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Abstract 

The present series of three consecutive papers develops a general theory for linear and fmite solid 
viscoelasticity. Because the most important object for nonlinear studies are rubber-like materials, the 
general approach is specified in a form convenient for solving problems important for many industries that 
involve rubber-like materials. General linear and nonlinear theories for non-isothermal deformations of 
viscoelastic solids are developed based on the quasi-linear approach of non-equilibrium thermodynamics. 

In this, the first paper of the series, we analyze non-isothermal linear viscoelasticity, which is 
applicable in a range of small strains not only to all synthetic polymers and bio-polymers but also to some 
non-polymeric materials. Although the linear case seems to be well developed, there still are some reasons 
to implement a thermodynamic derivation of constitutive equations for solid-like, non-isothermal, linear 
viscoelasticity. The most important is the thermodynamic modeling of “thermo-rheological complexity”, 
i.e. different temperature dependences of relaxation parameters in various parts of relaxation spectrum. A 
special structure of interaction matrices is established for different physical mechanisms contributed to the 
normal relaxation modes. This structure seems to be in accord with observations, and creates a simple 
mathematical fi-amework for both continuum and molecular theories of the thermo-rheological complex 
relaxation phenomena. Finally, a unified approach is briefly discussed that, in principle, allows combining 
both the long time (discrete) and short time (continuous) descriptions of relaxation behaviors for polymers 
in the rubbery and glassy regions. 
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1. Introduction 

The general mathematical structure of the linear theory of viscoelasticity has been 
established almost fifty years ago by Gross (1 953), with more details elaborated by Bland 
(1960). In accordance with these texts, modeling solid-like linear viscoelasticity should 
include 8 linea heredit,-; fimctionzl with a convex kernel represedig the relaxation 
function, and an out-of-integral linear elastic term that models the equilibrium elastic 
effects. In another approach, Meixner (1 953,1954) and Biot( 1955) developed the theory 
of linear viscoelasticity on the basis of non-equilibrium thermodynamics, whose general 
theoretical framework was established later by de Groot and Mazur( 1962). Numerous 
applications of linear viscoelasticity to characterization and analyses of viscoelastic 
properties of liquid and solid polymers were considered in the text by Ferry (1980). If the 
volume (bulk) deformations are also important in linear region, the linear viscoelastic 
description should generally include two viscoelastic spectra, one for shearing and 
another for bulk viscoelasticity. Leonov (1 996) recently discussed the non-equilibrium 
thermodynamic approach to non-isothermal bulk relaxations. It is well known Ferry, 
1980) that the bulk relaxations are usually much faster than the shearing ones. Therefore 
except studying solely bulk relaxations, when both the shear and bulk relaxations proceed 
together, the effects of volume relaxations can be ignored. 

The big obstacle in constructing a uniform thermo-mechanical description of 
polymers is their “thermo-rheological complexity”, well documented during the last 
decade in many papers by Plazek, Ngai, Roland and coworkers (e.g. see: Plazek et al, 
1992; Ngai et al, 1997; and Roland et al, 1997). In these papers, different temperature 
dependences for different parts of relaxation spectra were observed over a very broad 
region of relaxation times or frequencies that includes all the basic types (flow, rubbery 
and glassy) of polymer mechanical behavior. 

In the flow and rubbery regions, the uniform Williams-Landell-Ferry (WLF) 
time-temperature scaling (e.g. see Ferry, 1980) is valid for relaxation parameters 
describing different relaxation modes. This scaling uses the concept of entropy elasticity 
(e.g. see Treloar, 1975), where the equilibrium elastic modulus is proportional to the 
absolute temperature, and the same temperature dependencies apply for modal viscosities 
and elastic module. In these regions, the relaxation spectra for many polymers are well 
described by the Prony series with a relatively small number of relaxation modes. 
However, in the glassy region where the fractal properties of polymers dominate, another 
time-temperature scaling exists. The viscoelastic effects in this region are well described 
by a continuous distribution of relaxation spectrum, such as the stretching exponent 
andor fractional derivative approaches (e.g. see Schiessel et al, 2000). Employing the 
Prony series in this region, though possible, is impractical since the discrete relaxation 
spectrum, being densely populated, would include numerous discrete relaxation modes. 

It has been demonstrated that a possibility to describe the thermo-rheological 
complexity is by matching both the time-temperature scales when using a conceptual, 
semi-empirical, “mode coupling” model (e.g. see Ngai et al, 1997). This model sometime 
uses more than two matching procedures, when additionally the Rouse relaxation region 
(e.g. see Ferry, 1980) is involved. Some additional arguments have been applied within 
context of this model to cross-linked rubbers (Roland et al, 1997). 
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Several molecular-based theoretical approaches to linear relaxation phenomena in 
cross-linked rubbers have also been recently developed (Vigilis and Heinrich, 1994; 
Bastide and Boue, 1996; Gotlib and Gurtovenko, 1997). In these theories, a rubber has 
been modeled as “molecular network” filled with a Newtonian liquid, with the polymer 
chains in network being modeled as in the classic statistical theory of rubber elasticity. 
The interactions between the liquid and network and between the segments of the same 
strands were modeled as different types of viscous friction. These approaches are aimed 
at a theoretical derivation of discrete relaxation spectra with only a few physical 
parameters. Whereas Gotlib and Gurtovenko (1997) analyzed the homogeneous polymer 
network with a “classical” elastic contribution, Bastide and Boue (1996) studied the 
effect of topology on the network elasticity, and Vigilis and Heinrich (1 994) analyzed the 
effects of the network heterogeneity, such as different types of disorder in the network 
structure and topology. 

Some efforts were also made to develop mathematical procedures for finding the 
relaxation spectra directly from experimental data, which has long being established as 
generally an ill-posed problem (e.g. see review in paper by Simhambhatla and Leonov, 
1993). Several regularization methods with the use of computerized procedures have 
been developed in the literature to overcome this difficulty. Nonetheless, these 
procedures of extracting the Prony parameters still depend highly on initial guesses about 
the numbers of relaxation modes, and usually operate with very high numbers of these. 
Fulcheron et a1 (1 993) and Simhambhatla and Leonov (1 993) demonstrated that the Pade- 
Laplace method is a more reliable tool for experimental determination of relaxation 
spectra when represented by a Prony series. It operates with an analytical continuation of 
therelaation h i t i o n  into the- complex-plane- wherecthe problemof extraction- of 
relaxation spectra is well posed and describes the Prony series with considerable less 
numbers of relaxation modes. A computerized Pade-Laplace procedure for extracting 
relaxation modes from a combination of different experiments was developed and 
demonstrated in a paper by Simhambhatla and Leonov (1993) and in the Ph.D. thesis by 
Simhambhatla (1 994). In practical applications of the procedure to a viscoelastic solid, 
the true elastic (out-of-integral) component should be found fKst and then excluded from 
the Pade-Laplace procedure. The same is true for the cross-linked polymers or 
elastomers. No quantitative application of such an approach to solid-like viscoelasticity 
has yet been demonstrated. 

The structure of the present paper is as follows. We first consider the general 
thermodynamic scheme for analyzing the solid-like viscoelastic phenomena, much 
similar to that published earlier in papers by Meixner (1953,1954), Biot (1955) and 
Leonov (1996). Then at the end of the paper we discuss the extension of our scheme to 
incorporate the effects of thermo-rheological complexity. We analyze in this paper only 
incompressible (shearing) solid like relaxations. This is because out of two (bulk and 
shearing) independent, linear relaxation phenomena, the non-isothermal bulk relaxations 
have been recently discussed by Leonov (1 996). 

2. State Variables and Free Energy Function 

We hypothesize that the complete set of macroscopic state variables, sufficient to 
describe the linear shearing viscoelasticity are: the temperature T ,  the actual (total) 
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infinitesimal, traceless Hencky strain tensor h and the set of “hidden” tensor variables 

(hk}  - - (k = 1,2, ..., n) , depending generally on the space-time variables x, t. Although a 
linear theory does not necessitate knowing the physical sense of the hidden variables h 
we can guess, and justiQ later, that they represent elastic strain contributions in the total 
visccelwtic str~;,? origimted from k-tk, physicd mechmisms. Due to this guess we 
assume that the tensors h are traceless, symmetric, second-order tensors. We also 

assume that the hidden variables h , describing pure non-equilibrium properties of the 
system, vanish in the equilibrium. 

We now introduce the specific (per mass unit) Helmholtz’ free energy 
F depending on the above set of state variables: 

=o ’ 

=k ’ 

=k 

=k 

F = F(T;h  =0’=1 h ,...,en) (trh =O =trh =k =O). (1) 

The specific entropy, S , and all other specific potentials, such as internal energy U ,  can 
then be found using common thermodynamic formulas, including, the Gibbs’ relation: 

dU=dFiTdS ,  U=F+TS ,  S=-aF/aTlh,L , etc. (2) 

Near the equilibrium, unloading state, which is far away from possible phase transitions, 
the fiee energy F is represented as a quadratic, positively definite form: 

n 

pAF=W=1/2G0(T) trh2+1/2x  =O G,(T)tr(h =k .h = j  ), (3) 
k,j=l 

corresponding to the minimum of the free energy. Here Wis called the elastic potential. 
The positive definiteness of form (3) means that the equilibrium shear modulus Go is 
positive and the n x n symmetric energetic matrix, 11G, (T)ll is positive definite, too. 

In thermodynamic equilibrium under a stress action, 

Here c is the equilibrium extra-stress tensor, i.e. stress without isotropic pressure. The 
=O 

second formula in (4) is a consequence of our assumption that the 
h vanish in equilibrium. Namely because of this, the possible 
=k 

hidden variables 
interactive term 

n 

CMk(T) t r (h  =O - h  =k )is absent in (3). 
k=l 
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3. Clausius-Duham Inequality and Non-Isothermal Relaxation Phenomena 

To analyze the behavior of the system in non-equilibrium, the common expression for the 
entropy production (or source of entropy) P, is employed in the form: 

Here qis the thermal flux, is the space gradient symbol, is the (traceless) strain rate 
tensor, and cr - is the extra stress tensor. The inequality in the bracket of (5) indicates that 
according to the second law, the entropy production P, must be positive for all non- 
equilibrium processes and vanish in equilibrium. With this inequality, the right-hand side 
of (5) represents the well-known Clausius-Duham inequality. 

- - 

- 

Substituting (3) into (5) yields: 

where 

n 

cr =O =Go(T)h ,  =O cr =k  =CG,(T)E, .  -J 
k=l 

(7) 

Instead of tensors dh I dt , we now formally introduce new kinematical variables, 
=k 

the second-order traceless tensors e’ , satisfying the “evolution equations”: 
=k 

dh - -k /d t+eP =k = e  = (k=0,1,2 ,..., n). (8) 

Evidently e’ = 0 for k = 0,  since the well-known kinematical relation for h is: =o = =O 

d h  l d t = e  - . 
=O - (9) 

For k 2 1, the unknown tensors e’ in (8) characterize the irreversible effects, and in fact, 

the evolution equations (8) simply represent the definition of tensors e’. 
Substituting now (8) with account for (9) into (6) yields: 

=k  

=k  

Here cr is called the thermodynamic (extra) =T 

k=O 

stress tensor, since it is completely 
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determined by the free energy function W . 
Equation (1 0) distinctly demonstrates three sources of dissipation in the system: 

(i) non-isothermality, (ii) the deviation of the actual stress o e o m  - the thermodynamic 
one o =T ’ and (iii) non-equilibrium dissipative effects originated in the above n irreversible 
physical mechanisms. The last two terms in (10) are called the mechanical dissipation. 
The sense of the second source of irreversibility is easily demonstrated in the case when 
the irreversible contributions in viscoelasticity, the tensors h , vanish. Then o =o , 
and the second term in the first equation in (1 0) correspond to a dissipative mechanism of 
the Kelvin-Voigt type. This mechanism denies “instantaneous elasticity”, aas observed in 
experimental studies. The existence of instantaneous elasticity necessitates cr = c . 
Thus for a modeling of the observable viscoelasticity with instantaneous response, (10) 
takes the final form: 

- 

=k =T =O 

=T =O 

The entropy production in (1 0) (as well as in (1 1)) is represented as a typical 
bilinear form of the type EX, Y, . The independent quantities _a and o in (1 1) are 

treated as the “thermodynamic forces”, Xm , and conjugated to them are the independent 

quantities, q and e”, known as the “thermodynamic fluxes”, Y,. Note that the 
thermodynamic fluxes are represented via time derivatives that change their signs under 
the reverse time transformation, t+-t .  In the linear scheme of non-equilibrium 
thermodynamics, the independent thermodynamic forces and fluxes are related via linear 
phenomenological relations with temperature dependent scalar coefficients. These 
relations include, in particular, the constitutive equations for the relaxation phenomena. 
Although the general case (10) is easy to analyze, we consider below only more 
physically meaningful and simple case described by (11). Then the linear, 
phenomenological, constitutive relations take the form: 

=k 
m 

- =k 

m=l 

Such basic principles as simple arguments of the tensor dimensionality (Curie’s 
principle) and Onsager’s principle of symmetry for kinetic coefficients Ahhave been 
taken into account in the constitutive relations (12) and (13). Substituting these into (1 1) 
yields: 
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Here the second term in the right-hand side of the fxst relation in (14) represents the 
contribution in entropy production due to mechanical dissipation. According to the 
second law, the entropy production must be positive in non-equilibrium. Because the two 
terms in (14) are independent, the coefficient of heat conductivity, A, is positive and the 
h e t i c  m&ix A I is positive defiite, too. II kllf 

Expressing e’ via0 due to (12), and in turn, CJ via h due to the second relation =k =k =k =k 
in (7), yields: 

n 

d h  =k l d t +  Akm(T)Gmj(T)h. =,I = e = d h  = =o ldt ;  

( k  = 1,2, ..., n)  

- - a = G o ( T ) h  =O + 2 G,(T)h. =I  (15) 
m,j=1 k, j= l  

Equations (1 5) represent the general formulation of linear constitutive equations for 
viscoelastic solids with instantaneous elasticity. They also justify our previous guess that 
the hidden variable h is elastic contribution from the k-th non-equilibrium physical 
mechanism. 

=k 

4. Normal Relaxation Modes: Thermo-Rheological Simplicity 

In order to demonstrate that the general, linear, solid, viscoelastic constitutive equations 
(15) reduce to the normal (or independent relaxation) modes, we initially employ the 
assumption of the thermo-rheological simplicity: 

Here Go ( T )  (- T )  is the shear modulus known in rubber elasticity (e.g. see Treloar, 1975), 
q0(T)is a characteristic viscosity that far away from the glass transition is described by 

the Arrhenius dependence; llgc 11 and llau 11 are numerical n x n , symmetric and positive 
definite matrices. The application of general scaling formulae (1 6) to polymeric materials 
has been widely discussed by Ferry (1980). Although the assumption of thermo- 
rheological simplicity has been criticized in cited papers by Plazek, Ngai, Roland et al, it 
still approximately holds for polymers above their glass transition temperature for 
restricted frequency and time intervals. 

Because both the numerical n x n matrices, llgu 11 and lla, 11, are symmetric and 

positive definite, it is possible to introduce the “normal coordinates”, tensors h ( t , ~ ) ,  as 
follows: 

A 

=k 

ik - = T q , h ,  -J (k = 1,2 ,..., n ) .  
j=1 
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Here llqkiII is a numerical orthogonal n x n matrix that reduces simultaneously both the 

matrices 11g, )I and /laV 1) to the diagonal form with respective principal values g k  and ak . 
Under the transformation (1 7), the constitutive equations (1 5) 

dL =k I dt + =k I ek (T )  = - - e = dEo - 1 dt ; - - CT = Go (T)h =O + 2 Gk (T)h =k 
k=l 

Here the parameters Gk ( T )  and ek (T )  are defined as follows: 

take the form: 

(k = 1,2,...,n). (18) 

Without loss of generality, we now assume that components of the numerical 
matrices g ,  and aV I are sorted so that the products of their principal values, gk ak, 
monotonically decrease with increasing number k, i.e. downwards along the main 
diagonal. Therefore, due to (1 9), 

II II II II 

The choice of such a monotonous series is needed in the discrete case for formulating the 
common presentation of a relaxation spectrum, G = G(B(T)),, with a possible formal 
continuous generalization. Evidently, the series G, (T )  is generally non-monotonous. 

The free energy function (3) and the contribution of mechanical dissipation in the 
entropy production (the second term in the first equation in (1 4)) can be expressed via the 
normal coordinates as follows: 

Consider also the integral form of the above formulas in isothermal case when 
Gk ( T )  and 6 k  (T) are constant. Integrating the first equation in (1 8) and substituting the 
result in the second one, yields: 

1 t 

Here w(t) is the relaxation function defined for the discrete relaxation spectrum 
{Gk ,e,} as the Prony series: 
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n 

w(t) = G, exp(-t / e&) .  
k=l 

Formulae (3a) and (14a) can also be represented in the form: 

I 1  

=1/2Go(T)tr[h2(t)]+1/2 =O J J ~ ( 2 t - z ~  -z2)tr[dh =O (z1)-dh =O (z,)]. (3b) 
*-m 

I 1  

D =-1/2 J Jy42t-z, -z2)fr[dho(z1).dho(z2)]. - - - - (14b) 
- e m  

Here y42t - z, - z2 ) = dv( t )  / dtl l+21--r,--r2 (5 0). Formulae (21), (22), (3b), and (14b) are 
well known in the linear viscoelasticity with a discrete relaxation spectrum (Gross, 1953; 
Bland, 1960). 

In accordance with observations, the temperature variations of the elastic modulus 
Go in the non-isothermal case are usually neglected. Then the new time-like, non- 
dimensional variable t * is introduced as follows: 

I 

t* = J d z / B ( T ( z ) ) .  

Using the characteristic modulus G,(T)and relaxation time B0(T) as scaling 
parameters, it is possible to represent the constitutive equations (1 8) in non-dimensional, 
temperature independent form, which demonstrates the well-known time-temperature 
superposition principle. When it is applicable to experimental viscoelastic data, they are 
represented in the form of “master curves”. The dependence Go ( T )  is commonly used in 
the form of that known in the rubber elasticity (Treloar, 1975), whether the solid-like or 
liquid-like viscoelasticity is studied. The dependence 0, ( T )  above the glass transition 
temperature is commonly used in the WLF form, which at higher temperatures is reduced 
to the familiar Arrhenius form. 

5. Normal Relaxation Modes: Thermo-Rheological Complexity 

In this case both thermodynamic matrices, llGikII and llAikII can be transformed under 
isothermal conditions to the diagonal form, i.e. the isothermal problem once again can be 
reduced to the analysis of independent, normal relaxation modes. However, the 
factorization (16) is not valid here anymore. It means that there is a dependence of the 
temperature parameters on the number of the discrete relaxation mode. In other words, 
different temperature dependences exist in this case in various parts of relaxation 
spectrum. Luckily, the experimental observations by Plazek, Ngai, Roland and their 
coworkers, cited above, found these temperature dependencies to be relatively simple, 
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with mostly two consequent intervals of the relaxation spectrum having different 
temperature scales. According to the thermodynamic approach demonstrated in this 
paper, it means that there are negligible physical interactions between these almost 
independent parts of the relaxation spectrum. 

This situation found a sound physical interpretation, especially in the case of 
polymer melts with very long and flexible polymer chains and narrowly distributed 
molecular weight (e.g. see Ngai et al, 1997). It has been revealed that for these polymers, 
three different relaxation spectra can be introduced that relate to the three different scales 
of molecular motion. These are: (i) the supra-molecular scale where motions of large 
entangled macromolecules, which being almost independent on the intra-molecular 
chemical chain structure, contribute to the dynamic module in the flow and plateau 
regions; (ii) the intermediate, Rouse’s molecular scale of motion, which is independent of 
the presence of entanglements, and being nearly independent of intra-molecular chemical 
chain structure, contributes to the ascending (after plateau) region in the dynamic 
module; and (iii) the glassy region with a small intra-molecular scale of motion, which 
depends highly on the chemical structure of monomer units in polymer chains. 
Remarkably, the molecular motions within these three scales can be considered as 
practically independent Almost the same physical picture can be found in (usually 
slightly) cross-linked rubbery materials (Roland et al, 1997), except for the first large- 
scale molecular motion region, which is now mostly affected by the cross-links. This is 
the case considered in the present paper. 

In our opinion, the intermediate, Rouse’s temperature scaling should have the 
same WLF temperature dependence of typical relaxation phenomena, as the first large 
scale motions of polymer chains. This scaling has been introduced by Ngai et a1 (1997) to 
narrow the “disagreement band” and obtain perfectly smooth master curves. Since the 
temperature scaling is in principle different only in two regions, glassy and flowhbbery, 
we develop below an example using a two-scale approach. However, there is no 
difficulty to extend it for as many temperature dependences as needed. 

In order to describe this complex thermo-reological behavior, we make a 
simplifying assumption that the above two molecular motions are completely 
independent. In our formal scheme it may happen only if both the energetic, Gn=IIGII, 11, 
and kinetic, A,=11&11, n x n  matrices have similar diagonal block structures (see 
Appendix). It means that the suggested structure of these matrices is that of similar 
diagonal block matrices OB)  matrices that represent the above two main molecular 
mechanisms of polymer motions as: 

The corresponding rank of rk component matrices G ,  and A, in Eq.(24) are symmetric, 
positive definite, and are assumed to be represented in the partially factorized form: 

G ,  = Gk(T)g,, A ,  = qk(T)ark (k = 1,2); G,,(T)/G,(T) = c = const. (25) 

Here g,.. and ark (k = 1,2) are symmetric and positive definite numerical rank of 
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rk matrices. 
We now use the orthogonal DBM, Q ,  = diag{Q, , Qr2},  (5 + r2 = n)  that consists 

of orthogonal rank qnumerical matricesQ, of the same structure as shown in Eqs.(24) 
and (25), and reduce the DB matrices G n  and A, to the diagonal form: 

It is also possible to introduce normal tensor coordinates, =k i ( t , x ) ,  as 

that reduce CE's (1 5) to the form of independent normal modes: 

Here the parameters GL ( T )  and 0; (7') are defined as follows: 

B.(T) vi IG, 
G : ( T ) = G j ( T ) g ,  ; 8L(T)='-=-, 

akgk akgk 

where 

G, = G I ,  l < k < r , ;  G, =G2,  <k<r2 ;  (30) 
e,=@,, l s k q ;  e;=@,, 4 5 k < r 2 ;  . 

We assume without loss of generality once again that inequalities (20) hold. 
Therefore, one can construct the discrete relaxation spectrum G = G(B(T)), , with an easy 
formal generalization for the continuous relaxation spectrum. Also, in the isothermal 
case, the formulae (21), (22) and also (3a,b) and (14a,b) hold true, however, with such a 
modification that the two different parts of the relaxation spectrum (22) have different 
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temperature dependences. We now assume that 

These inequalities have been observed in all types of polymers as well as in cross-linked 
rubbers. Then inequalities (20) and ( 3 1 )  guarantee the partial scaling for dynamic and 
relaxation experimental data. 

Consider as an example an interpretation of isothermal dynamic experiments, 
where harmonic oscillations with frequency w are applied to a sample of a cross-linked 
rubber in a very wide range of frequencies and temperature. This is the situation where 
the thermo-rheological complexity cannot be ignored. The expressions for the real 
G'(w) and imaginary G"(w)parts of the complex dynamic module are: 

Using the inequalities (20) and (31) ,  one can show that there are two different 
consecutive "temperature independent" scaling for both GI(@) and G"(w) in their 
corresponding parts of the frequency range: 

Similar types of scaling can be employed to other viscoelastic tests, such as creep or 
relaxation after suddenly applied constant strain, etc. It should be noted that applicability 
of the proposed scaling to creep data is based on the well-known fact that for the discrete 
viscoelastic spectra, the retardation spectrum is "imbedded" into the relaxation one, so 
8, > gk > et+, (e.g. see Bland, 1960). Here gk are points belonging to retardation 
spectrum. It means that in continuous approximations of the viscoelastic spectra, both 
spectral regions coincide. 

As mentioned, the continuous relaxation spectra are commonly employed in the 
description of relaxation phenomena in the glassy state. This means that the above 
thermodynamic scheme, whic uses a discretized matrix approach with densely populated 
interactive matrices for the fast relaxation phenomena, should be changed to a 
continuous, integral approach. Although this change is quite physically transparent, its 
formal, strict development is still desired. As established here a unified scheme can 
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combine both the long time (discrete) and short time (continuous, or densely populated 
descretized) approaches to relaxations of polymers in rubbery and glassy regions. 

6.  Conclusion 

The thermodynanic derivztion of linestr viscoelastic constieLtive ~ ~ 1 1 ~ t i o n s  “y-c discmsed 
above can be seen as a justification for the completely phenomenological theory of linear 
viscoelasticity. In the thermo-rheological simple case, we used the time-temperature 
superposition principle to reduce the constitutive equations to the form of normal (non- 
interactive) relaxation modes. This derivation is quite similar to the well-known 
derivations from the papers by Meixner (1953,1954) and Biot (1955) (see also Leonov, 
1 996). The thermodynamic derivation of linear viscoelastic constitutive equations in the 
thermo-rheological complex case assumes different types of independent equilibria and 
non-equilibrium interactions between the various polymeric subsystems. We have 
modeled these independent interactions using a well-known formalism of diagonal block 
matrices. This approach can also be applied to model dielectric relaxations for thermo- 
electrically complex cases. 

The demonstrated theory creates a solid thermodynamic framework for the more 
detailed, molecular models. These present valuable and complementary parts to 
continuum approaches because they can answer the important unresolved questions about 
the size and “density” of population of interactive elements, along with different 
temperature dependencies of the independent interactions. For example, if the density of 
interactive elements of microstructure is high, as usually happens in the glassy region, 
then enormous amounts of interactive elements should be involved in the rapid relaxation 
response. These rapid relaxations can be successfully described by various continuous 
approaches, such as the “stretched exponential” and fractional calculus approaches 
(Schiessel et al, 2000), related to the fractal physics of these relaxation phenomena. 
Although in this paper we demonstrated the thermodynamic approach as applied to 
discretized relaxation phenomena, the approach could be easily extended to the 
continuous case, when operating with integral equations, instead of matrices. 

The thermodynamic framework for linear viscoelasticity in both thermo- 
rheological simple and complex cases can also be used by applying such a direct and 
mathematically well-posed procedure as developed by the Pade-Laplace method applied 
to viscoelastic phenomena by Fulcheron et al (1993) and Simhambhatla and Leonov 
(1 993) for finding the effectively discretized relaxation spectrum directly from 
experimental data. This method can also be applied to different parts of the relaxation 
spectrum under various constant temperatures to reveal their possible different 
temperature dependencies. It is of interest to use the Pade-Laplace method for effective 
discretization of continuous relaxation spectra, such as stretched exponential or trhe 
Mittag-Leffler function,, to evaluate the density of population for the various relaxation 
mechanisms. 

In the case of rubber viscoelasticity, it is also of interest to find the change in 
relaxation spectrum and its temperature dependence during the cure reaction when the 
emerging cross-links change the rubber state from flowing (“green”) to completely cured 
cross-linked rubber. Such an approach has been initiated by Mitra (2000) to reveal the 
change in the linear viscoelastic spectrum during the cure reaction, however, without 
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application of the Pade-Laplace technique. 

Appendix 1: Diagonal Block Matrices 

Let M, be a nxn matrix and{M,} (r < n)be a set of r x r  matrices. We define the 
diagonai block (DB) matrix as a combinedM,matrix representing a diagonal, ordered 
sequence of the component matrices M, : 

Obviously, the order in the diagonal sequence (Al) is essential. 
Consider now the case when the component matrices M,are symmetric and 

positive definite. Then it is evident that for any combination in Eq.(Al), the DB matrix 
M, is symmetric and positive definite. We call the component matrices properly sorted 
if their principle values increase along the diagonal downwards. A DB matrix is called 
monotonous if the combined principal values of its properly sorted component matrices 
monotonically increase or decrease along the diagonal downwards. The structure of a 
DBmatrix is defined by the consequence of the component matrices of various (in 
particular, the same) allowed ranks. Two DB matrices are called similar if their 
component matrices are of the same structure and have the same properties, i.e. if they 
are, e.g., symmetric or positive definite, or orthogonal, etc. 

Consider now a vector X, E %,, and a linear operation in%,, represented by a 
DB matrix, M, : 

Equation (A2) demonstrates that any n x n  DB matrix Mnwith a given structure 
fractions the total space %, into the full set of mutually orthogonal, non-intersecting sub- 
spaces Sr  of lesser dimensionality. Equation (A2) holds for any DB matrix of various 

structures. For example, if the M,in (A2) are orthogonal, i.e. M, = Q , ,  the 
transformation (A.2) is orthogonal. If the M, are symmetric ri x ri component matrices 

in a DB matrix, with principal values m, , and Q ,  are the ri x ri component matrices of 

the orthogonal DB matrix, which reduce the component matricesM, to the diagonal 

form, M: , then 
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The demonstrated above properties of DB matrices show that they behave quite similarly 
to regular diagonal matrices. 
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