VANS).

Among others, it is shown that wall permeability causes a considerable increase in the

total drag, and an increased production of all Reynolds stresses when compared to an
impermeable wall.

1. Introduction

There are many real-life cases of turbulent flows over porous media. Examples of this

are flows over plant canopies, Finnigan (2000), and over river beds. In general it is

assumed that these porous media increase the drag that the flow experiences, and enhance

turbulent mixing near the wall. Not much is known about the physical mechanism that

causes the drag increase.

In the present paper we study the flow over porous media in simple, two-dimensional

geometries. First, we investigate the flow in a channel, which has one permeable and

one impermeable wall. The second case is the spatially-developing boundary layer over a

permeable wall. For the first case we will present statistics including the budgets in the

transport equations for all Reynolds stresses. For the second case we will present only

some preliminary results.
In the literature a porous medium is often represented simply by specifying boundary

conditions at the wall, see e.g. Jim_nez et al. (2001) and Hahn et al. (2002). In the

paper of Jim_nez et al. (2001), the wall-normal velocity component is assumed to be
proportional to the wall-pressure fluctuation, whereas a no-slip condition is imposed for

both the streamwise and the spanwise velocity components. In the paper of Hahn et

al. (2002), the wall-normal velocity is assumed to be zero, and a slip velocity in both
the streamwise and spanwise direction is imposed as given by the model of Beavers &

Joseph (1967). In the present study we directly solve the governing equations for the flow

within the porous medium together with the Navier-Stokes equations for the flow in the
channel. The flow field is continuous over the interface between the porous medium and

the channel, and hence no boundary conditions need to be prescribed at the interface.

A fifth-order polynomial in the wall-normal coordinate is adopted to model the rapid

variation of the porosity in a thin layer near the interface. Of course our approach results

in a more complicated set of equations and larger computational costs than in the studies
of Jim_nez et al. (2001) and Hahn et al. (2002).

The organization of the paper is as follows. In section 2 we discuss the governing
equations for the porous medium and give a short outline of the numerical method that

t Address: Laboratory for Aero and Hydrodynamics, J.M. Burgers Center, Leegt_waterstraat
21, 2628 CA Delft, The Netherlands.
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FIGURE 1. A sketch of the channel flow geometry (not on scale).

we use to solve these equations. In section 3 we present turbulence statistics obtained from

a simulation such as mean-profiles, rms-profiles and Reynolds-stress budgets. Finally, in

section 4 some conclusions are given.

2. Governing equations and numerical method

In this section we present the flow geometry, the governing equations for the flow

along and through a porous medium, and the numerical method that we use to solve

these equations.

2.1. Governing equations

In figure 1 we show the geometry of the channel flow. The flow is bounded by two

impermeable walls located respectively on top of the two-dimensional channel (at z -- H)

and below the porous medium (at z = -h). Following Ochoa-Tapia & Whitaker (1995a),

we distinguish between three regions:

(a) The homogeneous fluid region between z = 0 and z = H.

(b) The interface region between z = -wi and z = 0, which is characterized by rapid

changes in the porous structure and the permeability.

(c) The homogeneous porous region between z = -h and z = -w_, with a constant

porosity (e = ¢h) and an isotropic permeability.

In the studies performed by Jim@nez et al. (2001) and Hahn et al. (2002), the porous

medium is modeled by specifying boundary conditions at the interface (z = 0). In con-

trast to their approaches, in our study we directly describe the flow inside the porous
medium by means of the Volume-Averaged Navier-Stokes equations. These equations

can be derived by averaging the standard Navier-Stokes equations for the flow inside the

pores, over a small spatial volume. Figure 2 gives an illustration of the volume-averaging
procedure. The constraints for the length scale R of the averaging volume are that it has

to be much larger than the typical length scale lz of the flow inside the pores, but also
much smaller than the characteristic length scale of the volume-averaged flow.
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solid phase fluid phase

FIGURE 2. An illustration of the volume-averaging procedure.

It is important to distinguish between superficial and intrinsic volume-averages. The
intrinsic velocity is denoted by square brackets and defined according to

1 f

<u(x_,t)>- _-_ l u_(x + y__z,t)dY (2.1)
_ Jv_

where VZ is the part of the averaging volume V that is occupied by fluid. The vector x__

points to the centroid of the volume, and y__Zis the position vector with respect to the

centroid of V and points only into the fluid phase _ (see figure 2). The subscript _ refers

to the fluid or _-phase, in distinction to the solid or a-phase. The superficial velocity is

related to the intrinsic velocity according to

< t)>s-- + t) v t)> (2.2)

where the superscript s refers to the superficial instead of the intrinsic average. The
porosity e is the ratio of the volume taken up by the fluid phase to the total averaging

volume, i.e.

v,
V

Notice that the superficial and intrinsic averages are defined everywhere inside the porous

medium, in the _-phase as well as in the a-phase.
The local deviations of the velocity and pressure insides the pores from the correspond-

ing volume-averaged quantities are denoted by a tilde and defined as respectively

fi_u--<_>

_=p--<p>

By applying the volume-averaging procedure to the Navier-Stokes equations for the

incompressible flow inside the pores, Whitaker (1996) gives a formal derivation of the

Volume-Averaged Navier-Stokes equations. The result reads:

D<u>+e-lV.<_.__>s__ = -lv< p > + vV2< u > +_
Dt p
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_72c
vV_V< u_ > +u--< u__> +

1 1 fA (-_ + #V__)dA (2.3)

u >) = 0 (2.4)

where A_, is the contact area between the/_- and a-phase within the averaging volume,

n__, the normal vector pointing into the a-phase, and/__ the unity tensor. For homogeneous
porous media (¢ = constant) the terms containing derivatives of the porosity are zero,

and so these terms are significant only in the interface region (see figure 1). Notice from

equation (2.4) that when the porosity is varying in space, only the superficial and not

the intrinsic velocity is divergence-free.
We need closures for the second term at the left-hand-side and the last term at the

right-hand-side of equation (2.3). The second term on the left-hand-side of equation

(2.3) is a dispersive flux term. It represents the effect of spatial correlations between

flow variations inside the pores, on the volume-averaged flow. In the literature it is often
implicitly assumed that this term can be neglected, as we will do in the present study.

For the last term on the right-hand-side of equation (2.3), Whitaker (1996) formulates a

closure problem in which the surface integral is replaced by the following expression

1 1 fA nz_. (--_+ vV_)dA = -veK-l.< u >Z - u¢(K-1-_F) • < u >Z (2.5)pV_ _,. - -- -- --

where K__and F are referred to as respectively the (yet unknown) permeability and the

Forchheimer tensor. The first term on the right-hand side of equation (2.5) is known

as the Darcy term, and it basically represents the effect of the viscous drag that the

flow inside the pores encounters. The second term on the right-hand side represents

the effect of pressure drag on the flow inside the pores. In the literature semi-empirical

relationships are available for the tensors K and F for homogeneous porous media. Based
on one of these relations, known as the Ergun equation - see MacDonald et al. (1979)

- the Forchheimer and permeability parameters can then be expressed by the following
SCalarS

F = 1 dpll < u >s ][ (2.6)
100(1 - e) u

K = dP2e3 (2.7)
180(1 --e) 2

with the mean particle diameter dp defined as six times the ratio of the total volume Vp

to the total surface area Ap of the a-phase

6V,, (2.8)
dp= Ap

The major advantage of a direct description of the flow inside the porous medium is
that we do not need to prescribe any boundary conditions at the interface, because the

flow field is continuous over the interface. Yet we have to deal with another problem as

strictly speaking the closure (2.5) is not valid in the interface region. The thickness of the
interface region is on the order of the mean particle diameter, and inside this region the

flow field is very complicated due to roughness. In our present study we use a variable-

porosity-model for the interface region, see Ochoa-Tapia & Whitaker (1995b), and still

assume the validity of the closure in this region. The porosity is described by a fifth-order
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polynomial in the wall-normal coordinate, such that it satisfies the requirements that its

derivatives are zero at z = 0 and z = -w_, that at z = 0 the porosity equals 1, and that

at z = -w_ its value is equal to eh.

2.2. Numerical method

The governing equations (2.3) and (2.4) are discretized with a pseudo-spectral method in
the x- and y-directions and with a second-order finite-difference method in the direction

perpendicular to the porous medium, i.e. the z-direction. The (staggered) grid in this

direction is non-uniform with points clustered around the interface (z = 0) between the
clear fluid and the porous medium. The solution is advanced in time with a second-order

explicit Adams-Bashforth method. The pressure-correction method is used to ensure

conservation of mass. The flow in both the porous medium and the channel is forced in

the x-direction by a constant pressure gradient dp/dx.

3. Results

In this section we present some turbulence statistics that are obtained from a fully

developed channel flow simulation over a permeable wall. The simulation is one of the

first that we performed to test our DNS code. The porosity in the homogeneous porous

region is high and equal to _h -_- 0.95. In table 1 some characteristics of the simulation

are listed. As the flow in the channel is asymmetric, the Reynolds number based on the

friction velocity at the upper wall is different from the corresponding Reynolds number

based on the square root of the total stress at the interface with the lower wall. The

Reynolds number based on the bulk velocity in the channel is 4517. The thickness of

the porous medium is 1/16 of the channel height. In this simulation the thickness of the

interface region is set equal to the thickness of the porous medium as this requires less

grid points in the porous medium. The numerical resolution of this test-simulation is
+

coarse with grid spacings in (upper) wall-units of dx + = 33.9, dy + = 20.3, dzmi,_ = 1.0

and dz+az = 5.1 for the streamwise, spanwise and wall-normal directions, respectively.

The stretch factor for the grid spacing in the wall-normal direction is 2.5 % for both the
porous medium and the channel. Unfortunately, there is a jump in the grid spacing over

the interface where the first grid cell above the interface is a factor 2.2 smaller than the

first grid cell below the interface. The simulation is run until the bulk velocity reached a
steady state. Once the flow reached a steady state, 60 data fields were stored each equally

separated in time by H/u., with u. the friction velocity at the upper wall. The statistics
in this study are obtained from these 60 data fields. The simulation has been performed

on a AMD-Athlon with 1Gb of core memory.

To start with we show the mean-velocity profile. (figure 3). The dashed line marks the

interface with the permeable wall. Clearly, there is a non-zero velocity (slip-velocity) at

the interface. The velocity profile has its maximum above the centerline of the channel,

already indicating a higher total shear stress at the permeable wall.

In figure 4 we show the root-mean-square profiles of the three velocity components
and of the pressure, normalized with the friction velocity at the upper wall. Near the

upper wall, the rms-profiles behave as expected and are similar to the profiles for standard
channel flow. The rms-profiles near the lower wall are clearly altered by wall permeability.

A strong increase can be observed in the spanwise and wall-normal velocity fluctuations,
and in the pressure fluctuations. The axial rms has its peak just at the interface, with a

value slightly smaller than at the peak near the upper impermeable wall.

In figure 5 the turbulent and viscous stresses as a function of the channel height are
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R_.(top)
Re. (bottom)

Reb
N_xN_xN_
L= x L_ x L_

fh

dp
W_

325.
393.
4517.

48 x48x (128+8)
5 x3x (1+I/16)

0.95
1/125
1/16

TABLE i.Characteristics of the channel flow simulation.

1.4

t

I I I
0.25 0.5 0.75

z./H

FIGURE 3. The mean velocity profile as function of the channel height. The dashed line marks
the position of the interface between the porous medium and the clear fluid.

plotted. The total stress (sum of the viscous plus the turbulent stress) is linear, which is
a direct consequence of the constant pressure gradient that drives the flow. We clearly

observe a strong increase in drag on the lower permeable wall compared to the upper

solid wall. In this simulation the drag increase is almost 50 %. This increase in drag is

caused by the exchange of momentum between the clear fluid and the porous medium.

In engineering appliances porous materials are sometimes used as heat-exchanger. From

the results presented in figures 4 and 5, it is clear that a porous wall aligned parallel to

the mean-flow direction will indeed give a very efficient turbulent heat exchange between

the flow over and the flow in the porous medium (the behavior of the turbulent heat flux

< u' >< T'> will be very similar to that of the turbulent stress <u' >< w' >).

To get a better insight into the mechanisms behind the drag increase we have calculated

the budgets of the transport equations of all the individual Reynolds stresses. The terms

are made dimensionless with u4/_, where u, is the friction velocity at the upper wall.

The exact equations are given in Appendix A. In figure 6 the budgets of the transport

equation for the streamwise normal stress (streamwise contribution to turbulent kinetic
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FIGURE 4. The rms-profiles of the streamwise, spanwise and wall-normal velocity fluctuations
together with the rms-proflle of the pressure, all normalized by friction velocity.
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FIGURE 5.The turbulent,viscousand totalstressprofilesasa functionofthe channelheight.

energy) are shown. The left part of the figure gives the budgets near the permeable

wall and the right part the budgets near the upper impermeable wall. The budgets in

the upper part of the channel are similar to the budgets calculated by Mansour et al.

(1988) for standard channel flow between two impermeable walls. Very close to the upper
wall the dissipation term (uuDISS) is balanced by the transport term (uuTRANS). At

more than about 40 wall units from the upper wall, the pressure-strain term (uuPS)

is on the order of the dissipation term and their sum balances the production term

(uuPROD). At the lower permeable wail the budgets have changed dramatically. Just
above the interface the production term is balanced by the sum of the transport term, the

pressure-strain term and the dissipation term. Within the porous wall, the Forchheimer
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FIGURE 6. The budget of the transport equation for the streamwise contribution to turbulent

kinetic energy. Left: the budget at the lower permeable wall (the interface is located at z = 0).
Right: the budget at the upper wall. (The 'kink' in the production term (uuPROD) and in the

transport term (uuTRANS) is a consequence of the jump in the wall-normal grid spacing over

the interface, as mentioned before at the beginning of this section.)
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FIGURE 7. The budget of the transport equation for the spanwise contribution to turbulent

kinetic energy. Left: The budget at the lower permeable wall (the interface is located at z = 0).

Right: The budget at the upper wall.

term (uuFORC) becomes the dominant loss term, but it vanishes again close to the

impermeable wall below the porous medium. The Darcy term (uuDARC) is of minor

importance, a consequence of the high porosity of the wall. The porosity term (uuPOR)

basically represents the sum of the advection and the production/dissipation of kinetic

energy by changes in the porous structure. It appears to be negligible in this simulation,
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FIGURE 8. The budget of the transport equation for the wall-normal contribution to turbulent

kinetic energy. Left: The budgets at the lower permeable wall (the interface is located at z = 0).

Right: The budgets at the upper wall.
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FIGURE 9. The budget of the transport equation for the Reynolds stress < u' >< w' >. Left: the

budgets at the lower permeable wall (the interface is located at z = 0). Right: the budgets at
the upper wall.

because of the high porosity and the large width of the interface region over which the

porosity is varying. Notice also from figure 6 that the peak in the production term just

below the permeable interface is roughly twice as large as the corresponding peak near

the upper wall.

In figure 7 the budgets of the transport equation for the spanwise kinetic energy are

shown. Again the left graph shows the budgets near the permeable wall, and the right

graph the budgets near the upper wall. At the upper wall the pressure-strain term (vvPS)
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balances the dissipation term (vvDISS), except in a region less than about 5 wall units

from the wall. In this small region the pressure-strain term falls off to zero and the

transport of energy (vvTRANS) by viscous diffusion balances the dissipation. Above the

interface with the lower permeable wall, the transport term remains small and there

is basically a balance between only the pressure-strain term and the dissipation term.

Inside the porous wall, the Forchheimer term becomes the dominant loss term in a small

region. The porosity term (vvPOR) is not significant, and the Darcy term (vvDARC) is

only of importance in a region of roughly 10 wall units close to the impermeable wall

below the porous medium. As we saw before for the production term in the axial case, in

the spanwise case the pressure-strain term has a peak inside the porous medium which

is more than twice as large as the corresponding peak near the upper wall. The pressure-

strain term is a redistribution term, which is responsible for the transfer of axial kinetic

energy into spanwise and wall-normal kinetic energies. The enormous increase in this

term near the permeable wall explains the increase in the rms of the spanwise velocity

fluctuations near the permeable wall as compared to the peak at the upper wall.

In figure 8 the budgets in the transport equation for the wall-normal kinetic energy

are shown. Close to the upper wall, the velocity-pressure-gradient term (wwP) becomes

smaller than the turbulent-transport term (wwTRT). This behavior is slightly different

from that of a standard channel flow described by Mansour et al. (1988), where close to

the wall the turbulent-transport term is still smaller than the velocity-pressure-gradient

term. The reason for this discrepancy might be a matter of grid resolution, as we have in

our simulation a coarse grid. In the region just above the interface with the permeable

wall, the turbulent-transport term changes of sign and is responsible for a flux of wall-

normal kinetic energy into the porous medium. Strangely enough, the velocity-pressure-

gradient term is negative in a small region around the interface. In this region the only

source of wall-normal kinetic energy comes from the turbulent-transport term. Inside the

porous medium there is again a region where the Forchheimer term (wwFORC) is the

most important loss term. The Darcyterm (wwDARC) is of minor importance except
close to the impermeable wall below the porous medium. The porosity term (wwPOR) is

everywhere negligible. Notice that the velocity-pressure-gradientterm has a peak above

the permeable interface, which is almost three times larger than the corresponding peak

near the upper wall. This energy-redistribution term is responsible for the increase in the

rms of the wall-normal velocity fluctuations near the permeable wall as compared to the

peak at the upper wall.

In figure 9 the budgets of the transport equation for the turbulent stress (< u _>< w' >)

are shown. At the upper as well as near the lower permeable wall, the leading terms are

the production term (uwPROD) and the velocity-pressure-gradient term (uwP). Different

from the case for the kinetic energies, the Forchheimer term is nowhere the leading loss

term. The Darcy term (uwDARC) and the porosity term (uwPOR) are negligible. It is

striking that near the permeable interface, the peak values of the production termg and

the velocity-pressure-gradient term are more than twice as large as the corresponding

peak values near the upper wall. The increase in the production term is caused solely

by the enormous increase in the wall-normal velocity fluctuations as the gradient of the

mean velocity near the permeable interface is reduced as compared to the upper wall.
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FIGURE 10. A sketch of the computational domain for the simulation of the spatially
developing boundary layer over a permeable wall.

4. The turbulent boundary layer over a permeable wall.

In the previous section we presented some results for the flow over a porous channel

wall. It was assumed that the flow in the channel was fully developed. In this section we

will give some preliminary results for a turbulent, spatially-developing boundary layer

over a permeable wall.

The boundary layer is not periodic in the streamwise direction. However, we would

like to use the pseudo-spectral method as outlined in the previous section. This method

requires that the flow field can be considered as periodic in the streamwise direction. In

order to make the problem periodic we have added a 'fringe' region to our domain in
which an artificial force drives the velocity field to a specified target. This is illustrated
in figure 10. This fringe region can also be seen as a region in which the mean flow in

the boundary layer is accelerated and where turbulent kinetic energy is dissipated. A

first result of these simulations is shown in figure 11. The porosity in the homogeneous

porous region is 0.8. The thickness wi of the interface region is equal to 1/25 H, where

H is the height of the flow domain above the permeable interface. The thickness of the

porous medium is 0.4 H. The mean particle diameter associated with the porous medium

is 1/62.5 H. The dimensions of the flow domain are Lx x L v x Lz = 20 x 3 x (1 + 0.4) for

respectively the streamwise, spanwise and wall-normal direction. The artificial force in

the fringe region is a smooth function of the streamwise coordinate and has a significant

value over a length of about 2 H. The number of grid points is 192 x 64 x (82 + 24) for

respectively the streamwise, spanwise and wall-normal direction.

5. Conclusions

In this paper we have presented results from a direct numerical simulation of the flow

over and through a permeable wall forming one wall of a channel with fully-developed

turbuloent flow. In contrast to the simulations presented in the literature, Jimdnez et al.

(2001) and Hahn et al. (2002), we have solved for the flow in the channel coupled with
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FIGURE 11. A preliminary result of a simulation of the spatially developing boundary layer over
a permeable wall. The graph shows an instantaneous snapshot of the velocity field (u, w) in
plane with y=constant, where the solid lines are contours of constant streamwise velocity.

the flow in the porous medium. Over the interface with the permeable wall, the flow

is continuous and hence no boundary conditions need to be prescribed at the interface.

From the simulation we observe a considerable increase in the total drag at the permeable

wall. This is caused by the exchange of wall-normal momentum through the interface

with the wail, resulting in a higher Reynolds stress <u'><wt> as compared to the

impermeable wall. The budgets in the transport equations for all the Reynolds stresses

have demonstrated that for the evaluated simulation with a porosity of 0.95, the Darcy

term is small compared to the Forchheimer term. The Darcy term represents the loss

of Reynolds stresses by the viscous drag that the flow inside the pores encounters. The

Forchheimer term represents losses due to the pressure drag acting on the flow inside the

pores. The porosity term, which represents the advection and production/dissipation of

Reynolds stresses by porosity variations, appears to be negligible throughout the porous

medium. Furthermore, a start has been made with the simulation of a spatially developing

boundary layer over a permeable wall.

Appendix A. transport equations for all the Reynolds stresses

In the following equations, the velocity components and the pressure are all intrinsic

volume-averages, but for clarity we have omitted the square brackets.

• transport equation for the axial kinetic energy _, .

o, 0(,,0r 
uuPROD uuPS uuT_ANS
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Contrail formation in aircraft wakes using

large-eddy simulations

By R. Paoli t, J- H_lie _:, T. J. Poinsot ¶ AND S. Ghosal []

In this work we analyze the issue of the formation of condensation trails ("contrails")
in the near-field of an aircraft wake. The basic configuration consists in an exhaust en-

gine jet interacting with a wing-tip trailing vortex. The procedure adopted relies on a

mixed Eulerian/Lagrangian two-phase flow approach; a simple micro-physics model for

ice growth has been used to couple ice and vapor phases. Large eddy simulations have

carried out at a realistic flight Reynolds number to evaluate the effects of turbulent mix-

ing and wake vortex dynamics on ice-growth characteristics and vapor thermodynamic

properties.

1. Introduction

Contrails are ice clouds generated by water in the exhaust from aircraft engines, form-

ing the common visible white lines in the sky. As assessed in the special report of the

Intergovernmental Panel on Climate Change (IPCC report (1999)), they have an im-

portant environmental impact because they artificially increase cloudiness and trigger

the formation of cirrus clouds, thus altering climate both on local and regional/global

scales (see figure 1). This was confirmed in a recent climate study (Travis et al. (2002))
performed in the three days following the llth of September 2001, when all american

aircraft were grounded and there were no contrails over the USA. During this period,
abnormal and significant temperature differences between day and night (namely, "daily
temperature range" or DTR) were observed in the USA. This confirms that contrails are

of major importance for global climate change by artificial clouds formation.

Contrails consist of ice crystals which form mainly by condensation of exhaust wa-

ter vapor over suitable nucleation sites, like soot particles and sulfur aerosols, emitted

by aircraft engines (Schumann (1996), Karcher & al. (1996)). Background atmospheric

vapor, which eventually adds to the exhaust content, is responsible for the persistence

of contrails (Gierens (1996)). Contrails form when the air surrounding a nucleation site

becomes supersaturated with respect to ice (Appleman (1953), Schumann (1996)). For

certain atmospheric conditions, this may occur somewhere in the jet plume, as the re-

sult of the increased humidity due to mixing between hot and moist exhaust gases with

cold and tess humid ambient air. In a temperature/vapor-pressure plane (see figure 2),

assuming that vapor and heat diffuse at the same rate ((Sc = Pr) and that the flow

is adiabatic, pure mixing can be graphically represented by a straight ("mixing") line

which is completely defined by the two states A (ambient air) and B (exhaust gas). In

figure 2, supersaturation corresponds to the thermodynamic states lying between $1 and

t CERFACS
$ IMFT
¶ CERFACS and IMFT
II Northwestern University
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FIGURE 1. Contrails in South-Eastern France sky (http://eol.jsc.nasa.gov).
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FIGURE 2. Thermodynamic conditions for ice formation: p,(T) is the saturation curve with re-
spect to ice. State A represents (cold) atmospheric conditions; state B, (hot) exhaust conditions
(for the sake of representation, we placed it much closer to p, than what it really is). States $1
and $2 define the range of supersaturation, p_ > ps(T).

$2, where Pw > ps(T). An ice crystal forms when such a condition is locally satisfied

in the jet plume and, at the same time, a nucleation particle is present. A two-phase

flow solver, using a Lagrangian solver for nucleation particles, then represents the most
suitable approach to deal with ice formation in the contrails.

Formation and persistence of contrails have been studied during last years, mostly

in geophysical and atmospheric science literature, through in situ measurements and

numerical simulations with different level of complexity (see IPCC report (1999) and

references therein). The main intent there was to characterize the general features of

the phenomenon on time scales up to minutes from the emission time. Other authors
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investigated in detail the micro-physics of ice formation (the initial composition of the

jet contrail, the mechanism of water uptake on the nucleation site, homogeneous versus

heterogeneous nucleation, etc. see Pruppacher & Klett (1997) for a complete review).

In the present work we have focused on the simulation of contrail formation and early-
stage evolution in the near-field of an aircraft wake, i.e., up to a few seconds from the

emission time. The basic configuration consists of an exhaust jet interacting with a wing-
tip trailing vortex. This represents a complex issue because of the different phenomena

involved, such as jet and wake-vortex instabilities, transition to turbulence, two-phase

flow and ice micro-physics. Large-eddy simulations are well suited to deal with all these

inherently unsteady processes, at realistic flight Reynolds numbers, and have been used in

this work. The object of the study is two-fold. First, we aim to characterize: (i) the spatial

distribution of supersaturation around particles, in the jet plume; and (ii) the effects of

wake vortex. Then, we test a simple micro-physics model for ice-growth to account for

(iii) the early stage of contrail evolution and (iv) its influence on the thermodynamic

properties of water vapor. Governing equations for the two-phase flow model are detailed

in section 2, results are presented in section 3. In section 4 an alternative approach is

proposed to account for a general (initial) distribution of soot particles.

2. Governing equations and ice micro-physics model

Large-eddy simulations of ice formation are carried out through an Eulerian/Lagrangian

two-phase flow approach. For the gaseous (carrier) phase we solve fully-compressible

Navier-Stokes equations together with a transport equation for a scalar field, repre-

senting the exhaust water vapor, Y_. These equations are filtered spatially so that any

variable ¢(x) = [p, p u, p v, p w, p E, p Y_] is decomposed into a resolved part ¢(x) and a

non-resolved (or subgrid-scale) part ¢'(x), with ¢(x) = ¢(x) + ¢'(x). For compressible
flows, we use Favre-filtered variables, defined as ¢(x) = ¢(x) + ¢'(x), with ¢ = p¢/-_.

Using this approach, dimensionless Favre-averaged equations are

(2.1)O_ O(_ej) __,
0---{+ Ox_

O(_i) c3(_fiifi 3) o_ 10Zrij Oa 0

0------[--+ c3x_ + Oxi - Re Ox_ + Ox_ '

0(_:) + 0[(_# + _)aj] _ 1 0,_._ + Oa_j_
Ot Oxj Re Oxj Oxj

(2.2)

1 O4_ oq, (2.3)
Re Pr Cp_ Oxj '

O('_Yw) O(-_f',_) 1 0 / Of'_ 0_

+ (2.4)

The sub-grid scale (SOS) stress tensor _rij ------(_- _)'giUj), the SGS heat flux Qj -=

"pCpTuj - _CpT_j and the SGS scalar flux _j = -(pY_uj - -fiI"wfij) are modeled through
the subgrid-scale eddy-viscosity concept

1 ( 1 - ) #.g.C, O0 I_.g. Of'_
6rij -- gO'kkS,j = --2#. 9, Sij -- g_ijSkk , Qj _- - Prt OXj' _j = Sct Oxj '

(2.5)

where ® =T- 1 a
kk is the modified temperature (M@tais &: Lesieur (1992)) while

turbulent Prandtl and Schmidt numbers are assumed to be constant. In the present

simulations, we assumed Prt = 0.3 and Sct= 0.3. Sub-grid scale viscosity #sgs is obtained
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through the Filtered Structure Function model (M6tals & Lesieur (1992), Ducros &: al.
(1996)), initially developed in spectral space and then transposed into physical space.

This model was found to be well suited for the simulation of transitional flows, due to

the property of insuring no SGS viscosity when there is no energy at the cutoff wavelength

(Ducros & al. (1996)). Vapor/ice mass coupling in the continuity and scalar equations,
d_ is discussed in the next section.

2.1. Particles treatment and ice-growth model

Soot-ice particles are tracked through a Lagrangian solver with point force approximation

(see Boivin & al. (1998) for details). Due to their small size (from tens of nanometers to

a few microns, see Karcher & al. (1996)) their relaxation time is negligible compared to

the characteristic times of the filtered gas variables. This allows them to be treated as

tracers. In addition, due to their high number density (varying approximately between

109 and 1011 m -3 (Karcher & al. (1996)), we can carry only packets of particles, or

"numerical particles", each one containing a large number ntra_s of real soot-ice kernels.

A numerical particle is defined as the center of mass, x_p, of n_an8 physical particles. In
the tracer limit, its motion is completely described by

dx_p _ __(x_)5(x = x p) (2.6)
dt

where u_-is the (filtered) gas velocity. Using filtered quantities instead of exact un-filtered

ones is equivalent to neglecting sub-grid dispersion, compared to the resolved, large-

scale dispersion. This assumption is justified because the Reynolds number is high. Gas

sources are estimated at the numerical particle positions; afterwards they are projected

on the Eulerian grid, inversely proportional to the mesh-point distance. This numerical

method can be viewed as a spatial filtering (Boivin & al. (1998), H61ie & al. (2002)).

Exchange between phases is allowed by the code (two-way coupling). Nevertheless, due

to the tracer limit and solid/gas mass ratio, drag momentum exchange is negligible.

Temperature cannot be modified by ice growth by more than a few Kelvin (Schumann

(1996)), so that thermal coupling is also neglected. Therefore, we only consider mass

exchange, i.e. vapor condensation on the soot particle. The term & can be neglected in

(2.1) because of the small amount (order of a few percent) of water vapor in the exhaust

gases. On the other hand, in (2.4) it accounts for vapor/ice phase exchange and is related

to the rate of growth of a single ice crystal, through the quasi-stationary model (Karcher

& al. (1996))

drp_ Jw (2.7)
dt _Sp '

nv drp S (2.8)

p----I

Sv = 4_rr 2 and pp are the area of the particle (supposed spherical) and its density, while
Jw is the mass flux of water vapor on the particle surface

J,_ = 4rrpD V(rp)(_'w - Ys) (2.9)

where D = #/(pSc) is the molecular diffusivity of water vaporin air, Ys is the mass

fraction of gaseous water at ice saturation. The dimensionless collision factor G(rp) is



Contrail formation zn aircraft wakes

F". /

I ] 1 1
voru-x jet joL vortex

d l l l

/.

9 J.
FIGURE 3. Basic configuration of a jet/vortex
interaction in the near-field of an aircraft
wake.

/

VORTEX__ ,'"

JET /'

............Interactlon dommn

3O r, "/

FIGURE 4. Sketch of the computational
domains for the jet and the interaction

phases.

233

given by the semi-theoretical correlation

( 1 4Ko G(rp) = i + K-'----_+ 3a ] (2.10)

It depends on the Knudsen number Kn = A/rp (ratio of the vapor mean free path to the

particle radius) and the empirical constant a = 0.1, and was found to give good results

for quasi-isothermal flows and cases with low heat transfer (see Qu & Davis (2001) for

details). Saturation conditions are estimated by Sonntag (1994) as

p_ = pXs = exp (6024.5282= + 29.32707 + 1.0613868 10-2
\ T

-1.3198825 10 -5 fi2 _ 0.49382577 in T) (2.11)

where T is the filtered gas temperature (heat inertia of particles is neglected). Mass and

molar fr actions at saturation conditions are related by Y8 = Xs / (Xs + (1 - X_) W_i_ / W_ ),

with W_i_ = 28.85 kg/Kmole, W_ = 18.01kg/Kmole.

The numerical code, NTMIX3D, is a three-dimensional, two-phase flow, finite-difference

solver. For the gas phase, space discretization is performed by a sixth-order compact

scheme (Lele (1992)). Time integration is performed by means of a three-stage Runge-

Kutta method, for both the two phases. The solver is fully parallel, using domain de-

composition. Simulations are performed using 16 processors on CINES 03000 machine.

3. Results

This section describes the results of the simulation of ice formation in the near-field

of an aircraft wake. The basic configuration is an exhaust jet interacting with a (single)

wing-tip trailing vortex (Fig 3). We adopted a two-stage simulation which consists in

first simulating a temporally-evolving jet ("jet phase") and then its interaction with

the vortex ("interaction phase"). This procedure has been used previously (Paoli & al.

(2002), Garnier & al. (2002)) and its validity has been recently discussed by some of the

authors (Paoli & al. (2002)). A sketch of the computational domain for the two phases

is shown in figure 4. For the jet phase it has dimensions Lx = Lu = 16 rj and Lz = 6 rj
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FIGURE 5. Joint PDF of temperature and water vapor partial pressure around passive
particles, during the jet phase (saturation curve is also displayed); left, t -- 0.16 s; right

t = 0.56 s.

(z being the jet axis and rj the exhaust jet radius) and consists of 161 x 161 x 61 grid

points; for the interaction phase, the dimensions axe L= = Ly = 30 rj and L_ = 6 rj with

301 × 301 x 61 grid points. The Reynolds number, based on the radius, rj -- 1 m, and the

exhaust jet velocity, wj = 60m/s, is Re 3 = 3.2 x 106, while the exhaust Mach number is

Mj = 0.2. Axial velocity, temperature and vapor mass fraction are initialized according
to a tanh law (for simplicity, all bars and tildes are omitted)

wo(r) = _ (wj+wa)-(wj-wa)F(r) ; F(r)=tanhL4 8 rj r

where r is the radial distance from the center; rj/8 = 10; while subscripts j and a

indicate exhaust jet and ambient air, respectively (see Paoli & al. (2002) for details).

Initial temperature and water vapor mass fraction follow the same law

1
to(,)= [(Tj+to)- (T;- To)F(,)],

1
= +Yo.)- - ar)].

(3.2)

(3.3)

In the present simulations we assume no coflow, wa = 0, and no background water

content, YWo = 0; the exhaust water content, taken from available data (Garnier& al.

(1997)), is Ywj = 0.03. Ambient temperature is Ta = 225K and exhaust-to-ambient
temperature ratio is Tj/Ta = 2 which gives Tj = 450K, a reasonable value for the

exhaust temperature. The jet is loaded with np = 250000 (numerical) soot particles with

the same radius rp = 0.02 #m. They behave as tracers and each one represents a packet of
ntran s = 10 6 physical particles. Particle number density is then 2.5 x 1011, in agreement

with literature data (Karcher & al. (1996)).
A random-noise perturbation 5w is added to the base flow wo in (3.1) (with 5wma= =

0.005 wo(r)), to trigger jet instability and transition to turbulence. When the maximum

jet velocity has decreased to half the initial value, the domain is enlarged and a vortex

inserted (the relative position is xj_ = 5 rj and yj_ = -rj, see figure 4), according to the



Contrail formation in aircraft wakes 235

.:_a,._., !: _ _,.;.,

22,

.F / I'j g

FIGURE 6. Passive particles case (jet phase). Plane cut of vapor content and distribution of
supersaturated particles; left, t = 0.56 s; right, t = 0.7 s.

Lamb-Oseen model (a = 1.4,/3 = 1.2544)

rc . dp v_ (3.4)ve(r) = a v_-- 1- exp -15 r
r ' dr -P r

where re = r 3 is the vortex core radius and ve = 1.5 wa (tjv) is the core velocity (tjv being
the time at the end of the jet phase simulations; see Paoli & al. (2002)).

3.1. Passive-particle results

A first set of simulations was performed with the ice-growth model switched off. The ob-

ject was to obtain a reference mixing case at high Reynolds numberss typical of aircraft

wake configurations. It was also useful to analyze the spatial distribution of supersatu-

rated particles and identify the regions where ice formation is most likely to occur. Basic
diagnostics consists in analyzing the thermodynamic properties of the exhaust gas during

mixing with ambient air. Probability Density Function (PDF) is a convenient diagnostic

because it provides the additional information on the fraction of particles that super-

saturate with respect to ice. Figure 5 shows the joint PDF of normalized temperature,

(T - Ta)/(Tj - Ta), and the partial pressure of water vapor, (p_ - Pw,)/(P_ - P_,),
around soot particles. The PDF follows a straight line which indicates pure mixing be-

tween hot jet and cold air. This is a consequence of the assumptions of low Mach number

and Le = Sc/Pr -- 1.. The first assumption implies small pressure fluctuations and ki-

netic energy negligible compared to internal energy in (2.3). The second implies that the

diffusion terms in Eqs. (2.3) and (2.4) are the same. Therefore, T and pw are given by

the same transport equations and evolve along a mixing line (obtained by elimination of
r in the initial conditions, Eqs. (3.2) and (3.3))

r T +To 
p_ -p_,o = Tj_- T_ + 2 \p,_--p_. Tj---TT] " (3.5)

All particles are initially (at t = 0.16 s) placed below the saturation curve p, because they

are still concentrated inside the hot jet region. Due to the mixing with cold air, particles

cool, moving along the mixing line, until some of them become supersaturated (crossing
of p_ curve at t = 0.56 s). The spatial distribution of supersaturated particles is given in
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FIGURE 7. Passive particles distribution during the jet/vortex interaction phase. Dry soot par-
ticles are represented in black, iced supersaturated particles in white. Total vorticity iso-surface
identifies the vortex core and the secondary vortical structures due to the interaction with the
jet; a), t = 0.7s; b), t = ls; c), t = 1.5s; d), t = 2s.

figure 6, together with a plane cut of water vapor content at two times during the jet

phase. The figure shows that air first saturates around the particles placed at the edges

of the jet where the temperature has fallen and there is sufficient vapor to condense.

The dynamics of the jet/vortex interaction phase are dominated by the entrainment of

the jet inside the vortex field. Nevertheless, other phenomena occur, as shown in figure

7: when the jet is close enough to the vortex core, its axial velocity strongly interacts

with the vortex tangential velocity, causing the formation of three-dimensional structures

of azimuthal vorticity. These structures progrssively decay (t = 2 s, see figure 7(d)),

corresponding to complete entrainment of the jet (Paoli & al. (2002)). This mechanism

of entrainment enhances mixing with external air: therefore, exhaust cooling and vapor

condensation are favored by the presence of the vortex. Figure 7 shows that at t = 2 s

all particles are supersaturated and contrail can form everywhere in the wake.
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3.2. Freezing-particle results

This section presents the results of the simulations with the ice-growth model activated.
The goal is to analyze the early-stage evolution of the contrail and how it influences

mixing and the thermodynamic properties of the vapor. The simulation procedure is the

same as in the previous calculations, i.e., we first simulate the jet alone and then its

interaction with the vortex. The key point is that the ice and vapor phases are cou-

pled through Eqs. (2.7) and (2.8). Figure 8 displays the trajectories of three sample ice

particles in the temperature/vapor-pressure plane (results are reported only during the

interaction phase when ice/vapor coupling is significative). The figure shows that con-

densation causes large deviations from the mixing line because of vapor removal and the

consequent decrease in Pw. In addition, all the particles finally collapse on the satura-

tion curve, Ps (T), which indicates the thermodynamic equilibrium between vapor and ice

phases. This is confirmed in figure 9 by the evolution of ice-particle radii which attain

plateau values between 3 and 6 #m. The distribution of ice crystals size is provided in
figure 10 in terms of radius PDF. The peak around rp ---- rp at t ----0.7 s (end of the jet

phase) indicates that only a small amount of ice has formed. As long as ice nucleation

proceeds, such a peak decreases and finally disappears, and the shape of the PDF finally

approaches a Gaussian at approximatively t = 2 s. A remarkable result is the high vari-

ance of the PDF with r_/< rp >_ 0.5. This indicates high polydispersion whereas the
temperature and partial pressure around particles have become approximately uniform.

4. Future directions

The particle-tracking approach adopted in this work is an attempt to approximate

the behavior of a cloud of particles by attributing the properties of a "representative"

particle to all members of the cluster. In reality, however, every fluid element contains

particles of many different radii due to different amounts of ice-condensation on each

of them. Indeed, due to the chaotic nature of particle trajectories in a turbulent flow,

particles experience quite different ambient conditions during their history. Therefore,

the appropriate variable that describes the current state of the system is the distribution

function of particles np(r, x, t): the number of particles of radius between 'r' and 'r + dr'

that are contained in an elementary volume 'dx' around location 'x' at time t. If the law
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of growth of an ice crystal, (2.7) is known, an evolution equation may be written for np

0np 0_0--7-+ v. (npu) = - (np÷). (4.1)

This is essentially a Liouville equation for particle conservation in the four-dimensional

phase space (x, y, z, r). The term on the right-hand side represents losses or gains from

each "bin" (r, r+dr) due to evaporation or condensation. The source term in the equations

for mass/momentum/energy are of the form fo ("')np dr where (....) denotes the flux of

the appropriate quantity onto a particle of size 'r'. In principle, one needs to simulate (4.1)

for np, together with the equations of compressible flow. However, since solving partial
differential equations in four-dimensional space involves a large increase in computational

cost, it would be prudent to look for simplifying approximations. This is discussed next.

4.1. Method of moments

Let us assume that the size distribution of particles at a given location may be written

as np = F(r;mo,ml,...), where mo, ml, "" are parameters, which without loss of

generality, may be taken as the moments of the distribution. The functional form of 'F'

is presumed known. It then remains to determine evolution equations for the moments

of the distribution, defined as ink(X, t) = fO rknp( r, x, t) dr. The first few moments are

familiar, for example, mo = Np, the total concentration of particles ml = Np(r), where

- ml/m o (Ar2), the variance of particle size(r) is the mean size of particles; m_/rno 2 2 =

distribution about the mean. If we integrate both sides of (4.1) with respect to r, we get

the following equation for m0 = Np

ot + v. (.xp) = 0. (4.2)

This may also be written as D/Dt(Np/p) = 0 using the continuity equation (D/Dt is the

material derivative). It simply expresses the conservation law for the number of particles

(irrespective of size). In general, on taking the r-th moment of both sides of (4.1) and

using integration by parts, we have

COmk f0 °°0----_+ V- (mku) = nprk-li " dr. (4.3)
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The right-hand side may be evaluated if a differential equation for particle growth ÷, and

the form of the "presumed pdf" np= F(r;...,m,,...) is known. If F is assumed to be

a distribution with 'n' parameters, then 'n' moment equations need to be retained.

Example 1 Let us assume the following distribution function; np= NpS(r -rp), that is,
all particles in a given fluid element at a particular time instant are identical in size.

Then mi = Np(r> = Nprp, and on substituting this in the moment equation (4.3) we

have O(Nprp)/Ot + V. (Nprpu) = Np i" Ir=r, which, using (4.2), may be put in the form

Dr----2P= ÷ Ir=_,. (4.4)
Dt

Solving (4.4) together with D/Dt(Np/p) = 0 is exactly equivalent to tracking a certain

number of representative Lagrangian particles released into the fluid (of course, in order

to obtain the exact solution an infinite number of such particles must be tracked). Particle
tracking is therefore a special case of our approach.

Example 2 A more realistic model may be np= Np¢(r; mi, m2), that is, the particle size

distribution at any location is parametrized by its mean and variance. An appropriate

form for ¢ may be chosen on examining the available data in the atmospheric sciences

literature. Using the growth model (2.7) in (4.3) we then have the following coupled
equations for determining rnl and m2

Oral

Ot + V- (rnlu) =

c9m2
Ot + V. (m_u) =

(4.5)

(4.6)

where p1 is the density of ice and J1, J2 are functions of ml and m2 defined by

Jl(rnl,m2) = ¢(r;ml,m2)dr, J2(ml,m2) = a(r)¢(r;ml,m2)dr." (4.7)
0 0

Once the form of the presumed pdf '¢', and the initial radius of soot particles, ro, is

selected, the integrals can be evaluated. Clearly, Eqs. (4.2), (4.5) and (4.6) may also be

put in the Lagrangian form using the continuity equation

° (9)=0, (4.8)

D (___) D Yw-Y'Jl(ml,m2), (4.9)D-t = Pl P

D (_) D Yw-Y, j2(mi,m2). (4.10)7i p
In these equations, u is the velocity vector and all variables denote the physical field. In
order to obtain the filtered fields, one should apply Favre averages on both sides of Eqs.

(4.8) - (4.10) and introduce appropriate subgrid modeling assumptions (such as neglect
of the fluctuating terms and introduction of "eddy" diffusivities) to achieve closure.

5. Conclusions

In thiswork, we studiedthe processof formation and earlyevolutionof a contrailin

the near-fieldof an aircraftwake. The basic tool was a two-phase flow code; the basic
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configuration, an engine exhaust jet, loaded with soot particles, and interacting with a

wing-tip trailing vortex. Large-eddy simulations were carried out at high Reynolds num-

bers, typical of wake configurations. A simple micro-physics model was used to account

for nucleation of water vapor on the soot particles. A first set of simulations was carried

out without any ice-growth model, to analyze the spatial distribution of supersaturation

around soot particles. Results showed that particles first saturate at the edges of the

exhaust jet. Vortex-induced entrainment in the wake enhances mixing of exhaust gases
with cold air and favor water vapor supersaturation and condensation. A second set of

simulations was carried out with the ice-growth model activated. The results showed that

the radii of the frozen particles reach asymptotic values which depend on the local super-
saturation. This corresponds to local thermodynamic equilibrium state between vapor

and ice phases. Taking vapor depletion into account results in significant deviation from

the classical mixing line. This justifies the need for two-phase flow simulations to deal
with contrail formation.
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Stratified flows

Stable stratification impacts geophysical and astrophysical fluid dynamics across a

spectrum of space and time scales, ranging from rapidly-evolving shear layers only tens

of centemeters in depth in the ocean thermocline (Woods & Wiley 1972) to residual

circulation and mixing due to gravity-wave dynamics in the Earth's middle and upper

atmosphere (Andrews, Holton & Leovy 1987) and in the solar interior (e.g. Fritts, Vadas
& Andreassen 1988).

Unique features of turbulence in stratified environments complicate the modeling of
these flows: e.g.

1) vertical mixing is impeded by gravity's restoring force, while horizontal mixing is less

constrained, resulting in the formation of layers that extend in the horizontal and are

confined in the vertical;

2) such layers can be subgrid-scale in the vertical direction, and in some cases nearly all

of the dynamics must be modeled;

3) the persistent damping of vertical motion leads to, in the absence of continuous external

forcing, eventual turbulence decay and restratification, leaving the fossil remnants of

dynamically-inactive (or only weakly-interacting) 'frozen-in' flow features;

4) these fossil remnants of past turbulence events can serve to precondition future turbu-

lence outbreaks when external forcing reappears, resulting in preferred locations where

turbulence nucleation recurs;

5) gravity-wave radiation from flow over topographic or layered-turbulence features can

propagate great distances before succumbing to overturning; when the wavelengths of

the waves are not resolved, non-local mixing must be incorporated in the sub-grid model

of such flows. The three papers included in this section individually examine aspects of

stably-stratified dynamics. The first two are basic studies, involving analysis of direct
numerical simulations (DNS) of turbulence in stratified environments. The paper titled
"Entrainment-zone restratification and flow structures in stratified shear turbulence" by

Reif et al. investigates the late-time dynamics and morphology of a stratified turbu-

lent shear layer using turbulence budgets, single-point structure tensors, and 3D flow

visualization. The paper "Waves in turbulent stably-stratified shear flow" by Jacobitz,

Rogers & Ferziger explores attempts to partition flow fields into gravity-wave and turbu-

lence components. The authors caution against the identification of gravity waves via the

phase angle between density and vertical velocity, and examine the utility of projecting
the flow onto the linearized inviscid equations of motion when stratification is present.

Though their results (and others they cite) show some promise, the authors point out
a fundamental difficulty with this approach ,and conclude that turbulence and waves in

stratified environments may be inextricably entangled.

The third paper "Adriatic simulations by DieCAST" by Dietrich, Carnevale, & 0r-
landi endeavors to identify the root cause(s) of and influences on the cross-Adriatic

current flowing from the Croatian coast to the Italian coast. At the outset of the CTR

Summer Program, their study identified several influences on this current, including the
topography of the Mid-Adriatic Pit and seasonal variations in stratification due to near-

surface solar radiation, air-sea exchanges, freshwater river plumes and the saltier water

entering through the Strait of Otranto. The work reported here focuses on the dominant
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influenceoftopography,layingthegroundworkforfuturedetailedstudiesoftheinfluence
ofstratification.
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Late-time dynamics and morphology of a stratified turbulent shear layer are examined

using 1) Reynolds-stress and heat-flux budgets, 2) the single-point structure tensors in-

troduced by Kassinos et al. (2001), and 3) flow visualization via 3D volume rendering.
Flux reversal is observed during restratification in the edges of the turbulent layer. We

present a first attempt to quantify the turbulence-mean-flow interaction and to charac-

terize the predominant flow structures. Future work will extend this analysis to earlier

times and different values of the Reynolds and Richardson numbers.

1. Introduction

Stable density stratification poses several significant challenges for turbulence model-

ing. Unlike the case of unstable stratification (for which numerous potential turbulence

nucleation sites may trigger volume-filling motion), turbulence in stable stratification
must satisfy more difficult onset conditions, and once initiated, must combat the damp-

ing effects of the background density gradient, which acts to confine the turbulence in

the vertical direction and eventually to suppress it.

There are two primary mechanisms by which naturally-occurring turbulent motion

may be initiated in stably-stratified fluids: 1) shear instability and 2) internal gravity-

wave breaking. In both cases conditions for onset are satisfied by wind-driven forcing,

either such that a) local Richardson-number criteria are met or b) propagating waves
axe generated which travel into regions of favorable shear or density variation for over-

turning. Once overturning and the consequent turbulent mixing occurs and subsides, the

resulting background velocity and density profiles are left in a restratified state that is

only marginally unstable, optimally configured to act as a nucleation site for the next

turbulence-instigating event, even if that event does not occur for a significant period of
time.

The challenge for modeling turbulence in stable environments is that the confinement

in the vertical direction is often severe (e.g., a few hundred meters in the troposphere
and stratosphere and only tens of meters in the ocean thermocline); hence the entire

process (i.e., not just the smallest scales) can be sub-grid in scale. Nevertheless, the

impact on mixing and mean flows can be significant, and because the restratified layer
is marginally unstable and will therefore probably become unstable again at some time

in the future, potential subgrid-scale (SGS) temporal coherence over very long periods

of time is possible. Even more challenging is the characterization of SGS wave transport

processes and distant overturning (possibly in remote restratification zones), implying the

necessity for non-local SGS descriptions of wave dynamics and transport and coupling

to restratified layers which will likely also be sub-grid in scale.

t Norwegian Defence Research Establishment (NDRE)
:_ Colorado Research Associates Div., Boulder, CO, NorthWest Research Associates, Inc.
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In this report we examine some of the aspects of restratification in a turbulent mixing
layer generated by the Kelvin-Helmholtz (KH) instability. Because restratification occurs

first in the edges of the layer, much of our interest during this initial effort is focused on

the dynamics in the layer edges and in comparisons between the edges and the middle

of the layer. Our near-term goals are to characterize the dynamics of the fluctuating

fields and the flow structures during restratification, and to examine the ramifications

for modeling. To this end, we begin by making a detailed exploration of the budgets

for the Reynolds stress and heat flux and by exploring the potential of the single-point

structure tensors introduced by Kassinos et al. (2001) for describing the flow features

and morphology. If this latter effort is successful, we anticipate these structure tensors

may 1) provide a means to characterize the energy-containing structures and 2) be a

valuable component in future modeling efforts. More work is necessary to expand on the

work we begin here.

2. Numerical simulations

2.1. Problem formulation

TO simulate the non-linear evolution of the Kelvin-Helmholtz instability and subsequent

turbulence dynamics, we begin with the Boussinesq approximation in a Cartesian geom-

etry. A streamwise background flow u =- [7o tanh(z/h) is initiated with constant velocity

Uo and length scale h; z is the vertical dimension. The background temperature is initially

linear: T = _z, where _ is the constant mean gradient.

The equations of motion describing momentum, heat, and mass conservation are

Otff + _ × if= Re-lV2ff - _ (P + ff "ff / 2 ) + Ri T , (2.1)

OfT + if" _T = pe-IV2T , and (2.2)

V. if= 0. (2.3)

Here ff = (u,v,w) and _ = (x,y,z) are velocity and position vectors; _ = _ x ft.

All quantities axe non-dimensional, using characteristic time h/Uo, length h, velocity

[.To, and temperature fh scales. The non-dimensional parameters Ri = N2/max(Ozu) 2,

Re = Uoh/v, and Pe = Uoh/_ are the Richardson, Reynolds, and Peclet numbers, and

Ri = Ri 2. N 2 = gaff is the square of the buoyancy frequency, and v and _ axe the

kinematic viscosity and thermal diffusivity, g and a are the acceleration due to gravity

and the thermal expansion coefficient, respectively. Ri = 0.05 and Re = Pe = 2500 are

used for the 3D solutions presented below. Equality of Re and Pe implies Pr = v/t¢ = 1,

which is near the value for air (Prai_ _ 0.7), while Ri < 0.25 indicates dynamic instability

(Miles (1960)).

To obtain numerical solutions we proceed as follows. First, the solenoidal condition

(2.3) is satisfied exactly by employing a two-streamfunction decomposition:

z= (2.4)

Here _ and ¢ are given by ¢ = ¢_ and ¢ = ¢_. U(z) refers to the mean velocity in the

x and y directions (the mean vertical velocity U3(z) is identically zero).

We numerically integrate evolution equations for the scalar fields ¢, ¢, and t_, which we

obtain by 1) substituting T -- z +8 into (2.2) and by 2) retaining the vertical components

of the equations that result when the operators Vx and V x Vx are applied to (2.1).

Note that this eliminates the pressure from the system of equations, since V x VP - 0.
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The boundary conditions are periodic in the horizontal directions, and stress-free

with fixed-temperature on the top and bottom boundaries. Solutions are obtained with

a pseudo-spectral Galerkin algorithm, with field variables represented horizontally by
Fourier series and vertically by either sine or cosine expansions. Nonlinear terms are

evaluated in physical space, while differentiation operations and time advancement are

carried out in spectral space. Linear terms are treated implicitly, while nonlinear terms

are handled explicitly, using the mixed implicit/explicit third-order Runge-Kutta scheme

developed by Spalart et al. (1991) with a CFL number of 0.68.

We initiate the motion with the most-rapidly-growing asymptotic linear eigenmode

(_ _ 4r) with a Kolmogorov noise spectrum added to the velocity field. Vorticity ampli-

tudes for these perturbations are 0.07 and 0.014, respectively. To accommodate the eigen-

mode and the anticipated "secondary instability" (Klaassen & Peltier (1985), Klaassen &

Peltier (1991), Palmer et al. (1994), Smyth & Mourn (2000a), Smyth & Mourn (2000b)),

horizontal dimensions of xo x yo = 12.56 x 4.2 are used. Sufficient remoteness of top and

bottom boundaries is established with 2D tests, and zo = 25 is chosen.

Spatial resolution (i.e., number of spectral modes) is varied during the evolution so that
small-scale features are always properly represented; this includes thermal and viscous

dissipation scales. With Re = 2500, as many as 1200 × 400 x 2400 modes are required.

2.2. Basic flow evolution

Plate 1 shows the flow morphology with Re = 2500. The lower left panel shows the dis-

sipation fields at t = 77 when the primary Kelvin vortex is well formed. At this time

the depth of the mixing layer (at its deepest) is roughly 6h, and the velocity differ-

ence is 2Uo, so the layer Reynolds number is ReL ,_ 30,000. The initially-stable density

stratification is inverted by the primary vortex so that the flow becomes unstable in the

vortex-edge regions, and secondary rolls aligned with the streamwise direction develop

(Klaassen & Peltier (1985), Klaassen & Peltier (1991), Palmer et al. (1994), Smyth &
Mourn (2000a), Smyth & Mourn (2000b)). These secondary rolls are evident in the view

from above (middle left panel), which shows tongues of intense thermal gradients in

upflow regions at the edge of the mixing layer, interleaved with downflow regions with
reduced thermal gradients. The top left panel clearly shows the secondary rolls, using the

vortex visualization technique of Jeong & Hussaln (1995). The center and right panels

show the evolution of the flow at later times, when the vortex tubes interact and trigger

the development of small-scale turbulence (Fritts et al. (1998)). Note that despite the

reflection symmetry of (2.1)-(2.3), e.g., (2, if, T) -+ -(_, if, T), asymmetries in flow per-

turbations can produce apparent spontaneous symmetry breaking in the solutions (e.g.,

note differences in the upper and lower edges in the lower right panel).

Figure 1 shows the total kinetic energy KE and maximum vorticity for the velocity field
with the horizontal mean removed. Oscillations in KE reveal interactions between the

primary billow and the horizontal mean. Fluctuations in the vorticity maxima indicate

the turbulence intensity of the small scales of motion (Werne & Fritts (1999)).

For the study presented here, we examine the turbulence budgets and statistics during

the turbulence-decay phase of the flow evolution (t > 175) when the mean fields undergo
restratification. Figure 2 shows mean profiles for streamwise velocity and temperature

for t = 240, i.e. well into the turbulence-decay phase. We can see from the figure that

mixing in the interior of the layer has homogenized the velocity and temperature fields

there, compressing the initial mean gradients into the edge regions. Despite the enhanced

shear that results in the edge of the layer, the combined action of shear and temperature-

gradient increase results in a larger Richardson number in the edge of the layer than in
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FIGURE 1. Billow and fluctuation kinetic en-

ergy (KE) and max(wl) versus time. wl (w2)
[_3] has been shifted down by 25 (45) [65].

FIGURE 2. Mean velocity (--) and
temperature (- --) profiles.

the middle, and, as a result, the motion in the edge regions is more effectively damped

than in the layer interior.

2.3. Flow decomposition and averaging procedure

For purposes of analysis we follow Palmer et al. (1996) and decompose the flow fields,
e.g., 0, into mean _, residual spanwise average 0, and fluctuating components 0': 0 =

+ _ + 0'. We identify horizontal averages, e.g., _, with the mean field and residual

spanwise averages, e.g., _, with the primary Kelvin vortex. Both _ and _ contribute to

the background environment of 0', and in what follows we lump these together into what

we will refer to as the 'background field', which we denote with upper-case symbols. To

simplify our notation, we will drop the use of primes for the 'fluctuating' fields, denoting
them by lower-case symbols; hence, 0 + 0 = ® and /7' -+ 0.

3. Statistical analysis: mathematical framework

The mathematical framework for the analysis in section4 and section 5 is developed
here.

3.1. Turbulence transport equations

The budgets for the equations governing the evolution of the Reynolds stress, heat flux

and temperature variance are given by

Du_O

Dt

Pij Gij

e_j eli

= - U_OkUi + _Oke) -- (Pe -1 + Re-1)OkUiOkO --pOlO + Ri_ _ + _o

(3.1)

(3.2)
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respectively, where D/Dt = Ot + Uk Ok is the total rate of change and Dij, :D,o and 7)oo
denote diffusion terms.

3.2. Structure-based tensors

The components of the single-point Reynolds-stress tensor uiuj describe the 'componen-

tality' of the turbulence field, i.e., the strengths of different fluctuating velocity compo-

nents. This, however, is insufficient to completely quantify the state of turbulence because

structural information characterizing flow morphology is absent from uiuj. It is straight-

forward to describe such information with two-point or spectral descriptions; however,

because of their inherent complexity, such approaches are currently impractical for pre-

dictive modeling efforts. Kassinos et al. (2001) point out that an adequate one-point

description may be possible by utilizing the so-called structure-based tensors. These are

second- and third-rank tensors derived from correlations of gradients of a turbulence vec-

tor streamfunction g2i: V2_i = -wi, where wi is the fluctuating vorticity. The velocity

is simply ui = eijkOjqlk, and continuity imposes the free condition Okglk = O.

Using @,, Kassinos et al. (2001) introduce the following set of single-point tensors:

Dij = Oik_kOjqk (Dimensionality); Fi i - Okq2iO}q2j (Circulicity); Cij - OkqiOj_2k

(Inhomogeneity); and Qijk =- -ujOkg2i (Stropholysis). These tensors characterize the

large-scale turbulence field. Together with _ they form a minimal tensorial base for a

complete single-point turbulence theory. Members of the subset u--7_, Dij, Fij, and Cij

are linearly independent and can be related to the trace of _ through _ + Dij +

The information content of the individual tensors is most easily understood by consid-

ering the special case of homogeneous turbulence. Here we just mention the highlights:
see Kassinos et al. (2001) for details.

The dimensionality tensor De. describes the anisotropy of wave-vectors in spectral

space, i.e., it contains information that is distinct from that in u--7-_; if, e.g., Dn = 0,
then the large-scale turbulence field is independent of the streamwise direction x. The
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inhomogeneity tensor Cij is a measure of departure from local homogeneity. For homo-

geneous turbulence, C, 3 = 0. The circulicity tensor Fij describes the large-scale vorticity

field. If one of the diagonal components dominates the others, then the largest turbu-
lence scales create rotation predominantly about that direction. Finally, the third-rank

stropholysis tensor Q_jk contains information that is distinct from the other structure

tensors. It relates to the pressure-strain correlation ¢ij appearing in (3.1) and is of par-
ticular importance in situations where there are significant contributions from mean or
frame rotations.

4. Dynamics in the near-edge region

4.1. Shear-layer-interior homogeneity

We begin by examining the flow inhomogeneity C_j + Cji during turbulence decay and

restratification in figure 3. Here we see from C11/Dkk _ 0 that the flow is nearly homo-
geneous in the streamwise direction across the layer, justifying the streamwise-averaging

procedure we have adopted. The two other diagonal components, C22/Dkk and C33/Dkk,
are also nearly zero in the core region, indicating local homogeneity in these directions

as well when ]z I < 3.

4.2. Edge-region flux suppression

Figure 5 shows the shear-stress components for the same time shown in figure 3. Note

the reduction in the fluctuation KE near the edges of the layer where density stratifi-

cation is elevated (cf. figure 2). Note also the significant asymmetry that has appeared
between the upper and lower edges due to the relatively larger density stratification

which has developed spontaneously in the upper edge region. Animations reveal that

this asymmetry results when reminants of the primary KH billow descend (by random

advection), increasing the turbulence intensity of the lower edge relative to the upper

edge and triggering the early collapse and restratification of the upper edge.

The enhanced stratification in the upper edge leads to the development of a significant

region of flux suppression (see _ for z > 2 in figures 5 and 6), with flux reversal being
observed momentarily. Much of the discussion that follows concentrates on the nature
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and consequences of the edge-region flux reduction as a case study in the impact of
stratification. We will extend this analysis in future work to examine the behavior at
earlier time and for varied Ri and Re.

4.3. Turbulence production and mean-field evolution

As a result of the more rapid restratification near the upper edge of the shear layer,

the background Richardson number is higher here and the turbulence kinetic energy is

reduced. We see from the turbulence-kinetic-energy production terms

7)k=Pk + Gk _ _+ R/,._, (4.1)

½Pli ½_33

which we obtain from the trace of (3.1), that reduction in turbulence kinetic energy is

intimately tied to flux suppression. We also note that the shear production term Pk is

normally positive, and the buoyancy production term Gk = RiwO usually acts to enhance

the background temperature field O at the expense of the turbulence. This is the behavior

near midlayer. However, when flux reversal occurs, as it does for a period of time near the

up__peredge of the layer, the terms exchange rol__es,with buoyancy acting as a source in the
w 2 equation and shear behaving as a sink for u 2. Figure 7 shows the relative contributions

of Pk and Gk for kinetic energy production, demonstrating that, despite the exchange

in roles for the two terms during flux reversal, shear consistently dominates buoyancy

effects throughout the lay__er; i.e., IP__> IGkl. The shift in the turbulence kinetic energy
production from Pll in u 2 to 633 in w 2 has interesting consequences for stably-stratified

shear-flow dynamics when flux suppression and reversal occur. First, when Pu _< 0,

energy transfer from the background flow is abruptly shut off; see figure 8. Secondly and

perha_p_psmore interestingly, the intercomponent energy transfer in (3.1) between u2, v 2,
and, w _ (via pressure-strain correlations ¢ij) is fundamentally different from homogeneous

shear flow. Figure 9 demonstrates this by showing the normal components of ¢ij. The
majority of the layer exhibits ¢11 < 0 and ¢22, ¢3s > 0, consistent with homogeneous

shear-flow dynamics; however the upper edge region, where flux reversal is occuring,

exhibits a change in sign of the vertical component, with the other two components

retaining their midlayer signs; i.e. Cn < 0, ¢22 > 0, and ¢33 < 0. The peculiarity of this
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behavior is not that ¢33 has changed sign, but rather that ¢11 has not. To understand the

ramifications, consider the case of homogeneous shear flow unaffected by body forcing.

In this case Pn > 0 and P22 = P33 = 0, and ¢11 < 0, ¢22, ¢33 > 0. Background-flow

energy is thus transferred directly to the strearnwise stress componen,t and orthogonal

components are subsequently fed via pressure-strain correlations. In contrast, for the

ease near the upper portion of the shear laye__r presented in_figures___8 and 9, pressure-
strain correlations redistribute energy into v 2 from both u 2 and w 2, despite the fact

that Pn + Gn is negative. The importance of this result is that pressure-strain models
employed by traditional RANS closures fail in this situation because they cannot predict

sign(Pij + Gij) = sign(¢ij). This is similar to the blocking effect in turbulent boundary

layers, except in that case wall-normal- and shear-stress components are affected, see e.g.

Durbin & Pettersson Reif (2001).

4.4. Turbulence production and u 2 damping

An apparent oddity of the normalized Reynolds-stress__ components (figure___6) near the
edges of the shear layer is the sharp reduction in u 2 relative to v 2 and w 2 as the far

field is approached. This is particularly striking given the well-established damping of w 2

in stable stratification when background shear is not present (Thoroddsen & Van Atta

(1992)). Clearly, background shear introduces a fundamental change in the dynamics.

In order to explain the reduction of u 2 and demonstrate its relation to flux su_ppression

(___d possible reversal), we must examine the dominant production terms for u 2, E_ and
wO:

Pn = Pn + Gn _, -_-_03U (4.2)

P13 = P13 + G13 _ -w203U + RiuO (4.3)

P3o = Pso + RiO 2 "._ --W2(_3 0 "_- RiO 2. (4.4)

We see that it is also instructive to consider the generation terms for uO, 02, and w_:

t)10 "_ -'_O3U - ECO30, Poo = -2w-"-OOsO, Ps3 = t)33 + G33 _-- Riw'-'O. (4.5)

From (4.3) we see that uO and a reduction in w 2 will act to reduce -E_, which in turn

through (4.2) will decrease u2. As -_-_ decreases, the background shear generation of
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turbulence kinetic energy is reduced, and therefore so is w 2. It is important to note

however that a change in sign of _'E does not promote high positive levels of u8 due to

the second term Pie (4.5), suggesting that high levels of _ alone cannot be responsible

for flux reversal when it occurs. Nevertheless, from Pie (4.5) we see that for fixed or

slowly-varying values of -w8 and -_'-_, increases in the background gr__.adients do result
in elevated values of uS, which can participate in reducing -_--_ and u 2.

Similarly we can understand the su__ppression (and possible reversal) of w8 by noting
that for relatively fixed values of -w8 an elevated value of 036) will result in enhanced

82, which combined with a reduction in w 2 will reduce -w8 via (4.4). But, as can be

seen from Pee (4.5), and similar to the case for -_, reduced -w8 acts to decrease 82,

suggesting that high levels of 82 alone cannot be responsible for a reversal in -w8 when

it occurs. This su__ggests that a reduction in w 2 is the most important instigator for flux
reversals, both w8 and _-_.

5. Anisotropies and large-scale structures

The second invariant II= = -½x_jx_j of a second-rank tensor xij quantifies the depar-
ture from isotropy (II= = 0). In particular x_j +6i_/3 = u-7_/u---;'_ (II_), Dij/Dkk (IId),

and 6ii/ekk (IIe) reflect the character of the large (_, Dij) and dissipative (eii) scales,

respectively. The profiles displayed in figure 4 reveal that the small-scale anisotropy can

be comparable to, or even larger than, the integral-scale anisotropy in the strongly in-

homogeneous edges of the shear layer, whereas the small-scale motion is significantly

more isotropic near mid-layer. Dij is less anisotropic than _ throughout the layer,

and IIIa = ½xijxj_xk_ < 0 indicates cigar-shaped features near the layer edges.
By examining the individual components of u--7-_, Di_, and Fi_ (figures 6-12), we can

gain further insight into the large-scale turbulence structures (Kassinos et al. (2001)). For

example, in the upper near-edge region with D22 _ Ds3 and Dn _ D22/6, we anticipate

that the cigar-shaped features are aligned in the streamwise direction,__are roug__hly si__x
times longer in the x direction than in the other directions, and since u 2 >> v 2 _ w 2,

these features are strongly 'jetal' in character. At mid-layer the diagonal components

of Dij are roughly in the ratio (Dn : D22 : D33) _ (2 : 5 : 3.4) and we expect less
elongated structures here, extending roughly 2.5 times in the streamwise direction as in
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FICURE 13. Streamwise fluctuations in the

center of the layer. Dark (light) regions with
light (dark) cores represent u > 0 (u < 0).

FIGURE 14. Streamwise fluctuations at the
edge of the layer. Dark (light) regions with
light (dark) cores represent u > 0 (u < 0).

the spanwise, and possessing -_ 3070 greater height than spanwise extent. Figures 13 and

14 support these expectations. In particular, note the nearly circular (spanwise-fiattened)
y- z cross-sections of features at the x = 12.56 (x = 9.0) cutting plane in the upper-edge

(mid-layer) region.

The circulicity tensor (figure 12), which quantifies large-scale turbulence circulation,

exhibits a tendency for large-scale vertical vorticity at mid-layer with F33 > Fn >_ F22.

This results from jetal motions in the horizontal plane and is identical to the behavior in

the unstratified case (Kassinos et al. (2001)). Near the edges of the layer Fm decreases

while F2_ grows until F22 _ F33, and just outside the layer F22 surpasses F33 to become

the dominant circulation direction. This behavior results from the strong vortex sheet

adjacent to the turbulent layer which acts as the transition interface between turbulent
and irrotational flow.

6. Conclusions

We have presented Reynolds-stress and heat-flux budgets for stratified shear flow dur-
ing layer restratification. During this time the outer regions of the shear layer exhibit flux

suppression and reversal, both for _ and w0; we offer an explanation for this behav-

ior. The reversals are most pronounced at the top of the layer where turbulence kinetic

energy is severely damped by the action of stable stratification.

We also examined the ability of single-point structure tensors to describe the features

exhibited by 3D volume-rendered depictions of the flow. The structure tensors appear to

capture and quantify the relevant flow morphology.

We will extend this analysis to earlier times and different Re and Ri so we can evaluate

the robustness of the result. Furthermore, because the edges of the shear layer appear to

pose important challenges for modeling, it is imperative that we insure that quantification

of the edge regions is reliable. For this reason future characterization will adopt the

conditional-sampling technique of Bisset et al. (2002).
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Waves in turbulent stably-stratified shear flow

By F. G. Jacobitz _, M. M. Rogers :_AND J. H. Ferziger ¶

Two approaches for the identification of internal gravity waves in sheared and unsheared
homogeneous stratified turbulence are investigated. First, the phase angle between the

vertical velocity and density fluctuations is considered. It is found, however, that a con-

tinuous distribution of the phase angle is present in weakly and strongly stratified flow.

Second, a projection onto the solution of the linearized inviscid equations of motion of

unsheared stratified flow is investigated. It is found that a solution of the fully nonlinear

viscous Navier-Stokes equations can be represented by the linearized inviscid solution.

The projection yields a decomposition into vertical wave modes and horizontal vortical
modes.

1. Introduction

An important problem in geophysical fluid mechanics is the characterization of turbu-

lence and wave motion in stably-stratified flows. Fluid motion can occur as a result of

either of these phenomena, and the ability to separate the motions associated with each

should lead to better understanding and predictability of the flow. Stewart (1969) listed

criteria that might be used to distinguish between internal wave motion and turbulence.
The first distinction noted was that wave motion satisfies linear equations, whereas tur-

bulence is inherently nonlinear. However, when both waves and turbulence are present,

the motions are coupled nonlinearly and it is unclear how to extract the wave component

of the flow. Secondly, the processes by which energy is transported are different. In tur-

bulence, energy is advected at the speed of the motion, whereas waves transport energy

via pressure-velocity correlations, usually at a group velocity that is greater than the
particle velocity. Lastly, Stewart noted the difference between turbulence and waves with

regard to mixing. Except when they break, waves do not produce mixing. Although they

can transport momentum, they cannot transport scalars. Thus the scalar flux u2p, where

u2 is the vertical velocity component, should be large in regions dominated by turbulence

and small where waves predominate. Furthermore, the relative phase of vertical veloc-

ity fluctuations u2 and density fluctuations p is different for waves and turbulence. For
stably-stratified flows, in-phase motion between u2 and p corresponds to down-gradient

turbulent transport, while 180 ° out-of-phase motion is associated with counter-gradient
turbulent transport. For wave motions, u2 and p have a phase difference of 90 ° and there
is no mean correlation between them.

Stewart (1969) concluded that this last distinction held the greatest promise for distin-
guishing waves and turbulence and this criterion has been used extensively ever since. For

example, Stillinger, Helland, & Van Atta (1983) felt that their unsheared stably-stratified

decaying turbulence "had been completely converted to random internal wave motions"

when _ became zero. However, Lienhard & Van Atta (1990) pointed out that u2p can

be zero as a result of co-gradient and counter-gradient fluxes at different scales of motion

t University of California, Riverside
:_ NASA Ames Research Center
¶ Stanford University



258 F. G. Jacobitz, M. M. Rogers _ J. H. Ferziger

cancelling each other out. More careful diagnosis requires examination of the cospectrum

of u2p as a function of wavenumber, as originally proposed by Stewart (1969). Defining

the cospectrum Co and quadrature spectrum Qu as

Co_2p(kl, x2) = Re (Ek3_(kl, x_, k3)/5(kl, x2, k3)) (1.1)

= Im z2, k3)) , (1.2)
where the tildes indicate Fourier transformed quantities, the phase angle q_2p between

vertical velocity u2 and density p is given by

=arctan (1.3)
\ Co_2p / "

The above spectral quantities (or similar measures in terms of other wavenumber com-

ponents) have been used in evaluating both experimental and computational data on

stratified flows. McBean & Miyake (1972) used measurements in the atmospheric surface
layer to tentatively conclude that wave motions may be important at low frequencies in

stably stratified flow. Komori, Ueda, Ogino & Mizushina (1983) felt that a significant
fraction of the motion in their stably stratified open-channel flow experiment was wave-

like based on the phase angles measured. In contrast, data from experiments in both

unsheared (Lienhard & Van Atta 1990) and sheared (Piccirillo & Van Atta 1997) stably

stratified homogeneous turbulence indicate no evidence of wavelike motion based on ex-

amination of the phase angle. Analysis of direct numerical simulations of similar sheared

homogeneous stratified turbulence (Holt, Koseff & Ferziger 1992) also indicates that even

for strong stratification there is no band of wavenumbers with _b_2p _ 90 °.
Riley, Metcalfe, and Weissman (1981) proposed a different method for separating wave-

like and turbulent motions. They used the Craya (1958) decomposition to split the tur-

bulent velocity field associated with each wavenumber into two solenoidal components,

one normal to the wavenumber vector and to the gravity vector, and the other orthogonal

to the first component and to the wavenumber vector. For small amplitudes, this second

component satisfies the linear propagation equation for internal gravity waves, and is

thus identified as the "wave" component of the motion. The other component consists of

quasi-horizontal motions containing all the vertical vorticity and is identified as "turbu-
lence". This decomposition splits the flow into propagating and non-propagating parts

only in the limit of zero Proude number. For small but finite Froude number Staquet

and Riley (1989) proposed a generalization of this decomposition using Ertel's (1942)

Theorem for potential vorticity. However, this generalization is invalid when the density

gradient is zero or unbounded, and therefore cannot be used for turbulent flows.

Despite this shortcoming, Herring and M_tais (1989) and M_tais and Herring (1989)

used the original Riley et al. decomposition to split their numerically-simulated turbulent

flow fields into "wave" and "turbulent" components. They acknowledge the deficiencies

of this approximation, noting 1) that "a proper definition of waves should include the

density field, and its phase relative to the 'wave'-component of the velocity" and 2)
their non-zero Froude number. However, the "turbulent" components of their flows do

not show oscillations that scale with the Brunt-V_iis/il_i frequency; such oscillations are

observed in the wave component of the flows. This suggests a weak interaction between

the components, and perhaps the adequacy of the decomposition.

The prototypical example of homogeneous turbulent stratified shear flow with uniform

stable vertical stratification S o = cgp/Ox_ and uniform vertical shear S = OU/Ox2 is the

simplest flow that contains both shear and stratification. It has been studied extensively



Stratified shear flow 259

in the past due to its geophysical significance. Experimental investigations include Rohr,

Itsweire, Helland & Van Atta (1988) and Piccirillo &: Van Atta (1997). Numerical simula-

tions include the work by Gerz, Schumann & Elghobashi (1989), Holt, Koseff _ Ferziger

(1992), Jacobitz, Saxkar &: Van Atta (1997), Jacobitz (2000) and Shah, Koseff & Ferziger

(2000). Turbulence in decaying stratified turbulence without shear has been investigated

by M@tais & Herring (1989), Lienhard & Van Atta (1990), Yoon &: Warhaft (1990) and

Briggs, Ferziger, Koseff & Monismith (1998).

In this study, possible ways to decompose the fluid motion into turbulence and wave

components are investigated in direct numerical simulations of both sheared and un-

sheared homogeneous stratified turbulence. Both the phase angle between the vertical

velocity and density and projections onto eigensolutions of the linearized governing equa-
tions are examined.

In the following section, the numerical simulations used in the present study are in-

troduced. In sections 3 and 4, the phase angle results in sheared and unsheared stably
stratified turbulence are presented. In section 5, a turbulence-wave decomposition based

on the linear inviscid equations of motion is applied to the numerical data. Results are
summarized in section 6.

2. The numerical simulations

The current study is based on the results of five direct numerical simulations of sheared,

homogeneous stably-stratified turbulence and two direct numerical simulations of un-

sheared, decaying homogeneous stably-stratified turbulence.

In the direct numerical simulations, all dynamically-important scales of the velocity,

density and pressure fields axe resolved and no turbulence models are introduced. A spa-

tial discretization is first performed to obtain a semi-discrete system of ordinary differ-

ential equations from the original system of partial differential equations. An integration

of the system of ordinary differential equations is then performed to advance the solu-

tion in time. The spatial discretization is accomplished by a spectral collocation method.
The temporal advancement is accomplished by a fourth-order R.unge-Kutta scheme. A

computational grid overlaying a cube of length 27r was used with 2563 points. The initial

conditions are taken from a separate simulation of isotropic turbulence without density
fluctuations, which was allowed to develop for approximately one eddy turnover time.

The energy spectrum of the initial field peaks at a wavenumber k = 13 and the resulting

vertical integral scale, computed as the vertical integral of the autocorrelation of the

vertical velocity component, is L = 0.174, compared to the box size 2_r. The initial value
of the Taylor microscale Reynolds number is taken as Rex = 45 in all simulations.

Figure 1 shows the evolution of the normalized turbulent kinetic energy K/Ko for

sheared stably-stratified turbulence with Richardson numbers Ri = O, Ri = 0.1, Ri = 0.2,
Ri = 0.5, and Ri = 1.0. Here the Richardson number is given by N2/S 2, where N is the

B runt- V_is_lg frequency, given by x/(- g / Po) O-fi/Oy. Initially, the turbulent kinetic energy

decays as a result of the absence of Reynolds shear stress UlU2 in the isotropic initial
condition. For simulations with small values of the Richardson number, the turbulent

kinetic energy eventually grows with nondimensional time St. For simulations with large

values of the Richardson number, however, the turbulent kinetic energy continues to

decay, with the stratification overwhelming the turbulence production by the mean shear.

Figure 2 shows the evolution of the normalized turbulent kinetic energy K/Ko for
unsheared stably stratified turbulence with initial Froude numbers Fr = 64 and Fr = 6.4,
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FIGURE 1. Evolution of the normalized turbulent kinetic energy K/Ko in sheared stratified

turbulence with Richardson numbers 0 (o), 0.1 (_), 0.2 (o), 0.5 (A), and 1.0 (V).
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FIGURE 2. Evolution of the normalized turbulent kinetic energy K/Ko in unsheared stratified

turbulence with initial Froude numbers 64 (o) and 6.4 (D).
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FIGURE 3. Spectrum of the phase angle ¢_2p in sheared stratified turbulence at St = 5 with
Richardson numbers 0 (o), 0.1 (_), 0.2 (o), 0.5 (A), and 1.0 (V).

where Fr = _/u_/(LN). A slightly stronger decay of the turbulent kinetic energy is found
for the more strongly-stratified simulation.

3. Phase angle in sheared stably stratified turbulence

In this section, the phase angle in sheared stably-stratified turbulence is discussed. The

Richardson number Ri is varied from Ri = 0, corresponding to unstratified shear flow,
to Ri = 1, corresponding to strongly-stratified shear flow.

Figure 3 shows the spectrum of the phase angle ¢_2p between the vertical velocity

u2 and the density p at non-dimensional time St = 5. In the unstratified simulation

with Ri = 0 (o symbols), phase angles ¢_2p _ 0 are found for small wavenumbers kl,

and phase angles ¢_,2p _ ±180° are found for large values of kl. The transition from

¢_2p _ 0 to ¢_2p _ ±180° occurs at a wavenumber kl ,_ 35. At this wavenumber, the

cospectrum Cou2p crosses zero and changes sign. As the Richardson number is increased,
the transition wavenumber decreases to about kl _ 20 for Ri = 0.1, kl _ 17 for Ri = 0.2,

kl _ 10 for Ri = 0.5, and kl _ 5 for Ri = 1. Phase angles Cu2p _ :t=90°, indicating

possible internal wave motion, are observed only in the strongly stratified simulations
with Ri = 0.5 and Ri = 1 and only for a few scattered wavenumbers, not over a region

of wave-space. Again, these isolated instances of 90 ° phase angles are associated with

zero-crossings of the associated cospectrum, rather than a region in wavespace exhibiting
wavelike behavior.

Figure 4 shows the probability distribution of the phase angle Cu2p over an instanta-

neous flow field. The phase angle distribution of the unstratified simulation with Ri = 0

has a slight maximum at ¢_2p = 0, indicating a very modest predominance of down-

gradient mixing. As the Richardson number is increased, the maximum of the phase

angle distribution is found at ¢_2p = =i:180°, corresponding to counter-gradient mixing.
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FIGURE 4. Distribution of the phase angle ¢_2p in sheared stratified turbulence at St -- 5 with
Richardson numbers 0 (o), 0.1 (=), 0.2 (o), 0.5 (A), and 1.0 (V).

The largest contribution to ¢_2; = ±180° is found in the Ri = 0.5 case, which also shows

the strongest counter-gradient mixing coefficient. For all cases, a continuous phase angle

distribution is observed. There are no local peaks apparent around ¢_,2; -- ±90° that

would suggest regions of wavelike behavior distinct from the background turbulence.

In order to obtain a more complete picture of phase angle distributions in turbulent

stratified flow, figure 5 shows the distribution of the phase angle ¢_1=2 between down°

stream, ul, and vertical, u2, velocity components, again at St = 5. The distribution is

relatively unaffected by the Richardson-number variation. It shows strong peaks around

¢_1_2 = 0 and around CUlU2 = ±180° that can be explained using the continuity equa-

tion. For modes with k3 = 0, the continuity equation in wave space requires that the

Fourier coefficients fil and fi2 are in the same direction, corresponding to ¢=1_2 = 0, or

in opposite directions, corresponding to Culu2 = ±180°. The peaks are therefore a result
of two-dimensional modes.

4. Phase angle in unsheared stably-stratifiedturbulence

In this section,the phase angle in unsheared decaying stably stratifiedturbulence is

discussed.A weakly-stratifiedcase with initialFroude number Fr = 64 iscompared to

a more stronglystratifiedcase with Fr = 6.4.

The spectrum ofthe phase angle Cu2p afterabout 10 eddy-turnover times isshown in

figure6. The weakly-stratifiedcase with Fr = 64 has Cu2p _ 0 forallkl, corresponding

to down-gradient flux.The case with Fr = 6.4,however, shows Cu2p _ ±180° for wave

numbers largerthan about kl = 30, corresponding to counter-gradientmixing.As inthe

sheared cases,there isno band in wavespace with wavelike behavior.

The phase-angledistributionoverthe instantaneousfieldat the same time asinfigure6

isshown infigure7.The distributioninthe weakly-stratifiedcaseshows a clearmaximum
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FIGURE 5. Distribution of the phase angle ¢_1_2 in sheared stratified turbulence at St = 5
with Richardson numbers 0 (o), 0.1 (n), 0.2 (o), 0.5 (iX), and 1.0 (V).

around ¢_2n = 0. However, the phase angles are widely distributed, which perhaps would
not have been anticipated given the distribution in figure 6, which shows averaged phase

angles at a given wavenumber. The distribution in the Fr = 6.4 case shows a maximum

around Cu2p = +180°, corresponding to counter-gradient mixing. The distribution of

phase angles between downstream velocity ul and vertical velocity u2 is very similar to

that of the sheared case, with strong peaks at 0 ° and 4-180 ° and a weak dependence on

the strength of the stratification.

5. Normal-mode analysis

A normal-mode analysis of the linearized inviscid equations of motion for the unsheared

flow is performed. The direct numerical simulation results are then projected onto the

eigensolution in order to extract a possible linear wave motion present in these results.

The analysis is based on the following linearized inviscid equations of motion:

Op

Oui _ 10p 9p6i 2
Ot Po Oxl Po

The pressure is eliminated from the equations using the continuity equation. The equa-

tions are transformed into Fourier space and take the following form:

0__
= - _Sp_2 = N_fi_

Ot Po

0_i { kik2 _ 6i2)o--?= •
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FIGURE 6. Spectrum of the phase angle ¢_2p in unsheared stratified turbulence after about 10
eddy-turnover times with initial Froude numbers 64 (o) and 6.4 (D).

Normal modes of the form

ul ul exp i(kjxj + wt)

_3 _3

are introduced and lead to the following system of equations:

_..__ &t_z iw 0 0
PO k _ ?_1

_4 (_ _ 1 0 iw 0 u2
Po \ k _

.S__ 0 0 iw u3
-- Po k "_

=0

The following eigenvectors are obtained:

_=ikl k2 ff-D 1 0

e1,3 = =J:i(k_ + k_)v_ e2 = 0 e4 = 0

=Fik2k3v_ 0 1

The solution from direct numerical simulations can now be expressed in terms of the

From this system of equations, the following dispersion relation is obtained:

w 2 = 0 w = +v_

Here, D takes the following value:

D = Y 2 k_ + k_
k 2



20000
Stratified shear flow

I I I

265

N

15000 E

10000

(

5000

0 , I , I , I ,

-180 -90 0 90 180

FIGURE 7. Distribution of the phase angle ¢_2p in unsheared stratified turbulence after about
10 eddy-turnover times with initial Froude numbers 64 (o) and 6.4 (o).

eigenvectors:

aDNS = alel q- a2e2 + a3e3 q- a4e4

Here, the components a2 and a4 describe horizontal vortical motion. The components

al and a3 define an upper bound for the wave motion present in the field. Note that

any DNS data, except that for kl and k3 both zero, can be represented by a choice of

complex al, a2, as, and a4. The coefficients are found by multiplication with the complex
conjugate of the eigenvectors of the adjoint problem.

Note that the solution to the linearized governing equations is also used in Rapid

Distortion Theory. The analytical solution to the equations presented at the beginning

of this section was developed by Hanazaki and Hunt (1996). The solutions of these lin-

earized equations show an impressive degree of similarity to solutions of the full nonlinear

problem and capture much of the distinctive behavior of stably-stratified turbulence. Re-

markably, Hanazaki and Hunt (2002) have extended this analysis to include the case of

uniformly-sheared stratified turbulence as well. Presumably this solution could be used

to provide guidance on how to decompose the sheared flow fields, but the difficulties

encountered above would still be present (that is, all of the turbulent motion could be

represented by the eigenvectors of the linearized system and, even after eliminating hori-

zontal motions containing the vertical vorticity, the remaining "wave" motion could still

contain a turbulent component).

6. Summary

In this study, the phase angle Cu2p between vertical velocity uz and density p was com-
puted from direct numerical simulations of sheared and unsheared homogeneous stratified

turbulence. A broad distribution of the phase angle was found that is consistent with
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the observed down-gradient mixing for weakly stratified flow and counter-gradient mix-

ing for strongly stratified flow. However, the broad distribution hides any internal wave
signature that may be present in the flow.

A decomposition based on linear analysis has been proposed for unsheared decaying

stratified turbulence. The flow fields are decomposed into horizontal vortical motions and

vertical wave motions. However, there may still be some turbulent motion contained in

the wave field. In agreement with Stewart (1969) we find that "there is probably no really
clear-cut distinction between turbulence and waves".
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Adriatic simulations by DieCAST

By D. Dietrich _, G.F. Carnevale _: AND P. 0rlandi ¶

The DieCAST model is modified for simulations of flow in the Adriatic Sea. A ten-year

simulation is performed and the ability of the model to capture important features of the

Adriatic circulation is demonstrated. A series of numerical experiments on the importance

of the Mid Adriatic Pit (MAP) on the circulation is performed. It is demonstrated that
the cross-Adriatic current over the northern flank of the MAP, which flows from the

Croatian to the Italian coast, is primarily a topographic current and that such a current

would reverse direction if the gradient of the bathymetry were reversed.

1. DieCAST Model Background:

The DieCAST ocean model (Dietrich 1997; Dietrich et al. 1997; Staneva et al. 2001;

Haney et al. 2001) is applied to study the circulation of the Adriatic Sea. The hy-

drostatic, Boussinesq primitive continuum equations are derivable as an infinitesimal
control-volume limit of the discrete conservation equations solved by DieCAST. A free-

slip quasi-rigid-lid approximation is used. (The "lid" is weakly porous due to evapora-
tion, precipitation and river source treatments; Staneva et al. 2001.) However, efficient

free-surface and non-hydrostatic options are available; the former uses a shallow-water

equations submodel forced by vertically-averaged baroclinic-mode terms; the latter uses

an efficient iteration on the non-hydrostatic vertical acceleration terms (Dietrich et al.
1987, Appendix 1; Dietrich & Lin 2001).

The DieCAST lineage began with the Sandia Ocean Modeling System (Dietrich, et

al. 1987), which included a two-way-coupled three- dimensional bottom boundary layer
(bbl) submodel designed for risk assessment under the DOE sponsored Subseabed Waste

Disposal Program. By confining sloping coordinates to the thin bbl, such approach avoids
inaccuracies and associated numerical problems (e.g. Haney 1991) of baroclinic pressure

gradient evaluation in a sloping bottom-fit (e.g. "sigma") coordinate system outside the
bbl, while allowing accurate specialized (e.g. having sophisticated subgrid-scale turbu-

lence submodel for Reynolds stress parameterization) treatment of the bbl in a full ocean

modeling system.
Resolution sensitivity studies (Roache 1998a,b) (Dietrich et al. 1990; Dietrich 1993)

verify model numerics and show that higher-order treatment of numerically-dispersive in-

terpolations, used to evaluate the large Coriolis terms on the original staggered Arakawa

"c" grid, greatly improves accuracy. Although included in these resolution sensitivity
studies, the present DieCAST semi-collocated grid approach avoids such numerical dis-

persion of the large Coriolis terms. The original semi-collocated approach was improved

(Dietrich 1997) by:

a) RDA (reduced dispersion advection)

b) MIA (modified incompressibility algorithm)

t Mississippi State University
:_ Scripps Institution of Oceanography
¶ University of Rome
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MIA reduces numerical dispersion associated with two-way interpolations used by the

incompressibility step. The original RDA is, effectively, 3.5-order-accurate. Following
Sanderson (1998) and Sanderson & Brassington (1998), a slightly-modified RDA is used

in recent versions: this is formally fourth-order-accurate on a collocated control volume

grid. Third-order-upwind advection is a reasonable alternative, but there are advantages
to our present fourth-order-accurate approach.

The present DieCAST model is fourth-order-accurate, except for subgrid- scale diffu-

sive parameterization and vertical integration of the vertical momentum (hydrostatic)
equation and in zones adjacent to lateral boundaries, where second-order-accuracy is
used.

Dietrich & Mehra (1998) introduced a robust one-way nesting approach, which has

been upgraded in a two-way-coupled nearly seamless duo grid North Atlantic/Gulf of

Mexico/Caribbean Sea model that is one-way-nested in a global version of DieCAST

(Dietrich, Haney & Mehra 2002); for more details on the basic grid coupling and nesting
approach, see:

http://www.maths.unsw.edu.au/bxs/DieCAST/MANUAL/.
Results include: highly-inertial realistic Gulf Stream separation and dynamics; difficult-

to-model warm core rings (pinched off northern meanders of the GS); cold core rings; and

a robust Deep Western Boundary Current, not resolved by the initialization climatology,

that develops over a time scale O(10) years and significantly affects the GS separation

and underlying fields.

Accuracy -- including low numerical dispersion -- and robustness with low numerical

dissipation are extremely desirable features in numerical models. These features, and

algorithmic simplicity and numerical efficiency, are serious goals in the DieCAST lineage.

However, it is noteworthy that other versions exist which include advanced features

such as partial bottom cells and more sophisticated advection and turbulence closure

algorithms (e.g. the Canadian version of DieCAST, CANDIE; Sheng et al. 1998).

2. Present Adriatic Sea implementation of DieCAST

The present 30-layer, 2.5 min longitudinal resolution DieCAST adaptation is one-

way-nested inside a 7.5 rain resolution full Mediterranean Sea adaptation with a spatial

resolution of 7.5 min. of arc (open southern boundary conditions are derived from the

latter). Latitudinal resolution is such that horizontal cell aspect ratio is 1.0 (dy=dx). Un-

filtered etop05 bathymetry truncated at depth 2750m is used. This is NOAA database

and details can be found at: http://www.ngdc.noaa.gov/mgg/global/etopo5.HTML. An-

nual cycle Hellerman climatological winds are used (additional details can be found at

http://ingrid.ldeo.columbia.edu/SOURCES/.HELLERMAN).

The bathymetry of the Adriatic with 1 min. resolution is shown in figure 1. This figure

indicates the position of two important basins in the Adriatic called the South Adriatic

Pit and the Mid Adriatic Pit (MAP, also called the Jabuka or Pomo Pit). Also indicated

is the important Italian promontory called the Gargano. All of these structure are very

important in determining the circulation of the Adriatic. With the resolution of the

current model the bathymetry takes on the form shown in figure 2.

Thermodynamic surface boundary conditions (heat flux, evaporation, precipitation)

are derived from more accurate annual cycle climatological data for surface tempera-

ture and salinity, combined with model internal dynamics. In contrast to conventional

Haney restoring (Harley 1971) approaches, this physically motivated new approach (Di-
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MID ADRIATIC PIT

SOUTH
ADRIATIC PIT

FIGURE 1. Contour plot of the bathymetry of the Adriatic Sea with horizontal resolution of 1
rain. The Mid Adriatic Pit is the relatively deep region which nearly transects the Adriatic. The
contour interval is 50 m.

etrich, Haney, Fernandez & Tintore 2002) has no phase lag or amplitude damping of

the ensemble (multi-year) average annual cycle and does not artificially damp surface

fronts. River sources may alternatively be specified directly, as done for 11 rivers in the

Black Sea DieCAST adaptation (Staneva et al. 2001), but are implicitly included in the
climatological data when using the new surface boundary conditions approach.

Vertical mixing, described in detail by Staneva et al. 2001, is represented by adding

a Pacanowski & Philander (1981) surface mixed layer parameterization to background

near-molecular-level viscosity (0.02 cm-cm/sec) and diffusivities (0.004 cm-cm/sec) plus

a numerically and physically motivated component based on the vertical cell Reynolds

number and Richardson number. During the summer and in deeper layers, especially near

the pycnocline, the mixing is near the laminar values. Lateral viscosity and diffusivities

are specified constants (5 m-m/sec), sufficiently small to allow realistic fronts and eddies,

and wake recirculations downstream from major coastal abutments.

3. Model Performance

From a ten year run ofthisAdriaticSea implementation ofDieCAST, we observed a

number of featuresthat verifiedthe abilityof the model to capture realisticfeaturesof

the AdriaticSea dynamics. Among these are:

a) realistictriple-gyremajor general-circulationfeaturesas shown in the streaklineplot

offigure3 (discussedfurtherin the next section);

b) realisticannual-cyclesurfaceT and S. The ten-yearrun showed convergence of the

mean statisticsto climatology.In figure4,we show the evolutionof the horizontally-
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FIGURE 2. Contour plot of the model bathymetry used in our implementation of the DieCAST
model with 2.5 rain. horizontal resolution. The bathymetry is represented as 30 discrete steps
in the model. Here we label the depth of some of these steps in meters.
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FZGURE 3. Streak plot for the velocity averaged over the fourth year of the simulation.
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FIGURE 4. Graph of the ten-year history of the horizontally-averaged surface temperature from
the simulation of the Adriatic. The model data is represented by the solid line while the clima-
tological cycle is the dashed line.

•___ -_; _

,,.-I--W

41N 1516E 15_8[ 16E 16:2E 16:4E 15_6E 16.8E l"lg 1712E 17_4E

FIGURE 5. Streakline plot showing a recirculation eddy in the lee of the Gargano Peninsula
from the end of February in year 10.



D. Dietrich, G.F. Car_evale _ P. Orlandi

FIGURE 6. Surface salinity at the beginning
of January year 10 with superposed streakline
plot. This figure indicates the extent of the
low salinity Po river plume at the beginning of
winter. Values are grams of salt per kilogram
of water.

FIGURE 7. Surface salinity at the end of March
year 10 with superposed streakline plot. This
figure indicates the extent of the low salinity
Po river plume in late winter. Values are grams
of salt per kilogram of water.

averaged temperature and the annual cycle of this statistic taken from climatology.

Notice that after just a few years the model mean temperature tracks the climatology

very well, save for some small interannual variation due to the expected continuing

temperature fluctuations.;

c) Cross-Adriatic southwestward current over the northern flank of the Mid Adriatic Pit

(discussed further in the next section);

d) detailed fronts and eddies especially strong during the winter, with wintertime relative
vorticity locally exceeding the earth's vertical rotation component; these intense ed-

dies are energized by vigorous resolved slantwise convection that occurs due to weak

or negative stratification during the winter;

e) recirculation in the wake of the major Gargano Peninsula, especially during winter

when reduced stratification allows finer-scale features to develop; (figure 5 shows a

recirculation eddy in the lee of the Gargano Peninsula at the end of February in year

10); such recirculations require a highly inertial model to be addressed realistically;

frontal eddies associated with the dominant southern gyre (see figure 5) also interact

with the flow near the Gargano;

f) the eastward mixing of the Po River plume during the late winter leading to a south-

ward transport, well offshore, associated with the laterally-mixed buoyant region (see

contour plots of salinity for the beginning of January and the end of March in fig-

ures 6 and 7), similar to the Danube River dynamics in the Black Sea adaptation of
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DieCAST (Staneva et al. 2001); during the stable summer stratification periods, the

plume is much closer to shore.

4. Topographic effects

The circulation of the Adriatic Sea is strongly affected by various influences such as

bottom bathymetry, surface winds, inflow from the Mediterranean through the Otranto

strait, etc. With our numerical model, we can begin to assess the importance of such

effects. The influence of bottom bathymetry is particularly important, and, in considering
it here, we will make some contact with our previous analytical work on the bifurcations

of coastal currents due to the presence of bottom bathymetry (Carnevale et al. 1999).
The bathymetry of the Adriatic with horizontal contours from a data base of 1 min.

horizontal resolution is shown in figure 1. The depth contours are drawn at 50 m intervals.
The northern end of the Adriatic is much shallower than the southern end. Features of

particular note are the South Adriatic Pit, reaching depths of over 1300 m, and the Mid

Adriatic Pit, reaching depths of over 250 m, as we now explain.

For various theoretical reasons (cf. Carnevale and Frederiksen 1987, Salmon et al. 1976)

there should be a strong tendency for the flow in a deep basin to be cyclonic (e.g. counter-
clockwise in the northern hemisphere), and, indeed, the flow in the South Adriatic Pit

is rather persistently cyclonic. Basically the argument is that fluid constrained to move

in a thin layer and subject to strong rotation should behave in a nearly two-dimensional

fashion. Fluid parcels can then be considered columns of fluid aligned along the vertical
direction. Such columns moving from shallow to deep regions would be stretched while

those moving from deep to shallow would be compressed. The conservation of angular
momentum with realistically weak dissipation (largest in shallow regions) thus results

in creation of cyclonic/anticyclonic relative vorticity (that is a rotation that is faster or
slower than the background rotation rate). This is consistent with northern-hemisphere

mid-size basins, which usually have offshore cyclonic mean circulation and coastal anti-

cyclonic features enhanced by interactions with coastal abutments (e.g. the Black Sea:
Staneva et al. 2001): random horizontal motions over a basin tend to create a region of

mean cyclonic vorticity in the center of the basin and anticyclonic on the rim. The net

result is cyclonic flow around the basin.

The effect of the Mid Adriatic Pit is a bit more subtle. Note that this pit has a rather

steep northern flank while the topographic gradient on the southern flank is relatively
mild. The flow in the vicinity of the Mid Adriatic Pit fluctuates considerably, but is often

along the northern flank from the Croatian toward the Italian coast (southwestward). Ar-

guments similar to those used to establish the cyclonic circulation around basins can be
used to explain this trans-Adriatic flow. Motions across the step would tend to produce

cyclonic circulation on the deep side and anticyclonic motion on the shallow side of the

step. The net result would be motion along the step in the direction facing forward with

the shallow fluid on the right and the deep on the left. This tendency to produce anticy-

clonic flow north of the step seems to be barely over-compensated, except in the vicinity

of the step, by the tendency to produce cyclonic flow in the northern shallow region by

coastal region mixing, and is further complicated by the locally strong influence of the

Po River plume. Thus, the central and northern Adriatic Sea are modified significantly

by the MAP, in spite of its much shallower nature than the dominant Southern Adriatic

Basin, showing the important influence of shallow bathymetric features.

Furthermore, Carnevale et al. (1999), in a study of the effects of a step aligned perpen-
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FIGURE 8. Contour plot of the smoothed bathymetry used to demonstrate the effect of
removing the Mid Adriatic Pit. Step depths are given in meters for select steps.

dicular to the shore, found an analytic solution for the current that runs along the step

topographic cor/tours. In accordance with the above principles, this analytic solution has

the topographic current flowing away from the coast when the step is such that in looking

across the step from deep to shallow water the coast is on the right, while the flow is

toward the shore if the coast is on the left. To a certain extent, the northwestern flank of

the MAP forms a step running almost from the eastern to the western boundaries of the

Adriatic. Thus, according to the above, there should be a tendency to establish a current

along the northwestern flank of the MAP from the eastern to the western boundary, that

is, from the coast of Croatia to that of Italy. Indeed such a current is often indicated

by drifter data (Falco et al. 2000) and in satellite images. The reason for this MAP cur-

rent has alternatively been suggested to be the result of strong winds that are funneled

by coastal bathymetry and blow in a narrow band at this location. Our goal here is to

present a few simple simulations that demonstrate the topographic nature of this current

in the framework of a full ocean general circulation model.

First, we demonstrate that the MAP current flowing southwestward along the steep

gradient of the MAP is found in our simulation of the Adriatic. In the time span allotted

for this project, we needed to strike a balance between the desire to sufficiently resolve

the steep gradient of the MAP, and the speed of computation. We decided to use a 2.5

min resolution in these runs. This spreads the 'step' out to some extent, as shown in

figure 2, where we display the actual levels used in the computation; however, given the
small diffusivity associated with the DieCAST model, this resolution proved adequate

for a preliminary study.

We made an average of the velocity field over the 4th year of our simulation. This

mean velocity field was then used to generate streaklines to give an indication of the mean
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FIGURE 9. Streak line plot based on the mean field for the rerun of the fourth year but with

the bathymetry shown in 8, that is without the Mid Adriatic Pit.
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FZGURE 10. Mean velocity in the northeast di-

rection from the fourth year of the run with

the bathymetry shown in figure 2 (including

the MAP)

FZCURE 11. Mean velocity in the northeast di-
rection from the rerun of the fourth year with

the bathymetry shown in figure 8 (with no

MAP).
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FmURE 12. Contour plot of the bathymetry used to demonstrate the effect of a steep gradient

in in the opposite sense of that on the northern fiank of the the Mid Adriatic Pit. Step depths

axe given in meters for select steps.
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FIGURE 13. Streak line plot based on the mean
field for the rerun of the fourth year but with the

bathymetry shown in figure 12. The steep slope in the

mid Adriatic is now oriented in such a way as to pro-
duce a concentrated northeastward current and such

a current results.

FIGURE 14. Mean velocity in the north-
east direction from the rerun of the

fourth year with the bathymetry shown

in figure 12 (with no MAP).
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current directions. This mean streakline pattern is shown in figure 3. Notice first of all the

'three-gyre' cyclonic pattern of the mean current. As mentioned above, there is the rather

robust cyclonic gyre over the SAP. Further north there is a cyclonic gyre with its northern

side following the northern flank of the MAP in the anticipated direction. Finally, there is

the weaker northern cyclonic circulation, extending almost to the northernmost reaches

of the shallow end of the Adriatic. Instantaneous figures often show the northern flank

MAP current, but sometimes this is obscured by the eddying field. The MAP current

appears to be the strongest and best-organized in May and June, and weakest in the
winter.

In order to emphasize the importance of the bathymetry in establishing the current

on the northern flank of the MAP, we performed another simulation for the same year

four, with everything exactly the same except for the bottom bathymetry. In this run

we eliminated the MAP and replaced the 'real' bathymetry with a smooth slope from

the northern rim of the SAP to the northern end of the Adriatic. This bathymetry is

shown in figure 9. The flow with this bathymetry, averaged over the year, results in the

streakline plot shown in figure 9. Now the circulation has only two large cyclonic gyres

instead of the original three. The northern gyre now covers the area originally occupied

by the MAP gyre and the northernmost gyre. This result establishes the importance of

the MAP in determining the 3-gyre circulation of the Adriatic.

If there were a steep step crossing the Adriatic with a gradient opposite that of the

northern flank of the MAP, then that should induce an intense current along the topo-

graphic contours in the opposite direction of that seen in figure 10. To demonstrate this,

we created another model bathymetry with such a 'reverse' step. This is shown in figure

12. The mean circulation for a year long flow over this bathymetry is shown in figure

13 as a streakline plot. Here we see that although the SAP gyre is relatively unaffected,

the two northern gyres have practically merged into one and the southern edge of this

combined gyre is now sharply defined by an intense northeastward flow along the steep

gradient of the southern flank of the MAP. Finally, in figure 14, we again show the mean

velocity component in the northeast direction. This is the counterpart to figure 10. There
is a nice contrast between the two cases showing the direction of the induced narrow cross
Adriatic currents depends on the sign of the topographic gradient.

5. Conclusions

We created a 2.5 rain. resolution model of the Adriatic based on the DieCAST code.

A simulation representing ten years of evolution was performed. The behavior of the

model was found to be optimal. The general-circulation pattern was correctly reproduced,

and the overall temperature and heat balances maintained over the period of evolution.

Furthermore, the surface temperature distribution was found to be in accord with typical

observations. In addition, the low viscosity of the model allowed the representation of

realistic eddies generated by the flow past the Gargano peninsula, as well as the frontal

eddies generated by the South Adriatic Pit current.

Given the overall success of the model, we turned to questions concerning the effect

of the topographic feature known as the Mid Adriatic Pit on the Adriatic circulation.

Observations had shown a distinct southwestward flow along the northwest flank of this

pit. The topographic slope on this flank is considerably steeper than on the opposite
flank, so it was natural to conjecture that the current over it is topographically gener-

ated, as discussed in previous work (Carnevale et al. 1999). Nevertheless, a competing
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view, suggesting that intense winds in the area were responsible for this current, made

it important to test our hypothesis. First, we demonstrated that our 2.5 rain. resolution

model was capable of reproducing this current. Then we showed that if the steep slope

were smoothed over, then the coherent, relatively intense, narrow current would be re-

placed by a broad weak current. This indicates the topographic nature of this current.

In addition, we demonstrated that the direction of the current is determined by the sign

of the topographic gradient (and the direction of the rotation of the earth) by running a

simulation with a deformed topography containing a topographic step with the opposite

sign of slope, and in that case the resulting current flowed in the opposite direction,

that is to the northeast. These results were predicted by our quasi-geostrophic theory

(Carnevale et al. 1999) for the much simpler system of a single-layer barotropic flow.

Quantitative comparison with such a theory is difficult given the stratified nature of the
actual flow.
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Optimization

In the past two decades, numerical tools have been refined for the accurate modeling

of a wide variety of laminar and turbulent flow systems. In several cases of engineering

relevance, we are now confident in the predictive capability of these numerical tools

for determining the bulk quantities characterizing such systems, such as the drag, the
lift, the far-field noise, the mixing of fuels and oxidizers, the heat transfer, etc. We are

also confident, in many cases, that we can capture accurately the variation of these

flow quantities with the variation of the near- and far-field boundary conditions and the

forcing of the system by actuators providing either steady or unsteady control inputs. In

such systems, optimization strategies are playing an increasingly important role in the

selection of effective shape and surface compliance parameters, open-loop control forcing
schedules, and closed-loop control feedback rules to achieve desired effects on the flow

quantities of interest while respecting a variety of constraints related to insuring the

feasibility of the engineering design. The present section focuses on a few such efforts in

the simulation-based optimization of flow systems.

Mohammadi reports on recent advances in the development of the so-called "incom-

plete sensitivity" method to provide approximate gradient information in a shape opti-

mization problem related to the minimization of the sonic boom created by a supersonic

transport. The incomplete sensitivity method is designed to calculate approximate gra-

dient information for optimization of the flow system at significantly reduced cost as

compared with calculating the full expression for the gradient. The utility of such a

method is clear, as the determination of accurate gradient information (via an adjoint

analysis) can sometimes be quite difficult, both in terms of the human time required

to write and debug the appropriate numerical code and the computation time required

to execute such a code. The accuracy of the approximate gradient information provided

by the incomplete sensitivity approach varies greatly from problem to problem, and has

recently been a topic of active interest in the optimization community.
Catalano et al. report on the application of a direct search method, referred to as the

"response surface" technique, applied to minimize the drag of the flow past a cylinder.

The response surface technique first develops a local approximation of the surface of the

cost function in the space of the control parameters based on recent function evaluations

alone (that is, it does not require gradient or approximate gradient information). It then

minimizes this approximating surface using analytical or gradient-based methods in or-

der to obtain the next candidate point in the optimization of the full system. Such an

approach provides an attractive alternative to the more expensive gradient-based opti-

mization strategies, and is tractable when the number of control parameters is relatively
low.

Sbalzarini et al. report on the application of several so-called "machine learning" al-

gorithms to classify the trajectories of moving cells with regard to their mean and min-

imum speeds in order to quantify the response of the mobility of such cells to changes
in environmental conditions. This represents a problem in system identification based

on experimental observation and post-processing of large amounts of experimental data.

Note that the system identification problem is in fact closely related to the problem of

system optimization, and similar concepts and techniques may be applied to both.
Also included in the present section is a report on the molecular dynamics simulations

of Walther et al. This paper studies the effect of both hydrophobic and hydrophilic
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boundaryconditionsonsimulationsof bothplanarCouetteflowandtheflowof past
carbonnanotubes,usingwaterasthe operatingfluid in both cases.A comparisonof
moleculardynamicssimulationsandconventionalNavier-Stokessimulationsisalsomade
for theflowpastanarrayof carbonnanotubes,andthetwotypesof simulationsare
foundto bein goodagreement.

ThomasR. Bewley
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Optimization of aerodynamic and acoustic

performance of supersonic civil transports

By Bijan Mohammadi t

We present a shape-optimization problem under acoustic, aerodynamic and geometric

constraints. The acoustic specification concerns the generated sonic boom. The aim is to

see the validity of incomplete sensitivities when a nonlinear CFD model is coupled with

a nonlinear wave-transport model to define pressure rise on the ground.

1. Motivation and objectives

In shape design for transonic aircraft under cruise conditions, multi-criteria aspects

mainly concern the aerodynamic and elastic characteristics of the aircraft. For instance,

the aim can be to reduce the drag at given lift and with given maximum cross-section

thickness, which would ensure structural realizability. Shape optimization for civil su-

personic transports includes another main ingredient: the control of the sonic boom

(Whitham 1952). This makes the problem harder than in the transonic case, as drag

and sonic boom reductions are by nature incompatible (in supersonic regime low drag

geometries are sharp and have high boom level as shocks are attached then).

A large effort is currently being made on the improvement of the potential of supersonic

transport. As an example, in the United States, the DARPA Quiet Supersonic Platform

(QSP) program is directed towards development and validation of critical technology

for long-range advanced supersonic aircraft with substantially reduced sonic boom, re-

duced takeoff and landing noise, and increased efficiency relative to current generation

supersonic aircraft. Improved capabilities include supersonic flight over land without ad-

verse sonic boom consequences with boom overpressure rising less than 0.3 pounds per

square foot (psf) (about 14 Pa), increased unrefueled range approaching 6,000 nmi, gross
take-off weight approaching 1,000,000 pounds, increased area coverage and lower overall

operational

Similar efforts are made in Europe. In France, the Committee for Scientific Orientation

for Supersonic Transport directs studies on the feasibility of the next generation of the

Concorde jetliner.

2. Sonic boom

The sound heard on the ground as a "sonic boom" is the sudden onset and release

of pressure after the buildup by the shock wave or "peak overpressure." The change in

pressure caused by a sonic boom is only a few pounds per square foot - about the same
pressure change we experience in an elevator as it descends two or three floors, but in a

much shorter time period. It is the magnitude of this peak overpressure that describes a

sonic boom.

There are two types of booms: N-waves and U-waves. The N-wave is generated from

steady flight conditions, and its pressure wave is shaped like the letter "N". N-waves have
a front shock to a positive peak overpressure, which is followed by a linear decrease in

t University of Montpellier, Mathematics, CC51, 34095 Montpellier, France
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Near Field

FIGURE 1. Shock-wave pattern and illustration of the neax-field CFD computation domain and
the initialization of the wave-propagation method with CFD predictions.

pressure until the rear shock returns to ambient pressure. In principle, a supersonic civil

transport in cruise condition produces only N-waves.

For today's supersonic aircraft in normal operating conditions, the peak overpressure

varies from less than one pound to about 10 pounds per square foot for an N-wave boom

(15 to 150 Pascal).

3. Governing equations

In thiswork, the flow inthe regionscloseto the aircraft,or the near field,iscomputed

using the Euler equations for gas dynamics in conservationform. The solutionmethod

isbased on a finite-volumeGaierkin method and is described in Mohammadi (1994).

The variablesat the lower boundary of this domain are then used to definewaveform

parameters which are propagated to the ground using the waveform parameter method

(Thomas 1972).A schematic ofthe approach isshown in figure1.As the propagation in

thiswork isperformed only in post-processing,the use of a more complete propagation

tool does not change the currentoptimizationmethodology.

4. CAD-Free shape parameterization

We use a CAD-Free control space to specify shape deformations (Mohammadi & Piron-

neau 2001). In this approach all the nodes of the surface mesh over the shape are control

parameters. One particular property of this parameterization comes from the fact that,

unlike the case of a CAD-based parameter space, regularity requirements have to be

specified and handled by the user (see figure 2). Indeed, if the shape is described using a

CAD tool and if we use the same parameterization to specify the deformations, the two

entities belong to the same space in term of regularity.
From a practical point of view, this inconvenience is compensated by the fact that

a CAD-based parameter space might not be suitable for optimization. In fact, our ex-

perience shows that optimization in the CAD-Free framework helps improve the CAD
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FIGURE 2. Sketch of a CAD-Free deformation without and with the regularization operator.
The initial deformation is only C°(F), and to have a CI(F) variation we need to project it, for
instance, into H 5/2(F) if F is a surface in ]R3.

FIGURE 3. Upper and side views of the SSBJ discretization; all these nodes are control
parameters.

definition of the shape. This is interesting, as the final shape has to be expressed through

CAD in all cases. Concerning mesh-dependence of the optimization, the same remark

holds when using a CAD-based parameter space. Indeed, it is obvious that the opti-

mization might converge to different shapes in different CAD-based parameter spaces.

Finally, the new generation of CAD tools are able to fit CAD parameters into a surface
mesh if the initial correspondence between CAD parameters and surface mesh is known.

Theoretical justification for the introduction of smoothing operators for the CAD-Free

parameter space comes from the consistent approximation theory (Polack 1997).

5. Gradient evaluation

We consider two types of functionals: those using shape-based information and those

involving information away from the surface. Examples are, for the first type, aerody-
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FIGURE 4. Partial view of the CFD mesh in the symmetry plane.

namic coefficients such as lift and drag coefficients, or geometric quantities such as the

volume and the maximum cross-section of the aircraft, and for the second type the sonic

boom defined by the ground-pressure signature.

There is a major difference between these two classes concerning the evaluation of

sensitivities. Indeed, we will see that the first class is suitable for the use of the so-called

incomplete sensitivity technique while a functional involving information on the ground

requires the linearization of state equations.

5.1. Incomplete sensitivities

One of the main purposes of this paper is to see if we can use, for sonic boom reduction,

a redefinition of the cost function compatible with incomplete sensitivity evaluations.

Indeed, in the past we have applied this approximation to functionals involving aerody-

namic coefficients. The redefinition is designed to be used only for sensitivity evaluation.

We briefly recall the incomplete-sensitivity approach. Consider a general simulation

loop linking the control parameter x to a functional J:

J(x): x --+ q(x) _ U(q(x)) -+ J(x, q(x), U(q(x))), (5.1)

where q represents all geometrical entities and U all state-related variables. The gradient

of J with respect to x is:

dJ OJ OJ Oq OJ OU (5.2)
- ox + N + oT 0-7

The major part of the cost of this evaluation is due to OU/cgx in the last term.

Consider the following context for shape optimization:
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• 1. both the cost function and the control space are defined on the shape (or on some
part of it),

• 2. J is of the form

J(x) = / f(x)g(U)dv,
Js hape

• 3. the local curvature of the shape is not too large (this needs to be quantified for

each case: for a wing we typically consider regions away from leading and trailing edges).

If these requirements hold, we can use an incomplete evaluation of this gradient, ne-

glecting the sensitivity with respect to the state in (5.2). This does not mean that a

precise evaluation of the state is unnecessary, but that for a small change in the shape
the state will remain almost unchanged, while geometrical quantities have variations of

the same order as the shape variation.

5.1.1. Illustrations of incomplete sensitivities

A first simple example concerns the application of the incomplete sensitivity technique

to the evaluation of the sensitivity of functionals involving the solution of the following

Burgers equation:

ut + 0.5(u2)= = #xu, on ]a, 1[, u(a) = 1, u(1) = -0.8. (5.3)

We consider the steady solution of (5.3) and take the left hand side frontier a as control

parameter. Suppose the functional is J(a) = aux(a); then the gradient is given by

J (a) = us(a) + auto(a).

We are in the validity domain for incomplete sensitivities. Without computing the solu-

tion, it is clear from the equation that in regions where the solution is regular, us = # x.

The exact gradient is therefore J_(a) = #a + a#, to be compared with the incomplete

gradient #a. We see that the sign of the incomplete gradient is always correct, and there

is only a factor of 2 missing; something which is not important when using an optimal

descent step size in minimization. Obviously, the condition for this analysis to hold for
any functional of the form f(a)g(u), where u is a solution of (5.3), is that there exists
c > 0 such that (log(g))_ = e(log(f))a. This is something we can verify a priori before

using the incomplete sensitivity in optimization.
Another interesting example is to consider the sensitivity analysis for an expression of

the form p(x)u_n(x) with respect to a parameterization x (for the sake of simplicity, we
formally consider the case of scalar quantities). This expression appears in the definition

of the aerodynamic drag coefficient, for instance. Suppose the pressure is given by the

Newton formula p = p_(u_.n) 2 . We have therefore pu_n = p_(uoon) 3. The gradient

of this expression with respect to x is

d(pu_n) = (puoo) dn dp (u_n) 2dn
dx _ + "_x = 3p=u=(u_.n) _x"

On the other hand, the incomplete sensitivity is given by

d(pu_n ) dn _ dn
dx = (puzo)_x -- poouoo(uoon) -_x"

We see that the two gradients have the same sign, but that there is a factor of 3 missing
in the incomplete sensitivity. From a fluid-dynamic point of view this is a worst case, as

we know that small changes in the geometry in high-curvature area where the Newton

model is valid (leading edges for instance) have important effects on the flow, much
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more than changes in area where the shape is fiat. Below, we reconsider this analysis for

the sensitivity of sonic boom with respect to the shape. Other analytical examples of the

comparison of incomplete and exact sensitivities are shown in (Mohammadi & Pironneau

2001).

5.2. Reduced-complexity models and incomplete sensitivities

One cheap way to improve the incomplete evaluation of sensitivities is.to use the lin-

earization of models of reduced complexity to approximate the last term in (5.2). In

other words, consider the following reduced model for the definition of 6,(x) ,_ U(x).
Suppose for instance 6" is the Newton formula for the pressure and U the pressure from

the Euler system. Consider the following approximate simulation loop:

x _ q(x) --+ 6,(q(x))(_). (5.4)

The incomplete gradient of J with respect to x can be improved by evaluating the last

term in (5.2) linearizing (5.4) instead of (5.1) freezing U/_f.

dJ OJ(U) OJ(U) Oq OJ(U) 06, U(x)
+ + (5.2)

dx Ox Oq Ox OU Ox 6,(x)

0 is used only in the definition of the gradient and not the state. The reduced model

need be valid only over the support of the control parameters.

A simple example shows the importance of the scaling introduced in (5.4). Consider

U = log(1 +x) scalar for simplicity and j = U 2 with dj/dx = 2UU' = 2log(1 +

x)/(1 + x) -_ 2log(1 + x)(1 - x + x2...) and consider 6, = x as the reduced complexity

model, valid around x = 0. Without the scaling factor incomplete sensitivity gives j' ,_
2U6,' = 2 log(1 + x) while after introducing the local correction j' ,_ 2U6,'(U/6,) =

2log(1 + x)(log(1 + x)/x) ,_ 21og(1 + x)(1 - x/2 + x2/3...). Here the scaling is taken

linear in U but higher order approximations can be introduced as well.

5.3. Sensitivity o] sonic boom to the near field pressure

Consider the simulation loop for the calculation of a cost function to measure the sonic

boom for a given parameterization x of the shape:

B(x) : x --+ q(x) --+ PH --+ pg(pg,atmosphere prop.) --+ B(pg),

where PH is the near-field pressure distribution at altitude H, which is a function of the

state variables (solution of the Euler equations), and pg is the solution of the waveform-

propagation method on the ground.

The gradient of B with respect to x requires the linearization of the different operators
involved:

d_BB= OB Opg OpH Oq (5.6)
dx Op 9 OPH Oq Ox"

This evaluation is of course expensive when the dimension of the control space is large.

Usually an adjoint approach is used to make the cost of the evaluation independent of

the size of the control space (Alonso et al. 2002; Mohammadi & Pironneau 2001). This is

done in particular in the case of steady flows, where the storage of intermediate states is

not required and the adjoint is developed around the steady solution. This can be done

in either continuous or discrete forms using automatic differentiation (AD).

In the context of sonic-boom evaluation using the waveform-propagation method, due
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to coalescing shocks, one would prefer to perform the adjoint development at the discrete,

not the continuous level, using automatic differentiation in reverse mode. Indeed, the non-

differentiability of some operators involved and the presence of discontinuity are naturally

taken into account in this approach. This is because in discrete form a discontinuity is

always represented by a continuous function. In any event, it would be necessary to save

all intermediate solutions of the waveform parameter method between the flight altitude

and the ground to be able to integrate backward for the adjoint using the reverse mode

of automatic differentiation (Gilbert et al 1991, Griewank 2001, Faure 1996, Rostaing et

al. 1993, Mohammadi & Pironneau 2001).

Sonic boom can be monitored minimizing, for instance, one of the following functionals:

Bmin = \ i(pO ) ' f = roundlApgld3" (5.7)

with 0 < a < 1 and p0 the pressure signature on the ground for the original shape and

/ground(Pg target 2 /ground (Pg target 6Bi_ = a - pg ) dT + fl - pg ) dT,

a>0, /3>0, a+_=l.

target is a user-specified target pressure distribution on the ground. But the targetwhere pg
pressure might be unrealizable and the optimization problem without solution.

Brain is a measure of the accumulation of pressure jumps on the ground and the aim

is to reduce these jumps, a cannot be 0 as we cannot completely remove the boom.

On the other hand, by minimizing Bi_, we realize a target pressure signature on the

ground having less boom. In Bi_, the second integral in the cost function is used to

avoid the functional being flat close to the minimum. 0 < 6 < 1 is also an optimization

parameter and has to be chosen. In this work, we consider 6 = 0.3. We studied the

importance of such functionals in Cabot & Mohammadi (2002) and Mohammadi &Saiac
(2002) for a model problem.

The difficulty with Binv is that the prescribed ground pressure might not be associated

to a feasible ftow field while Brn_n does not involve an a priori ground-pressure distri-

bution. In addition, we will see that OBmin/OPH is less sensitive to discrepancies in the

near-field flow prediction, due for instance to the mesh quality.

Once OB/OpH is computed (for either Brain or B,,_v, see figure 5), we evaluate its

product with the operator OpH/OX. This latter evaluation requires the linearization of

the Euler system which we would like to avoid. We have two alternatives:

• to use reduced complexity models for sensitivity analysis,

• to redefine the functional and adapt the problem to the context of incomplete sen-

sitivities.

5.3.1. Reduced-complexity models

The first approach to reduce the complexity of the sensitivity analysis is to replace,

only for sensitivity analysis, the Euler system by the waveform-propagation method,

propagating the wall pressure distribution (Pz) directly to the ground (instead of just

from altitude H). We require p= to be a solution of the Euler equations:

x _ q(x) _ p= --+ pg.
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FIGURE 5. aBrn=n/Optt (left) and aB,_,,,/ap_ (right) in the plane of symmetry close to (plane
curves) and far from (dashed curves) from the aircraft. We see that OB,,_i,_/OpH is less sensitive
to the altitude (only a shift is observed in the location of the delta functions). This also shows
that the waveform-propagation model is a suitable reduced-complexity model, to be considered
instead of the Euler system in the analysis of the sensitivity of the sonic boom to the aircraft
shape.

To compute dpg/dx we need finally to find an approximation linking Px and the shape x

to be used in the linearization (instead of the Euler system). For inviscid flows, in regions

of high curvature, a good approximation is given by the Newton formula for the pressure

distribution over walls. We therefore account only for the effect of the pressure distribu-

tion on the shape of the near-field pressure signature. We therefore have to account for

the part of the boom coming from the shocks away from the wall. By keeping the shocks

bow and the leading edges as smooth as possible, this requirement is satisfied.

6. Cost function definition

The functionals Brain and B,nv accounting for the sonic boom have been introduced

above. In this work, we also consider constraints on aerodynamic coefficients as well as

geometric characteristics of the aircraft.
More precisely, we consider the problem of drag (C_) minimization with constraints on

the lift (Cz), volume (V) and maximum cross-section thickness (d) defined for each node.

In our approach the mesh is unstructured and the surface mesh is made of triangles. In the

cross-sectional definition of the shape the number of sections is arbitrary and depends on

the complexity of the geometry. The sections are obtained by intersecting vertical planes

with the shape. The maximum thickness d of each section is evaluated. Then, each node
in the surface mesh is associated with two sections and linear interpolation is used to

define the maximum cross-section thickness associated with this node (see figure 6). The

cost function is given by:

J(x) = ICd - c "l + (c o - cz)+ + (v ° - v)+ + f ]d- dold'7 + S(x).
Js hape

Notation 0 denotes initial shape values. Cddes _< C o is the target value for the drag
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FIGURE 6. Cross-section definition of the shape used to enforce the maximum cross-section

thickness constraint for the original and optimized aircraft.

coefficient. B(x) is either Brain or Binv from (5.7). (.)+ = maxr(0, .) where maxr is a

regularized max. The aim is to avoid the volume and lift coefficient from decreasing.

6.1. Redefinition of J ]or incomplete sensitivity evaluation

We said that a cost function based on informations away from the wall is not suitable

for incomplete sensitivity evaluation. In particular, since B,nv and Brnm axe defined on

the ground and not on the shape, we propose a reformulation of the functional linking

the pressure signature on the ground to wall-based quantities. This is done together with
the use of the waveform propagation method for the evaluation of Opg/ax as seen above.

We think that bow shocks introduce less pressure jump than attached shocks. Bow

shocks are usually associated with smooth geometries. On the other hand, shape op-

timization based on drag reduction in supersonic regime leads to sharp leading edges.

Therefore, to avoid an increase in the boom, it is important to keep the leading edges of

the aircraft smooth while doing drag reduction. We introduce the following requirements:

• Specify that the wall near leading edges has to remain smooth. This is monitored

through the smoother in the CAD-free framework see above.

• Ask for the local drag force Cld°c due to the leading edge to remain unchanged or to

increase while the global drag force decreases.
The cost function therefore becomes:

J(x) =lCd-CdeS[+(C°-C,)+ +(V°-V)+ + _s [d-do[d_'+((CZd°C)°-(CZd°C))+,
hape

where C_°c is the measure of the drag force over regions where fi.zToo < 0 (fi being the
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local outward normal to the shape). Introducing a differentiable localization function

f(s +) such that (0 _ f(s +) < 1), C_°c is defined as:

C_OC- 2 f, p._._oo.f(s+)dr, s+_ _._

This differentiable localization term is used to avoid non-differentiability for Cld°_ and
to allow for integration over the whole shape.

In addition to the previous modification of the functional, we introduce regularity

requirements for areas where (f(s +) ¢ 0). This is also monitored through the smoothing
operator available in the CAD-free parameterization.

7. Full aircraft optimization

We consider a supersonic business jet geometry provided by Dassault Aviation com-

pany (see figure 4 and 4). The cruise speed is Mach 1.8 at zero incidence and the flight

altitude is 55000 ft. The results show the performance of the optimization method in-
cluding the validity of the incomplete sensitivity approach and the reformulation of the

functional we use for this configuration.

We performed 1000 steepest-descent minimization iterations. At each iteration, an

incomplete evaluation of the state (10 explicit Runge-Kutta iterations of the Euler solver)

is performed. The global cost of this optimization is comparable to one flow analysis with

this code (about 10000 explicit RK iterations) and takes about 4 hours on a 1GHz PC

with 500 MB of RAM. In figure (7) we show a cross-section of the close field CFD pressure

signature close to the aircraft in the symmetry plane and a the ground pressure signature

for the initial and optimized shapes. Figure (8) shows upper and lateral views of aircraft

surface iso-Mach contours. Picture (9) shows iso-contours of normal deformations with

respect to the original shape. During optimization, the drag has been reduced by 20

percent while the lift has been increased by 10 percent. Geometric constraint on the

volume and maximum cross-section thickness has been satisfied and the value of C_ °c
maintained.

8. Conclusions

Shape optimizationin a CAD-Free framework using incomplete state and gradient

evaluationshas been presented for a multi-criteriaoptimization problem involving re-

quirements for the acoustic,aerodynamic and geometric characteristicsof jetliners.It

has been shown that thisplatform issuitablefor such a realisticdesign and that the

complexitiesof the optimizationand simulation axe now comparable. In particular,it

has been shown that incomplete sensitivitiesgive satisfactoryresultsaftera reformula-

tion ofthe costfunctional.This allowsa betterunderstanding ofsonicboom originsand

mechanisms, and providesusefulinput to the designoffuturesupersonicciviltransports

with a controlledboom and reduced drag.
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Optimization of cylinder flow control via actuators
with zero net mass flux

By P. Catalanot, M. Wang, G. Iaccarino, Ivo F. Sbalzarini:_, AND P.

Koumoutsakos¶

A direct search method in combination with a DNS/LES numerical approach is ap-
plied to optimize the control of the flow around a circular cylinder. The objective is the

minimization of.the drag coefficient and control is achieved via actuators with zero net

mass flux. The optimization process has been first evaluated and validated at Reynolds

number 500 and then the more demanding flow at Reynolds number 3900 has been con-

sidered. The search of the optimum has been carried out in 2D simulations, and a 3D

simulation, indicating similar drag reduction, has been performed using the parameters

of the 2D optimization.

1. Introduction

Flow control has the potential of manipulating flow fields in order to achieve tran-

sition delay/advancement, separation prevention/provocation, and turbulence suppres-

sion/enhancement. The modifications of these flow properties can lead to large benefits

in aeronautical applications, such as increased aerodynamic efficiency, reduced struc-

tural weight, reduced operating costs and reduced emissions. In addition flow control

techniques are employed to improve the aerodynamic capabilities of wings at off-design

conditions, and to maintain performance throughout the flight envelope of vehicles whose

design is driven by mission requirements (i.e. unmanned, stealth) and not by aerodynamic
considerations.

Flow-control methods can be classified as passive or active. Passive control devices,

such as riblets, vortex generators, and boundary-layer trips, have been shown to be quite

effective in delaying flow separation, but cannot adapt to changes of the incoming flow,

and introduce a drag penalty if the flow does not separate. Active-control approaches,
such as external and internal acoustic excitation, vibrating ribbons or flaps, and steady

and unsteady blowing and suction, couple the control input to the flow instabilities and

can operate in a broad range of conditions. However, so far, active flow-control methods

have relied on sophisticated and complicated support systems that require their own

power supply devices.
A novel concept for active flow control is the use of Micro Electronic Mechanical

Systems (MEMS). The MEMS couple sensors, control and logic electronics, and actuators

into a single low-weight compact device. Several low-power MEMS such as microflaps,

surface heating elements and synthetic jets have been used for flow control. Synthetic

jets (Glezer & Amitay 2002) are active control devices with zero net mass flux which do

not require internal fluid supply lines. They consist of an oscillating membrane located

at the bottom of a cavity having small orifices in the face opposite the membrane. When
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the membrane moves upwards fluid is expelled through the orifice, and a shear layer is

formed at the orifice edge. The shear layer rolls up to form a vortex ring that moves away
from the orifice under its own momentum. When the membrane moves downwards fluid

enters into the cavity. This entrainment process is not affected by the vortex ring, which
is supposed to be sufficiently far from the cavity. Over one period of oscillation of the
membrane the net mass flux is zero.

Actuators based on synthetic-jet techniques have been shown to be very effective for

several applications of aerodynamic flow control. The modification of the global forces

on a circular cylinder induced by applying synthetic jets has been investigated experi-

mentally at Reynolds numbers of up to 1.3 × 105 by Amitay et al. (1997) and Amitay,
Smith & Glezer (1998). They found that the interaction between the jet and the main

flow induces a local separation bubble that acts as a virtual surface and displaces the

streamlines outside the undisturbed boundary layer. Drag increase and decrease can be
achieved depending on the azimuthal location of the actuators. The control of the sepa-

rated flow over an unconventional airfoil (cylindrical leading edge plus the aft portion of
a NACA 4-digits serie) at Reynolds number 3 x 105 has been investigated experimentally
by Smith et al. (1998) and Amitay et al. (1999, 2001). The airfoil without control stalls

at a - 5°, while with control fully-attached flow was achieved up to a = 15 °, and partial

reattachment and recovery of lift were found up to a = 25 °.

In the present work, the synthetic jet is numerically modeled as time-periodic blowing

and suction of fluid at the cylinder surface. The peak velocity, operating frequency, and

location are the defining parameters of a synthetic jet actuator. The objective is to explore

the use of a direct search technique, namely the response-surface method (Grigoriu 1982,

Rackwitz 1982), to optimize the synthetic jet parameters. To this end, two-dimensional,

unsteady laminar flows are first considered, with the expectation of future extension to

turbulent flows at high Reynolds number, such as those in the experiment of Amitay,

Smith & Glezer (1998). The drag coefficient of the flow at Reynolds numbers 500 and 3900

has been chosen as cost function. The optimization process has been carried out in 2D,

and a 3D simulation using the 2D "optimum" actuator parameters has been performed

for comparison.

2. Opt_mi_.ation techniques and numerical set-up

We implement a response-surface technique (Grigoriu 1982, Rackwitz 1982) in order to

identify the optimal parameters for the control actuators. The response-surface method

belongs to a class of optimization techniques which are called direct techniques because

they do not use gradient information for the function minimization. Key advantages of
such methods include their portability and robustness and their capability of escaping

local minima. Disadvantages include relatively slow convergence rates as compared with

gradient-based techniques, and and inefficiency in large dimensional spaces.

The response-surface technique relies on the iterative reconstruction of the initially-

unknown cost function using the values acquired during the optimization. A surface is

fitted to a set of function values obtained from an set of parameters chosen initiallly, and

the minimum of this surface is found using analytical or gradient-based methods. The
surface constitutes a model of the "true" cost function and the minimum found serves

as the next candidate point for the iterative procedure. An extensive description of the

method can be found in Booker et al. (1998).

The response-surface method, in combination with a LES/DNS numerical approach,
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has been applied to find the minimum drag coefficient of the circular cylinder subject to

control via synthetic jets. The optimization process has been first evaluated at Reynolds
number 500 and then the flow at Reynolds number 3900 has been considered. The search

of the optimum has been limited to the 2D flow, although a 3D simulation using the 2D

optimal control parameters has also been carried out to investigate if the cost function
reduction still exists.

An energy conserving Navier-Stokes flow solver (Choi 1993) of hybrid finite differ-

ence/spectral type using C meshes (Mittal & Moin 1997) has been employed in the

numerical simulations. The equations are advanced in time using the fractional step ap-
proach, in combination with the Crank-Nicolson method for viscous terms and the third

order Runge-Kutta algorithm for the convective terms. The continuity constraint is ira-

posed at each Runge-Kutta substep by solving a pressure Poisson equation employing

a multigrid iterative method. The dynamic procedure (Germano et al. 1991) together
with a least-square contraction and spanwise averaging (Lilly 1992) is used to model the

subgrid scale stress tensor. The numerical simulations have been performed in 3D using
LES, and in 2D with the subgrid model switched off.

The actuator is modeled by imposing a velocity normal to the surface as

V_ = g(Oj)V3A sin (2_rfj_-_) (2.1)

where V_ is the free-stream velocity, 8j is the jet location, and D is the cylinder diameter.
The frequency is made proportional to the natural shedding frequency of the flow

f_ = kj], (2.2)

and g(Sj) is assumed to be a top-hat function whose width b is that of the jet orifice
(Rizzetta et al. 1998).

The momentum transferred by the jet to the main flow is measured by the following
coefficient defined as

2p 3Vj_4b
C. -- p_V£D (2.3)

where pj the density of the jet.
The parameters that define the synthetic jet model are the amplitude, the frequency,

and the location. The objective of this work is to apply a direct search method to find

the values of ViA, kj, and 8j that minimize the drag coefficient CD of a circular cylinder.

3. Results

3.1. Flow at Reynolds number 500

First, two simulations without control, on meshes of 201 × 60 points and 401 × 80 points,

have been performed to compute the reference value of the drag coefficient. The resulting

CD0 was 1.390 on the coarse mesh and differed by only 0.5% on the fine mesh, suggesting

that the coarse mesh is sufficient for the optimization iterations. The computed flow ex-

hibits vortex shedding with a Strouhal number of about 0.2, and with the flow separating

from the rear part of the cylinder at about O = 105 °.

A first search for the minimum drag coefficient has been performed keeping the am-

plitude ViA constant with a momentum coefficient Cu of 6.5 x 10 -3 and varying the jet

location and the frequency. The surface CD = f(Oj, kj) has been computed by means of
a series of 2D simulations. To initialize the optimization process, four additional points
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in the (@j, kj) parameter space are obtained. The optimization process has been carried
out iteratively, evaluating the minimum of the response surface at each iteration. Con-

vergence is reached in six steps and the response surface at the final iteration is shown in

Figure 1. The optimum values found for 8j and kj, and the resulting reduction in drag
coefficient with respect to the unforced flow

CDo - CD
ACD = , (3.1)

CDO

are reported in the first row of table 1.

From figure 1, it can be seen that the drag coefficient depends more strongly on 8j

than on k_. Hence, another search with the frequency constant and 8j and ViA variable
has been performed. The final response surface is shown in figure 2, and the optimum

parameters found are reported in the second row of the table 1. A decrease of about 6%

in CD has been achieved.

To check if the reduction in CD persists when the flow is three-dimensional, a 3D

LES using the optimum parameters (second row of table 1) found in 2D is performed.

A mesh of 401 x 120 x 49 points with a spanwise domain size of four times the cylinder

diameter is used. The simulation has been advanced for about 300 time units (based on

D/Voo) and the value obtained for the mean CD is 1.104. This is about 8% lower than

the experimental value for the unforced flow (as given by Zdravkovich 1997).

In an attempt to reduce the drag coefficient further, a spanwise variation of the jet

amplitude has been introduced. The jet is modeled as

Vj =g(Si)VjAsin(2_rkzz)sin(2_fj_-_) (3.2)

where kz = 0.5, and ViA, kj and 8j are the values reported in table 1 (second row). The
CD obtained was 1.130, lower than the experimental unforced value but higher than the

drag coefficient found with a jet with constant ViA. However an optimization using kz
as an additional parameter has not been performed.

The flow at this Reynolds number is seen to be fairly insensitive to the control applied,

and the decrease obtained for the cost function has been quite small. In order to achieve

a larger reduction of the cost function, and to further validate the methodology used, two
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TABLE 1. Optimum synthetic jet parameters at Re --- 500

VjA ej 4 ¢ ACD%
One jet 0.14 89.8 ° 4.4 4
One jet 0.59 93.9° 5.0 6

Two jets 0.62 93.9 ° 4.18 132 ° 12

,e.
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FIGURE 3. Approximate surface
CD = f(_j,kj) at Re = 3900 at the last

iteration.

FIGURE 4. 2D Flow at Re = 3900 forced by
a synthetic jet located at _ = 85.12 ° with
C, = 6.5 x 10 -s. 50 contours (levels from 1
to 50 with exponential distribution) of the in-
stantaneous vorticity magnitude are plotted.

jets located symmetrically with respect to the streamwise direction and with different
phase ¢ have been considered. The amplitude and the location are kept fixed, while the

frequency and the phase are chosen as the parameters to optimize. The reduction in CD

is 12% and the optimal kj and ¢ are reported in the third row of table 1.

3.2. Flow at Reynolds number 3900

The drag coefficient of the unforced flow has been obtained by employing a mesh of

401 × 120 points. Its value of 1.719 compares well with the Co for instantaneously-2D

flow computed by Beaudan & Moin (1994). The mean flow exhibits two symmetrical

recirculation bubbles from about _ = 105 ° to _ = 120 °, and coherent vortex shedding
with a Strouhal number of about 0.22.

The search for the minimum drag coefficient has been performed taking the location

and the frequency as parameters to optimize, while keeping the amplitude fixed with a
momentum coefficient of 6.5 x 10 -3. The response surface at the last iteration is shown

in figure 3 and the optimum values found are reported in table 2. The reduction in drag

coefficient is about 13%. The instantaneous vorticity field of the 2D flow forced by a

synthetic jet using the optimum values is presented in figure 4. The small-scale vortices

due to the interaction of the jet with the boundary layer are clearly visible.

A 3D LES, with the optimum jet parameters found in 2D, has also been performed.

The mesh used has 401 x 120 × 49 points and the spanwise width of the computational
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TABLE 2. Optimum synthetic jet parameters at Re = 3900

VJA Oj kj ACD_

0.14 85.12 ° 9.21 13

domain is _rD. The simulation has been advanced for about 270 time units and the

resulting mean CD is 1.01. The unforced flow around a circular cylinder at Re = 3900 has

been investigated numerically using LES by Beaudan & Moin (1994), who found a mean

drag coefficient of 1.00. The unforced experimental value (Norberg 1987) is 0.98 =t: 0.05.

Evidently, the optimized jet parameters found from the (admittedly artificial) 2D sim-
ulation does not work for the 3D turbulent flow. This is not unexpected since the flow

structures are different. In particular, the points of boundary layer separation, which

affects the optimal location of the actuator, are more advanced in the 3d case than in

2D. It has not been possible, due to lack of time, to carry out the optimization using 3D
simulations during the summer program. However this remains our longer-term objective.

4. Conclusions

A response-surface method, in combination with a LES/DNS numerical approach, has

been applied to minimize the drag coefficient of the flow over a circular cylinder controlled
via synthetic jet actuators. The optimization process has been evaluated and validated in

2D model problems at Reynolds numbers of 500 and 3900.3D simulations using optimal

parameters obtained from 2D have also been performed.

The process has been successful, although the flow is shown to be quite insensitive

to the controls applied, and the decrease in cost function is quite small at Reynolds

number 500. At Reynolds number 3900, the drag coefficient reduction is more significant

according to 2D computations, but this result is not reproduced in 3D with the same set

of control parameters. Overall, we have demonstrated the robustness of the technique

for this type of control problems. Optimization using 3D simulations at higher Reynolds

number will be of longer-term interest beyond the summer program.
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Machine learning for biological trajectory
classification applications

By Ivo F. Sbalzarinit, Julie Theriot :_ AND Petros Koumoutsakos ¶

Machine-learning techniques, including clustering algorithms, support vector machines

and hidden Markov models, are applied to the task of classifying trajectories of moving

keratocyte cells. The different algorithms are compared to each other as well as to expert

and non-expert test persons, using concepts from signal-detection theory. The algorithms

performed very well as compared to humans, suggesting a robust tool for trajectory

classification in biological applications.

1. Motivation and Objectives

Empirical sciences create new knowledge by inductive learning from experimental ob-

servations (data). Biology, or life science in general, is a prime example for a field that

is facing a rapidly growing amount of data from continuously more sophisticated and

efficient experimental assays. The general lack of predictive models makes quantitative

evaluation and learning from the data one of the core processes in the creation of new

knowledge. Trajectories of moving cells, viruses or whole organisms are a particularly

interesting example, as they represent dynamic processes. The application of machine-
learning techniques for automatic classification of data mainly serves 3 goals: First, one

wishes to learn more about the biological or biochemical processes behind the observed

phenomenon by identifying the parameters in the observation that are significantly influ-
enced by a certain change in experimental conditions (causality detection). Second, the
information contents of a given data set with respect to a certain property of interest

may be estimated (capacity estimation) and third, automatic identification and classifi-

cation of vast amounts of experimental data (data mining) could facilitate the process

of interpretation. The paper starts by formally stating the problem of classification and

introducing the notation. Then, different machine-learning techniques are summarized,

starting from clustering methods in the d-dimensional real space II_d and proceeding

to risk-optimal separation in ]_a and dynamic signal source models in I_a x ll'. Finally,

the results of two automatic classification experiments of keratocyte cell trajectories are

presented and compared to the performance of human test subjects on the same task.

2. The classification problem

Classification is one of the fundamental problems in machine-learning theory. Suppose

we are given n classes of objects. When we are faced with a new, previously unseen object,

we have to assign it to one of the classes. The problem can be formalized as follows: we

are given m empirical data points

t Institute of Computational Science, ETH Ziirich, 8092 Ziirich, Switzerland
:_ Department of Biochemistry, Stanford University
¶ Institute of Computational Science, ETH Zfirich and CTR/NASA Ames
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(zl,vl),..-,(xm,ym) e X × 3: (2.1)

where PC is a non-empty set from which the observations (sometimes called patterns)

are taken and in the present context 3; -- {1,...,n}. The yi E 3; are are called labels

and contain information about which class a particular pattern belongs to. Classification

means generalization to unseen data points (x, y), i.e. we want to predict the y E 3; given
some new observation x E X. Formally, this amounts to the estimation of a function f :

2( ,-+ y using the input-output training data (2.1), generated independent and identically

distributed (i.i.d.) according to an unknown probability distribution P(x, y), such that f
will optimally classify unseen patterns x E X. The criterion of optimality is to minimize

the expected risk

x l(f(x),y) dP(x,y) (2.2)R[f] = ×9

where l denotes a suitably chosen cost function. A common choice is the Oil-loss, for

which l(f(x), y) is 0 if (x,y) is a correct classification and 1 otherwise. Unfortunately,

the expected risk cannot be minimized directly, since the underlying probability distri-

bution P(x, y) is unknown. Therefore, machine-learning algorithms try to approximate

R[f] based on the available information from the training data. The most common ap-

proximation is the empirical risk

m

n  p[y] = Z z(](x,), v,) (2.3)
m

i--1

Different classifiers use different approximations to (2.2) as well as different methods to

minimize those approximations.

3. Machine-learning methods used

3.1. k-nearest neighbors (KNN)

One of the simplest classifiers if 2( = _d is the k-nearest neighbor (KNN) algorithm.

A previously unseen pattern x is simply assigned to the same class y E 3; to which the

majority of its k (to be chosen) nearest neighbors belongs. The algorithm can be seen as

a very simple form of a self-organizing map (Kohonen (2001)) with fixed connections.

3.2. Gaussian mixtures with expectation maximization (GMM)

Gaussian mixture models (GMM) are more sophisticated clustering algorithms in X =

_a. They make use of Gaussian probability distributions on ]_d and try to approximate

the unknown distribution P(x, y) on X × y by a mixture of n Gaussians Afi(x, y, #i, _i)

with means #_ E _d, i = 1,...,n and covariance matrices _ E ]_a×a, i = 1,...,n.

The parameters #i and Ei are chosen so as to maximize the log-likelihood that the given

training data has actually been drawn i.i.d, from the probability distribution P(x, y) =

_-_in=l Afi(x,y,#i, _i). The algorithm can be written as follows:

Step I: Choose a set of initial means #1,... ,_n using the k-means clustering algo-

rithm (Hartigan & Wong (1979)); all ¢ovariances axe initialized to identity: Ei = In.
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Step 2: Assign the m training samples to the n clusters F_ using the minimum Maha-

lanobis distance rule: Sample x belongs to cluster F_ if the corresponding log-likelihood

measure becomes minimum, i.e. i = argmin_ _log (det (E_)) + (x - #i) T (Ei) -1 (x - #_)/"

Step 3: Compute new means #_ +- _-_-_r, x/#{Fi} and new covariance estimates

E_ +-- _-_er, (x - #_) (x - #i) -v/_{F_}, where #{F_} denotes the number of vectors x

assigned to cluster F_ in step 2.

Step 4: If the changes in the means and covariances are smaller than a certain toler-

ance, stop; otherwise go to step 2.

3.3. Support Vector Machines (SVM)

Support vector machines (SVM) are kernel-based classifiers (Miiller et al. (2001)) for bi-

nary classification in 2( = _d. Past applications included time-series prediction (Mukher-

jee et al. (1997)), gene expression analysis (Brown et al. (2000)) as well as DNA and pro-

tein analysis (Zien et al. (2000)). SVM make use of the following theorem of statistical
learning theory by Vapnik (1998) that gives an upper bound for the expected risk:

Theorem 1: Let h denote the Vapnik-Chervonenkis (VC) dimension of the function

class _" and let Remv[f] be the empirical risk for the 0/l-loss of a given classifier function
f E 9v. It holds, with probability of at least 1 - (f, that:

l h(log + 1)- logR[f] <_ Re_nv[f] + (3.1)
m

for allS>0, for feb vandm>h.

The VC dimension h of a function class _" measures how many points x E 2( can be

separated in all possible ways using only functions of the class _'. Kernel methods use a

mapping (I)(x) of the training data x into a higher-dimensional feature space 7-l in which

it can be separated by a hyper-plane f(x) = (w - (I)(x)) + b. In 7-/, the optimal separating

hyper-plane is determined such that the points (I)(x) closest to it (called the support
vectors) have maximum distance from it, i.e. such that the "safety margin" is maximized.

This is done by solving the quadratic optimization problem (w, b) = arg minw,b _llwl1212

subject to the condition that w • (I)(x) + b is a separating hyper-plane. Solving the dual
optimization problem, the Lagrange multipliers ai, i = 1,..., s are obtained, where s is

the number of support vectors. The classifier function f in 7-/is then given by:

f(x) = _ + _. sign yicq (O(x). O(xi)) + b

Since this depends only on the scalar product of the data in feature space, the mapping

,I, does not need to be explicitly known. Instead, a kernel function k(x, xi) is introduced

such that k(x, xi) = _(x) • O(xi). The support vector classifier .f : X _ {1,2} to be
evaluated for any new observation thus is:

f(x) = -_ + -_ . sign yiaik(x, xi) + b (3.2)

Notice that the sum runs only over all support vectors. Since generally s << m, this allows

efficient classification of a new observation by comparing it to a small relevant subset of

the training data.
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3.4. Hidden Markov models (HMM)

Hidden Markov models (HMM) are stochastic signal source models, i.e. they do not re-

quire observations x 6 ]_d but can treat discrete dynamic time series x = {O1,..., OT} 6
X, Oi 6 _. In the past, their most successful application was in speech recognition

(Rabiner (1989)). An HMM attempts to model the source producing the signal x as a

dynamic system which can be described at any time t as being in one of r distinct dis-

crete states, Q1,..., Qr, which are hidden, i.e. cannot be observed. At regularly-spaced

discrete times t_ = i6t, i = 1,...,T, the system changes its internal state, possibly

back to the same state. The process is assumed to be Markovian, i.e. its probabilistic

description is completely determined by the present and the predecessor state. Let q_

denote the actual state of the system at time ti. The Markov property thus states that

P [q, = Qjlqi-1 = Qk, qi-2 = Ql .... ] = P [q_ = Qjlqi-1 = Qk] where P [ElF ] denotes the

probability of an event E given that F occurred. The state transitions are described by

probabilities a_k = P [qi = Qklqi-1 = Q_] forming the elements of the state transition

matrix A and obeying the constraints ajk >_ 0 V j, k and _"_rk=1 aik = 1. At each time

point ti the system produces an observable output O,, drawn from the output probabil-

ity distribution bQ, (O) associated with state Qi; B = {be_ }_=1- The model is completed
?.

with the initial state probabilities _r = {_ = P [ql = QJ]}3=I and the complete HMM is
denoted by A = (A, B, _r).

Given the form of HMM described above, there are three basic problems of interest
that must be solved (Rabiner (1989)):

(1) Given an observation x = {O1,... ,OT} and a model A = (A,B,Tr), compute the

probability P [xlA ] that the observation x has been produced by a source described by )_.

(2) Given an output sequence x = {O1,..., OT} and a model A = (A, B, _r), determine

the most probable internal state sequence {ql,..., qT} of the model ,k that produced x.

(3) Determine the model parameters _ = (A, B, 7r) to maximize P [xlA] for a given
observation x.

3.4.1. Discrete hidden Markov models (dHMM)

If the set of possible distinct values {vk} of any output 0i is finite, the HMM is called

discrete (dHMM). The output probability distribution of any state Qj is thus discrete:

bQ, = {bQi(k) = P[O, = vklq_ = Qj]} for k = 1,...,M.
Direct solution of problem (1) would involve a sum over all possible state sequences:

P [xlA] = _-_-v{ql..... qr} P [xl {ql,..., qT}, A] P [{ql,..-, qT} IA]- The computational cost of

this evaluation is O(2TrT), which is about 105° for an average dHMM and thus clearly

unfeasible. The/orward-backward algorithm, as stated by Baum & Egon (1967), Baum &

Sell (1968), solves this problem efficiently in O(r2T). The solution of problem (2) is given

by the Viterbi algorithm (Viterbi (1967), Forney (1973)) and the "training problem" (3)

is solved using the iterative Baum-Welch expectation maximization method (Dempster

et al. (1977)).

3.4.2. Continuous hidden Markov models (cHMM)

If the observations O_ are drawn from a continuum, bQ_ is a continuous probability
density function and the HMM is called continuous (cHMM). The most general case for

which the above three problems have been solved is a finite mixture of M Gaussians flfk,

thus bQ¢ (0) = _-_.M=ICjkJ_fk (0, #jk, _jk) (see Liporace (1982), Juang et al. (1985)).
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4. Application to trajectory classification

4.1. The data

All machine-learning classifiers described in the previous section were applied to the task

of classifying trajectories of living cells. The cells were keratocytes taken from the scales
of the fish Gillichthys mirabilis (commonly called longjawed mudsucker). Isolated cells

cultured on glass coverslips were observed using an inverted phase-contrast microscope
connected to a video camera. The 2D trajectories of the moving cells were then extracted

from the movies using the semi-automatic tracking software Metamorph (Universal Imag-

ing, Inc.) yielding position readings at equidistant sampling intervals of 6t =15 s. The
observations x in the present case were position/time data sets, thus X = R 2 × T where

T denotes the discrete ordered time space. Two different experiments were performed:

For the temperature data set, fish were acclimated at 16°C, i.e. they were kept in water

of this temperature for at least 3 weekst prior to cell isolation. The movement of the

isolated cells was then recorded at 10°C, 20°C and 30°C using a temperature-controlled

microscope stage. 167 trajectories (46 at 10°C, 63 at 20°C and 58 at 30°C) from 60

different cells were collected. To make all classes the same size, 46 trajectories were used

from each making a total of N = 138. Figure 1 shows them for the 3 temperature classes.

For the acclimation data set all cells were observed at 20°C but they were taken from

three different fish populations acclimated at 10°C, 16°C and 25°C, respectively. From

t After this time the adaptive changes in liver lipid content are complete.
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the recorded 184 trajectories (58 for 10°C, 63 for 16°C, 63 for 25°C) of 60 different cells

a total of N = 174 (58 in each class) was used as shown in figure 2. Both data sets have
n = 3 classes.

4.2. Data preprocessing and encoding

Since the trajectories x E _2 x 3_ are not vectors in ]_d, encoding is necessary for all

machine-learning algorithms considered. HMM are capable of handling dynamic data in

x _ and thus need the least encoding. Since the reaction rates of many biochemical pro-

cesses that contribute to cell movement depend on temperature, the latter is suspected
to influence the speed of the movement. The encoding for the cHMM was thus chosen

to be the momentary speed of the movement along the trajectory. For dHMM the speed
was discretized into 4 equidistant bins. One HMM was trained for each of the 3 classes.

After evaluating the probability P [xl_ ] of a new observation x against the models _

for all classes i = 1, 2, 3, x is assigned to the class which has the highest probability. For

all other algorithms, a quasi-static representation in _d has to be found. The following

properties were calculated for all trajectories: average speed, standard deviation of speed,

mean angle of direction hange between 2 subsequent measurement points, standard de-

viation of those angles, distance between first and last point of trajectory compared to

its total path length, decay of autocorrelation functions of speed and direction-change

angle, minimum and maximum occurring speed and angle change. Histograms of the

distribution of these properties among the different classes of trajectories gave evidence

about which are the most discriminating properties. For the following considerations, the

mean and the minimum of the speed of a trajectory over time were taken as encoding

properties. The trajectories were thus represented as vectors in 1_. Figure 3 shows the

encoded data sets for both the temperature and the acclimation cases. It can be seen

that the clusters mostly overlap, making the data non-separable in this encoding space.

4.3. Classification and evaluation of the results

The different classification algorithms were trained on a subset of m = N/2 data points
from each set and then tested on the remainder of the data. For the KNN we set k = 5
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and for the SVM a Gaussian kernel with standard deviation a = 0.05 was used. To reduce

the random influence of which particular data points are taken for training and which

for testing, the whole procedure was repeated 4 times for different partitioning of the

data into training and test sets. Let T_ = {(x3,y_) , j = 1,... ,N} be the complete data

set of all N recorded trajectories x i with corresponding class labels yj, a random T C 7)

with #{T} = m the training set and E C 7:) with #{E} = N - m and E N T = O the
test set. An algorithm, trained on T, classifies the trajectories x 3 E E without knowing

the correct yj. The outcome of this classification is _j. The hit rate for class i is then
defined as hi = #{xj E E : _'3 = yj = i}/#{xj E E : yj = i} where #{A} denotes

the number of elements in a set A. The false-alarm rate (sometimes also called "false

positives") for class i is given by .fi = #{xj E 8 : _j = i A yj _ i}/#{xj E E : yj ¢ i}.
The complementary quantities mi = 1 - hi and ri = 1 - fi are termed miss rate and

correct rejection rate, respectively. In each classification experiment, both the hit rate

and the false-alarm rate were recorded for each temperature class since they compose

the minimal sufficient set of properties.

Using the theory of signal detection (Green & Sweets (1966)), which was originally

developed in psychophysics and is widely used in today's experimental psychology, two

characteristic parameters were calculated from hi and .fi- Figure 4 depicts the basic idea:

the occurrence of observations that belong to class i and such that they do not belong

to class i is assumed to be governed by 2 different Ganssian probability distributions.

During training, the classifier determines a threshold C above which it will assign all

future observations to class i. If, after transformation to standard normal distributions,

C = 0, the classifier is said to be "neutral"; for C < 0 it is called "progressive" and

for C > 0 "conservative". The discrimination capability of the classifier is given by the

separation distance d _of the two normalized (by their standard deviation) distributions.
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class hit [%] f.a. [%] d' C

lO°C I00.0 2.2 _ -
20°C 54.4 24.5 0.8 0.29
30°C 46.7 22.9 0.7 0.41

TABLE I. KNN on temperature data

class hit [%1 f.a. [%] d' C

10°C 100.0 2.2 oo -
20°C 51.1 27.2 0.6 0.29
30°C 41.3 24.4 0.5 0.46

TABLE 3. SVM on temperature data

class hit [%] f.a. [%] d' C

10°C 100.0 2.2 c¢ -
20°C 76.1 30.5 1.2 -0.10
30°C 34.8 11.9 0.8 0.79

class hit [%] f.a. [%] d' C

IO°C 100.0 2.2 c_ -
20°C 54.3 15.7 1.1 0.46
30°C 68.5 20.7 1.3 0.15

TABLE 2. GMM on temperature data

class hit [%] f.a. [%] d' C

10°C 100.0 3.3 oo -
20°C 77.2 28.3 1.3 -0.09
30°C 37.0 11.4 0.9 0.77

TABLE 4. dHMM on temperature data

TABLE 5. cHMM on temperature data

d I = 0 corresponds to "pure random guessing" where hits and false alarms grow at equal

rates and d' = oo characterizes a "perfect classifier". Since the hit rate is given by the area
under the solid curve above C and the false-alarm rate is the area under the dashed curve

above C, both C and d' can be calculated from hi and fi and the latter two completely

describe the situation. Classifiers were compared based on d r, since algorithms that are

capable of better separating the two probability distributions will have a lower expected
risk R.

5. Results

5.1. Temperature data set

The temperature data set as introduced in section 4.1 was classified using all the algo-

rithms presented in section 3 and the results were evaluated according to section 4.3.

Tables 1 to 5 state the average percentage of hits and false alarms (over all different par-

titioning of the data into training and test sets) as well as the normalized discrimination

capabilities dr and thresholds C of the classifiers for each temperature class.

Figure 5 graphically displays the hit and false-alarm rates of the classifiers for the 3

temperature classes. The averages over all data partitionings are depicted by solid bars,
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the error bars indicate the minima and maxima in the measurements. The d _ values of

the different classification methods are compared in figure 6.

5.2. Acclimation data set

The same classification experiments were also performed using the acclimation data set

as introduced in section 4.1. The results are summarized in tables 6 to 10 using the same

format as in the previous section. Figure 7 shows the average hit and false-alarm rates

of the classifiers for the 3 temperature classes along with the min-max bars. Again the

classifiers are compared against each other in figure 8 based on their d _.
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class hit [%] f.a. [%] d' C

10°C 77.6 23.3 1.5 -0.02
160C 59.5 15.5 1.3 0.39
25°C 41.4 22.0 0.6 0.50

TABLE 6. KNN on acclimation data

class hit [%] f.a. [%] d' C

10°C 86.2 20.3 1.9 -0.13
16°C 62.9 9.9 1.6 0.48
25°C 54.3 18.1 1.0 0.40

TABLE 8. SVM on acclimation data

class hit [%] f.a. [%] d' C

10°c 75.0 19.4 1.5 o.09
16°C 56.0 6.9 1.6 0.67
25°C 61.9 27.2 0.9 0.15

class hit [%] f.a. [%] d' C

lO°C 88.0 21.1 2.0 -0.19
16°C 58.6 4.3 1.9 0.75
25°C 61.2 20.68 1.1 0.27

TABLE 7. GMM on acclimation data

class hit [%] f.a. [%] d' C

10°C 84.5 20.3 1.8 -0.09
160C 71.6 22.4 1.3 0.09
25°C 35.3 11.6 0.8 0.79

TABLE 9. dHMM on acclimation data

class hit [%] f.a. [%] d' C

10°C 88.5 24.8 1.9 -0.26
16°¢ 47.3 16.5 0.9 0.52
25°C 33.8 23.8 0.3 0.57

TABLE i0. cHMM on acclimation data TABLE II. Humans on acclimation data

In addition to machine-learning algorithms, the acclimation data set was also classified

by humans. After training on a set of 30 trajectories and their labels, the test subjects

were presented with one unknown trajectory at a time. Individual position measurement

points were symbolized by circles along the trajectory. Since they are equidistant in

time, this includes information about the speed. All trajectories were shifted such as

to start at (0, 0) and they were rotated by a random angle prior to presentation. Each

person classified 174 trajectories appearing in random order. The average result over 5

test subjects is given in table 11. The best-performing person who declared after the

experiment to have looked at speed information reached only d' = 2.0 for the 10°C class,

d_ = 1.6 for the 16°C class and d' = 0.7 for the 25°C class. The best person of all reached

d_ = 2.1, d_ = 1.9 and d' = 1.0, respectively by taking into account both speed and

shape (curvature) information. The lowest result of the test group was d' = 1.9, d' = 0.1,
d I = -0.6.

6. Conclusions and future work

Considering the results of section 5, the following conclusions can be made: (1) All

methods perform equally well in the case of separable clusters (10*C temperature class).

(2) On the acclimation data set, GMM perform best, closely followed by SVM. This is

evidence that the data is actually normally distributed. (3) All classifiers have relatively
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low values of C, thus being more or less neutral. (4) The HMM methods are the least

robust due to their dynamic character. The dHMM and the cHMM have comparable per-

formance. (5) Humans on average perform less well than the algorithms. This could be

due to bias based on prior information or expectations, fatigue effects or inaccuracy. (6)

The best test person performs about equally well as the best machine-learning algorithm,

indicating that the latter was able to extract and use all the information contained in

the data set. In summary, it has been demonstrated that automatic classification of bi-

ological trajectories is possible with near-maximum accuracy and that machine-learning

techniques can be a useful tool in estimating the information content and the relevant
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parameters in a data set. Future work will be concerned with implementing a general-
purpose framework code for classification of dynamic data sets in multiple dimensions. A

modular approach will allow different classification algorithms to be used, and a prepro-

cessor is envisaged that automatically detects those properties that best cluster (separate)
the data at hand. Future applications will include the analysis of Listeria and Shigella
movement inside host cells as well as virus movement and automatic virus detection and

identification systems.
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a

We study the no-slip boundary conditions for water at a hydrophobic (graphite) surface

using non-equilibrium molecular-dynamics simulations. For the planar Couette flow, we

find a slip length of 64nm at lbar and 300K, decreasing with increasing system pres-
sure to a value of 31nm at 1000bar. Changing the properties of the interface to from

hydrophobic to strongly hydrophilic reduces the slip to 14 nm. Finally, we study the flow

of water past an array of carbon nanotubes mounted in an inline configuration with a

spacing of 16.4 x 16.4 nm. For tube diameters of 1.25 and 2.50 nm we find drag coefficients
in good agreement with the macroscopic, Navier-Stokes values. For carbon nanotubes,

the no-slip condition is valid to within the definition of the position of the interface.

1. Motivation and objectives

Macroscopic, Navier-Stokes modeling of problems in nano-fluidics may prove a com-

putationally cost-effective alternative to themolecular-dynamics simulations usually em-

ployed at these length scales (Koplik & Banavar 1995) provided the complex fluid-solid

interactions can find a suitable macroscopic model. At hydrophobic interfaces these in-

teractions typically result in strong density fluctuations, anisotropic orientation of the

water molecules (Lee et al. 1984), and, for solids with a high density, a finite fluid velocity

(AU) at the interface (Helmholtz 8z yon Piotrowski 1860; Schnell 1956; Churaev et al.
1984; Baudry et al. 2001). Thus while the kinematic boundary condition of impermability

follows naturally from the definition of a fluid-solid interface, the issues relating to mo-

mentum transfer at the interface determining the dynamics of the problem is less clear.

At moderate shear rates (c3u/Oy) the fluid remains Newtonian (Loose & Hess 1989), and

the slip velocity may be described by the linear relation:

Ou

= (1.1)
where Ls is the slip length. Experimental evidence of slip has been demonstrated in stud-

ies of water in hydrophobized quartz capillaries (Churaev et al. 1984) and in drainage

experiments (Baudry et al. 2001) with slip lengths of 30 ± 10nm and 38 ± 2nm, re-

spectively. While most experiments have focused on the presence of slip at hydrophobic
surfaces and on the possible validity of the no-slip condition at hydrophilic surfaces, re-

cent colloid probe experiments with water on mica and glass have indicated a persistent

slip of 8-9 nm at these hydrophilic surfaces (Bonaccurso et al. 2002). Molecular dynamics-

simulations of Poiseuilte flow (Barrat & Bocquet 1999; Travis et al. 1997; Travis & Gub-

t Institute of Computational Science, ETH Z/irich, Switzerland
:_ NASA Ames Research Center, USA
¶ Institute of Computational Science, ETH Zfirich, Switzerland and CTR/NASA Ames
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1997; Cieplak et al. 2001) of simple Lennard-Jones fluids confined between Lennard-

Jones solids have demonstrated the presence of both slip, no-slip and locking (negative

slip length) depending on the "corrugation" of the surface. Thus, no-slip and locking are

observed for low-density solids, and slip is found to occur at strongly non-wetting inter-
faces, or for high-density solids. In a recent study of methane confined between dense,

graphite surfaces Sokhan et al. (2001) found the slip to be fairly insensitive to the wetting
properties of the surface, but to depend strongly on the density of the solid.

In this paper we present detailed non-equilibrium molecular dynamics (NEMD) simu-
lations of water confined between hydrophobic, dense (graphite) surfaces. For the planar

Couette flow, we study the influence of the system pressure on the slip length, and on the

wetting behaviour of the interface, by artificially increasing the carbon-water Lennard-

Jones interaction. To study the effect of geometry on the slip, we consider simulations

of water flowing past an array of carbon nanotubes. This flow configuration further-

more serves as a preliminary study of carbon nanotubes as sensing devices in aqueous
environments.

2. Governing equations and solution procedure

The present study employs non-equilibrium molecular-dynamics (NEMD) simulations

of water-graphite and carbon nanotube-water systems. In these simulations the graphite

and the carbon nanotubes are treated as rigid structures, to permit the maximum time

step of 2 fs imposed by the SPC/E water model. The influence of modelling the solids as

rigid structures is expected to be minor, as demonstrated in the recent work of Sokhan

et al. (2001). However, for the flow past carbon nanotubes, the deformation of the tubes

imposed by the motion of the water may prove significant and will be included in later

studies. The governing Newton's equations are integrated in time using the leapfrog

scheme, subject to periodic or quasi-periodic boundary conditions for the Couette and

carbon nanotube flow problems, respectively. The algorithm has been parallelized using a

domain decomposition technique and explicit message passing (MPI). The computational

domain is distributed onto the processors and the atoms mapped accordingly. Atoms

leaving their host processor during the simulation is are sent to the receiving processor.

The bond topology is described through global pointers, and mapped onto a local pointer

set on the host processor. A decomposition onto 16 processors of the flow past a carbon

nanotube is shown in figure 1. The simulations were performed on the SGI Origin 2000
cluster at NASA Ames.

2.1. Potentials

The water is modelled using the standard SPC/E model which involves a Lennard-Jones

term between the oxygen atoms

-U(rij) = 4coo [\ rij / \ rij ] '

where re is the radius of truncation (U(rij) = 0 for rij > re), and a Coulomb potential
acting between all atom pairs from different water molecules

qiqi 1 (2.2)
U(rij) = 4rre0 rij'

where e0 is the permittivity in vacuum, and qi is the partial charge, qo = -0.8476 and

qn = 0.4238, respectively (Berendsen et al. 1987). The Coulomb interaction is computed
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FICUP_E 1. The parallel decomposition onto 16 processors for the NEMD simulations of the
flow past a carbon nanotube. The different gray scale indicate the processor affiliation of the
molecules.

using a smooth truncation as

4-_eo - Es(rij) , for rij < re, (2.3)

where Es(r¢) is a smoothing function (Levitt et al. 1997)

Es(rij)=--rcl ( 1 r_j-rC)rc_ , (2.4)

and U(rij) = 0 for r_j > re. The truncation of the Coulomb potential has been shown to
have little effect on the thermodynamic and structural properties of bulk water (Andrea

et al. 1984), and for water at interfaces (Walther et al. 2001; Werder et al. 2002). In this

study we employ a cutoff of 1.0 nm, throughout. The bond length (rw) and bond angle

(Sw) of the water are constrained using SHAKE (van Gunsteren &=Berendsen 1977).
The carbon-water interaction consists of a Lennard-Jones term between the carbon

and oxygen atoms

U(rij)=4eco[(ac°_12-(ac°_6], forrij<rc, (2.5)
L\ rij ] \ rij ]

and U(rij) -- 0, for rij > re, and the parameters of the potential eco and aco are
obtained from the experiments by Bojan & Steele (1987), with a modified evo parameter

obtained from molecular-dynamics simulations of the contact angle of water droplets on

graphite (Werder et al. 2002). The parameters of the potentials are summarized in table 1.

3. Results

The results from the Couette and carbon nanotube studies are presented in terms of

the time average profiles of the density

Pk = _kk A_. mi, (3.1)



320 J. H. Walther, R. L. Jaffe, T. Werder, T. HaliciogIu _ P. Koumoutsakos

rw = 1.000A Ow -- 109.47 ° coo = 0.6502kJmo1-1

aoo -- 3.166/_. qo = -0.8486e qH -- 0.4238e
cco = 0.4389kJmo1-1 aco -- 3.190

TABLE 1. Parameters for the SPC/E water model (Berendsen et al. 1987), and for the car-
bon-water interaction potentials cf. (Bojan & Steele 1987) and (Werder et al. 2002). rw, and
8w denote the water bond length and angle, respectively, and qo and qH the partial charges.
_oo and aoo are the SPC/E Lennard-Jones parameters, and cco and aco the carbon-water
(oxygen) Lennard-Jones parameters.

and streaming velocity

_n_ rn_ui
= , (3.2)

where m_ and u, are the mass and velocity of the i-th atom, and nk denotes the number
of atoms in the k-th bin of volume Vk. The statistics for the Couette flow are sampled

in Cartesian bins with a spacing in y-direction of 0.100 nm and 0.025 nm for the velocity

and density profiles, respectively. A polar binning is used for the flow past a carbon

nanotube with a radial bin resolution of 200 and 800 (a spacing of 0.32 and 0.08 nm) for

the velocity and density profiles, respectively. The radial bins are subdivided in 6 bins in

the circumferential direction. The slip length is extracted from the time average velocity

profiles using a least square fit.

3.1. Couette flow

The simulations of the Couette flow involve from 240 to 1040 water molecules confined

between a pair of (single) graphite sheets with a spacing of 1.35 nm to 4.72 nm depending
on the system size and pressure. The size of the system in the streamwise (Lx) and

spanwise (Lz) directions is 2.98 x 2.46 nm: see figure 2. The water molecules are initially

placed on a regular lattice and the system is equilibrated for 40 ps to obtain a system

temperature of 300 K and the desired pressure. Periodic boundary conditions are imposed

in the streamwise and spanwise directions, and free space conditions are assumed in the

wall-normal (y) direction. A Berendsen thermostat (Berendsen et al. 1984) is applied to
adjust both the temperature and pressure, thus

L_+I = L_ (1- 3_--tt(po - P_)) , (3.3)rp

where L_ denotes the spacing between the graphite sheets at the n-th time step, 7p is
the time constant of the thermostat (here Tp -- 0.1 ps), and Po and pn are the target

and instantaneous pressure, respectively. The pressure is measured from the total normal

forces acting on the graphite sheets as

p_ = 1 n_ n
2LzL----_Z. f' .n,, (3.4)

$

where f_ denotes the force acting on the i-th carbon atom, n¢ is the total number of

carbon atoms, and ni is the surface normal; see figure 2. The pressure bath is switched

off after 40 ps, while maintaining the heat bath until 42 ps. The upper graphite wall is

set into motion after 50 ps with a constant velocity (U) of 100 m s -1 throughout the 6 ns
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FIGURE 2. Sketch of the planar Couette flow problem. Lx and L_ denote the length of the unit
cell in the streamwise (x) and wall-normal direction (y). The upper wall is forced to move with
a constant velocity (U) and periodic boundary conditions are enforced in the streamwise and
the spanwise (z) directions.

case n_ eco kJmo1-1 P (bar) H (nm) Ls (nm)
1 1040 ref. 10 4.72 63
2 1040 ref. 200 4.71 63
3 1040 ref. 500 4.60 42
4 1040 ref. 1000 4.50 31
5 1040 +50% 200 4.66 33
6 1040 +100% 200 4.59 14
7 800 refl 200 3.70 41
8 240 re£ 200 1.35 co

TABLE 2. Simulation cases for the planar Couette flow conducted at 300 K and pressures (P) of
10, 200, 500, and 1000 bar, respectively. The reference water-graphite van der Waals interaction
given by evo is 0.4389 kJ mol-_(Werder et al. 2002). H denotes the spacing between the graphite
surfaces, and L_ the slip length, n_ is the number of water molecules, and 560 carbon atoms
were used in all the cases.

of simulation. The system did not experience any appreciable viscous heating during the
course of the simulation. The results are summarized in table 2.

We first consider the influence of the system pressure on the amount of slip for system

pressures of 10, 200, 500, and 1000 bar using the reference carbon-water interaction po-
tential. At these pressures the time-average profiles of the streaming velocity shown in

figure 3 reveal a decreasing slip length for increasing pressure, resulting in a slip of 63,
63, 42, and 31 nm, respectively. The peaks in the profiles for Ixl > 2 nm are caused by the

poor sampling at the interfaces. The large fluctuations in the pressure typical of these

small systems lead to similar results for the 10 and 200 bar system. The tendency for

decreasing slip with increasing system pressure is in agreement with the recent NEMD
simulations of Lennard-Jones fluids confined between Lennaxd-Jones solids by Barrat

& Bocquet (1999). Moreover, the magnitude of the slip is in good agreement with the
experimental values of 30-40nm: see Churaev et al. (1984) and Baudry et al. (2001).
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FIGURE 3. Time average streaming velocity profiles in a Couette flow as function of the system
pressure: --: lObar (case 1);--: 200bar (case 2); - -: 500bar (case 4); -..: 1000 bar (case 4).
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FIGURE 4. Time average density profile in a Couette flow as function of the wetting properties of
the fluid-solid interface: --: eco = 0.4389 kJ tool -_ (case 2); - -: evo = 0.6594 kJ tool -1 (case 5);
- -: evo = 0.8778kJmo1-1 (case 6).

Next we consider the influence of the wetting properties of the graphite-water interface

by varying the strength of the Lennard-i]ones interaction potential through an increase of

the coo parameter from the reference value of 0.4389 kJ mo1-1 by 50 % (0.6594 kJ mo1-1)

and 100% (0.8778kJ mol-1). The corresponding macroscopic contact angle for these

interaction potentials for water droplets on graphite is 85 °, 30 °, and 0°, respectively

(Werder et al. 2002). The time average density profiles shown in figure 4 display the

characteristic fluctuations at a solid surface with increased peak values for increased

wetting. The corresponding streaming velocity shown in figure 5 reveals a marked influ-

ence on the slip length. Thus, the slip decreases from 63 nm for the reference interaction

potential to 33 and 12 nm for the 50 % and 100 % systems, the latter in good agreement

with the experimental value of 8-9 nm for water at a hydrophilic surface (Bonaccurso

et aL 2002).

Finally, we consider the influence of the size of the system by changing the distance
between the graphite sheets from 4.71 to 3.70 and 1.35 nm. The density profiles shown in
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FIGURE 5. Time average streaming velocity profiles in
the wetting properties of the fluid-solid interface: --: eco = 0.4389kJmo1-1 (case 2);
- -: eco = 0.6594kJmo1-1 (case 5); - -: eco = 0.8778kJmo1-1 (case 6).
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FIGURE 6. Time average density profile in a Couette flow as function of the size of the channel:
--: L_ ----4.71 nm (case 2); - -: L_ ----3.70 nm (case 7); - -: L_ = 1.35 nm (case 8).

figure 6 indicate the presence of bulk water at the center of the system for the 4.71 and

3.70 nm cases, whereas the density variations in the 1.35 nm case persist throughout the
system. The velocity of the upper graphite sheet is 100 m s-1 for all systems, with an im-

posed shear of 2.0 x 101°, 2.7 x 101° and 7.4 × 101° s -1 , respectively, all below the critical

value for water of approximately 12 x 101° s -1 (Rahman & Stillinger 1971; Eisenberg &

Kauzmann 1969). The results from the 3.70nm system indicate a reduced slip length of

41 nm, and a very large slip for the 1.35 nm system. However, for the 1.35 nm system a

longer sampling time appears to be required to determine the slip length with sufficient
accuracy. The amount of thermal noise, and the presence of low-frequency oscillations

in the system is demonstrated by the time history of the centerline velocity (u(½L_)) as

shown in figure 8. The centerline velocity is presented as a running mean with a time win-

dow of 40ps for the 4.71 nm and 1.35nm cases. The signals clearly contain low-frequency
oscillations, with a period of approximately 0.5 ns, and similar to the fluctuations ob-

served by Sokhan et al. (2001). Longer simulations including extended equilibration of



324 T. Werder, T. Halicioglu _ P. KoumoutsakosJ. H. Walther, R. L. Jaffe,

1.0

0.8

0.6

0.4

0.2

0.0 ' '
-3 -2

I , I

-1 0

= (nm)

T

2 3

FIGURE 7. Time average streaming velocity profiles in a Couette flow as function of the size of
the channel: --: L_ = 4.71 nm (case 2);--: L_ = 3.70nm (case 7); - -: L_ = 1.35 nm (case 8).
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FIGURE 8, The time history of the running mean (40 ps averages) center line velocity i]2 a

Couette flow at different system sizes (Ly) --: 4.71 nm (case 2)i - -: 1.35 nm (case 8).

the system are currently being conducted to allow more accurate definition of the system

pressure and of the slip length.

3.2. Flow past an array o] carbon nanotubes

The flow past an array of carbon nanotubes is computed for tube diameters of 1.25 nm

and 2.50nm, to study the effect of curvature on the no-slip boundary condition and

to compare the fluid forces acting on the array with macroscale Navier-Stokes models.

The carbon nanotubes are (16,0) and (32,0) zigzag tubes, located at the center of the

computational box with dimensions of 16.4 x 16.4 x 2.1 nm. The total number of water

molecules is approximately 18500, and the carbon nanotubes consist of 320 and 640

atoms for the 1.25 nm and 2.50 nm tubes, respectively.

The onset flow speed (U = 50ms -1) is chosen sufficiently above the thermal noise

to allow efficient sampling, but yet corresponding to a low Mach number (Ma < 0.05).

During the first 4 ps of the 8 ps equilibration, the volume of the computational box is
adjusted to match the target density of water (here p = 0.997gcm -3) in the far-field, i.e.
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I:'mURE 9. Sketch of the carbon nanotube-water system. D denotes the diameter of the carbon
nanotube, L_ the size of the system in the streamwise direction, and/_,_ and Lz the height and
width, respectively. The velocity of the center of mass of the water molecules contained in the
"inlet" region (L,) of the computational box is fixed to the desired value (U).

in the region defined by r > R + 6, where R = D/2 is the tube radius, and 6 -- 0.8 nm is

chosen to exclude the region containing the density variations in the vicinity of the carbon

nanotube (Walther et al. 2001). The regulation of the volume is performed by scaling the
computational box in the x-y plane (see figure 9), while keeping the extent of the box

in the z-direction fixed. The carbon nanotube is excluded from the scaling to preserve
the radius of the tube. The flow is initially quiescent and impulsively turned on after

6 ps while maintaining the thermostat for the remaining 2 ps of the equilibration. The

spatially-averaged streaming velocity is computed during the simulation and subtracted

to allow equilibration of the peculiar velocities (i.e. the thermal component) only. The

viscous heating during the 0.76 ns simulation was less than 8 K.
The flow speed is adjusted by monitoring the velocity of the center of mass of the

water in the 3 nm (L_) wide inlet region upstream of the carbon nanotube: see figure 9.
In a leapfrog approximation, the velocity of the molecules is updated according to

v,_+l/2 = v,__l/2 + 6t (f + b) , (3.5)
m

where 6t is the time step, m the mass of the molecule, and f and b denote the force and

body force on the molecule, respectively. Thus, the center of mass velocity of the water

molecules in the inlet region is updated accordingly

vn+:/2 _ ,_-:/2 6toom = + -- (f,o, + b,o,), (3.6)
mtot

where ftot is the total force acting on the center of mass of the molecules in the inlet

region, and btot is the total body force. In equation (3.6), btot is adjusted to yield the

/_ n+1/2 U), thusdesired center of mass velocity w corn -

_ n-1/2_btot = mr°'---AtU - "Vcorn ) -ftot" (3.7)5t

This boundary condition is equivalent to a prescribed total mass flow through the system

and allows a non-uniform inlet velocity profile, and effectively modelling the flow past

an array of carbon nanotubes arranged in an inline configuration.
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FIGURE 10. The time-average radial density profile for the flow past an array of 2.50 nm carbon
nanotube. The profiles are sampled upstream, at the mid-section and downstream sections:
--: section I; - -: section II; - -: section III.

The simulations involve approximately 380000 time steps corresponding to 0.76ns,
with snapshots collected every 100 time steps (0.2ps) starting at 0.4ns for subsequent

analysis. The time average density and streaming velocity profiles are sampled along the
6 radial bins as shown in figure 9. Both profiles exhibit symmetry across the x-axis,

whereas asymmetries are discernable in the density profiles in the streamwise direction,

in the vicinity of the carbon nanotube: see figure 10. The locations of the density extrema

are similar for the three profiles, with the first peak located at r - R = 0.32 nm coinciding

with the van der Waals equilibrium distance (aco). However, the peak values decrease
from 3.0 g cm -3 at the upstream direction (section III) to 2.8 g cm -3 and 2.6 g cm -3 for

the sections II and I, respectively. Since the far-field density is constant with a value

of approximately 1.0 g cm -3 , the observed asymmetry is ascribed to a local compression
near the surface.

The amount of slip experienced in these systems is extracted from the tangential

component (vt) of the streaming velocity for the sections II and V shown in figure 11.

The velocity profiles are similar but reach different free-stream values due to the different

blockage ((D - L_)/Ly) experienced by the flow. Since the Reynolds number (Re) based

on the tube diameter and the fluid viscosity (_) is less than unity, the velocity profile is

fitted to the Stokes velocity field for a single circular cylinder (Batchelor 1967)

vt=alog -_ +b+Cr2--, (3.8)

where a, b, and c, are parameters of the fit. The fit is performed for the data shown in

figure 11 in the interval r E [R ÷ aco : 7 nm]. We find, within the uncertainty of the
fit and to within the accuracy of the definition of the location of the surface, that the

no-slip condition is satisfied, i.e., Ls < aco. We speculate that the difference dbetweenn
the amount of slip found in the planar Couette flow and in the flow past an array of

carbon nanotubes is related to the amount of time the water is exposed to the solid

surface (_ D/U = 25 - 50 ps), and to the difference in the imposed external boundary
conditions. Specifically, the driving mechanism of the Couette flow is the imposed shear,

while for the Poiseuille flow (see e.g., Travis et al. (1997)) it is an imposed gravity (body)

force. Since the present flow is driven by a body force imposed at the inlet section only,
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FIGURE 11. The time average tangential component of the streaming velocity for the flow past
an array of carbon nanotubes. The profiles are sampled from section II and V and compared
with equation (3.8) the for the 1.25nm tube: --: measured; - -: fit and the 2.50nm tube:
- -: measured; ...: fit.

the remaining part of the flow is driven by a pressure gradient. To validate this conjecture

we are currently performing simulations of Poiseuille flow driven by a pressure gradient,
i.e. by imposing a body force in a limited inlet region similar to the present carbon

nanotube study.

Finally, we consider the fluid forces (f#) acting on the carbon nanotube array by
computing the total force on the carbon atoms

7}, c

'f# = E f'" (3.9)
'f,

The streamwise component of the force is compared with the Stokes-Oseen drag for the

flow past an array of two-dimensional circular cylinders (Probstein 1994)

3 + 2¢ 5/3 (3.10)
C,_= C_ 3 _ _¢_/3+ _¢s/3 _ 3¢2'

where ¢ is the volume fraction (here ¢ = _R2(LzL_)-I), and C_ c is the drag coefficient

(C_ = fx(½PU2D) -1) on a single circular cylinder given by (Batchelor 1967)

8r
C,_c = . (3.11)

Re log(7.4/Re)

For the two cases ¢1.25nm = 0.0047 and ¢2.5onm = 0.0183, the Reynolds numbers are

Ren25nm = 0.063, and Re2.50nm = 0.125, resulting in drag coefficients (see equations

3.10 and 3.11) of 112 and 81 for the 1.25 nm and 2.50 nm tubes respectively. The measured

forces are sampled from 0.40ns to 0.66ns using 13 samples of 20ps each. The force

components per unit length of the tube are (126 ± 19, 0 ± 15, 0 ± 4) kJ mo1-1 nm -1 and

(159 ± 19, 0 ± 21, 0 ± 5) kJ mol -z nm -z, for the 1.25 nm and 2.50nm tubes, respectively.

The corresponding drag coefficients are 134 ± 20 and 85 ± 20, both in good agreement

with the Stokes-Oseen values. Thus, the hydrodynamic diameter of the carbon nanotube

appears to be represented by the atomic center-to-center diameter of the carbon nanotube

rather than an "effective diameter" based on the water density profile.
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4. Summary and conclusions

We have presented non-equilibrium molecular dynamics simulations of water in a pla-

nar Couette flow and water flowing past an array of carbon nanotubes. For the planar

Couette flow, we find a slip length of 63 nm at 300 K and 1 bar, decreasing to a value of

31 nm at higher pressures (1000 bar). By changing the properties of the interface from hy-

drophobic (contact angle of 85 °) to hydrophilic (zero contact angle), the slip persists with

a value of 14 nm. The values for both the hydrophobic and the hydrophilic interfaces are

in good agreement with experimental values of 30-38 nm and 8-9 nm, respectively. Low

frequency oscillations were observed in the velocity field and the simulations are currently

being extended to secure a more accurate sampling.

Studies of the flow past an array of carbon nanotubes were also conducted to determine

the effect of curvature on the amount of slip, and to compare the fluid forces with that

of macroscopic Navier-Stokes models. For the two cases considered, with 1.25 nm and

2.50nm zigzag carbon nanotubes mounted in an inline arrangement with a spacing of

16.4 x 16.4nm, the no-slip condition appears to be valid. The extracted slip length is
Iess than the van der Waa/s radius of the interface (< 0.3 nm). The hydrodynamic forces
acting on the arrays are found to be in good agreement with macroscopic Navier-Stokes

models, hence indicating that the integral fluid-dynamic properties of the system can be

estimated using traditional fluid dynamics tools.
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Combustion

While during the 2000 CTR summer program the combustion group had strong partic-
ipation from industry, assessing the merits of large-eddy simulation (LES) of combustion

problems, both the feasibility and the benefits of combustion LES now seem to be well-

established facts. The combustion and sprays group of the 2002 CTR Summer Program
was largely dominated by projects addressing theoretical and modeling questions with rel-

evance to applications in complex systems. This section includes reports on six projects,

four related to combustion modeling and two on multiphase flows.

Selle et al. report on the LES of an industrial power-generation gas-turbine combustor

using the so-called Thickened Flame combustion model. Since CO is a major concern

in gas-turbine combustion, this model, which was based on one-step global chemistry,

has been extended to account for a two-step chemical scheme including carbon monoxide

and validated with flame/vortex interaction DNS data. Simulations are performed for the

non-reactive and reactive cases and results are compared with velocity and temperature
measurements.

Also related to combustion of stationary gas turbines is the project of Polifke and Wall.

An efficient alternative to performing CFD for an entire engine in studying combustion

instabilities, is the use of acoustic multi-port or network representations of the thermo-

acoustic system. For this approach, the thermo-acoustic transfer matrices of individual

components of the network have to be known. Here it is suggested that these matrices

could be determined from LES of generic components, and simulations are performed for

a simple geometry without heat release. It is shown that the formulation of inflow and

outflow boundary conditions is a critical aspect of this work and a new formulation is

proposed.

The physics of large-scale fires are dominated by the strong coupling of fluid dynam-

ics, soot formation, and radiation. In numerical simulations these complex interactions
are usually not adequately accounted for. As a first step towards fully-coupled simula-
tions Rawat et al. performed an LES of a pool fire of one meter diameter, employing

an unsteady flamelet model including a kinetically-based soot model and a simplified

description of radiative transport. The effect of using a simplified model for radiation is

assessed by post-processing the LES results with a detailed radiation model.

Models for scalar mixing are formulated and evaluated with DNS data in the project of

Fox et al.. The Lagrangian Spectral Relaxation model to describe scalar dissipation rates,

and the Lagrangian Fokker-Planck (LFP) model, describing the scalar mixing process of

two scalars given the dissipation rates, have been developed by Fox in recent years. Here,
the LFP model is extended to account for multi-scalar mixing and chemical reactions.

The model is validated with DNS data for three-component mixing and for reactive

scalars.

In practical combustion devices, fuel is often supplied as liquid spray or as solid parti-

cles. In numerical simulations it is usual to apply Lagrangian particle methods describe

the evolution of droplets and particles. In both the projects of Kaufmann et al. and of

R@veillon et al., Eulerian formulations for a dispersed phase axe developed. Kaufmann

et al. develop a formulation for mono-disperse particles, containing a newly-appearing

sub-grid stress term, which is demonstrated to be of importance. The formulation with
the modeled stress term is applied in a DNS of particle dispersion in isotropic turbulence.

Results are compared with a DNS using a Lagrangian formulation.
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The main difference in the formulation of R@veillon et al. is that it is for polydisperse

evaporating sprays. A multi-fluid method is developed, in which equations for number

density, droplet momentum, and droplet kinetic energy are solved for each individual size

class. Two-dimensional DNS for two-phase flows with evaporation are performed using

a Lagrangian and the multi-fluid method. In a comparison with the DNS results, the

model is shown to perform well in predicting spray dynamics and evaporation.

Heinz Pitsch
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Large-eddy simulation of turbulent combustion
for gas turbines with reduced chemistry

By L. Seller, G. Lartigue t T. Poinsot:_, P. Kaufmann¶, W. Krebs¶ AND D.

Veynantell

An LES computation has been performed for the complete burner of a partially- premixed

gas turbine, for both non-reacting and reacting cases. The flame is described using a two-

step chemical scheme combined with the thickened-flame (TF) model. Results show that

the inlet boundary conditions (especially the swirl level) have a very large effect on flow

topology. With the correct inlet conditions, the overall agreement with experiment is

very good, for both cold flow and reacting flows.

1. Introduction

Large-eddy simulation (LES) is becoming a standard tool to study the dynamics of

turbulent flames (see for example recent Summer Programs at CTR, the special issue of

Flow Turbulence and Combustion (vol. 65, 2000) on LES of reacting flows, and recent

books on turbulent combustion (Peters (2000)) and Poinsot & Veynante (2000)). Many

recent papers have demonstrated the power of LES methods (Pierce & Moin (1998),

Desjardins & Frankel (1999), L_gier et al. (2000),5 Colin et al. (2000), Angelberger et

al. (2000), Pitsch and Duchamp de Lageneste (2002)). For example, LES appears as one

of the key tools for predicting and studying the combustion instabilities encountered in

many modern combustion devices, such as aero or industrial gas turbines, rocket engines
or industrial furnaces.

Up to now, most LES of reacting flows in complex geometries has been limited to

fairly simple chemical schemes (single-step chemistry) for obvious reasons of reduction

of cost and complexity. In the same way, thermodynamic and transport properties are

often simplified (constant heat capacity for all species, equal Lewis numbers).

This study presents a computation of a fairly complex industrial burner, developed at

Siemens Power Generation, using an unstructured LES compressible solver. The main

objectives are to:

• investigate the capacities of LES in a realistic configuration,

• extend the existing flame-interaction model (called the Thickened Flame model) to

a two-step chemical scheme and

• compare the LES results to experimental data obtained at University of Karlsruhe.

Section 2 presents the LES solver used for the study. The TF (Thickened Flame)
model is discussed in section 3. A two-step chemical mechanism, incorporating CO as

the main intermediate species, was tuned for the conditions of the Siemens burner and

tested in section 4. Specific DNS were performed to check the possible effects of reduced

t CERFACS, CFD team, 42 Av. G. Coriolis, 31057 Toulouse Cedex
_t IMF Toulouse, INP de Toulouse and CNRS, 31400 Toulouse CEDEX, France
¶ Siemens PG, Mullheim, Germany
II Ecole Centrale de Paris and CNRS, 92295 Ch_tenay Malabry CEDEX, France
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chemistry on the efficiency function which characterizes the subgrid scale wrinkling in
the TF model (section 5). The configuration used for the Siemens burner installed in

the Karlsruhe combustion chamber is described in section 6. The specification of inlet

conditions is discussed in section 7, while cold-flow results are presented in section 8.

Finally, results with combustion are discussed in section 9.

2. The LES solver

The LES solverAVBP (seewww. cerfacs, fr/cfd/CFDWeb, html) isused here.The full

compressible Navier-Stokes equations are solved on hybrid (structured and unstructured)
grids. Subgrid stresses are described by the WALE model (Nicoud & Ducros (1999)). The

flame / turbulence interaction is modeled by the Thickened Flame (TF) model: see An-
gelberger et al. (1998), Angelberger et al. (2000), Colin et al. (2000), L@gier et al. (2000)

and L4gier (2001). The numerical scheme has second- or third-order spatial accuracy and

third-order time accuracy (Colin & Rydgyard(2000)). The AVBP version (AVBP 5.1)
used here also handles variable heat capacities. Species enthalpies are tabulated and the

mean heat capacity is determined as a function of temperature and species mass frac-

tions Yk. Therefore, local quantities such as the mean molecular weight W or the ratio of

heat capacities 7 are not constant. This introduces significant additional complexities in

the numerical method, especially near boundaries, where classical characteristic methods

such as NSCBC (Poinsot & Lele (1992)) must be replaced by a more complex technique

(Baum, Poinsot and Th@venin (1994)).

3. The Thickened-Flame model

Modelling the interaction between flame and turbulence in partially premixed com-

bustion systems is a major present challenge for turbulent combustion research. Possible

paths are to address this issue using probability density functions (pdf) or fiamelet con-

cepts (Poinsot &: Veynante (2000)). Pdf methods do not rely on any assumption on the

flame topology but are limited by the accuracy of mixing models and by the required

computing efforts.

On the other hand, flamelet models need assumptions for the flame topology: the

fiamelet approach is typically applicable when flame fronts are either of diffusion type or

of premixed type. Laminar flamelet libraries are then constructed, and combined with

pdf or flame-surface densities to determine species mass fractions or reaction rates in

turbulent flames. When this formalism is valid, flamelet approaches offer a powerful way

to incorporate complex kinetics into LES. But the flame structure type, either premixed

or non-premixed, should be known a priori or determined from a sensor as proposed, for

example, by Domingo et al. (2002). Unfortunately, in many practical applications such as

gas turbine combustors, the flame front generally does not correspond to a pure premixed

flame, separating premixed fresh gases and burnt gases perfectly, or to the usual non-

premixed flame between pure fuel and pure oxidizer streams (L4gier et al. (2000)). These

situations are difficult to handle with fiamelet models, even though recent work at CTR

shows promising results (Pitsch and Duchamp de Lageneste (2002)).

Another path is followed here: the Thickened-Flame (TF) model initiated during the

previous summer programs and continued in France (Veynante & Poinsot (1997), An-

gelberger et al. (1998), L@gier et al. (2000), Charlette et al. (2002)) is now able to com-

pute reacting flows in gas turbine combustors in complex geometries. Unsteady com-
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bustion mechanisms are captured with no assumption for the flame structure: chem-

istry and transport are modified to offer larger reaction zones, which can be resolved
on LES meshes. In this approach, the balance equation for the Yk mass fraction in a

one-dimensional flame,

OpYk OpuYk 0 / aYk'_
ot + Ox -ox (3.1)

is modified as:

0py:h opur:h 0 ( 1.Ot ÷ Ox "= O-"'x pFDk----_x ] ÷ -ffwk (yjth, Tth)
(3.2)

where F is the thickening factor and superscript th stands for thickened quantities. In-

troducing the variable changes X = x/F; ® = t/F leads to:

which has the same solution as (3.1). Then, Y_h(x, t) = Yk(x/F, t/F) showing that the

flame is thickened by a factor F. The time response is also modified but this point is

neglected in a first step assuming that the flame front is in equilibrium. The integrated

reaction rate is kept constant:

(3.4)

and, accordingly, the laminar flame speed $L is conserved. This approach has some ad-
vantages: the flame propagation, for example, is due to the combination of diffusive and

reactive terms so that quenching and ignition may be simulated. Fully-compressible equa-

tions may also be used as required to study combustion instabilities. Obvious drawbacks

also exist: subgrid scale wrinkling must be modeled using an efficiency function E derived

from DNS results, as shown by Veynante & Poinsot (1997), Angelberger et al. (1998) or

Colin et al. (2000). Using the same DNS, a more refined efficiency function E has been

recently derived by Charlette et al. (2002). In practice, the diffusion coefficient Dk is re-

placed by E F Dk and the pre-exponential constant A by A E/F. The flame front is then

thickened by a factor F and propagates at the subgrid-scale turbulent flame speed ESL.

Furthermore, the complexity of the chemical scheme must remain limited. Up to now,

only simple one-step chemical schemes have been used. In the present study, a two-step

scheme is introduced to capture CO and predict more accurate flame temperatures, as

an intermediate step towards more complex schemes (typically four-step schemes such

as that of Jones & Lindstedt (1988)). In fact, the approach is questionable when inter-

mediate species are present. According to (3.4), the overall reaction rate of these species

is conserved (and is close to zero), but, as the mass fraction profiles are thickened, their

total amount is increased. For a one dimensional flame, this increase has no effects but

could lead to some difficulties for wrinkled or/and stretched flame fronts. This point is

investigated, using DNS, in section 5.
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I A1 InlF Inlo I E,,1 I A2 In2co In2o In=cos I E_= I

12E15 I 0.9 I 1.1 134500 12E9 I 1 I O.5 I 1 112000 I

TABLE 1. Rate constants for scheme 2S-CM2. The activation energies are in cal/moles and the
preexponential constants in cgs units.

I CH,, I CO., I CO I 0= IH201 N= I

I 0.68 10.98 [0.76 [0.76 1 0.6 [0.75 I

TABLE 2. Schmidt numbers used with the 2S-CM2 scheme.

4. Two-step chemistry

The chemical scheme used for this study, called 2S-CM2, takes into account six species

(CH4, 02, C02, CO, H20 and N2) and two reactions:

3

CH4 + 502 -----+ CO + 2H20 (4.1)

1

CO + 502 4--+ C02 (4.2)

The first reaction (4.1) is irreversible, whereas the second one (4.2) is reversible and leads

to an equilibrium between CO and C02 in the burnt gases. The rates of reaction (4.1)

and (4.2) are given respectively by:

=

r(,o.co. ,r,,,coq2=A2[\"W_co,] \'_o=]-\_co=] exp (-_--_)(4.4)

where the parameters are given in table 1.

Transport by molecular diffusion also requires some attention: PREMIX uses polyno-
mial fits for diffusion coefficients Dk. This technique is accurate but expensive, and may

be replaced by a simpler approximation based on the observation that the individual
Schmidt numbers of species S_ = u/Dk are almost constant in these flames. Therefore,

in AVBP 5.1, the diffusion coefficient Dk of species k is obtained as Dk = u/S k where

u is the viscosity and Sck the fixed Schmidt number of species k. The Schmidt number

values used in the present simulations are given in table 2. In most cases, these values

correspond to the PREMIX values measured in the burnt gases. The Prandtl number

is set to 0.68. With this parameter set, the agreement between flame profiles obtained

using AVBP 5.1 or PREMIX with the same chemical scheme is excellent.

The 2S-CM2 scheme is directly implemented into the LES code. Its first advantage

compared to a single-step scheme is to provide more accurate adiabatic flame tempera-



2200

2OO0

1800

1600

1400

LES of gas-turbine combustion

02

01

I 018 1 IO I I06 12 14

Equivalence ratio

FIGURE 1. Maximum temperature Tm_x (K)
2S-CM2: -- ; GRI mech: o

337

04

o's ,'o ,'2 ,',
Equivalence ratio

FIGVRE 2. Flame speed SL (m/s)
2S-CM2: -- ; GRI mech: o

tures. Figure 1 compares the maximum flame temperatures obtained with 2S-CM2 and

the full GRI mech scheme. The laminar flame speeds are also well predicted on the lean

side, (figure 2) but deviate from the exact results for rich cases. This drawback is not

a problem for the Siemens burner investigated here: the axial burner injects pure air,

while the diagonal burner feeds premixed air with an equivalence ratio of 0.5 so that
combustion proceeds everywhere under lean conditions.

5. Efficiency function for reduced chemistry

The thickened-flame model is theoretically able to handle complex chemical schemes

but, as described in section 3, possible drawbacks may occur because of intermediate

species. Direct numerical simulations of laminar premixed flame / vortex interactions
were conducted to study the thickened-flame approach combined with the 2S-CM2 chem-

ical scheme (section 4) and to check whether the existing efficiency functions proposed

by Angelberger et al. (1998), Colin et al. (2000) or Charlette et al. (2002) could be used

without modification. This point is investigated using a pair of counter-rotating vortices
interacting with a perfectly premixed flame thickened with a factor F from F = 1 to

F = 20. The vortex size r is kept constant (r/5_ = 26.3, where 5_ is the thermal thick-
ness of the actual laminar flame) but the vortex strength is changed (see Angelberger et

al. (1998) or Colin et al. (2000) for details of the numerical configuration). A typical DNS

result is displayed in figure 3. The total reaction rates of the two reactions (4.1) and (4.2)

are plotted as a function of time during the interaction for various thickening factors F.

The counter-rotating vortices wrinkle the flame front and increase both the flame surface

and the total reaction rate. However, when the thickening factor F increases, the flame

surface and the total reaction rate are underpredicted (Meneveau _z Poinsot (1991)), in

agreement with Angelberger et al. (1998) and Colin et al. (2000). This effect corresponds

to a subgrid-scale wrinkling which must be parametrized through the efficiency function.

The main result is that the two chemical reaction rates (4.3) and (4.4) follow exactly

the same evolution, although the overall quantity of carbon monoxide CO increases with

increasing values of the thickening factor F. For the range of parameters investigated

in the present simulations, the premixed flame acts as a flamelet distorted by the flow,

even for low values of the length-scale ratio r/(FS°). No differences are found between

the two reactions. Moreover, the effective strain rates induced by the vortices on the

flame front, as derived from the present DNS, are in close agreement with the findings

of Angelberger et al. (1998) and Colin et al. (2000). Accordingly, the efficiency functions
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FIGURE 3. Typical flaxne / vortex interaction DNS results. The reduced total rates of reactions

4.1 (lines) and 4.2 (symbols) axe displayed as functions of time for various thickening factors
F. F = 1 (_ , o ); F = 10 (........ o ); F = 20 ( , _ ). Reaction rates are made
non-dimensional using the reaction rate of the planar flame whereas times axe reduced using the
flame time 6_/s_. u'/s_ = 11.4 where u' denotes the maximum vortex speed.

derived by Angelberger et aL (1998), Colin et al. (2000) and Charlette et aL (2002) may

be used without any modifications with the present 2S-CM2 chemical scheme.

6. The Siemens burner geometry

Another objective of this study was to investigate the limits of present computer capa-

bilities to perform LES of combustion in realistic geometries. An industrial gas turbine is

considered here. The CAD data was provided by Siemens PG and meshed at CERFACS

using CFD GEOM. The grid contains 306240 points and 1739695 cells. Figure 4 shows

the main features of the burner: a central axial swirler (colored in dark) is used to inject

and swirl air and, for certain regimes, non premixed fuel. In addition, six small tubes (not

visible on this figure) can be used to generate pilot flames but they were not fed during

the present computation. Most of the combustion air as well as fuel is injected by the

diagonal swirler (the fuel entering through holes located on both sides of the swirlvanes).

The external surface of the swirler is visualized in figure 4 by a wireframe surface.

7. Inlet conditions

As a first step, the non-reacting flow in the burner is computed and compared to LDV

velocity measurements at the University of Karlsruhe. A major issue in such calculations

is to specify boundary conditions. Since the axial burner flow is fully computed, the flow

in Section la is introduced along the x axis only, without swirl. The main problem is

then to specify inlet conditions for the diagonal swirler (Section lb in figure 5). The

inlet velocity profiles are adjusted to match the first measurement section in the burner

under non-reacting cases. Velocity measurements have been made at various sections as

shown in figure 5. The swirl velocity W and the velocity U22 normal to a plane parallel

to the diagonal swirler exit plane (at an angle of 22 degrees compared to the vertical
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axis) are measured in the test section located close to the burner nozzle (cuts la and

lb). Distances and velocities are respectively scaled by the burner radius R and the bulk
velocity Ub_,k defined by Ub_,k = V/_rR 2 where V is the total volume flow rate through
the burner.

Average profiles of axial and radial velocities at the exit of the axial burner are shown

in figure 6 and 7 (cut la in figure 5) and at the exit of the diagonal burner in figure 8

and 9 (cut lb in figure 5). Measurements along cut 2 start at location R0. In the figures,

symbols (o) denote experimental data while LES results are plotted as continuous lines.

The differences in axial velocity between LES and experimental results at the exit of
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FIGURE 11. Cold flow mean swirling velocities: experiment (o) and LES (._) data.

the axial swirler (figure 6) are thought to be due to experimental uncertainties, and are

being discussed with the Karlsruhe group.

8. Non-reacting flow results

Once the inlet conditions have been set, LDV measurements are compared to averaged

LES results at different downstream locations x in the combustor, as shown in figures 10

(axial velocity profiles) and 11 (swirling velocities). LES results are averaged over about

36 ms corresponding to twice the flow time through the entire combustion chamber at

the bulk velocity. Only five downstream locations are shown for clarity but 16 were

investigated.

The overall agreement between LES and experimental data is excellent. Similar lev-
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els of agreement are found for RMS values (not shown here). All results are shown for

the complete combustion chamber, not just for one half chamber, to show up any depar-

tures from symmetry. Since the chamber is square and the injection device axisymmetric,

average velocities are expected to be symmetrical with respect to the x-axis. Both ex-

perimental data and LES results are not symmetric, especially downstream. This finding
may indicate a lack of sampling of LES data, but may also be due to an intrinsic inability

of the flow to follow the symmetry of the geometry.

9. Reacting-flow results

Reacting cases are computed starting from a cold-flow solution. Fresh premixed gases
(equivalence ratio ¢ = 0.5) are injected through the diagonal swirler, while pure air is

injected through the axial swirler. Both flows, which come from the compressor in the

real gas turbine, enter the combustion chamber of the ITS burner after being preheated

electrically. As the actual ignition process is not described here, the chemical reaction is

started numerically by filling the combustion chamber with hot fully-burned gases. Note

however that the pressure increases by 25 % and the exit velocity Mach number goes up

to 0.4 in the outlet contraction during the transient.
Three-dimensional visualizations of the flow field are shown for five consecutive times in

figure 12. A two-dimensional cut in the vertical plane at the last time is also provided, to
show the fuel mass-fraction and reaction-rate fields, together with the recirculation zones.

The premixed stream injected by the diagonal swirler is mixed with the pure air fed by the
axial swirler and consumed by the flame front. The flame appears to be stabilized by the

hot gases, both from the sides of the combustion chamber and from the recirculation zone

downstream of the injector lips. A strong swirling motion is clearly apparent (rotating

clockwise as seen from downstream, as in the figure. Note that a misleading analysis may

be developed from two-dimensional visualizations only: the swirling motion is viewed as

a flapping of the fresh reactant jets inducing "pockets" of burned gases.

Mean temperature profiles obtained from LES are compared to experimental data in
figure 13. The agreement is very good: the downstream profiles, which are important for

the turbine design, are very well reproduced. The slight discrepancy between experimental

data and numerical results is due mainly to an underestimatden of the lateral flame

expansion. This point is now under investigations: the error could be attributable to the

boundary conditions.

10. Conclusions

A computation of a complete burner for a partially-premixed gas turbine combustor

was performed using LES, for both non-reacting and reacting cases. The flame is de-

scribed using a two-step chemical scheme, combined with the thickened-fiame (TF) model
which has been validated in this situation from DNS data. LES results are validated from

velocity and temperature measurements obtained at the University of Karlsruhe. Results
show that the inlet boundary conditions (especially the swirl level) are critical in deter-

mining the flow topology: the strength and size of the recirculation zone, and therefore

the flame position, appear to be very sensitive to the profiles imposed at the diagonal

swirler inlet. The overall agreement with experiment is very good, both for cold flow and

for reacting conditions as long as the correct inlet conditions are imposed.
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z" ..

FIGURE 12. Reacting case.3D visualizationsof the reacting flow fieldfor fiveconsecutive times
corresponding to a rotating period of the swirlingflow (gray surface:fuelmass fraction;lines:

temperature fieldin the verticalplane). A vertical2D cut is alsoshown for the lasttime (gray

scale:fuel mass fraction;bold line:reaction rate.Thin linesdelineate the recirculationzones

where the axial velocityisnegative).Only a part of the combustion chamber isshown (zoom in

the vicinityof the injectordevice).
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FIGURE 13. Reacting flow mean temperature: experiment (o) and LES (--) data.

Measurements are conducted only in one half of the combustion chamber.
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Non-reflecting boundary conditions for acoustic
transfer matrix estimation with LES

By Wolfgang Poli_e t AND Clli_ Wall

The estimation of (thermo-)acoustic transfer matrices from numerically-generated time
series of pressure and velocity fluctuations with correlation analysis appears to be an

efficient and flexible way of employing CFD for the study of combustion instabilities.

In the present investigation, the use of large-eddy simulation (LES) for this technique

is explored for the first time. For this purpose, a novel formulation for boundary condi-

tions, which is fully non-reflecting for plane acoustic waves, was derived, implemented

and successfully tested. It was observed that large-scale turbulent fluctuations, which are

explicitly resolved in LES, can generate spurious signal contributions inside the compu-

tational domain and additional acoustic waves at the outlet boundary of the domain. To

allow accurate transfer matrix estimation with LES, these signal components must be

suppressed or eliminated from the time-series data by suitable post-processing.

1. Introduction

Thermoacoustic instabilities are a cause for concern in combustion applications rang-

ing from small household burners to rocket engines. The "brute-force" application of

computational fluid mechanics (CFD) to the analysis of thermo-acoustic systems can be

forbiddingly expensive due to the high computational demands of a time- and space-

accurate simulation of a (low Mach number) compressible, turbulent, reacting flow. An

efficient and often adequate description of the (thermo-)acoustic properties of a com-
bustion system is provided by acoustic multi-port or "network" representations, see e.g.

Bohn & Deuker (1993); Poinsot & Veynante (2001); Polifke et al. (2001a). Within this

framework, both the response to an external or fluid-mechanic internal excitation as well

as stability with respect to self-excited oscillations can be analyzed.

In order to represent a combustion system with these tools, the so-called trans]er ma-

trices of all multi-ports of the system must be known. The transfer matrices provide a

mathematical description of the dynamical characteristics of a multi-port (within the

limits of a linear analysis). For simple components, the transfer matrix can be derived

from the (linearized) equations of conservation of mass and momentum and suitable ad-

ditional assumptions. In general, however, the determination of the transfer matrix from

first principles is not possible, and one has to resort to experiment (see e.g. Paschereit &

Polifke (1998)) or numerical simulation.

Bohn and co-workers have suggested (see e.g. Bohn & Deuker (1993); Deuker (1995);

Kriiger et al. (1998)) determining the acoustic properties of an element - e.g. a burner

or a flame - by numerically simulating and evaluating its response to a sudden distur-

bance. Specifically, the frequency response function F(w) of a flame is obtained as the

Laplace transform of the response (in the time domain) to a unit-step perturbation of

the mass flux approaching the flame. It is thereby possible to determine the frequency

Lehrstuhl fiir Thermodynamik, Technische Universit_it Miinchen, Germany
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response function for a range of frequencies from one single time-dependent CFD simu-

lation! Polifke et al. (1998, 2001b) have extended this idea, using modern tools of system

identification (Ljung (1999); Bellanger (1984)) to determine the complete transfer matrix

of an acoustic multi-port with time-lagged heat release and pressure loss ("n-_--_ model").

This advanced approach, known as correlation analysis, has since been applied by

Gentemann et al. (2003) to turbulent pipe flow through a sudden change in cross section

(an "area change") and successfully validated with experimental data. In that work, a

RANS turbulence model was used. In the present paper - using the same simple geometry

- the use of large eddy simulation for transfer matrix estimation with correlation analysis

(TME) is explored for the first time. Emphasis is placed on the optimal choice of boundary
conditions for successful transfer matrix estimation.

2. Correlation analysis basics

Consider the values of fluctuating variables up- and downstream of an acoustic element

as signals s and responses r. A time-dependent numerical simulation will produce a
time series si = s(iAt), i = 0,..., N and similarly ri. Tb_e coupling between signal and

response is approximated as

L

_i = _ hkSi-_ fori = L,...,N. (2.1)_2

k=0

In the terminology of digital signal processing or system identification, see e.g. Rabiner

& Gold (1975); Bellanger (1984), (2.1) describes a finite impulse response (FIR) filter

with impulse response h_.

The so-called Wiener-Hopf equation relates the autocorrelation matrix F of the signal

_s and the impulse-response vector h to the cross-correlation c between s_and r_ (Ljung

(1999); Bellanger (1984)):
rh = _c., (2.2)

For time-series data generated by time-dependent CFD, the auto- and cross-correlations
are approximated as follows:

N
1

ci _ N- L + 1 _ st-_rt for i = 0,...,L, (2.3)
l=L

N
1

_ st-isl-j fori,j = 0,. ,L. (2.4)rij ._ N-L+ 1 ""
l=L

The impulse response h is determined from time-series data by inversion of the Wiener-

Hopf equation, (2.2). A frequency response F(w) is then computed as the z-transform

H(z) of h with argument z = exp{iwAt}:

L

= H (e = Z (2.5)
k=0

3. Correlation analysis and acoustic multi-ports

The discussion in the previous section was limited to a scalar frequency response F(w).

However, an m x m transfer matrix describing an m-port filter can be estimated with

correlation analysis if a signal vector _s, defined as a suitable combination of the m
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FIGURE I.Incident acoustic waves as signals s O), s (2) and reflected / transmitted waves as
responses r (1), r (2) of an acoustic two-port.

signal variables s(_),n = 1,...,m, and m impulse response functions h (n) - one for

each response port of the element - are introduced (Polifke et al. (2001b)). For acoustic

systems, m = 2 typically and the variables s, r are the fluctuations of pressure 75 and

velocity ti or the in- and outgoing Riemann invariants f and g at the up- and downstream

side of the acoustic multi-port, respectively (see figure 1 and section 4.2).

Estimation of a complete transfer matrix or scattering matrix from a single computa-

tion provides a significant advantage over alternative approaches (Deuker (1995), Poinsot

& Veynante (2001)). Also note that the signal shape is quite arbitrary; superposed sine

waves and in particular bandwidth-limited "white noise" have produced good results,

while step functions - which are not easily represented accurately in a time-dependent

fluid dynamics computation - can be avoided. The amount of data required to produce

dependable estimates of auto- and crosscorrelation is not excessive. It is not required

that initial transients die out completely, and simulation times of the order of just one

period of the lowest frequencies involved have been found to be sufficient.

It is, however, required that the signals s (") incident on the acoustic element be 1)

broad-band, with fairly uniform amplitude throughout the frequency range of interest,

to probe the system dynamics with adequate signal-to-noise ratio and 2) not degenerate,
i.e. input signals s (n) at different ports must not be strongly correlated with each other.
Otherwise, the Wiener-Hopf equation (2.2) is ill-conditioned and its inversion is very

sensitive to numerical or statistical errors.

4. Boundary conditions

When estimating the acoustic transfer matrix with time-dpeendent CFD, the acoustic

element of interest is usually only part of the computational domain; see figure 2. It

follows from the discussion of required signal properties in the preceding section that

particular attention must be paid to the definition of the boundary conditions. Wave

processes at the boundary are shown in figure 2. Outgoing, reflected and external waves

are expressed in terms of the Riemann invariants f = f (x-(u+c)t) and g = g(x-(u-c)t),

traveling in the positive and negative x-direction, respectively.
The Riemann invaxiants are related to fluctuations (denoted by "-") of acoustic pres-

sure and velocity as follows:

P--=f+g, 5=f-g, (4.1)
pc

) ' g=5
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FIGURE 2. Boundaries of computational domain with outgoing waves g_, fd and forcing fx, g=
at inlet and outlet, respectively. Reflected and transmitted wave components are also shown.
The dashed line indicates the acoustic multi-port, i.e. the area change.

For harmonic waves with angular frequency _,

f(x, t) = ]e i(wt-k=+=), g(x, t) = _e i(wt-k=- x). (4.3)

Here k=± =- ±w/c(1 -t- M) axe the wave numbers of the invaxiants, and the ..... indicates

a complex-valued wave amplitude.

As indicated in figure 2, the boundary conditions must first provide an excitation signal
of suitable amplitude and frequency content. However, in general the signals s (1) and

s (2) are related neither directly nor uniquely to external waves f= and gz imposed at the

boundary. If there is reflection of outgoing waves at the boundary, then the signal s (1), say,

will be influenced strongly by fre, .... d, and similarly for the outlet. A closed feedback loop

of acoustic waves traveling in the up- and downstream directions throughout the system
is established, resulting in significant correlation between signals s (z) and s (2). Resonant

amplification near acoustic eigenmodes of the acoustic system will lead to large signal

amplitudes at the eigenfrequencies, which will dominate the autocorrelation matrix in
an undesirable manner. These effects will make robust estimation of the transfer matrix

difficult or impossible. It follows that the boundary conditions must be formulated in

such a way that outgoing acoustic waves are not reflected back into the computational
domain.

Finally, the boundary conditions must maintain certain values for the target velocity

UT - which in the case of large-eddy simulation includes a time-dependent turbulent

component - at the inlet, as well as the far-field pressure p¢¢ at the outlet.

4.1. Characteristics-based boundary conditions

A strategy for defining boundary conditions in compressible viscous flow is outlined in

Thompson (1987) and Poinsot & Lele (1992). The boundary conditions are formulated
in terms of characteristic wave relations. In the present context, acoustic waves with

incidence normal to a boundary are of particular interest. If the boundary lies in the

(y, z)-plane, say, the corresponding boundary conditions are formulated with the help of
two quantities Z:5 and/_1 defined as follows:

(Op Ou) (4.4)£_ =- 9_i 7z + pc_z '

where the "+" sign corresponds to the index "5", and the ,ki - u 4- c are propagation
speed of the waves. It has been shown by Poinsot & Lele (1992), that the Z:i's can be

interpreted as the time variations of wave amplitudes at the boundary.
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4.2. LODI relations and Riemann invariants

Poinsot & Lele (1992) introduced local one-dimensional inviscid (LODI) relations to

obtain approximate values for the wave-amplitude variations in terms of the primitive

flow variables. For pressure and the velocity component normal to the boundary, the
expressions

Op 1 au 1

cg--t+ 2 (£5 + £1) = 0, 0--/+ _ (£5 - £1) = 0 (4.5)

are given. In the present context, plane harmonic waves are of particular interest, so -

using the definitions (4.4) and (4.2) - we express the wave-amplitude variations £ and

the LODI relations in terms of the Riemann invariants. Subtracting the second part of
(4.5) from the first, one obtains

c9(_c-u)+l£1=0Ot pc or £1=-i2wpcg, (4.6)

with (4.2) and Og/Ot = iwg for harmonic waves. Similarly,

£5 = -i 2wpc f . (4.7)

4.3. (Partially) reflecting boundary conditions

In this section, various types of boundary conditions, which can be implemented with the

approach proposed in Poinsot & Lele (1992), are presented and their acoustic properties
are briefly discussed.

4.3.1. Subsonic reflecting outlet - "open end"

A subsonic reflecting outlet should correspond to an "open-end" boundary condition in

acoustics, where _ = f+g = O. Indeed we infer from (4.6) and (4.7) that £:1 +£5 = 0 at an

"open end", which is equivalent to equation (38) in Poinsot & Lele (1992). Note that an

open-end boundary is strongly reflecting, with a reflection factor r = -1. (The reflection

factor r is defined as the ratio of the reflected to the outgoing Riemann invariant, e.g.
r -= g/f at an outlet, provided that there is no external incoming acoustic signal.)

4.3.2. Subsonic partially-reflecting outlet

If the temporal evolution of velocity and pressure at an outlet (x = L) would be

determined solely from an outgoing wave £5 via the appropriate LODI relation, then

- neglecting viscous and multidimensional effects - the outgoing wave would leave the
domain without reflection.

However, the static pressure at the boundary must be "informed" somehow about

the plenum or far-field pressure poo. Poinsot & Lele (1992) suggest prescribing, for this

purpose, an ingoing wave at a flow outlet as

_7C

£1 = -_ (p - p_), (4.8)

where a is a coupling parameter which is to be chosen appropriately. The speed of sound

c and length L are introduced for dimensional consistency and represent characteristic

scales of the problem. Then, if there is no outgoing wave £s, we see with (4.5) that an

excess pressure Ap = p - p_ will be reduced exponentially to zero according to

OAp ac (4.9)
Ot = - 2---LAP'
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FIGURE 3. Absolute value of reflection coefficient [r[ vs. non-dimensional frequency wv for
partially reflecting in- or outflow boundary condition according to (4.8) and (4.13).

with a decay time
2L

-- (4.10)
6rC

inversely proportional to the coupling coefficient a.

Unfortunately, with such a prescription the boundary is no longer truly non-reflecting,

because the pressure p which appears in (4.8) depends both on the in- as well as the

outgoing waves. The reflection coefficient r = g/] for plane waves at an outflow boundary,

which is set up according to (4.8), can be estimated as follows: Assuming that pressure

deviations from the prescribed value p_ at the outlet are dominated by acoustic waves

f, g with angular frequency w, (4.6) yields

g  clL(p-p o) ioc/+g  i(1 + r). (4.11)
r = 7 = -2i pcw f "_ 2wL ] =

Solving for r, a complex-valued reflection coefficient is obtained:

-1 { i 0 for wr -+ 0¢ (high-frequency limit), (4.12)r = 1 + i_----'--_= -1 for w_- -+ 0 (low-frequency limit).

For waves with relatively high frequency - with a period of oscillation much smaller
than the decay constant _- - the restoration of the pressure at the outlet according to

(4.8) is too slow to respond to the acoustic perturbations, such that the boundary is

indeed effectively non-reflecting. Conversely, a low-frequency signal is reflected as if it

had encountered an "open end" _ = 0), because the boundary condition (4.8) succeeds

in keeping the pressure at the outlet close to the target value p_ due to the comparatively

short decay time constant _-.

4.3.3. Subsonic partiaUy-reflecting inlet

In order to have correct turbulence statistics at an inlet, the flow velocity u has to be

imposed, which leads to difficulties in the definition of a fully-non-reflecting boundary

condition very similar to those described in the previous subsection. From the LODI

relations (4.5), one infers that with

crc

£s = --_pc(u - UT) (4.13)
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a deviation of the inflow velocity from the target value uT should again decay exponen-

tially with a time constant 2L/ac. For the reflection coefficient one obtains

f 1 [ -i 0 for _- _ oo (high-frequency limit),
r = - - ], (4.14)g 1 + iw_" 1 for _7- --+ 0 (low-frequency limit).

i.e. in the low-frequency limit the boundary condition (4.13) acts like a "closed end"
without (acoustic) fluctuations of velocity.

In figure 3, the absolute value of the reflection coefficient Irl is plotted as a function
of the non-dimensional frequency WT. The absolute value It[ of the reflection coefficient

is the same for (4.12) and (4.14). If the magnitude of the reflection coefficient It] is not
to exceed a certain value for a given frequency w, then the corresponding minimum time

constant 7- can be deduced from this plot. Unfortunately, large values of v correspond

to low values of the coupling coefficient a, which may result in divergence of the flow

solver or drift of the values of velocity and pressure from the target values UT and P=o,

respectively.

To summarize, although the boundary conditions (4.8) and (4.13) are often referred

to as "non-reflecting" boundary conditions in the literature, they will lead to significant

reflection of outgoing waves for sufficiently low frequencies. In thermo-acoustic problems

unstable modes often correspond to low-order eigenmodes (" 1/4-wave"-mode, etc.), and

the corresponding low frequencies are of particular interest.

Note that Selle (2002) has independently obtained similar results concerning the freq-

uency-dependence of the reflection coefficient by integrating a differential equation for

pressure perturbations resulting from Eqns. (4.8) and (4.13).

4.3.4. Boundaries with incoming waves

With the help of (4.6) and (4.7), wave amplitudes £1 and £s corresponding to external

waves fx and gx can be specified as additional terms in the boundary conditions,

L:i .... + £i, (4.15)

where "..." stands for the coupling terms discussed above, or terms which correspond to
inflow turbulence.

For example, if a random number generator and a Butterworth filter are used to

generate a time series f_ (t) with uniform power spectral density over a certain range of
frequencies, then the time derivative of this series provides the related wave amplitude

variation £s,

£5 = -2pc_, (4.16)

see Eqn. (4.6). If the incoming signal is a superposition of sine-waves, then the corre-

sponding wave amplitude variation equals

£5 = -2pc Z Anwn cos(w,t + Cn). (4.17)

4.4. Plane wave non-reflecting boundary conditions

It is possible to construct boundary conditions which - at least for plane waves with
normal incidence - should be nearly non-reflecting even at low frequencies w_- -+ 0. The

idea is to identify plane waves impinging on the boundary either from the outside (e.g.

an excitation signal f_ or g_) or from the inside, and then eliminate the plane wave

contribution to the velocity coupling term (4.13) at an inflow boundary, and similarly

for the pressure coupling (4.8) at an outflow. The use of an absorbing "sponge layer"
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is often not possible in thermo-acoustic problems due to the very low frequencies and

correspondingly large wave lengths typically involved. In the case of an inflow, these

considerations suggest:
(TO

E5 = --_pc (u - (f_ - g) - ur) + _5. (4.18)

Similarly, for an outflow,

crc

£I = --_ (P - pc (f + g=) - p_) + _I. (4.19)

4.4.1. Area-averaged reflection coefficient for plane waves

In order to determine the reflection coefficient resulting from (4.18) or (4.19) for out-

going plane waves, we recall that plane waves which are incident normally to a boundary

exhibit - with the exception of the acoustic boundary layer, which is usually very thin -

no spatial variation over the boundary. Therefore, as far as plane waves are concerned,

the reflection coefficient for an inflow boundary, say, may be written as follows:

r=(_>_ (-_(/:5) (1 (£:s><£1>(/:_/:_))_ (/:5)(/:1)-- 2_iac ( (U -- UT)g (f -- g) ) . (4.20)

Here an (instantaneous) area average over the inflow boundary and local deviations from

this average are denoted as (...) and "...'", respectively. For the application that we have

in mind, it is reasonable to assume that the incoming and outgoing/:s are not strongly

correlated, (f_._£_) _ O, while (]> = f and similarly for the outgoing Riemann invariant
g. The boundary condition (4.18) has been employed, and of course the external forcing

£5 is not considered in the determination of the reflection coefficient.

It follows that the reflection coefficient r indeed vanishes for plane harmonic waves of

arbitrary frequency if one can assume that the area-averaged deviations of velocity from

the target value axe primarily due to plane acoustic waves at the boundary, because in

this case <u - UT) = f -- g.

Similar arguments suggest that an outflow boundary condition satisfying (4.19) should

also be non-reflecting even at very low frequencies. Again, it must be assumed that area-

averaged deviations of pressure from the target value poo are primarily due to the plane

acoustic waves - whether this assumption actually holds true in LES computations will
be discussed below.

4.4.2. Estimation of Riemann invariants at the boundary

The Riemann invariants in (4.18) and (4.19) must be determined from the boundary
conditions or the primitive variables at grid points at or near the boundary. By de-

sign, the area-averaged amplitude variation of the incoming waves fx, gz should be well

approximated by the external excitation signal,

(Ls> (4.21)

and itishas been shown insection4.3.4how the externalRiemann invariantsare related

to the wave amplitude variations £1 and £5.

The outgoing waves must be constructed from interior grid points. At an inlet, say, we

assume that area-averaged deviations 6u and 6p from the target values UT and Po (the

steady state average pressure at the inlet) are due to harmonic waves only, i.e.

)g(t) = _ - 6u , (4.22)
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FIGURE 4. Power spectral distribution of pressure at the area change in LES simulation. The
dotted lines indicate acoustic eigenfrequencies with "closed end" and "open end" boundary
conditions up- and downstream, respectively.

where 5u - (u - UT), _p -- _p -- P0), and similarly for an outflow boundary.

5. Simulation results

An LES of the configuration shown in figure 2, with an area ratio of 4:1 and a total

length of 0.8 m, has been performed using the method of Wall et al. (2002). This method
is an extension of the low Mach number method of Pierce (2001) to compressible flow, and

is efficient at low Mach number without introducing any artificial damping of acoustic
waves. Turbulent inflow data for UT as well as the v and w components of velocity at

the inlet plane are obtained from a separate, incompressible, channel flow calculation

using the method of Pierce (2001). Both quasi-two- and three-dimensional simulations

have been performed, using a mean velocity of 7 m/s at the inlet, and a time step of
1.5 × 10 -s s. At each time step the code generates averaged values of both pressure
and streamwise velocity at planes 0.5, 0.10, 0.20, 0.30, and 0.38 m from the plane of the

contraction in both the up- and downstream directions.

A simulation with the partially-reflecting boundary conditions according to (4.8) and

(4.13) and broadband excitation both up- and downstream produced the power spectral
distribution of pressure at the area change shown in figure 4. Strong resonance peaks are

observed, suggesting that the boundaries are strongly reflecting (non-reflecting bound-

aries would yield a uniform PSD). Indeed, the location of the strongest peaks agrees

reasonably well with the acoustic eigenfrequencies (indicated by the dotted lines in the

figure) predicted by a simple acoustic network-model of this configuration with "closed
end" and "open end" boundary conditions up- and downstream, respectively.

These observations prompted the investigation of the acoustic properties of partially

reflecting boundary conditions described in Sections 4.3.2, 4.3.3 and the new formulation

for boundary conditions described in Section 4.4. Reflection factors actually observed

with the new and old formulations for the inflow boundary are shown in figure 5. In this

run, the maximum possible time constant is T = 8.4 x 10 -5 s. With larger values of v, i.e. a

smaller coupling constants a for the inflow velocity, the solver diverges. According to Eqn.

(4.13) this value should yield, even for the highest frequency f = 1000 Hz considered, a

reflection factor close to unity. This is confirmed by LES results obtained with the old

formulation for the inflow boundary (4.14), while the new formulation results in a very
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FIGURE 5. Inlet reflection factors observed in LES computations with boundary conditions
(4.13) (o) and (4.18) (+), respectively and according to Eqn. (4.14) (_).

small reflection factor even at the lowest frequencies f = 100 Hz considered in these

runs; see figure 5. Note that the coherence - expressed as a normalized, oversampled
cross-power spectral density - between signals s (1) and s (2) is significantly influenced by

the boundary conditions: the coherence is very close to unity when the reflection factor

is large, while it fluctuates between 0 and 1 with a mean value of approximately 0.4 with

the new boundary conditions (not shown).

At the outflow, near-zero reflection factors cannot be observed, no matter which bound-

ary condition is used. When using the standard formulation (4.8) at the outlet, it is possi-

ble to work with a rather low value of the coupling coefficient a, corresponding to a time

constant _- = 0.02 s, without divergence or "drift" of the outlet pressure. Thus one should

- according to (4.12) or figure 3 - expect a near-zero reflection coefficient [r I < 0.01 for

f = 1000, while for frequencies around 100 Hz tr] _ 0.08. Instead, reflection coefficients

larger than unity are observed, i.e. the upstream-traveling Riemann invariant g is larger

than its companion f traveling in the downstream direction'- even for frequency bands

where there is no forcing signal gx imposed at the outlet. Similar results are obtained

with the new formulation (4.19) for the outflow boundary.

The explanation proposed for these findings is that turbulent fluctuations originating

from the contraction 1) generate spurious signals ("pseudo-sound") at the monitor planes

downstream of the contraction 2) give rise to upstream-travelling acoustic waves g as they
impinge on the downstream boundary. This hypothesis is supported by power spectrum

distributions of the signals s(z) (the downstream-traveling wave f on the upstream side of

the contraction) and s (_) (the upstream wave g downstream of the contraction) observed

in an LES run, where both the upstream and downstream forcing functions, f_ and g_,

comprise a sum over 20 sinusoids of equal amplitude in the frequency range 50 - 1000
Hz. The PSD of s (1) shows as expected 20 equally spaced peaks of approximately equal

amplitude, while the spectrum of s (2) displays amplitudes which vary significantly and

are overall much larger than expected, see figure 6. Also, the location of the peaks does

not correspond well to the spectrum of gz.

These spurious contributions to the signals recorded at the monitor planes make it im-

possible to reconstruct the transfer matrix of the area change with acceptable accuracy

from the LES data (not shown). Conversely, in unsteady RANS calculations, turbulent

fluctuations are not explicitly resolved, and the agreement between computed and mea-

sured transfer matrices is very good and agrees well with theoretical expectations as well

as experimental results, see Gentemann et al. (2003)
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6. Conclusion

The estimationof(thermo-)acoustictransfermatricesfrom numerically-generatedtime

seriesof pressure and velocityfluctuationsthrough correlationanalysisis arguably a

flexibleand efficientway of employing CFD for the study of combustion instabilities.

Firstinvestigationsbased on unsteady laminarflowand Reynolds-averaged Navier-Stokes

formulationsforturbulentflowhave shown promising results.In thisstudy,the utilization

oflargeeddy simulationfor thistechniqueisexplored for the firsttime.

To thispurpose,a novelformulationforboundary conditionswas derived,implemented

and successfullytested:itallowsplaneacousticwaves to leavethe computational domain

without reflection- even at very low frequencies,where the standard formulation for

partially reflecting boundaries is strongly reflecting.

However, it was not possible to reconstruct the transfer matrix of the simple test

configuration used in this study with acceptable accuracy from LES data. Turbulent

fluctuations are held responsible, as they can generate spurious signal contributions at

the monitor planes inside the computational domain, and also acoustic waves as they

impinge on the outlet boundary of the domain.
Fortunately, it should be possible to eliminate the spurious contributions to the signals

with the "Multi-Microphone Method" developed for the experimental determination of

transfer matrices; see Paschereit & Polifke (1998). Acoustic waves generated at the outlet

by turbulent fluctuations could actually be tolerated in transfer matrix estimation, unless

they completely overwhelm in amplitude the upstream forcing signal. If this is the case, a

thin "sponge layer" near the outlet could be used to dampen the amplitude of turbulent

fluctuations impinging on the boundary (Lele (2002)). These modifications to the tranfer

matrix estimation scheme and the boundary conditions shall be implemented in future
work.
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Large-eddy simulation of pool fires with detailed

chemistry using an unsteady flamelet model

By R. Rawat t, H. Pitsch and J. F. Ripoll

An unsteady flamelet approach is implemented as a subgrid combustion model for large-

eddy simulation (LES) of buoyancy-dominated large-scale pool fires. In fires, soot plays a

major role in the overall heat transfer, and therefore in the dynamics of fires. In simula-

tions of soot formation in laminar flames, it has been shown that an accurate description

is crucial to achieving reasonable predictions. Chemical reaction mechanisms accounting
for the formation and oxidation of soot and of polycyclic aromatic hydrocarbons are typ-

ically described by hundreds of species and therefore are computationally expensive to

incorporate if there is no simplification of the LES computation. Unsteady flamelet mod-
els permit consideration of detailed chemical kinetic mechanisms and a state-of-the-art

description of soot formation and oxidation processes. The Lagrangian Flamelet model

is incorporated in an existing LES fire code and compared with data from an experi-

ment on a methane fire in a pool of one meter diameter. Results for soot predictions
compare well with qualitative observations from the experiment. To discuss the influence

of the description of radiative transport, a three-dimensional post-processing radiation

simulation, using an averaged form of the M1 radiation model with mean absorption
coefficients, is also performed. For this latter simulation, distributions of temperature

and of species volume fraction have been taken from the LES results.

1. Introduction

Accidental fires in the United States result in billions of dollars of property damage, and
over 2000 deaths, per year. In the majority of accidental fires, the thermo-physical charac-

teristics of the fuel are not sufficiently known to asses the fuel's fire safety properties, such

as heat-release rate or effectiveness of fire-suppression agents. Also, experimental studies

of large fires are hindered by monetary expense, sensitivity to environmental conditions,

and harshness to diagnostic equipment. Numerical simulations provide a promising tool

to complement experimental studies to further our understanding of fire safety and fire

physics. The wide range of length and time scales present in large fires prohibits the use
of three-dimensional direct numerical simulations. Also, accidental fires often involve the

highly unsteady processes of fluid-structure interaction, flame spread across fuels, and

wind effects. These processes will be better captured by large eddy simulations (LES) as

opposed to Reynolds averaging approaches. Furthermore, in large pool fires, soot plays a

major role in the overall heat transfer through radiation and therefore, in the dynamics
of the fire. The solution of a full set of species transport equations, required by a detailed

kinetic mechanism describing soot formation, is computationally unfeasible. An unsteady
flamelet model is a viable approach to model chemistry/transport interactions allowing

for the use of complex chemistry. This model has been developed by Pitsch et al. (1998)

and has been applied to a series of momentum-driven reacting jets with good predic-

tions of temperature and species mass fractions, including pollutants such as NO_ and

t University of Utah
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soot. More recently, the model has been formulated for LES by Pitsch & Steiner (2000).

In the present work, this model is incorporated into the LES fire code by Rawat et al.
(2001). The model is applied in an LES of the experiment on a gaseous methane fire in

a pool of one meter diameter by Tieszen et al. (2002), and compared with qualitative

experimental observations and quantitative velocity data.

2. Numerical Formulation

The LES approach appliedhere in the numerical modeling of a pool fireisbased on

the set of spatiallydensity-weightedfiltered,time-dependent conservationequations for

mass, momentum, mixture fraction,and enthalpy ina Cartesiancoordinate system,given

as (Moin et al. (1991))

0Z
o-/-+ v. (,_) = o (2.1)

0t
__ + _7. (pfifi) = -V/5 + V. _ - V. (p(_-d - tiff)) + (p - pref)g (2.2)

Here, p is the density, t is the time, u is the velocity vector, iv is the pressure, c is the
viscous stress tensor, Z is the mixture fraction, Dz is the molecular diffusion coefficient of

the mixture fraction, h is the enthalpy, £ is the thermal diffusion coefficient, and V. _ad

is the net radiative heat flux. The hydrostatic pressure contribution from the pressure

gradient is subtracted and combined with the buoyancy term to obtain (p - Pref)g. Pool

fires can be described as low-speed flows where acoustic waves do not play a signifi-

cant role in describing the dynamics. Therefore, the low-Mach-number variable-density

formulation, as described by Najm et al. (1998), is used for the present calculations.

These filtered equations axe discretized on a 3-D, structured, Cartesian staggered grid

using a second-order differencing scheme. An explicit, Runge-Kutta second-order time

integration scheme is used for advancing the variables in time. The pressure equation for

imposing mass conservation is obtained using the projection described by Najm et al.

(1998). In their approach, the intermediate velocity is computed from the pressure-free

momentum equation and then projected to satisfy the divergence-free constraint. The

Poisson pressure equation obtained from this step is solved using Krylov methods. The

intermediate velocity is then corrected by projecting it onto the calculated pressure field.

One of the important characteristics of the present fire scenario is that it occurs in

an open domain. Pressure-based boundary conditions for fires, where crosswind is not

important, are employed. At the inlet boundary, the boundary condition is a specified
mass flux with a top hat velocity profile. At the lateral boundary, a traction-free boundary

condition with a fixed specified pressure is used, allowing for air entrainment (Boersma

et al. (1998)). At the outlet boundary a convective boundary condition as described by

Akselvoll & Moin (1996) is specified.

The unresolved subgrid-scale Reynolds stress and the subgrid scalar fluxes are mod-

eled using eddy-viscosity and eddy-diffusivity approaches. Thus the subgrid fluxes in the
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momentum and mixture fraction transport equations are given by

and

with

359

(2.5)

(2.6)

1g = +

where ut is the subgrid kinematic eddy viscosity and Dt is the subgrid eddy diffusivity.
The eddy viscosity _t is given by the Smagorinsky model as

"t = 6_2 I S I, (2.8)

where C is the Smagorinsky coefficient and A is the filter width. The subgrid diffusivity
Dt is determined from

Dt = ut/Sct , (2.9)

where Set is the turbulent Schmidt number, assumed to be a constant in the current calcu-

lation. Similarly, the turbulent diffusivity for the energy equation is computed assuming

a constant turbulent Prandtl number. For the present calculations, the Smagorinsky co-

efficient is computed from the dynamic procedure and a value of 0.4 is used for both

the turbulent Prandtl and Schmidt numbers as suggested by Pitsch & Steiner (2000).

An assumed _-function PDF approach for the mixture fraction is used to compute the

filtered density, temperature, and species mass fractions: this has been shown to be very

accurate provided a good estimate of the subgrid mixture fraction variance (Cook &

Riley (1994) and Wall et al. (2000)). The mixture fraction variance is modeled using the

scale-similarity assumption.

3. Unsteady-flamelet model

An unsteady-flamelet approach is used to implement the complex chemistry mechanism

described above. Formulation of the model follows the work of Pitsch & Steiner (2000)
who applied this model in an LES of a momentum-dominated cofiowing jet flame. This

model has also been applied in RANS simulations of a sooting jet diffusion flame (Pitsch

et al. (2000)). In these simulations it has been demonstrated that for predictions of
NOx and soot formation, the description of the slow underlying chemical and physical

processes is important and therefore an unsteady flamelet model has to be used.

In the unsteady-flamelet approach, the state space variables are obtained by solving the

one-dimensional unsteady laminar flamelet equations. As in steady-state flamelet equa-

tions parameters accounting for the influence of the turbulent flow field on the unsteady

flame structure are required. In the current implementation, this coupling is based on
the assumption that flamelets are introduced at the base of the pool fire inlet, and are

convected downstream with the axial velocity at the stoichiometric mixture fraction. The

flamelet time therefore corresponds to a Lagrangian-like lifetime of a portion of the flame

within the flow field. While moving downstream, the flamelets experience different local

scalar dissipation and radiative heat losses. Based on these assumptions, the fiamelet

time appearing in the unsteady term of the fiameIet equations can be correlated to the

distance from the nozzle. The scalar dissipation rate describing the effect of the turbu-

lent flow field on the laminar flamelets is also required in the coupling of the flamelet
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equations with the LES flow solver. All parameters are obtained by radially averaging
the filtered quantities obtained from the flow solver, conditional on the mixture fraction.

The filtered scalar-dissipation rate is modeled using the assumption that on the subgrid

scale, the scalar variance production and dissipation rates are in equilibrium, as proposed

by Pierce & Moin (1998). The radiative heat loss is obtained by using the Rosseland

model. Since this model becomes singular if the soot volume fraction tends to zero, an
optically-thin gas model is used for fv < 5 • 10 -7. This assumption, however, is not

expected to be very accurate for pool fires, where radiation is dominated by soot. The

sensitivity of the results to this assumption will be discussed in the following section.

Current chemical-kinetic reaction mechanisms describing the formation and oxidation

of polycyclic aromatic hydrocarbons (PAH) and soot are too large to be included directly

in a fire simulation. Traditionally, soot chemistry has been incorporated into combustion

simulations via an assumption of equilibrium gas-phase chemistry coupled with empirical

correlations for soot volume fraction (Tien & Lee (1982)). In the past decade, researchers

have devised various methods for including more detailed soot chemistry in combustion

simulations. Falrweather et al. (1992) performed simulations of soot formation in turbu-
lent jet flames by coupling flamelet libraries to a global reaction scheme for soot formation

following the model of Leung et al. (1991) including soot nucleation, surface growth, par-
ticle coagulation, and oxidation steps. Belardini et al. (1996) modeled diesel engine

combustion with a simplified six-step kinetic scheme which included both combustion

and soot formation models. Brown & Fletcher (1996) described soot formation in 3-D

coal combustion by solving gas phase transport equations for soot mass fraction and tar
mass fraction. The rate of soot formation is based on the local tar mass fraction while

soot and tar destruction are based on global one-step Arrhenius oxidation rates.

The chemistry model used in the present study to capture detailed soot kinetics is

divided into three parts: a) The gas phase chemistry including 400 elementary reactions

among 90 chemical species describing fuel oxidation, the formation of benzene, and the

further growth to small PAHs consisting of up to four aromatic rings, b) a model for

the growth of PAHs to possible infinite size, c) and a model describing the formation

of particles from large PAHs, the further growth by heterogeneous surface reactions

following an extended HACA mechanism, the oxidation of soot particles by 02 and OH

surface reactions, and particle-particle and particle-PAH coagulation processes. Flamelet

equations are solved for the first two moments of the soot particle-size distribution,

allowing for thermophoresis and differential diffusion effects. These models essentially

follow the work of Frenklach & Harris (1987), Manss et al. (1994) and Mauss (1998).

4. Radiation model

Because of the complexity of the simultaneous coupling of the turbulent combustion

model, the soot model, and the radiation model, the large-eddy simulation results for

the pool fire described in the next section have been obtained using a simplified radia-

tion model. However, to assess the applicability of simplified models and to investigate

radiative processes occurring in a turbulent fire, we have performed post-processing simu-

lations using an instantaneous three-dimensional temperature distribution from the LES

results, with a more sophisticated model for the radiative heat transfer, including emis-

sion and absorption by soot, gaseous water and carbon dioxide.

The macroscopic M1 radiation model developed by Levermore (1984), Fort (1997),

Dubroca & Feugeas (1999) and Brunner & Holloway (2001) is chosen here to describe
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radiative heat transfer. The model is t_yperbolic and the speed of propagation of distur-

bances is unlimited, which is different from the commonly-used diffusion models. The

model also dissipates entropy locally. The M1 model with mean absorption coefficients

has been derived in Ripoll et al. (2001) to account for the frequency dependence of the

opacity at a microscopic level. The mean absorption coefficients take the anisotropic form

of the photon absorption into account, and lead to a better description of the photon

flow away from radiative equilibrium. An averaged form of this model has been derived

by Ripoll (2002) and Ripoll & Pitsch (2002). In this formulation, closure is achieved
by assuming the anisotropy factor f and the radiative temperature TR to be uncorre-

lated. Here, all radiative correlations, except for the contribution from soot emission, are
neglected.

The M1 radiation model describes the evolution of the radiative energy En and the

radiative flux vector FR of a non-scattering gray medium at temperature T.

a_-_R+ v ._S = cCs YsaT_ - cCs r_ C_ TR ER + c-d_ aT - c-C_ _R,(4.1)

Otis + c: V (_R _) = -_ C_Y_ GF Tn r_ - c C; _R, (4.2)

The Eddington tensor DR is defined by

1-x(f) Id+3X(f)-I f®f 3+4[[f[]2
DR(f) = DR(f) -- 2 2 [1_ [1 , with x(f) =

5+2V4 / -311f[]2

(4.3)

where Id is the identity matrix, f = FR/(cER) is the anisotropy factor, [[. I[ denotes

an Euclidian norm, and )/ is the Eddington factor. The radiative temperature, which

represents an absorption temperature, is directly deduced from the radiative energy by

"T R = E1R/ 4 = "E1R/ 4 "

The opacity, coming from the presence of the soot, is described through Cs = 360_C1

with C1 = 8.33 x 10 .9 (Lee & Tien (1981)). The opacity from gas radiation is given

as U_ = Cg(T, YH, o,Yco,) = CH20(T)YH20 -- - " " --_+ Cco=(T)Yco2 for emission and Cg =

Cg (TR, YH20, YCO2) for absorption. The functions CH2o and CH2O are given elsewheret.

The anisotropy dependence of the mean absorption coefficients introduces the functions

GE and GF in the absorption terms. These are given by

GE(f) = GE(f) = 1 + 311?ll_, (4.4)

GF(f) = GF(-f)= 5(1 + l[[f[]2). (4.5)

The positive terms on the right-hand side of the M1 model are the emission term while

the negative terms represents those of absorption. The radiative net heat flux is given

by the right hand side of 4.2. If full radiative heat transfer is considered, then this term

also appears in the energy equation.

5. Results

Only pool fires around one meter in diameter and larger develop a fully turbulent flow,

and only a few experiments have been done in this regime (Gritzo et al. (1998)). Tieszen

www.ca.sandda.gov / tdf fWorkshop / Submodels.html _ Rad
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FIGURE 1. Instantaneous temperature contours of a one meter diameter methane fire at
different times (increasing left to right), illustrating the puffing behavior of the pool fire.

et al. (2002) have studied a one-meter-diameter methane fire with boundary conditions

and flow rate comparable to a large jet-fuel pool fire. The experimental data include

averaged and instantaneous velocity fields close to the base of the fire. This experiment

has been conducted to provide a database for validation of numerical simulations of pool

fires. Soot volume fraction is validated qualitatively, based on general observations in

this and other experiments.
The 3 m 3 computational domain for the one-meter-diameter methane fire simulation

was discretized into a uniform mesh of 1003. The same computational mesh has been used

for the radiation simulations. Figure 1 illustrates computed instantaneous temperature

contours from longitudinal cross-sections at different times. The calculation 'demonstrates

the capability of the fire simulation tool to capture the puffing nature of pool fires.

The time sequence of one puff cycle illustrates the formation of a vortical structure

at the toe of the fire that grows in size as it is convected downstream. These finger-like

structures have been attributed to the baroclinic vorticity generation mechanism (Tieszen

et al. (1996)). For buoyancy-dominated pool fires, this is the most important mechanism

for the production of vortical structures. This time sequence also illustrates an initial

vortex, formed at the toe, rolling up and breaking off from the main flame zone, which is

consistent with the observation that an intermittent turbulent region follows a continuous

flame region where most of the combustion takes place (Tieszen et al. (1996)). Figure 2

shows mean axial velocities at different axial locations compared with the experimental

data. The simulation results capture the velocity trends well. However, the spreading

rate is larger in the numerical simulation than was observed in the experiments. These

differences might be attributed to several factors. First, mesh resolution is not fine enough

to capture all the relevant large-scale, energy-containing eddies that control mixing, which

leads to a wider spreading rate. Secondly, only a simple radiation model is used for the

current calculations, which might not be accurate enough for pool fires As a result,
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FICURE 2. Comparison of radial time-averaged streamwise velocity profiles for a
one-meter-diameter methane pool fire at different axial locations.

overall radiative emission from the simulated fire is lower than observed in real fires.

Lower radiative emission produces higher fire temperatures, which leads to increased

buoyancy and, consequently, higher velocities.
Figure 3 shows instantaneous soot volume fraction in a 2-D slice and a volume-rendered

representation. The results indicate that soot is distributed throughout large regions of

the flame, as is observed experimentally by Gritzo et al. (1998). The soot is completely

oxidized before leaving the domain, which implies that there is no smoke formation in this

fire. This is consistent with the experimental observation that smoke formation occurs

only in pool fires larger than about 2 m in diameter. Radiative heat transfer for large-scale

fires is dominated by emission and absorption, mainly from soot particles. To accurately
predict radiative heat transfer from large scale fires, it is necessary to accurately predict

local soot temperature and concentration. Time-averaged temperatures and soot volume

fractions are shown in figure 4 at different axial locations. It is clearly seen that maximum

soot concentration and maximum flame temperature do not occur at the same spatial

location. Lower soot temperatures as seen in the figure have also been measured in

experiments by Gritzo et al. (1998).

Figure 5 shows some results from a radiative calculation that has been done with a
fixed instantaneous temperature field obtained from the LES. The radiative net heat

flux shows that there is an absorption region in the center of the fire. A comparison

with the soot volume-fraction distribution, shown in figure 3, indicates that because

of the absence of soot in this region, the absorption here is caused by gaseous water

and carbon dioxide. However, the regions of strong emission are governed mainly by
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FIGURE 3. Instantaneous soot volume fraction at different times. The left figure shows a
volume-rendered representation.

soot radiation. The M1 model assures a transition of the anisotropy factor from f = 0,

when radiation is isotropic, to its maximal value f = 1, when radiation is anisotropic.

Isotropic regions are typically found in the central part of a fire, while the outside regions

are usually anisotropic. This can also be observed in the present simulations, as shown

in figure 5. Small values of the anisotropy factor usually indicate radiative equilibrium

zones. Here, however, the small anisotropy in the center of the fire is due mainly to

the symmetry about the centerline. Indeed, the radiative equilibrium, where emission

balances absorption, T -_ TR, and hence f = 0, is almost never achieved for the present

case. The thin radiative equilibrium zone can be identified TR/Trn-field given in figure 5

as the region enclosed by the bold contour lines.

6. Conclusions

The Lagrangian Flamelet model has been successfullyimplemented for large-eddy

simulationof buoyancy-dominated large-scalepool fires.The resultsfrom a one-meter-

diameter methane pool firesimulationare compared with the experimental data for the

time-averaged axialvelocityfield.The resultscapture the velocitytrends well.The dif-

ferencesfrom the data have been attributedto the mesh resolutionand the radiation

model. Soot predictionsfrom the simulationsare in good agreement with the experi-

mental observationsforlarge-scalefires.Simulations alsocaptured the negative spatial

correlationbetween temperature and soot as seen in experiments. The importance of

using a comprehensive three-dimensionalradiative-transfermodel forpool fireshas been
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FIGURE 4. Radial time-averaged profiles of soot volume fraction and temperature for a one
meter diameter methane pool fire at different axial locations

shown by comparing simulation results from the M1 radiation model with the simplified
radiation model.
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Lagrangian PDF mixing models

for reacting flows

By Rodney O. Foxt, Chong M. Cha AND Philippe TrouiUet

The Lagrangian Fokker-Planck (LFP) model of Fox is further developed to describe

multi-stream mixing and reaction. The problem of three-stream mixing is used to illus-

trate the extension to multi-stream mixing. Qualitative comparisons are made with the

direct numerical simulations (DNS) of three-stream mixing of Juneja & Pope (1996). A

simplified case with one-step chemistry is used to investigate modeling issues associated

with the application of the LFP model to a reacting case. Predictions of the DNS results

of Sripakagorn et al. (2000), which exhibit varying degrees of local extinction of the flame,

are used to validate the LFP model for the reacting case. Future modeling challenges are
discussed.

1. Introduction

Over the past decade, a novel Lagrangian PDF mixing model for use with transported

PDF simulations has been developed and tested for scalar mixing (Fox 1994, 1995, 1996,

1997, 1999; Fox & Yeung 1999; Fox et al. 2001; Fox & Yeung 2002). This model differs

substantially from other available mixing models (e.g., IEM, EMST, CD, Mapping Clo-

sure, etc.), and includes the following characteristics: (i) Accounts for the effect of the

initial spectral distribution of the scalar on the scalar dissipation rates; (ii) Can treat

multiple scalars with different molecular diffusivities; (iii) Effects of turbulence (Re),
molecular diffusion (Sca), and chemistry (Da) on the scalar dissipation rates are han-

dled explicitly; (iv) The characteristic "mixing time" is scalar-dependent, and fluctuates

due to turbulent intermittency; and (v) Lagrangian time series for scalars and scalar

dissipation rates are in good agreement with DNS. The complete mixing model involves

two parts: the Lagrangian spectral-relaxation (LSR) model, which is used to predict the

scalar dissipation rates; and the Lagrangian Fokker-Planck (LFP) model, which is used
to predict the Lagrangian scalar time series. The work reported here focuses on validation
of the LFP model.

Prior to this work, DNS validation studies of the LSR/LFP model had concentrated

on inert scalar mixing (two-stream mixing of bounded inert scalars, and scalars with

uniform mean gradients) using data sets generated by Yeung (2001) over a range of

Reynolds numbers (R_ = 38-240) and Schmidt numbers (1/8-1). Both a priori tests

of the terms in the governing equations (Fox & Yeung 1999; Fox et al. 2001) and a

posteriori tests of model predictions (Fox et al. 2001; Fox & Yeung 2002) have shown

excellent agreement. Due to the simple shape of the scalar PDFs in these cases, the

ability of the LFP model to predict the PDF shape could not be demonstrated. The next

logical step in developing the LFP model is thus to test it against DNS results for more

complex scalar-mixing problems. The results reported here focus on two such cases:

t Iowa State University
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(a) Three-stream mixing of inert, bounded scalars (Juneja & Pope 1996).

(b) One-step second-order reaction (Sripakagorn et al. 2000).

Each of these DNS studies provides unique challenges to the mixing model.

The three-stream case involves two bounded scalars, and the initial tri-modal joint PDF

evolves to a joint Gaussian PDF. For this case, the scalars can have different molecular

diffusivities (differential diffusion) and/or different initial integral length scales. The time

evolution of the joint PDF is clearly different for each case, and the mixing model must

be able to account correctly for these differences. Before this work, no mixing model had

demonstrated the ability to account for all of these effects. As shown below, we have now

developed a form of the LFP model that satisfies most of these requirements.

The one-step reaction case also involves two independent scalars. However, for this

case, the joint PDF is strongly affected by the chemical source term. In order to predict

transitions between reacting and non-reacting states correctly, the mixing model must

account for the dependence of the mixing time (i.e., the scalar dissipation rates) and the

shape of the PDF on the reaction rate. The only quantities that are required to close the

LSR/LFP model formulation are the scalar-conditioned scalar dissipation rates. In the
present study, these rates are extracted directly from the DNS database of Sripakagorn

et al. (2000) and utilized in the LFP model to predict the evolution of the joint scalar
PDF. The results are compared with the DNS.

2. Model formulation

The vector of N scalars following a Lagrangian fluid particle will be denoted by _b*.

The scalar fluctuations are defined by ¢_* = ¢* - (¢). In the two cases considered in this

work, _b* has length two. In a Lagrangian PDF model, the scalars evolve (in the absence

of mean scalar gradients) according to

de'*
dt - (DV2¢'[¢*)* + S (¢*), (2.1)

where the diagonal diffusion matrix is defined by D -diag (D1,..., D_v), S (¢*) is the

chemical source term, and (.[_b*)* denotes the expected value conditioned both on the

scalars ¢ = _" and on the turbulence frequency {e = e* (s), s _< t} (Fox 1997).
The molecular mixing term (DV2¢'I¢*) * in (2.1) is unclosed and must be modeled.

On the other hand, the chemical source term is closed and requires no further modeling.

The LSR model provides the mixing time scales conditioned on the turbulence frequency.
In this work, we will concentrate on the LFP model, and thus simplify the description

by using only the scalar-conditioned scalar diffusion (DV2¢1[¢*).

2.1. LFP model

The LFP model (Fox 1999) provides a closure for the conditional diffusion term:

(DV2_b'l¢*)dt = -A¢'*dt + B(¢*)dW(t) (2.2)

where dW(t) is a multivariate Gaussian white-noise process. The diffusion matrix B(_b*)

is defined such that B(_b*)B(_b*) w = C(X]¢*) ==_ B(¢*) = _x (Chx) 1/2, where the

matrix of the scalar-conditioned scalar dissipation rates is given by (X[¢) = [(Xa_l¢*)],

and the joint scalar dissipation rate is defined by Xa_ - 2D(_¢a) • (V¢_). Here, we

will assume that all scalars have the same molecular diffusivity D. By definition, the

matrix (X[¢*) is non-negative and symmetric. The decomposition into eigenvectors @x

and eigenvalues Ax is a convenient (although non-unique) procedure for computing B.
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The parameter C controls the rate of relaxation of the joint PDF towards its equilibrium

shape (for given values of the means and covariances). The nominal value is C = 1.

In order to use the LFP model, the user must supply appropriate forms for (X]_b*).

In general, these functions control the characteristic time scales for the scalars, and the
shape of the joint composition PDF. Moreover, these functions must be chosen such that

particles do not escape the boundaries of the so-called "allowable region" in composition
space. For bounded inert scalars, simple functional forms exist and, as shown below, yield

good predictions for the joint PDF. For reacting scalars, the components of (xkb*) will
be functions of the chemical source term, and hence are more difficult to model a przori.

The form of the drift matrix A in (2.2):

A =_ _--X<dp'dp'T> -1 (2.3)

is imposed by the constraint that (for decaying inert scalars) the scalar covar iances are

governed by

d<_b'_b'T>
- A(¢'_ b'T) - (_b'_b'T) AT "_- (B(¢)B(_b) T) = -X. (2.4)

dt

However, (2.3) should be viewed as a linear approximation for the exact term: A¢ _ =

-(1 + C)(DV 2¢_l_b). The LFP model thus represents Lagrangian particle trajectories in

phase space by a linear deterministic term for the conditional scalar diffusion (2.3) and

a (correlated) stochastic "noise" term (B(¢)dW(t)). The presence of B(_) in the noise

term ensures that particle compositions remain in the allowable region of phase space.

In general, (_b'¢ _T) in (2.3) may not be full rank (e.g., if any variance is null or if two or

more scalars are perfectly correlated), so that the inverse matrix appearing in (2.3) may
not exist. However, these special cases can be treated by using an eigenvalue decompo-

sition of the covariance matrix. Singularities in the covariance matrix will correspond to

zero eigenvalues, which can simply be set to zero in the inverse matrix. The LSR model

provides the unconditional scalar dissipation rate matrix X. Thus, the functional forms
used to describe (XI¢*) must be consistent with X = ((XI¢*>), where the outermost an-

gle brackets denote integration with respect to the joint composition PDF. In this work,

we will assume that X is known.

2.2. Multi-stream mixing

The formulation of the LFP model for the multi-stream mixing problem is here illustrated

with three streams for simplicity in exposition. The extension to N-stream mixing follows

with no additional complications.

The generic three-stream mixing problem involves three inlet streams or (for homoge-
neous flow) mixing between three regions with different initial concentrations. The initial

joint scalar PDF is thus composed of at most three weighted delta functions:

f_(¢1, ¢2; 0) = p1_(¢1 - ¢n)_(¢2 - ¢21)

+ p2_(¢1 - ¢12)_(¢2 - ¢22) + p3_(¢1 - ¢13)_(¢2 - ¢_3), (2.5)

where the means (¢1) = P1¢11 q- P2¢12 q- P3¢13 and (¢2) = P1¢21 -b P2¢22 + P3¢23 are

constant. (Singular cases, where one or more of the delta functions have zero weight, are

treated using the eigenvalue decomposition of the covariance matrix described above.)

For non-degenerate cases, the delta functions will not be collinear. This can be expressed
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in terms of the rank of the matrix

[(¢11 - (¢1)) (¢12 - (¢1)) (¢13 - (¢1))] (2.6)
• 0 = L(¢21 (¢_)) (¢22- (¢2)) (¢23 (¢2))J

If rank(_o) = 2, then the three-stream mixing problem is non-degenerate.

For the non-degenerate case, any of the columns of (2.6) can be used as a reference

vector. Choosing the third column, we can map the variables into mixture-fraction space
: [_1 _2] T using ¢ - ¢3 ----M_ where

M = [(_1 - ¢3) (_ - ¢3)] = r(¢11- ¢13)
L(¢21 ¢23)

and

(¢12- ¢13)] (2.7)
(¢22 ¢23)J

M_ 1 1 [ (¢22- ¢23) -(¢12 - ¢13)t
= IM-----_L-(¢21- ¢23) (¢11- ¢13) J (2.s)

(The inverse will exist if rank(@o) = 2.) The initial conditions (_0) are recovered from
the initial mixture-fraction vectors:

using the linear mapping. We can thus derive the mixing closure in terms of _, and use

the mapping matrix M to move to and from composition (_) space.

In order to use the LFP model, we must define the conditional scalar-dissipation matrix

in _-space: (X_I_)- It is related to (X}¢) by (XI¢) = M(X_I_ = M-1(¢ - gb3))M T.

Likewise, the covariance matrix for _ is related to the composition covariance matrix by

(¢,¢,T) = M(_,_,T)M w. For non-degenerate cases, rank((¢'¢'w)) ---- 2 and (_,_,W) =

M-1 (¢'¢'T)(MT) -1 .

As noted earlier, (X_ [_) provides time-scale information and must keep the mixture-
fraction vector in the domain bounded by the two axes and the line _1 +_2 = 1. A generic

method to enforce boundedness is to require that

(X_l_b)nb(_,)= 0, (2.10)

where _b is a point on the boundary and nb(_b) is a boundary-normal vector. For the

three-stream mixing problem with equal molecular diffusivities, the three boundaries are

straight lines so that nb is constant on each boundary. (With differential diffusion, the

boundaries can be time-dependent. Consider, for example, the case where D1 = 0 and

D2 > 0. For this case, ¢[ will be constant and ¢_ will move towards its mean value.)

Applying (2.10) then yields

(x_l, lo,,'=)= o, (x_121,'_,o) = o,
(x_2IO,G) = o, (x_2_.1_1,o)= o,

(x_111,¢1+,¢2= 1) + (x_12t¢1 +¢= = 1) = o,

(X_12l_1 +¢2 = 1)+ (x_=l,'_ +_= = 1) = o.

(2.11)

The simplest quadratic functions that satisfy these constraints are

(x_ I_1,_2)= C1_1(1 - _1- _=)- C2_f2,
(X_12 [_1, _2) = C2_1_2, (2.12)

(x¢=1_1,_) = C3_=(1- _1- _2)- C=¢_2,

where the constants Cz-C3 are determined by the requirement that X_ = ((X_I_))-
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FIGURE 1. LFP modeling predictions of the marginal PDFs for the three-stream mixing
problem at various times.

Note that higher-order functions could also be used. (Alternatively, one could extract

these functions from DNS.) However, truncation at second order is consistent with a

multivariate beta PDF whose coefficients depend only on the means and covariances.

Indeed, it can be easily shown that (2.12) combined with the linear drift term (2.3)

generates a steady-state beta PDF in the univariate case. Finally, note that the extension
of (2.12) to 2V-stream mixing is straightforward using this procedure.

If M is invertible, one has the choice of solving the mixing problem in either _ or

E-space. In most applications, the scalar dissipation rates X and the covariances (¢s(b_T)

will be available (e.g., from the LSR model), in which case it may be preferable to work

in @-space. However, for degenerate cases where @0 is rank-deficient, the mixing model is

best solved in E-space, and then "projected'into @-space. A general method for treating

degenerate cases has been developed, but is not included here due to space constraints.

3. Results

3.1. Homogeneous three-stream mixing

The DNS data of Juneja and Pope (1996) corresponds to three-stream mixing with

1[_? [1M=_ and ¢_= . (3.1)

The rank of M is two, and the correlation coefficient and the scalar means in @-space

are null. (The initial joint PDF is symmetric about the origin.) We model X by X ----

;(¢,¢,T) with r = 1 and the variances computed from the particles. In _-space, the
1 _ _T

scalar dissipation rate is modeled by X_ = ; (_ _ ).
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FIGURE 2. LFP modeling results of an inhomogeneous case.

LFP modeling results for the marginal PDFs of ¢1 and ¢2 are shown in subplots (c)
and (d) of figure 1. These results correspond to figure 9 in Juneja &=Pope (1996), here
reproduced in subplots (a) and (b) for convenience. The Monte Carlo calculations are

initialized with a triple-delta function for the joint PDF of the scalars, which estimates

the actual, approximate triple-delta joint PDF of the Juneja & Pope (1996) DNS.

The relaxation of the joint (or marginal) PDFs from an initially-segregated scalar

field towards a Ganssian distribution, due to turbulent mixing, is a critical issue for

any mixing model used in transported PDF approaches. Currently, no existing model is

able to reproduce the correct evolution of the joint/marginal PDFs for the three-stream

mixing problem. The results of figure 1 show that the LFP model is able to accurately

predict the evolution of both the joint and marginal PDFs of the DNS.

3.2. Inhomogeneous three-stream mixing

The LFP model has been implemented in a LES/Filtered Density Function code to
demonstrate the applicability of the model to handle flows of practical interest. In this

approach, the velocity-field calculation is handled by a structured, finite-volume LES
code from CTR. This LES solver is coupled to a Lagrangian Monte-Carlo module to

compute scalar fields using the filtered density function approach (Colucci et al. 1998).
The implementation of the LFP model proved to be quite straightforward. Neverthe-

less, some extra care had to be taken to enforce strict conservation of the scalar means

during the mixing step, to avoid any drift due to the statistical errors arising from the
stochastic part of the model. To test the model behavior, a double planar mixing layer

was computed. It is composed of three streams of water with respective velocities, from

top to bottom, of 0.5, 1.0, and 0.5. This configuration corresponds to an experimental

setup under investigation at Iowa State University. Both velocity and scalar fields will

eventually be available for comparison with the results of the simulation. In the scope

of this study, we present only the evolution of the shape of the marginal PDF of one of

the two scalars, along a line propagating in the streamwise direction and starting from

the tip of one of the two splitter plates. Figure 2 shows the PDFs corresponding to five

successive downstream locations, at 5, 10, 15, 20 and 25 channel heights from the tip of

the plate. We clearly see here the progressive relaxation from a highly segregated state

at x -- 5 towards a very wide distribution that peaks slightly around the mean value

(Z) = 0.333 at x = 25.
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randomly-chosen particles from the Lagrangian PDF simulations using the exact conditional
diffusion term from the DNS (second column) and the linear, LFP approximation for the mix-
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3.3. Homogeneous one-step reaction

The DNS results of Sripakagorn et al. (2000) involve fuel (F), oxidizer (O), and prod-

uct (P) in a one-step, second-order, reversible reaction: F + O _ 2P, where k is the
k/K

forward reaction rate and K the equilibrium constant. The species evolve in isotropic,

homogeneous decaying turbulence, governed by the Navier-Stokes equations. F and O

are initially segregated. The forward reaction rate has an Arrhenius temperature depen-

dence with the equilibrium constant held fixed. The production rates for fuel, oxidizer,

and product are _bF = -z_, zbo = -t_, and zbp = 2zb, respectively, where

1 2
tb-- Aexp(--_)exp[ ,Ze(1-') ] (YFYO--_YI_>=_-(_-=_)j (3.2)

is the reaction rate. Here, A is the frequency factor, c_ = (T/- Too)/T/is the heat release

parameter, Ze - aTe�T! is the Zeldovich number, and Ta is the activation temperature.
The turbulent flow is incompressible, and the molecular diffusivities and viscosity are

independent of the temperature. The Schmidt number is 0.7 and the Lewis numbers are

all unity. (See Sripakagorn et al. (2000) for details of the simulation).

For this binary mixing and reacting system, there are two independent variables, cur-

rently chosen to be the mixture fraction, +, a passive scalar, and the reaction-progress

variable, Y = Yp = 8. The first column of figure 3 shows the DNS data in +-Y phase space

at various, increasing times. The solid line in each subplot is the equilibrium solution.

The chemistry rate parameters in figure 3 axe A = 8 x 104 s-t, a = 0.87, Ze = 4, and

K = 100, corresponding to "Case B". Additional cases were computed in which the degree
of extinction was changed by varying only the frequency factor A. For A = 13 x 104 s -1

("Case A"), there is little to no extinction; for A = 0.3 x 104 s-I ("Case C"), there are

high levels of local extinction and reignition.

Assumed PDF modeling approaches to describe this DNS have included a doubly-

conditional moclosure approach (Cha et al. 2001), a higher-order conditional-moment-

closure approach (Cha & Pitsch 2002), and an extended flamelet modeling treatment

(Pitsch et al. 2002). In the present Lagrangian PDF modeling study, the scalar-dissipation-
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rate matrix is

(Xl¢*) - (Xl , Y) = f (x¢I5,Y) (3.3)

for the one-step reaction. (For compactness of notation, no distinction is made between

the conditioning variables themselves and their sample spaces.) Currently, the diffu-

sion matrix in the LFP model, B, is specified directly from the DNS results using
linear interpolation in phase space and time. The conditional diffusion term is A =

2 [(DV2_kb *) (DV2Ykb*)] T for the simplified system.

Figure 3 shows a qualitative comparison between the DNS results (first column), the

Lagrangian PDF modeling results using the exact conditional Laplacian (second column),

and the LFP modeling results (third column). Recall that the molecular mixing term in

the LFP model uses the linear approximation for A in the Lagrangian PDF equations.

The exact conditional Laplacian is also taken directly from the DNS using linear inter-
polation. For the DNS results, 103 different particles are shown (out of 1283), randomly

chosen at each time. In the modeling results, the trajectories of the same 103 parti-

cles are shown (out of 104), randomly chosen at the time of initialization. Recall that,

in the present implementation of the governing Lagrangian equations, only the scalar-

conditioned scalar diffusion is used, and thus the particle "trajectories" shown from the

Lagrangian PDF results in figure 3 are "notional".

The ensemble of notional particles (e.g. those shown in figure 3 at a given time) repre-

sents the joint PDF of _ and Y. Figure 4 shows the marginal PDFs of _ and y at various

times for Case B, using the total number of 104 particles binned into 50 equally-spaced

increments in their phase space. Lines show the predictions, and symbols are the DNS

results. From the ensemble of particles, statistics can readily be derived. Figure 5 shows

the LFP modeling predictions for the first and second moments of _ and Y for Cases
A-C. The DNS results are represented by the symbols. As _ is a passive scalar, inde-

pendent of the chemistry, predictions of _ are identical for each case and are in excellent

agreement with the DNS experiment.
As an initial study of the LFP model, the deviations between the DNS results and

modeling results focus on the linear approximation for the conditional Laplacian (the

"LFP approximation"). All modeling results use the conditional dissipation calculated

from the DNS. A discussion of the modeling challenges associated with the conditional

dissipation closes the section.

Figure 6 shows the conditional diffusion term for Y calculated from the DNS (top

row) and the corresponding linear approximation employed in LFP modeling (bottom
row) for Case B. The agreement between the modeling predictions and DNS in figure 5 is

remarkable, considering the simplicity of the approximation for the mixing term. Figure 7

shows the marginal PDFs predicted by the Lagrangian PDF model (with the exact

conditional diffusion term specified by the DNS). A comparison with figure 4 illustrates

the impact of the linear approximation on the marginal PDFs. The impact is weak, only

increasing the probability of unburned particles due to the linear approximation at low

values of Y, as shown in figure 6. The impact on the first and second moments is negligible

(results not shown).

The modeling challenges for the conditional dissipation in the LFP model can be

decomposed into a model for (i) the unconditional means, (Xij), and (ii) the "shape

functions", hij -- (Xijl¢*)/{X_j). Here we focus on issue (ii). (Recall that issue (i) is
addressed by the LSR model.) Figure 8 shows (Xql_,Y), where i,j = _,Y, for Cases
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the DNS (left) and corresponding linear approximation employed by LFP modeling (right).

A-C at t* = 1. The figures illustrate the similarity of the shape functions irrespective of

the levels of extinction and/or reignition (although the scaling of course differs between

cases). In future work, studies of the sensitivity to slight differences in the shape functions

are to be performed.
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4. Conclusions

The LFP model has been successfully extended to multi-stream, inert-scalax mixing

and to a one-step, second-order reaction. For the former, a complete model for the con-

ditional scalar-dissipation rates has been derived, and the model predictions axe in good
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agreement with DNS. For the latter, the LFP model was successfully validated by ex-

tracting the conditional scalar-dissipation rates from DNS.

The principal conclusion resulting from this study is that knowledge of the conditional

scalar-dissipation rate matrix (XI¢*) is sufficient to accurately predict the joint scalar

PDF. Thus, the remaining challenge is to find models for (XI(_*) that can be applied to

turbulent reacting flows with complex chemistry. This will most likely be a difficult step,

but one that would be greatly aided by results from DNS of turbulent reacting flows.
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Dynamics and dispersion in Eulerian-Eulerian

DNS of two-phase flows

By A. Kaufmann _, O. Simonin :_, T. Poinsot _, AND J. Helie :_

A DNS approach for Eulerian-Eulerian dispersed two-phase flows is tested. The need

for a subgrid stress term in the dispersed phase momentum equation is identified and

a simple model for this stress term allows the calculation of an experimental test case

with inertial particles in homogeneous turbulence. Results are compared to Eulerian-

Lagrangian simulations.

1. Introduction and motivation

Particle-laden flows are of great interest since they occur in a variety of industrial

applications. Knowledge of particle transport and concentration properties are crucial

for the design of such applications. Numerical simulations coupling Lagrangian tracking
of discrete particles with DNS of the carrier-phase turbulence provide a powerful tool

to investigate such flows. When particle numbers become large, particle-particle and

turbulence modification effects become important and such numerical simulations have

the drawback of being numerically expensive. Numerical simulations based on separate

Eulerian balance equations for both phases, coupled through inter-phase exchange terms,

might be an alternative approach in such cases. Such Eulerian-Eulerian DNS approach

has been validated for the case of particles with low inertia which follow the carrier fluid

flow almost instantaneously due to their small response time compared to the integral

time scales of the turbulence (Druzhini & Elghobashi (1999)).
In the case of inertial particles, with response times comparable to the integral time

scales, additional effects have to be taken into account. Indeed, as pointed out by F@vrier

(2000) and F@vrier et al. (2002), particle phase transport equations must account for

dispersion effects due to a local random motion which is induced by particle-turbulence

and particle-particle interactions. Following F@vrier et al. (2002), a conditional average of

the dispersed phase with respect to the carrier phase flow realization allows the derivation

of instantaneous mesoscopic particle fields and instantaneous Eulerian balance equations

accounting for the effect of random motion. From forced isotropic turbulence simulations,
F@vrier et al. (2002) showed that the uncorrelated, quasi-Brownian motion of the particles

increases with inertia (high Stokes "numbers). In cases such that the particle relaxation

time is comparable to the Lagrangian integral time scale, the kinetic energy of quasi-

Brownian motion is about 30% of the total kinetic energy of the dispersed phase.

The importance of quasi-Brownian motion (QBM) is illustrated in a preliminary test

case of decaying homogeneous isotropic turbulence. The Eulerian model is then applied

to the experimental case of Snyder & Lumley (1971) which has previously been simulated

by Elghobashi & Truesdell (1992) using a Lagrangian approach. This allows the present

Eulerian simulation to be compared to experiment and Lagrangian simulation.

t CERFACS, 42 Av. G. Coriolis, 31057 Toulouse, France
:_ IMFT, Av. C. Soula, 31400 Toulouse, France
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by Elghobashi & Truesdell (1992) using a Lagrangian approach. This allows the present

Eulerian simulation to be compared to experiment and Lagrangian simulation.

2. The Eulerian model

Eulerian equations for the dispersed phase may be derived by several means. A popular

simple way consists of volume filtering of the the separate, local, instantaneous phase

equations accounting for the interfacial jump conditions (Druzhini & Elghobashi (1999)).
Such an averaging approach is very restrictive, because particle size and particle distance

have to be smaller then the smallest length scale of the turbulence.

A different, not totally equivalent way is the statistical approach in the framework

of kinetic theory. In analogy to the derivation of the Navier-Stokes equations by non-
equilibrium statistics (Chapman & Cowling (1939)), a point probability density function

(pdf) f(1)(cp;xp,t) which defines the local instantaneous probable number of particle

centers with the given translation velocity Up = cp may be defined. This function obeys
a Boltzmann-type kinetic equation, which accounts for momentum exchange with the car-
rier fluid and for the influence of external force fields such as gravity and inter-particle

collisions. Reynolds-averaged transport equations of the first moments (such as parti-

cle concentration, mean velocity and particle kinetic stress) may be derived directly by

averaging from the pdf kinetic equation (Simonin (1996))

To derive local instantaneous Eulerian equations in dilute flows (without turbulence

modification by the particles) F6vrier et al. (2002) proposed to use an averaging over

all dispersed-phase realizations conditioned by one carrier-phase realization. Such an

averaging leads to a conditional pdf for the dispersed phase,

(2.1)

W (1) are the realizations of position and velocity in time of any given particle (Reeks

(1991)). With this definition one may define a local instantaneous particulate velocity
field, which is here named "mesoscopic Eulerian particle velocity field". This field is

obtained by averaging the discrete particle velocities measured at a given position and

time for all particle-flow realizations and one given carrier-phase realization,

_p(u,t, Hf)= _ cj(1)(c,;x,t, Hf)dcp. (2.2)

Here

_(1) = f ](1)(cp;x,t, Hl)dcp (2.3)

is the mesoscopic particle-number density. For simplicity, the dependence of the above

variables on H I is not shown explicitly. Application of the conditional-averaging proce-

dure to the kinetic equation governing the particle pdf leads directly to the transport

equations for the first moments of number density and mesoscopic Eulerian velocity,

0 0

+  p%,i = o (2.4)

_ O. _ . 0 _ _ _p 0 . .

u_j
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Here 55p,_3 is the mesoscopic kinetic stress tensor of the particle Quasi-Brownian velocity
distribution.

The current objective is to show that this term is non-negligible for inertial particles
in turbulent flow.

2.1. The stress tensor o] quasi-Brownian motion (QBM)

The stress term in (2.5) arises from an ensemble average of the nonlinear term in the
transport equation for particle momentum,

_p55p,ij = / (cp,i - (tp,,) (Cp,j - up,3) ](pl) (%; x, t, Hf) d% (2.6)

= _pSup,_Sup,j. (2.7)

When the Euler or Navier-Stokes equations are derived from kinetic gas theory the trace

of 5up,,Sup, 3 is interpreted as temperature (ignoring the Boltzmann constant and molec-
ular mass) and related to pressure by an equation of state. In the case of the Euler or

Navier-Stokes equations temperature is defined as the uncorrelated part of the kinetic

energy. Here the uncorrelated part of the particulate kinetic energy is defined as

5qp2= 1_Sup,iSup,i. (2.8)

In analogy to the Euler or Navier-Stokes equations a quasi-Brownian pressure (QBP) may

be defined by the product of uncorrelated kinetic energy and particle number density, as

_ 2 2
Pp = np_Sqp (2.9)

When the particle number distribution becomes nonuniform, as in the case of a com-

pressible gas, this pressure term tends to homogenize particle number density.

The non-diagonal part of the stress tensor can be identified, in analogy to the Navier

Stokes equations, as a viscous term (Op,,j). The momentum-transport equation (2.5)
becomes

np-_up,, + npup,j _x Up,, = --_pF [uP,' -- ul,,] -- Ox, p + --SP"J + _pg,. (2.10)

Furthermore it can be shown mathematically (Le Veque (1996)) that (2.10) without

a pressure-like term leads to non physical solutions characterised by "shock"-like fronts

in number density.

2.2. Simulations without and with QBM

First, preliminary simulations were performed without any stress term related to QBM.

Particles tend to accumulate rapidly in small regions, causing unphysically high number

densities. This causes the numerical simulation to fail. In order to ensure that failure was

not due to a numerical problem, different simulations with different turbulence Reynolds

numbers and Stokes numbers were performed, leading to the same result.

Simulations with a quasi-Brownian pressure (QBP) and without quasi-Brownian vis-

cous stress were performed on the same test cases. F_vrier et al. (2002) measured, in

forced homogeneous isotropic turbulence, a mean quasi-Brownian kinetic energy (5q2)

proportional to the mean mesoscopic kinetic energy q'_ = ½ (_ip,_ip,_) with a propor-

tionality coefficient depending on the Stokes number. Here a simple relation between
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the quasi-Brownian kinetic energy 5%2 needed in the QBP equation (2.9) and the mean

resolved kinetic energy _ was used:

_q_= _,_. (2.11)

Such a QBP modeling allows all the test cases that failed without a quasi-Brownian

stress term to be simulated. But, compared to the value found by F@vrier et al. (2002),

relation (2.11) strongly overestimates the quasi-Brownian kinetic energy and so the effect
of QBP. The need for such a large pressure term to carry out the simulation is probably

due to the fact that the viscous-stress term is neglected.

In order to quantify the effect of particle segregation, the normalized variance of particle
number density is introduced:

g(,-,t) = (n(=,t)n(=+ ,-,t))
(n(x't)) 2 (2.12)

figure 1 compares the time evolution of g(0, t) from simulations with and without QBP.
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The quasi-Brownian pressure is found to limit the particle segregation effect to reasonable
values.

figure 2 compares the kinetic energy spectra of the carrier phase and the dispersed

phase with and without QBP. When simulations are performed without QBP, particle

kinetic energy for small scales becomes larger then the carrier-phase kinetic energy in

contrast with available results (F_vrier et al. (2002)). This effect increases in time and can

be characterized by the temporal increase of the particle enstrophy as shown by figure 3.

This is probably due to the unphysically large accumulation of particles in specific regions

of the carrier phase turbulent flow (regions of high strain and low vorticity). Indeed,

when accounting for the QBP contribution limiting segregation, the particle enstrophy

behavior looks much more reasonable. The quasi-Brownian viscous stress should also play

an important role by inducing a strong dissipative effect to the small scales in addition

to the one due to the drag force.

2.3. Measurement of particle dispersion

Particle dispersion is usually measured in Lagrangian simulations by tracking individual

particle path and calculating the variance of the relative displacement

1 N

(x2(t) > --- _ E [xP,3(t) - xv,j(t°)]2" (2.13)
j=l

Particle dispersion can then be related to the time derivative of this quantity (see Monin

& Yaglom (1987)),

(t)). (2.14)
In Eulerian simulations one does not have access to individual particle paths. Particle

dispersion can still be measured by a semi-empirical method (Monin & Yaglom (1987)):

Suppose that the simulation is being carried out with colored particles and a transport

equation is written for the ratio of colored particles to total particles (5 = tc/_v). This

transport equation is similar to the transport equation for particle number density (2.4):

0 0 0 _c
_v+ _---_,Ox, , = _:_v-- (_p,,- _,,) (2.15)

Here, fi_,_ is the mesoscopic velocity of colored particles. Since only the velocity of the
total droplet number is resolved, a supplementary term arises on the right-hand side

of (2.15). This term takes into account the slip velocity between colored particles and

the mesoscopic velocity of the particle ensemble. Comparing the above equation to the

Navier-Stokes equations, this term is the equivalent of molecular diffusion in a species

equation. Since the slip velocity can arise only from uncorrelated movement of the par-

ticles, this term can be modeled as a diffusion related to the quasi-Brownian motion.

If the ensemble-averaged mean number-density fraction of colored particles (tip) C =

(fivh), (5 = C + c') is uniformly stratified, say in the k-direction, and fluctuations are as-
sumed periodic with respect to the computational domain, the fluctuating number density

of colored particles c'_ v can be extracted from the total colored number density and one

obtains a transport equation for the fluctuations of colored-particle concentration:

_c n v + -x--c nvuv i = --nvuv,k C + 55v(hv,_ -- u_,i) (2.16)
OX i

Averaging the colored number-density equation ((2.15)) one obtains a Reynolds-averaged
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transport equation,

0 0 0 0 (_p (_p,i- _c
0-7<_)c+ _ <_>c <_,,)_- o_,<_/u_,_)+ _ _,,)>. (2.17)

Equation 2.16 has been solved neglecting the quasi Brownian motion term. Particle
I_ \ D t o p_dispersion can be derived by making a gradient assumption: ((c'_p_p,k) = _ p/ p,k _T_"J

A semi-empirical diffusion coefficient is defined by:

D_,k = <_pc'up,k>
(_p>°-T:co (2.1s)

This dispersion coefficient is comparable to the Lagrangian dispersion coefficient (2.14)

in the long-time limit of stationary turbulence. Nevertheless simulations neglecting the

quasi-Brownian motion are likely to underestimate the Lagrangian dispersion.

3. Numerical implementation

The Eulerian equations for the dispersed phase have been implemented into the Navier-

Stokes Solver AVBP (SchSnfeld & Rudyard (1999)). It is based on a 2D/3D finite Volume/
finite Element method for unstructured, structured and hybrid meshes.

4. Description of the test case

Particle dynamics and particle dispersion have been studied by experiments and by

Lagrangian computations. One appealing test case is that of Snyder & Lumley (1971)
(hereafter referred to as SL). They inserted particles with different inertial properties

into grid generated spatially decreasing turbulence and measured particle dynamics as

well as particle dispersion. This test case has been computed with a Lagrangian approach

by Elghobashi & Truesdell (1992) (from heron referred to as ET). The carrier phase was
taken as a temporarily decreasing homogeneous isotropic turbulence corresponding to

the grid generated turbulence of SL. After an initial calculation for two turnover times

(t = lii/u'f), particles were inserted. Analysis of particle dynamics as well as dispersion

was carried out by ET on particles corresponding to those of SL, and a direct comparison
was made. Here the procedure of ET is followed, but the calculation is performed by an

Eulerian-Eulerian approach and a comparison with the experimental results of SL and

the Lagrangian computation of ET is attempted. The present numerical simulation was

performed on a periodic 1283 grid.

4.1. Initialization of the homogeneous isotropic turbulence

The carrier-phase velocity field is initialized at dimensionless time T = 0 with a divergence-

free velocity field such that the kinetic energy satisfies the spectrum (Elghobashi &

Truesdell (1992)):

E(k, O) = _u f,o_ exp k (4.1)

where u'f is the dimensionless rms velocity, k is the wavenumber and kp is the wavenum-

ber of peak energy. All wave numbers are normalized by the minimal wavenumber kmin.

In the present simulation the values of ET were taken. Properties of the carrier-phase

turbulence are validated against the properties of carrier-phase turbulence of SL and ET.
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The spatial evolution of the flow in the experiment of SL is converted to a temporal evo-

lution of the flow by t = x/U. Here 0 is the mean convection velocity in the experiment.

In figure 4 the dimensionless velocity square u'_ of the carrier phase is compared to

experiment (SL) and Lagrangian simulation (ET). Since the temporally-decaying turbu-

lence was chosen with the same initial parameters as that of ET, it has the same decay
behavior.

To verify numerical resolution, dissipation 6 is compared to temporal change of kinetic
a z in figure 5. It shows excellent agreement between calculated dissipationenergy _q¢

and kinetic energy decrease. Therefore it can be assumed that numerical dissipation is

negligible compared to viscous dissipation.

In figure 6 the Reynolds number of the present simulation is compared to the La-

grangian simulation (ET). In the present simulation the turbulent Reynolds number
(based on integral length scale) decays more rapidly compared to the simulation of FT.
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I hollow glass Icorn pollen Isolid glass [ copper

d [m]
density ratio (pp/p])
Red
initial 7-p(SL) Is]
initial _p (ET) Is]
initial vp (non dimensional)
terminal velocity vt,o/u_o
st (_p/_/,0)

TABLE

4.65"10 -5
260

0.25
0.0055

0.053

0.024

8.7"10 -5 8.7"10 -2
I000 2500
0.47 0.47

0.020 0.045
0.027 0.061
0.193 0.432
3.16 6.69
0.09 0.203

1. Particle properties in experiment (SL), Lagrangian simulation
simulation,

4.65.10 -2
8900
0.25

0.049
0.067
0.473

7.57
0.221

(ET) and present

This is due to the slower temporal increase of the integral length scale (figure 7) in the
present simulation.

4.2. Particle properties and initialization

The Eulerian-Eulerian simulation was performed with one-way coupling. Therefore the

carrier-phase turbulence had no feedback from the dispersed phase. The only interaction

force taken into account in the momentum equation of the dispersed phase was drag.

This is justified in the limit of large density ratios (pp/pg). The characteristic particle

relaxation time is computed by the standard formulation.

ppd2 (4.2)
_P = lS/(Rep)_

.... o 6S_d0 (4.3)f(Rep) = 1 + v.io_ep"

The particle Reynolds number for the drag force correction f(Rep) is based on the slip

velocity Rep = (lfip - uf] d)/vf. For the present numerical simulation, particle proper-
ties are chosen such that they have the same particle Reynolds number Red = (utd)/vf

as in the experiment and the same Stokes number in terms of turnover time St = rp/Tf,o

(Tf,o = l_/u_o), t For the Eulerian-Eulerian simulation, particles corresponding to corn

pollen or glass beads were retained. Particles were inserted as in the Lagrangian simu-

lation (ET) at the dimensionless time T = 2.0. They were given the same velocity as

the carrier phase in both simulations when inserted into the turbulent flow. In the La-

grangian simulation, particles had relaxed to the carrier-phase turbulence at T -- 2.67

and evaluation of particle-dispersion statistics started at that time, corresponding to the

equivalent particle-dispersion measurements of (SL). Particle properties were then ana-

lyzed in turbulence with and without gravity. When particles are subject to gravity they

establish a mean terminal velocity in the direction of gravity, given by vt = g * _'p. The

gravity constant g was chosen such that the Eulerian-Eulerian simulation predicts the

same ratio of vt,o/U_o (see Tab. 1) as in the experiment and the Lagrangian simulations.
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5. Particle dynamics

Particledynamics are analyzed in simulationswith and without gravity.In the publi-

cationofET only the square ofthe relativevelocity,not the totalkineticenergy isgiven.

In the publicationofSL, on the otherhand, only the squareofthe particlevelocitygiven.

Therefore those quantitiesare compared separately.

5.1. Particle dynamics without gravity

For both types of particles, corn pollen and glass beads, the relative square velocity in the

present simulation shows the same qualitative behavior as in the Lagrangian simulation.

However the slip velocity is overestimated In both cases (figure 8). The Eulerian mean-
square relative velocity _el ---- <(uf --_p)2> differs from the Lagrangian mean-square

relative velocity vre12 = <(u!- up)2> by the quantity 5u 2, from QBM. Therefore the

predicted Eulerian mean-square relative velocity should be lower than the Lagrangian
mean-square relative velocity.

10 shows the temporal development of the carrier phase (u)> and the
$ %

Fig. square
%-!

velocities of corn pollen and glass beads. Since both particles are in the same range of

Stokes numbers, the square velocities differ only very little. This quantity was not given

by ET and can therefore not be compared.

5.2. Particle dynamics with gravity

As expected, when gravity is taken into account, particle dynamics are modified. Indeed,
the crossing-trajectory effect due to the mean settling velocity of the particles leads to a

decrease of the integral time scale of the fluid turbulence viewed by the particles. Such an

effect leads to an increase of the effective particle Stokes number and so to an increase of

the relative squared velocity with respect to the non-settling case, as shown by figure 9.

After about one turnover time particle square velocity perpendicular to gravity shows

qualitatively similar behavior as the experimental values of SL (figure 11). The predicted

t The index o is used for values at the dimensionless time T = 2.67 as in SL.
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particle square velocity is larger than the measured one. This may be due to the fact

that simulated carrier phase < u_ > is also higher than the experimental value.
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6. Particle dispersion

Particle dispersion is measured as explained in section 2.3 for the dispersed phase.

In order to compare with the carrier phase, the equivalent of (2.16) is solved for the

carrier phase without molecular diffusion. As in the work of ET, dispersion coefficients

are normalized by the integral length scale at T = 2.67.

6.1. Particle dispersion without gravity

Figure 12 shows the evolution of the Lagrangian and Eulerian dispersion coefficient in

the simulations without gravity. ET calculated the Lagrangian dispersion without grav-
ity only for the carrier phase and corn pollen. In the Eulerian simulation the carrier

phase shows the same qualitative behavior as the Lagrangian simulation of ET, but the

dispersion of corn pollen is lower then the dispersion of the carrier phase. As discussed
previously (section. 2.3) this might be due to the missing QBM part of the dispersion.

6.2. Particle dispersion with gravity

In the Eulerian simulations with gravity, particle dispersion is significantly lower then in

the simulations without gravity, consistent with the Csanady (1963) analysis. This obser-
vation matches the Lagrangian simulation. Quantitatively, however, dispersion measured

in the Eulerian simulations is high compared to Lagrangian simulations.

7. Conclusion

In the firstpart ofthispaper itwas shown that unsteady Eulerian-Euleriansimulations

need to take into account the stresstensor relatedto the uncorrelated quasi-Brownian

motion inthe caseofinertparticles.Itisnot clearhow thisterm needs to be handled in

more complex LES computations, and furtherinvestigationofthisterm isnecessary.

In the second part,a preliminarymodel for QBM was used by relatingunresolved

particlekineticenergy to the resolvedparticlekineticenergy by a fixedcoefficient.This

model allowedsimulationstobe performed forthe experiment ofSnyder & Lumley (1971)

and to compare the results to the Lagrangian simulations of Elghobashi &: Truesdell

(1992). Even if the numerical results of the Eulerian simulation do not quantitatively

match the Lagrangian simulations exactly, this test showed that Eulerian simulations
could be an alternative tool for simulations of dispersed two-phase flows.
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Analysis and modeling of the dispersion of

vaporizing polydispersed sprays in turbulent flows

By J. R_veillon t, M. Massot $ AND C. Pera ¶

Direct numerical simulations (DNS) of turbulent two-phase flows have been carried out to

study the polydispersion of a vaporizing spray in statistically-stationary grid turbulence.

The evolution of various classes of droplet size has been studied, exhibiting different
dynamical behavior for droplets of different sizes. The results have been used to evaluate

successfully a new Euleriaa model, which proves its ability to capture the polydisperse

spray dynamics and vaporization.

1. Introduction

In industrial combustion configurations, the fuel is most of the time injected as a dis-

persed phase of liquid droplets. In gas turbines, diesel engines, industrial furnaces and
combustion chambers, the behavior of the gaseous fuel mixture fraction plays a crucial

role in determining the combustion characteristics and efficiency of the process. Conse-

quently, the description of the motion of the spray, its vaporization and its coupling with

the gaseous turbulent flow field are important for the prediction of two-phase turbulent
combustion. Even if the process has to be understood as a whole from injection up to

combustion, one of the key issues will be the turbulent mixing and vaporization of the

cloud of fuel droplets, a phenomenon strongly influenced by the polydisperse character

of the spray. In this paper, we therefore focus our attention on the turbulent dispersion

of a vaporizing liquid spray and on its polydispersion.
The purpose of the present study is two-fold: first, we investigate the physics of this

phenomenon using a DNS Euler/Lagrange approach in the configuration of statistically-

stationary spatially decaying turbulence, with a monodisperse injection. We analyze the
DNS results for the dispersed phase from an Eulerian point of view, and demonstrate

the strong coupling of the dynamics and vaporization which generates droplets of various

sizes. Second, we provide a Eulerian model and description of this phenomenon, extending

the recently-introduced Eulerian multi-fluid models which are well suited to the presence

of a polydisperse spray. These approaches will then be compared, thus proving the ability

of the Eulerian model to capture the physics and the complementarity of Lagrangian and

Eulerian tools for the description of two-phase flows.

Two types of models may be actually considered for the description of the polydisperse

liquid phase. The first one is of Lagrangian and particular type as described originally by

Dukowicz (1980), O'Rourke (1981). The distribution of droplets is approximated using

a finite number of computational parcels; each parcel represent a number of droplets

of identical size, velocity and temperature. This kind of method is currently used in

t CNRS-UMR 6614 - CORIA - University of Rouen, INSA - Avenue de l'Universit_, 76801
St Etienne du Rouvray cdx, FRANCE, reveillon@coria.fr, corresponding author

:_ CNRS-UMR5585 - MAPLY, Universit_ Claude Bernard, Lyon 1, 69622 Villeurbanne cdx,
FRANCE, massot _maply.univ-lyon 1.fr

¶ CNRS-UMR 6614 - CORIA, pera@coria.fr
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FIGURE 1. Left: sketch of the coupling between the four solvers, right: vorticity isocontours of
the decaying turbulence, bottom: data concerning the injected droplets for each simulation.

many codes and is especially suited for DN$ calculations since it does not introduce any

numerical diffusion, the particle trajectories in the phase space being exactly resolved. It

is then particularly accurate as long as the sampling of the phase space is rapid enough,
a constraint that becomes expensive for unsteady flows.

In the context of RANS and LES numerical simulations, where some scales axe not

resolved but modeled, the perspective of a Eulerian model for polydisperse sprays be-

comes very attractive. Indeed, it is interesting to study the Eulerian form of the spray

equations and to deduce the structure of physical phenomena such as waves, diffusion,

etc. On another hand, modeling of coalescence and break-up phenomena, as well as the

coupling with the combustion process, is more straightforward using an Eulerian for-

mulation. Besides, a coherent way of treating the two phases yields a better ability for

parallel computations and optimization.

The existing Eulerian models belong to the broad class of moment methods and can be

subdivided into two general branches. On the one side, the population-balance methods

usually consider very small particles without inertia. They are concerned with a precise

description of the size distribution which evolves due to vaporization, aggregation or

breakage - see e.g. Wright etal. (2001), Marchisio, Vigil & Fox (2002) - and usually

rely on the method of quadrature of size moments. On the other side, the classical two-

fluid models have been the subject of many publications, either in the mathematics

community by Sainsanlieu (1991), Domelevo & Salnsaulieu (1997) or in the engineering

one (see Kaufmann et al. (2002) and references therein). Their validity extends up to

churning flows where the liquid phase is not dispersed any more such as near the injector
(Vallet etal., 2001) or for interface phenomena such as in Chanteperdrix etal. (2002).

However, actual Eulerian models present two major drawbacks: the inability to capture

the polydispersion in size of the spray (only through a couple of moments such as in Vallet
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FIGURE 2. Isocontours (top) and profiles (bottom left and right) of the pdf P(s, x). The profiles
are made along both x (bottom right) and s (bottom left) directions for several different positions
shown on the top figure, xz/L = 0.092, x2/L = 0.198, xs/L = 0.304, x4/L = 0.41, xs/L = 0.516,
x6/L = 0.622, and sz/so = 0.95, s2/so = 0.85, s3/so = 0.72, s4/so = 0.58, ss/so = 0.48

et al., 2001) and the lack of direct link with the kinetic level of description for sprays.

Thus, in the context of laminar flows, Laurent and Massot (2001) have introduced a

multi-fluid approach, rigorously derived from the kinetic level of description, which has

the capability to include coalescence and break-up as shown in Laurent et al. (2001)
and to describe the vaporization, dynamics and heating of droplets of various sizes as

studied in Laurent et al. (2002). In order to extend the work done in these papers to

turbulent flows and derive a kinetic model "in the mean" where an ensemble averaging

is performed on some scales, we make use of the results introduced by Reeks (1991)

and proved by Clouet and Domelevo (1997), and connect with the work on Eulerian
analysis of the turbulent dispersion of particles initiated by Taylor (1921) and Batchelor

(1949). An Eulerian system of semi-fluid equations is obtained by preserving the size

phase space but considering some velocity-moment closure. We then show the ability of
such an approach to capture the physics of the turbulent dispersion of a vaporizing spray

by comparing with success the results from the Eulerian model to DNS statistics. We
show in particular that the use of surface-conditioned moments is really well-suited to

characterize the phenomenon and to obtain a precise Eulerian description.

The paper is organized as follows: in a second section, the physical configuration and

numerical methods are presented. We then focus on the analysis of the DNS results

where we emphasize a surface-conditioned Eulerian analysis of the polydisperse spray.

We then conduct, in a fourth section, the derivation of the Eulerian model and present

the numerical method used in the particular configuration under consideration. The DNS

results and the simulations obtained from the Eulerian solver are then compared in the
last section.
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2. Geometry and numerical considerations

In this paper, a geometry with one inhomogeneous direction has been considered: 2D

spatially-decaying turbulence (SDT) with statistically-stationary properties. It simulates

grid turbulence with a high kinetic energy at the inlet that decays in the streamwise

direction. A monodisperse spray is injected through the inlet boundary and follows the

main flow while being locally dispersed by the turbulent fluctuations. It is particularly

interesting to notice that the coupling of vaporization and turbulent mixing generates a

polydisperse spray, even if the liquid phase is injected monodisperse. This configuration

is also a good candidate since the number of dimensions of the phase space remains
reasonable.

To ensure statistically-coherent behavior of the injected droplets with local turbu-

lence, four solvers (figure 1) are running simultaneously. An independent spectral code

is solving the incompressible Navier-Stokes (NS) equations, coupled with a one-way La-

grangian solver for the computation of the dispersion of solid particles. These two solvers
are used to generate accurate turbulent boundary conditions for a physical-space DNS

solver (sixth order in space and third order in time) running together with another
one-way Lagrangian solver. The fully-compressible NS equations are then solved with

periodic boundary conditions along the spanwise direction, and NS characteristic bound-

ary conditions (Poinsot and Lele, 1992) for the inlet and the outlet along the streamwise
direction.

Forced turbulence, such as in Overholt and Pope, 1998, is simulated in the spectral

space so that the prescribed main properties of the turbulence (kinetic energy, dissipation,

integral scale) are statistically stationary in time. The dispersion of particles in the phase

space was checked to be in dynamical equilibrium before the coupling with the physical

space solvers took place.

This coupling is done through the inlet boundary of the physical space solver where

the turbulent fluctuations as well as the incoming particles are inserted. Because of the

presence of the spectral solver, the vortices are really able to rotate at the boundary

and therefore, local negative velocities may be considered. The technical details of the

injection procedure may be found in Vervisch-Guichard et al. (2001). Once injected in
the physical space DNS, the previously-solid particles are considered as droplets of liquid
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and they vaporize, following a d-square law, and undergo the effects of drag forces. Again,

a one-way interaction with the turbulent flow is used to describe the dispersion of the

droplets. It allows us to keep identical turbulence parameters while the spray properties
are modified.

Before presenting the various test cases and results of this work, normalization param-

eters should be introduced. They are based on the properties of the flow and the spray.

The droplet geometry is expressed in term of a surface and it is normalized by their

unique (monodisperse) injection value So. The motion of the droplets in the gaseous flow

and their evaporation rate lead to the characteristic times Tp and _-v; Tp is the velocity

response time (or kinetic time) of the droplets, quantifying their ability to follow or not
the fluctuations of the flow, and 7v = -So/_ is the vaporization time based on the initial

size. They have to be compared with 7t, the turbulent eddy turnover time. It leads to the

following normalized d-square law: s/so = 1 - t/vv. The other parameters are the career

phase mean velocity U and consequently, the characteristic distance L = U • 7v covered

by a droplet before its total vaporization.

3. Spray turbulent dispersion

3.1. Statistical considerations

The study of the dispersion of droplets in spatially-decaying turbulence implies to define

some new parameters. An individual tracking has been introduced for every droplet in

the flow whose Lagrangian time, position, velocity and surface are (tt, Xd, Vd, 8d(tl)).

As soon as a droplet is injected and begins to evaporate, it is associated to a 'reference
particle' whose initial properties (tt, Xr, U, sr = Sd) are the same. The reference particle

travels at the mean streamwise velocity, whereas its corresponding droplet is affected by

turbulent fluctuations. By statistically studying the difference of position and velocity

between the real droplet and its 'reference', we may characterize the turbulent dispersion.

The dispersion statistics are then deduced from the following parameters: x* = Xd -- xr,

v* = Vd -- U and _ --- Sd -- s0(1 -- Xd/L). _ is the relative surface between the tracked
droplet and a droplet that would be at the same position if unaffected by turbulence.

Statistics are considered in time and along the spanwise direction. Therefore the mean

value of any Eulerian variable A(x, y, t) is defined by the following relation

--A(x) = _1/ (1-_ //A(x,y,t)dy)dr. (3.1)

3.2. Spray polydispersion

Figure 2-(a) shows an example of the evolution of the coupled PDF: P(x, s) of the droplets
streamwise position x and their surface s. It allows us to observe the joint effects of the

evaporation and of the turbulence on the injected spray. Several positions of analysis

along both x and s directions have been plotted. These positions, labeled respectively zi

(i = 1 to 6) and s_ (j = 1 to 5), have been extensively used in this work. The profiles of

P(z, s) along the x direction for the fixed surfaces sj show (figure 2(c)) a symmetrical

Gaussian dispersion around a reference position x_/L = (1 - sj/so) corresponding to the
position of a droplet with the same sj surface but which was not affected by turbulence.

Similarly, a spreading of the droplets surface may be observed (figure 2(b)) for a given
xi streamwise position. But, in contrast with the previous profiles, the dispersion is not

symmetric around the reference surface s_/so = (1 - xi/L), corresponding to the surface
of a vaporizing droplet moving with the reference velocity U.
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It is possible to examine the PDF: P(u*) corresponding to the droplet velocity fluc-

tuations with respect to the gas mean flow. Indeed, as will be shown later, a distinction

has to be made between the gas-phase mean velocity and the particle mean velocity.

The u* statistics have been evaluated for all droplets without distinction of class, and

a Gaussian shaped dispersion may be observed along the streamwise direction. Figure 3

shows that P(u*) develops a general Gaussian shape centered on u* = 0. Three profiles

of P(u*) extracted from the DNS are plotted in figure 3(a) along with the corresponding

PDF deduced from the first two moments (W, a) of the velocity dispersion. A Ganssian

shape function (4.3) has been used, and a has been determined from the values of P(u*)

extracted from the DNS. The assumed Gaussian shape and the DNS data are similar.

This confirms a Gaussian behavior of dispersion for the droplets considered as a whole,

without reference to their size. Moreover, the fact that the Gaussian curves are centered

on u* = 0 shows that the mean droplet velocity is equal to the mean flow velocity (as

long as the droplets are not considered by classes).

The droplet energy a has been determined for every streamwise position and is com-
pared to the decaying kinetic energy k of the gas flow in figure 4. For each droplet family,

vaporizing and non-vaporizing cases have been plotted. As expected, it is possible to
observe a mass-dependent behavior of the droplets. The light droplets (TOVx, x= 0, 1),

with a small Stokes number (St = 0.06), closely follows the turbulent fluctuations of

the gas. As soon as the droplets' mass (and therefore Stokes number) increases (T2Vx),
the inertia of the droplets is increasingly significant and they no longer exactly capture

the fluctuations of the carrier phase. Thus, for a given spray, three energy levels can be

differentiated according to the characteristic kinetic time of the droplets: k the real level

of the gas kinetic energy, ap the level seen by the droplets and a the level reached by the

droplets. For light droplets with small vp, these levels coincide. As soon as rp increases,

the three levels axe differentiated with a fixed hierarchy: k > ap > 0.

3.3. Surface-conditioned dispersion

The spray is initially monodisperse but it undergoes the effects of both droplet vaporiza-

tion and turbulent mixing. These two phenomena lead to a polydisperse spray in both x
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FICURE 7. Droplet velocity dispersion parameter a as a function of the droplet relative surface
{. Left: TOV1 case, the profiles are similar, right: T1V1 case a significant effect of the droplet
volume may be observed on the dispersion.

and s directions of the phase space. In the previous section it was shown that the spray
position dispersion for a fixed droplet surface follows a Gaussian behavior. Now, it seems

interesting to focus on the velocity behavior of the droplets considered class by class.

First, from an analytical point of view, it is possible to affirm that the mean velocities

of the droplets depend on their surface for a given Eulerian position x. At any x position,

by using the reference parameters _ and u*, we know that the droplets such as _ = 0

and u* -- 0 have the same mean properties as the reference droplets which are supposed

unaffected by the turbulence. If _ > 0, then the droplet surface is larger than the reference

one. Thus, these droplets traveled more quickly than the average flow. In the same way,

the droplets such as _ < 0 went more slowly. This is confirmed by figure 5 where the mean

droplet velocity conditioned by droplet surface (u* I_) has been plotted. The analysis

has been done for several Eulerian positions previously defined (figure 2). Close to the

injection (xl), the surface range dispersion is limited but, because of the high turbulent
energy of the flow, velocity levels of the droplets are the highest. As the droplets move

away in the flow, their surface range increases but their mean velocity range decreases

because of the weaker turbulent mixing.

The conditioned mean velocity being known, it is now particularly interesting to focus

on the velocity dispersion of the droplets around this mean. Figure 6 shows, for a given

streamwise position, the PDF P(u, s) representing the velocity dispersion as a function of

the droplet surface. Gaussian reconstructions around this mean value have been carried

out. The deduced isocontours are shown figure 6 (dotted contours) and are very close to

the dispersion levels extracted from the DNS (plain contours). It appears that even by

considering the dispersion as a function of the droplets surface, it follows a Gaussian law.

But this is true only around the mean velocity of the particles and not around the local

mean velocity of the gas flow, the two of them being different. Moreover, an integration

of the dispersion along the s direction gives a global Gaussian dispersion around the

mean flow velocity (figure 3). But the corresponding energy a is a global property for the

whole spray and it does not allow a description of the dynamic of every class of droplets.

This dynamic depends strongly on the mass of the droplets; thus, to have an accurate

description of their dispersion, a surface dependence should be introduced in any model

developed to describe the dispersion of evaporating or polydisperse droplets.

Examples of the surface-conditioned energy a(_) are shown figure 7 for both TOV1
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and T2V1 cases. The statistics have been extracted for the reference Eulerian positions

and correspond to the agitation energy of the droplets around their mean velocity. For
the whole Eulerian positions, the light droplets have a similar cr(_) whatever the droplet

surface is. In fact, even the 'heaviest' (_ > 0) of the light droplets (TOV1) are small and

follow the turbulent fluctuations of the carrier phase without noticeable damping due to

their inertia. Therefore, a(_) is almost constant for every value of the surface. On another

hand, the vaporizing heavy droplets case (T2V1) leads to another conclusion. Indeed,

because of their large Stokes number, the droplets prove to have an inertial behavior,

going through turbulent structures without fully undergoing every one of them. Two

main conclusions can be drawn from the figure 7-(b). First of all, for every increasing

analysis Eulerian position (xl, x2, ... ) the general energy level a(_) increases as well,
because the droplets' loss of mass implies a decrease of the effects of their inertia. In

the same way, for a given analysis position, the dependence of a(_) on the surface of the

droplets (_) is significant and has a quasi-linear behavior.

4. Multi-fluid modeling

The fact that the turbulent dispersion of a vaporizing spray is a surface-conditioned

phenomenon is very coherent with the work done on the Eulerian multi-fluid modeling
of polydisperse sprays conducted by Laurent and Massot (2001). The purpose of this

section is to present the derivation of such an approach in the turbulent case and the
associated numerical methods.

4.1. Derivation of the model

The spray is described at the kinetic level by a distribution function f(t, x, s, Vd) which

satisfies a transport equation introduced by Williams (1958):

oy any
0-7+ .v .f + --67-s+  7vd(7.f) = o, (4.1)

where 5r is the Stokes-drag acceleration. The vaporization rate 7_ is assumed to be

independent of U, thus neglecting the convective correction term (see Laurent and Massot

(2001) for detailed modeling assumptions).

For turbulent flows, the gas velocity seen by the particles can be decomposed into

U = U + U _, where U is its average value and U' is a fluctuation which is assumed to

be a Gaussian Wiener process characterized by a Lagrangian correlation time along the

trajectories rd as well as a turbulent kinetic energy ap. It is at this level that we can
choose the scales which will be resolved. In this paper, for the first investigation of the

Eulerian multi-fluid model, we will consider that the fluctuation describes the whole of

the gas turbulence and the average value will be taken as the mean gas velocity. The

LES point of view will be investigated in a subsequent study.

Once the scales have been chosen we need to derive a kinetic equation "in the mean"

where the effects of the gas turbulence appear only through its characteristic quantities

va and ap. We use the framework introduced by Reeks (1991) and justified rigorously

by Clouet and Domelevo (1997). We obtain an averaged equation for f, which is the

statistical expectation of f; it reads

o/ on] - -
O-7+Vd.Vxf+_+Vvd(lcf)-Vv_.(DxVxf+Dv_Vv.f-) =0, (4.2)
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FIGURE 8. Droplet number density in a frame moving with the mean flow for various droplet sizes
(or Lagrangian times). Symbols: DNS statistics (circles: s2, squares: s3, trianglesd: s4, diamonds:
ss). Lines (leR): Eulerian simulations of system (4.4-4.6), T2V1 case and lines (right): Eulerian
simulations of the diffusion equation (4.7), TOV1 case.

where the averaged drag force is

3= Vd).
Tps

The random fluctuations in the gas velocity then generate, on average, a diffusion process
in the phase space. This approach requires the use of a simple vaporization model, which

decouples the vaporization process from the velocity fluctuations; in a more general case,
some additional terms should be added in (4.2). An exact expression of the diffusion

coefficients can be obtained as functions of Td and _p along the lines given in Clouet

and Domelevo (1997), Reeks (1991). These coefficients appear in the averaging process

where one has to evaluate the statistical expectation of E(fU'). This expectation can be

proved, under the assumptions made on the alea U', to be a combination of two terms

Dx Vx ] + Dyd Vv_ f where the coefficients are deduced from a characteristics analysis.
Once the kinetic equation "in the mean" is derived, we can generalize the framework

of the Eulerian multi-fluid model to the present case. As in Laurent and Massot (2001),

we make an assumption on f which appears as a closure at the kinetic level. We assume

that, for a given size, there is only one characteristic velocity, with a Gaussian dispersion
around it:

](t, x, s, Vd) = n(t, _, _) _<,,x,s)(y_ - _d(t, _, s) ),

where _ is a Gaussian of dispersion a in the d-dimensional space:

1 exp - (4.3)
=

We will then obtain the semi-fluid equations on the three moments n, Vd and a, which

can be interpreted as an internal energy of a monoatomic gas. It is worth noting that

this is a very natural introduction of the "quasi-Brownian" motion in Kaufmann et al.

(2002).

We introduce the non-dimensional quantities V = (Vd - U)/U and _ = a/U 2. From

the equation (4.2), we obtain a non-dimensional Eulerian semi-fluid model:

On -- On
0_ + V_ . (nV) - 0-7 = 0 (4.4)
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nV®V+n ,_I 08 rp

--2
T?"

= + - b:v+. + bv, (4.6)

where Dx = DxlU 2 and bv_ = _'vDv_/U 2. In the case a = 0, Dz = 0 and Dv, = 0, we

recover the equations used in the laxninar case derived in Laurent and Massot (2001). So

far the term "multi-fluid" was used for the upwind discretization in the size variable of the

semi-fluid model. However, since the semi-fluid model is also composed of a continuous

superposition of "fluids" which correspond to the surface conditioned velocity moments,

we will indifferently call it semi-fluid or multi-fluid in this paper.

In the case of very small droplets, D, takes the following asymptotic expression:

2 rd

D= _ -i '_p rp

The source term in the momentum conservation equation (4.4) then reads

(+)_r_ n_+2 ra V_n .

and can be considered, in the formal singular limit of small s, to be zero. This provides

an expression for the mass flux in equation (4.4) which can be rewritten

On On

Ot V_. (# V_n) O_ = 0, (4.7)

with I_ = 2rd _/(dr_ U_). Consequently, if we consider the gas turbulence in the white

noise limit, i.e. when _-a approaches zero and turbulence induces a diffusion process in the

velocity phase space only (Chandrasekhar (1943), Lightstone and Raithby (1998)), we

cannot retrieve the diffusion process in the limit of small particles. Let us also notice that

the singular perturbation analysis allows us to relate Va and a to the number density
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field n once it is evaluated by solving (4.7). We then not only recover the usual spatial
diffusion equation in the limit of small droplets, where the diffusion coefficient is related

to a Lagrangian correlation time and a diffusion process coupled to the vaporization

one. It is possible to recover as well the relation between the number density field, the

associated velocity and the internal energy through the diffusion coefficients b_ and Dvd.

4.2. Resolution and results

It is interesting to notice that the system (4.4-4.6), in the stationary configuration con-

sidered, is exactly related to the classical one-dimensional Euler equations where the time

has become 1- s and where the turbulent dispersion comes into play through source terms

involving the defined diffusion coefficients. An initial surface sl -- 0.95 is selected close to

the injection point. Initial fields of density, velocity and internal energy as a function of

are extracted from the sl DNS profiles. The resulting initial value problem for the system

of equation is then resolved using a MUSCL second-order extension of a finite-volume
method with a minmod slope limiter and explicit second-order time discretization on a

fine discretization, which is practicable in this one-dimensional problem.

Comparisons between DNS statistics issued from the Lagrangian dispersion of the

droplets and the Eulerian resolution of the multi-fluid model are shown in figures 8

and 9. For both heavy (T2V1) and light (T0Vl) droplets, the evolution of the density of

droplets is accurately captured by the multi-fluid formulation (figure 8). Moreover, in the
case T2V1 where the droplets are not strictly following the gas evolution, the Eulerian

resolution of the evolution of the droplets' conditioned velocity and internal energy has
been captured by the model (figure 9).

5. Conclusions

For the firsttime, comparisons between a DNS (coupled with a Lagrangian solver)of

a statisticallystationaryturbulent two-phase flow and an Eulerian model dedicated to

spray dispersionhave been carriedout. DNS showed itsabilityto capture the evolution

of some complex interactionsbetween the flow and the vaporizingdroplets.Then, the

Eulerian multi-fluidmodel has been resolvedand compared with the DNS results.The

multi-fluidmodel proved able tocapture the evolutionofa polydispersevaporizingspray

ina turbulentenvironment.This isa very encouragingresultforthe modeling ofcomplex

configurationssuch ascombustion chambers. Indeed,even ifmore testsand development

are needed, the multi-fluidformulationmay be an alternativeto the actualLagrangian

model, which may have difficultiesinrepresentingsome phenomena such as coalescence

or breakup of the droplets.
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