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Ozgur Yeniay
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1. Introduction

Space transportation system conceptual design is a multidisciplinary process containing
considerable element of risk. Risk here is defined as the variability in the estimated
(output) performance characteristic of interest resulting from the uncertainties in the
values of several disciplinary design and/or operational parameters. Uncertainties from
one discipline (and/or subsystem) may propagate to another, through linking parameters
and the final system output may have a significant accumulation of risk. This variability
can result in significant deviations from the expected performance. Therefore, an
estimate of variability (which is called design risk in this study) together with the
expected performance characteristic value (e.g. mean empty weight) is necessary for
multidisciplinary optimization for a robust design. Robust design in this study is defined
as a solution that minimizes variability subject to a constraint on mean performance
characteristics.

Even though multidisciplinary design optimization has gained wide attention and
applications, the treatment of uncertainties to quantify and analyze design risk has
received little attention. This research effort explores the “dual response surface”
approach to quantify variability (risk) in critical performance characteristics (such as
weight) during conceptual design.

2. Multidisciplinary Conceptual Design

In launch vehicle conceptual design studies, system performance can generally be
determined by the use of computerized analysis tools available in many disciplines.
However, these complex sizing and performance evaluation computer codes utilize iterative
algorithms. In many cases, they are expensive and difficult to integrate and use directly for
multidisciplinary design optimization (MDO). An alternative is to construct mathematical
models that approximate the relationships between performance characteristics and design
variables. These approximation models, called response surface models, may then used to
integrate the disciplines using mathematical programming methods and for
multidisciplinary system level optimization.

3. Response Surface Methods



A second-order approximation model of the form given below (Equation 1) is commonly
used in approximation model building since in many cases it may adequately model the
response surface especially if the region of interest is sufficiently limited.

Y =bg + 2 b X + 2 bii X 2+ 2 2 by xj ) (1)

In equation 1, the x; terms are the input variables that influence the response Y, and by,
bj, and bj; are estimated regression coefficients. The cross terms represent two-parameter

interactions, and the square terms represent second-order non-linearity. There are various
response surface techniques that may be utilized to sample the design space efficiently to
construct a second order approximation model. Some of these are, central composite
designs (Montgomery, 1991; Myers, 1971; Khuri and Cornell, 1987) and D-Optimal
designs (Craig, 1978; Roux et. al.,1996). Response surface methods using these designs
have been applied to various multidisciplinary design optimization problems (Guinta et.
Al, 1996; Lepsch et al, 1995; Unal et. al, 1996; Roux et al, 1996; Unal et al, 1998). The
main advantage is that response surface methods can aid multidisciplinary design
integration, and provide rapid design analysis and optimization capability in many
applications. However, in these (and most) response surface model building applications,
only the mean value for the performance characteristic (Y) was studied and optimized
ignoring design risk or variability due to uncertain design parameter values (noise).

4. Dual Response Surfaces

Response surface methodology is designed to construct an approximation model for the
response Y. This approximation model is then used to determine the best values of
design parameters that optimize the response or the critical quality characteristic. In such
problems typically the focus is on the mean value of Y where variance “S>” is assumed to
be small and constant. However, if the variance is not constant, only constructing a
response surface model for the mean may not be adequate and optimization results can be
misleading. Kim and Lin (1998) note that the assumption of constant variance is often
not practically valid and in these events, classical response surface methods can be
misleading.

An alternative to classical response surface methods is the “dual response surface”
approach, which builds two models; one for the mean and one for the standard deviation
(Vining & Myers, 1990; Lin & Tu, 1995; Wang, 1996; Del Castillo and Montgomery,
1993; Del Castillo, Fan & Semple, 1997; Tong, 2001, Tang and Xu, 2002).

Y, =by+? bixi+? bjijx; 2+? ? b xjxi +& (2
(] 1 i Xi 1j X1 %)

Yo=co+? Cixj+? Cijxj2+? ? Gjxixj+e (3)

The dual response surface approach simultaneously considers the estimated mean () and
the standard deviation (o) as a measure of design risk.

The steps in the dual response surface approach can be summarized as:



1) Conduct the experiments to sample the design space using a response surface
technique such as central composite design or a D-Optimal design,

2) Repeat the experiments over the range of uncertain design (noise) parameters to
capture variability,

3) Compute the mean and the variance for each experiment

4) Construct response surfaces for both the mean and variance,

5) Determine the best values of x; to optimize the mean response subject to a constraint

on the variance or determine the best values of x; to minimize the variance subject to
a constraint on mean response.

The dual response surface approach therefore can be utilized in approximation model
building to quantify the variability in the mean value of the performance characteristic
and for optimization considering both the mean response and variability to reduce design
risk. Several studies successfully utilized the Dual Response methodology to
optimization studies that considered the mean and the variability (Luner, 1994; Copeland
& Nelson, 1996; Del Castillo, Fan & Semple, 1999, Dhavlikar, Kulkarni & Mariappan,
2002).

In this study, the dual response surface approach is applied to the conceptual design of a
wing-body vehicle, configuration study. The results are presented and the strengths and
limitations of the dual response surface approach are discussed.

5. Wing Body Launch Vehicle Configuration Study

An application of dual response surfaces is described for a configuration optimization
study of a rocket-powered, single-stage-to-orbit launch vehicle. The vehicle has been
sized by the Vehicle Analysis Branch (VAB) engineers to perform a 25,000 1b. payload
delivery to the International Space Station from Kennedy Space Center. Near term
structures and subsystem technologies are assumed in its design. The vehicle has a wing-
body configuration with a slender, round cross-section fuselage and a clipped delta wing.
The delta wing has elevon control surfaces for aerodynamic roll and pitch control. Small
vertical fins, called tip fins, are located at the wing tips for directional control and a body
flap extends rearward from the lower base of the fuselage to provide additional pitch
control.

The purpose in this study is to determine the best values of the design parameters (that
satisfy aerodynamic constraints) to minimize mean empty weight (WT) subject to a
constraint on the variance. Therefore, empty weight is the critical performance
characteristics to be optimized in this case. This multidisciplinary optimization and
sensitivity study involved the following steps.

5.1. Identify Design Variables and Feasible Ranges

Four weight & sizing and aerodynamics design parameters were varied over a fixed
range. The four common parameters included in aerodynamics and weights & sizing
analysis were the fineness ratio (defined as the fuselage length divided by diameter), the
wing area, the tip fin area, and the body flap area. The other parameters included were



ballast-weight and mass-ratio for weights and sizing analysis and angle of attack and
elevon deflection for aerodynamics analysis.

In this study, ballast-weight and mass-ratio were taken as the noise variables. Noise
variables are those that one has little or no control on the values during operation.
Therefore, one design goal is to reduce the variability in performance (weight in this case)
due to the uncertain values of these parameters.

The ranges for the six weights & sizing parameters are given at Table 1.

Design Parameters Range
Fineness ratio (FR) 4 7
Wing area ratio (WA) 10 20
Tip fin area ratio (TP) 05 3
Body flap area ratio (BF) 0 1

Noise Parameters

Ballast weight (BL) 0 0.04
Mass ratio (MR) 7.75 8.25

Table 1. Weights & Sizing Parameters and Ranges

5.2. Construct the Experimental Design Matrix

The next step is to construct an experimental design matrix that can enable the
construction of a second-order response model for 4 parameters. Carpenter (1993) has
conducted a study comparing the performance of various experimental design methods
for approximation model building in terms of the quality of fit in the region studied and in
terms of the number of design points required. His findings suggest that the D-optimality
criteria as a good approach for constructing experimental designs for computer
experiments. Other studies in the literature also found that the D-optimality criterion
provides a rational means for creating experimental designs for an irregularly shaped
response surfaces (Guinta et. al, 1996). Therefore, D-optimal designs are used in this
study to construct an experimental design to sample the design space. The following
section gives a background on D-optimal designs.

5.3. D-Optimal Designs

A statistical measure of goodness of a model obtained by least squares regression analysis
is the minimum generalized variance of the estimates of the model coefficients. One way
to construct a quadratic model using minimum point designs, leading to minimized
variance of the least squares estimates, is to use the D-optimality criterion. Consider the
problem of estimating the coefficients of a linear approximation model below by least
squares regression analysis.



y=bo+? bix; (4)
Equation 4 can be expressed in matrix notation as:
Y=XB+e (5)

Where Y is a vector of observations, e is the vector of errors, X is the design matrix and
B is a vector of unknown model coefficients (by and bj). The design matrix is a set of

combinations of the values of the coded variables, which specifies the settings of the
design parameters to be performed during experimentation. B can be estimated by using
the least squares method as:

B=(XX)!XY (6)

A measure of accuracy of the column of estimators, B, is the variance-covariance matrix
which is defined as;

V(B) = (XX) (7)

where o2 is the variance of the error. The V(B) matrix is a statistical measure of the
goodness of the fit. Equation 7 indicates that V(B) is a function of (X'X)'1 and therefore,
one would want to minimize (X'X)'1 to improve the quality of the fit. Statisticians have

shown that minimizing (X'X)'1 is equivalent to maximizing the determinant of X'X
(Mitchell, 1974, Montgomery, 1991, Craig, 1978, Unal et al, 1996). Therefore,
generating a design matrix which enables the construction of a good least squares
approximation model translates to maximizing the determinant of the X'X matrix and
experimental designs that maximize [X'X]| are referred to as D-optimal designs. Here, “D”
stands for the determinant of the X'X matrix associated with the model.

A number of authors have developed algorithms for obtaining D-optimal designs for
specific models using mathematical programming methods (Mitchell, 1974, Craig, 1978).
There are also numerous software packages available.

In this study, JMP ® software was utilized to construct the D-Optimal design matrix
given in Table 2. With this design matrix, the four parameters are studied at three levels
(values) as represented in coded form by, -1, 0 and +1. As an example, a -1 for fineness
ratio corresponds to 4 (lower bound), a 0 corresponds to 5.5 (mid value) and +1
corresponds to 7 (upper bound). These coded values are then transformed into actual
parameter values to be used in conducting the analysis. The following noise parameter
matrix.

5.4. Conduct the Matrix Experiments



In this study, all of the geometry and subsystem packaging of the SSV were performed
using a NASA-developed geometry modeling tool. The Aerodynamic Preliminary

Analysis System (APAS) was used to determine vehicle aerodynamics. The weights and
sizing analyses were performed using the NASA-developed Configuration Sizing
(CONSIZ) weights/sizing package. This process was continued for the 45 rows of the D-
optimal design matrix, each of which corresponds to a vehicle design generating the data.

For each of the 45 rows, experiments were repeated at 5 points corresponding to the five-
point design matrix shown below to simulate the variability (Phadke, 1989) due to the
uncertain values of the two noise variables (Ballast weight and Mass-Ratio). From the
weight analysis, data points for empty weight were obtained (Table 2).

BL -1 +1 -1 +1 0

MR -1 -1 +1 +1 0

FR| WA TP BF Weight1 Weight2 Weight3 Weight4 Weight5

1 -1 -1 -1 -1 234798 266104 269950 309903 268058
2] -1 -1 -1 -1 234798 266104 269950 309903 268058
3 -1 -1 -1 1 244264 277534 281649 324255 279592
4 -1 -1 -1 1 244264 277534 281649 324255 279592
5 -1 -1 0 1 269903 308403 313455 363252 310966
6 -1 -1 1 -1 287841 329905 335853 390673 332920
71 1 -1 1 -1 287841 329905 335853 390673 332920
8 -1 -1 1 1 299593 344325 350597 409106 347505
9 -1 -1 1 1 299593 344325 350597 409106 347505
10] -1 0 -1 -1 280089 320919 326475 379603 323736
11 -1 0 0 1 317505 366332 373475 437873 369956
12| 41 0 1 -1 338637 392009 400226 471188 396133
13| -1 0 1 0 344174 398758 407264 480087 403068
14 -1 1 -1 -1 333190 386010 393710 464042 389961
15| -1 1 -1 0 338136 392098 399987 471954 396060
16 -1 1 -1 1 343157 398199 406367 480012 402341
171 -1 1 0 -1 364494 424296 433686 514270 429055
18 0 -1 1 0 224385 255099 259353 298743 257245
19 0 0 -1 0 218940 248584 252729 290750 250729
20 0 0 0 1 237502 270968 275840 319109 273437
21 0 1 -1 1 252036 288707 294159 342098 291469
22 0 1 0 -1 262932 301882 307941 359117 304954
23 0 1 1 -1 281667 324663 331742 388679 328270
24 0 1 1 0 284972 328773 335938 393952 332402
25 0 1 1 1 288321 332893 340190 399307 336587
26 1 -1 -1 -1 171076 191965 194701 220827 193352
27 1 -1 -1 -1 171076 191965 194701 220827 193352
28 1 -1 -1 0 173638 195028 197805 224627 196434
29 1 -1 -1 1 176246 198150 200953 228456 199579
30 1 -1 -1 1 176246 198150 200953 228456 199579
31 1 -1 -1 1 176246 198150 200953 228456 199579
32 1 -1 0 -1 182001 204939 208028 236953 206510
33 1 -1 1 -1 194162 219452 222986 255109 221231
34 1 -1 1 -1 194162 219452 222986 255109 221231
35 1 -1 1 1 200132 226658 230332 264170 228520
36 1 -1 1 1 200132 226658 230332 264170 228520
37 1 0 -1 -1 190572 215197 218657 249927 216938
38 1 1 -1 -1 212127 241119 245476 282764 243327




39 1 1 -1 0 214254 243692 248117 286016 245935
40 1 1 -1 1 216406 246297 250762 289312 248572
41 1 1 0 0 225895 257754 262683 303939 260244
42 1 1 1 -1 236433 270443 275933 320256 273221
43 1 1 1 -1 236433 270443 275933 320256 273221
44 1 1 1 1 241231 276283 281946 327754 279152
45 1 1 1 1 327754 276283 281946 327754 279152

Table 2. Analysis Results

Using this data, mean empty weights and corresponding standard deviations (as a
measure of design risk due to the uncertain values of BL and MR) were computed (Table
3).

FR WA TP BF Mean Std. Devn.
1 -1 -1 -1 -1 269763 26693
2 -1 -1 -1 -1 269763 26693
3 -1 -1 -1 1 281459 28434
4 -1 -1 -1 1 281459 28434
5 -1 -1 0 1 313196 33196
6 -1 -1 1 -1 335438 36584
7 -1 -1 1 -1 335438 36584
8 -1 -1 1 1 350225 38964
9 -1 -1 1 1 350225 38964
10 -1 0 -1 -1 326164 35398
11 -1 0 0 1 373028 42843
12 -1 0 1 -1 399639 47200
13 -1 0 1 0 406670 48404
14 -1 1 -1 -1 393383 46589
15 -1 1 -1 0 399647 47649
16 -1 1 -1 1 406015 48738
17 -1 1 0 -1 433160 53361
18 0 -1 1 0 258965 26439
19 0 0 -1 0 252346 25533
20 0 0 0 1 275371 29028
21 0 1 -1 1 293694 32048
22 0 1 0 -1 307365 34237
23 0 1 1 -1 331004 38108
24 0 1 1 0 335207 38808
25 0 1 1 1 339460 39525
26 1 -1 -1 -1 194384 17674
27 1 -1 -1 -1 194384 17674
28 1 -1 -1 0 197506 18115
29 1 -1 -1 1 200677 18549
30 1 -1 -1 1 200677 18549
31 1 -1 -1 1 200677 18549
32 1 -1 0 -1 207686 19528
33 1 -1 1 -1 222588 21665
34 1 -1 1 -1 222588 21665
35 1 -1 1 1 229962 22766
36 1 -1 1 1 229962 22766
37 1 0 -1 -1 218258 21099
38 1 1 -1 -1 244963 25124
39 1 1 -1 0 247603 25525
40 1 1 -1 1 250270 25932




41 1 1 0 0 262103 27767
42 1 1 1 -1 275257 29833
43 1 1 1 -1 275257 29833
44 1 1 1 1 281273 30796
45 1 1 1 1 298578 26709

Table 3. Summary Results for Mean Weight and Standard Deviations

5.5. Construct the Second-Order Response Surface Model
Least squares regression analysis is then used to determine the coefficients of the second

order, dual response surface models for both the mean weight and the standard deviation.
Table 4 shows the second order response surface model for the standard deviation.

Yo=co+? Cixj+? cjxiZ+? ? cijxjxj+e (8)

Term Estimate

Intercept 28642.707
FR -9513.122
WA 6827.781
TFA 3643.3254
BFL 542.11413
FR*FR 4753.1833
WA*FR -3272.696
WA*WA 267.37427
TFA*FR -1614.534
BFL*FR -301.9769
BFL*WA -207.5474
BFL*TFA -91.53414
BFL*BFL -450.2649

Table 4. Standard Deviation Response Surface Model

R-Square 0.9976
Adjusted R-Square 0.9965
RMS Error 3961.58

Table 5. Standard Deviation Model Regression Statistics

Table 5 displays regression analysis results. The model fit is very good in this case with an
indicated Adjusted R-square value of 0.9965.

Table 6 shows the second order response surface model for the mean weight and model
coefficients. Table 7 displays regression analysis results for the mean weight model. The

model fit is also very good in this case with an indicated Adjusted R-Square value of
0.9944.

Yy=bo+? bixj+? biixi2+? ? bjjxixj+e  (9)

Term Estimate
Intercept 271645.78




FR -66299.86
WA 43696.134
TFA 24725.039
BFL 5095.908
FR*FR 34505.503
WA*FR -17905.27
TFA*FR -8992.935
BFL*FR -723.6003
BFL*TFA 506.43229
BFL*BFL -1715.667

Table 6. Mean Weight Response Surface Model

R-Square 0.9962
Adjusted R-Square 0.9944
RMS Error 30857.2

Table 7. Mean Weight Model Regression Statistics

These dual response surface equations can be used to rapidly determine the effect of

varying design parameter values on the (weights) performance characteristics and for
MDO.

5.6. Determine Design Parameter Values that Optimize the Response
The purpose in this study is to determine the optimum values of the design parameters to
considering both the mean empty weight and variance. To obtain a robust design, one

would seek to minimize the variability (risk) subject to a constraint on weight. Therefore,
the optimization problem was set up as follows:

Minimize Y,

Subject to:
Y, =331704
-1=FR=1
-1=WA=1
-1=TP=1
-1=BF=1

This optimization problem was solved by utilizing three approaches; Excel Solver, GINO
and Genetic Algorithms. Solver, available in Microsoft Excel®, is a gradient based
optimization algorithm. GINO also uses a gradient based optimization algorithm and is
available as an independent optimization software package (Liebman et al, 1986). Genetic
Algorithms mimic natural search and selection processes leading to the survival of fittest
individuals. In the range of optimization techniques, GA occupy a gap between calculus
based methods and random search (Goldberg, 1989). They are in general less efficient than
gradient based methods, however they can be applied to multi-modal problems with
discontinuous topologies (Gage, 1994). The GA results in this study were obtained from



Genetik (floating point GA for minimization problems. Genetik V2.01 is available at:
http://www.umoncton.ca/turk/genetik201.zip, for downloading.

Table 8 summarizes the optimization results. Solver and the Genetic Algorithm has found
identical results, which is better than the GINO results in this case. Since Solver and GA
are both utilized at VAB in prior studies, the results support their continued use in this type
of optimization problems where the response surfaces usually have been found to have a
saddle shape.

Excel Solver GINO Genetic Algorithm
Parameter Optimized | Parameter Optimized | Parameter Optimized
Value Value Value
FR 0.455864 FR 0.518376 FR 0.4548447
WA -1 WA -1 WA -1
TP -1 TP -1 TP -1
BF -1 BF -1 BF -1
Std.Devn 16164 Std.Devn 17552.66 Std.Devn 16164.16
Mean Wt 186465 Mean Wt 194570.55 Mean Wt 185465.48

Table 8. Optimization Results

Since the goal in this study was to search for optimization results considering both the
mean and the variability, a mean and variance graph is plotted below. Table 9 indicates
that both the mean and the variability are minimized at x'=(0.454844;-1;-1;-1) for this
problem. Even though this is a desirable result, one would expect that for many
optimization problems, there would be a trade off between the mean and variance.
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16220
16210
16200
16190

Std.Devn.

16180
16170
16160

Mean vs Std. Devn.

186000 186200 186400 186600 186800 187000 187200

Mean Std. Devn.
187000 16180
186900 16175
186800 16171
186700 16168
186600 16165
186500 16164
186400 16165
186300 16167
186200 16175
186100 16196
186080 16217
186466 16164

Table 9: Mean versus Standard Deviation Plot

6. Conclusions

Space transportation system conceptual design is a multidisciplinary process containing
considerable element of uncertainty. Uncertainties of one subsystem (and/or discipline)
may propagate to another, through linking parameters and the final system output has an
accumulation of risk. Risk here is defined as the variability in the expected system output
performance characteristics.

This study investigated the use of dual responses to estimate variability resulting from
uncertain values of several design parameters (called the noise factors) and conduct MDO
considering both the mean and variance. The dual response surface approach is applied
to the conceptual design of a wing-body vehicle, configuration study.
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An orthogonal array based simulation approach is used to simulate the variability
resulting from noise factors. With this approach, generation of the additional data points
needed to construct a second response surface for the standard deviation was not costly in
this case since the analysis was already set up to run the design points for constructing the
response surface for the mean weight. The results here indicate that in many cases the
second response surface can be constructed without much extra effort. Once this is done,
a measure of design risk is obtained and optimization on risk basis can be conducted.

The results therefore suggest that the dual response surface approach can be utilized in
approximation model building to estimate the variability in the mean value of the
performance characteristic in conceptual design. Subsequently, multidisciplinary
optimization studies can be conducted considering both the mean response and variability
to reduce design risk and seek a robust design solution.
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8. Appendix A

In this study, an estimate of population mean and variance for empty-weight were
computed based on the experimental results. Given the mean and variance, one could
then compute a probability associated with a given weight value and construct a
cumulative distribution function. In order to be able to do that, one needs to make an
assumption on the underlying population distribution. The most commonly made
assumption in many studies is the “Normal Distribution” assumption. However, if this
assumption is not correct, the results and predictions made on probability will be
misleading.

To test such an assumption a statistical test of normality was conducted. As the following
results indicate, the weights data clearly is not normally distributed. Hence results based
on such an assumption would be incorrect. A Kolmorgorov-Smirnov (KS) hypothesis
test was conducted to test for normality of the underlying population distribution.

Ho: there is no difference between the distribution of the data set and a normal one
Ha: there is a difference between the distribution of the data set and normal

Test of Normality
Statistic Degrees of Freedom Significance
0.086 225 0.0003692

The Kolmorgorov-Smirnov statistic is significant. Hence the normality assumption is not
satisfied (p<0.05). The hypothesis of normality is rejected (The distribution of data is
significantly different from normal).
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Q-Q plot is a plot of our observed values against the expected values. If the data is from
a normal distribution, the data points should fall on a straight line. In the Figure above ,
the expected normal distribution is the straight line and the line of little boxes is the
observed values from our data. So, the distribution of data is not normal.
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