
1 .

Collectives for Multiple Resource Job Scheduling Across
Heterogeneous Servers

K. Tumer (kaganaemail . arc .nasa. gov) and J. Lawson
(lawosnaemail . a rc . nasa. gov)
NASA Ames Research Center
Moffett Field, CA 94035

Abstract. Efficient management of large-scale, distributed data storage and pro-
cessing systems is a major challenge for many computational applications. Many
of these systems are characterized by multi resource tasks processed across a het-
erogeneous network. Conventional approaches, such as load balancing, work well
for centralized, single resource problems, but breakdown in the more general case.
In addition, most approaches are ofcen based on heuristics which do not directiy
attempt to optimize the world utility. In this paper, we propose an agent based
control system using the theory of collecti-res. We configure the servers of OUT network
with agents who make local job scheduling decisions. These decisions are based on
local goals which are constructed to be aligned with the objective of optimizing t k ~
overall efficiency of the system. We demonstrate that multi-agent systems in which
all the agents attempt to optimize the same global utility function (team game)
only marginally outperform conventional load balancing. On the other hand, agents
configured using collectives outperform both team games and load balancing (by up
to four times for the latter), despite their distributed nature and their limited access
to information.

Keywords: Reinforcement learning, Job Scheduling, Computational Grid, Multi-
resource optimization, Collectives

1. Introduction

In recent years, both the fields of multiagent systems and reinforcement
learning have shown great promise in application to large optimization
problems [l, 3, 2, 18, 201. In particular, the intersection of these two
fields has produced exciting solutions to many problems (e.g., data
routing across a network [lo, 12, 14, 16, 191.

Job scheduling, a particular instance of a resource allocation prob-
lem, is particullarly-well- Cfieil T6f a - milt3 aznf, -5oliitioF5ZEh5C
reinforcement learning agents [3, 91. In this problem, we are confronted
with a grid of interconnected servers, along with incoming stream of
“jobs” or elements that need to be processed. Potentially, each server
in the grid has different capabilities, and not all jobs can (or should be)
processed at the servers in which they enter the system.

For the single-resource case, this problem has been extensively stud-
ied [9]. However, multi-resource job scheduling across a network of

@ 2003 Kluwer Academic Publishers. Printed in the Netherlands.

- - - - - - . - .- .._

jobsc.tex; 16/01/2003; 15:28; p . 1

I
2 K. Turner and J. Lawson

heterogeneous servers is a difficult problem that has received much less
attention [7]. In this instance of the problem, each server has multiple,
and potentially heterogeneous, resource capabilities (e.g., CPU speed,
available memory, queue length); and each incoming job to be processed
has different characteristics across those resources as well.

Load balancing (LB) has been successfully applied to single resource
scheduling problems. In fact, for single resource optimization problems,
there are theoretical results showing that load balancing does provides
optimal solutions [9].

Generalizing LB to the multi-resource case, though, is far from
straightforward. In its simplest form, load balancing aims at ensuring
that the level of activity on each server stays the same, i.e., the load on
the system is balanced across all the servers. Load balancing though
has two major limitatiocs. First, it requires cectralized c o n t d 2 Sec-
ond, load balancing assumes that the load being distributed across the
servers is a de-facto desirable solution to Optimizing the world utility
problem. In the multi-resource cwe, these issues become even more
problematic as getting maximal efficiency not only of the system, but
also of the utilization of the available resources must be addressed.
Different generalizations have tended to emphasize different desirable
characteristics [7].

The agent based approach we propose sidesteps this potential mis -
match between balancing the load across the network and optimizing
the world utility function. It directly aims to optimize the world utility
and as a consequence it is possible that some servers are idle while
others are operating at full capacity. As long as that system behavior
is good for the world utility, no consideration is being made to “split”
the load or make the jobs processing “fair” in any way.

There are many possible ways to map this problem onto a multi-
agent system. One possibility would be to let the jobs be agents with
their actions being the choice of server on which to run. Another pos-
sibility, and the one we will consider, is to assign many agents to each
server. These agents are tasked with the problem of deciding which
jobs in the local wait queue will be run locally and which should be
shipped to another server for processing. One choice for the action
space of these agents is to select the particular neighbor (including

Throughout this paper, we refer to servers with different resource configurations
as “heterogeneous” servers. We assume that there are no compatibility issues related
to compilation of the jobs, and that any job can be executed at any server, assuming
the server has the necessary resources. In some articles [7], this type of network is
referred to as a “near-homogeneous” computational grid.

There are LB algorithms based on local information, though the performance
of such algorithms necessarily suffers from the loss of information [7].

jobsc.tex; 16/01/2003; :5:28; p . 2

Collectives for Multi-Resouce Job Scheduling 3

itself potentially) to whom to ship a given job. In some situations, it
might be expected that an agent might begin preferentially shipping all
or most of its jobs to the same neighbor. This could lead to congestion
difficulties for the system. To avoid this possibility, we instead assign to
each agent a vector $whose components give the probability of routing
a job to its various neighbors. In this scenario, the agents are given the
more abstract job of setting their own probability vector. The design
question now becomes to determine what rewards each agent shouId
receive so that they set the probability vectors that optimize the overall
job processing efficiency of the full system.

Traditional solutions to that question include the “team game” ap-
proach, where each agent receives the full world reward, and the “selfish
reward” where each agent is only concerned about the jobs that it has
touched. In general, team game solutions suffer from the signal-to-noise
problem in which an agent has a difficult time discerning the effects on
its actions on its utility, because that “signal” is getting swamped by
the “noise” of all the other agents. Clearly this problem gets worse
as the number of agents in a system increases. Selfish utilities on the
other hand suffer from coordination issues, where actions that may
be beneficial to one agent may cause significant damage to the system
overall. In other words, there are no guarantees that agents using selfish
utilities will act in the best interests of the overall system.

Handtailored solutions may in some cases outperform these generic
utilities, but such solutions though appealing generally:

- require laborious modeling;

- provide “brittle” global performance;

- are not “adaptive” to changes in the environment; and

- generally do not scale well.

The theory of collectives is concerned with overcoming the short-
comings of team games and selfish utilities without resorting to hand-
tailoring. In particular, it is concerned with providing agents with

- - -wi€K rewards that are both “learnable” i.e., they have go-od- signabto-
noise ratios, and are “factored” i.e., the utilities are aligned with the
world utility.

A naturally occurring example of a system that can be viewed as
a collective is a human economy. Each individual trying to maximize

- . -

A collective is defined as a multi agent system in which there is a well-defined
world utility function that needs to be optimized, and where each agent takes actions
based on its own private utility [15].

jobsc.tex; 16/31/2303; 15328; p.3

4 K. Turner and J. Lawson

their own private utilities (e.g., maximize bank account, advance ca-
reer) constitute the “agents” in the system. The world utility can be
viewed a s the gross domestic product of the country in question (“world
utility” is not a construction internal to a human economy, but rather
something defined from the outside). The issue in such a case is to
determine what each agent needs to do so that the joint action of all
agents optimizes sthe world utility.

This system needs to be factored to avoid phenomena such as the
tragedy of the commons, in which individual avarice works to lower
world utility [6], from occurring. One way to avoid such phenomena is
by modifying the agents’ utility functions via punitive legislation, in
essence making sure the agents’ utility functions are aligned with the
world utility. Securities and Exchange Commission (SEC) regulations
designed to prevent insider trading can be viewed as a rea! world
example of an attempt to make such a modification to the agents’
utilities .

In designing a collective we have more freedom than the SEC though,
in that there is no base-line “organic” private utility function over which
we must superimpose legislation-like incentives. The entire “psychol-
ogy” of the individual agents is at our disposal, and that freedom is
a major strength of the collectives approach. For example, it obviates
the need for honesty-elicitation mechanisms, like auctions, which form
a central component of conventional economics.

The problem of designing collectives is related to work in many fields
beyond multiagent systems and computational economics, including
mechanism design, reinforcement learning for adaptive control, com-
putational ecologies, and game theory. However none of these fields
directly addresses the inverse problem of how to design the agents’
utilities to reach a desirable world utility value in its full generality. This
is even true for the field of mechanism design, which while addressing
an inverse problem similar to that of COIN design, does so only for
certain restricted domains, and does not address the “learnability”
issue. (Mechanism design is mostly appropriate when there are pre-
specified goals underlying agents’ utilities over which “incentives” need
to be provided, and when Pareto-optimality (rather than optimization

The collectives framework has been successfully applied to multi-
ple domains including packet routing over a data network [12], the
congestion game known as Arthur’s El Faro1 Bar problem [17], and
multi-rover coordination where agents needed to learn sequences of
actions to optimize the world utility [ll]. Furthermore, in the routing
domain, the COIN approach achieved performance improvements of a
factor of three over the conventional Shortest Path Algorithm (SPA)

-of a-world -utility)- is often the goal [l-51;)

jobsc.tex; 16/01/2003; 15:28; p . 4

Collectives for Multi-Resouce Job Scheduling 5

routing algorithms currently running on the internet [14], and avoided
the Braess’ routing paradox which plagues the SPA-based systems [12].

In this paper we present a general, distributed reinforcement learn-
ing solution to such optimization problems. In Section 2 we summarize
the theory of collectives that is relevant to this application. In Section 3
we present the details of this domain, and show how the collectives ap-
proach can be used for job scheduling. In Section 4, we show simulation
results demonstrating the superiority of the collective-based approach,
where the multi agent system approach significantly outperforms load
balancing, even though it has less information at its disposal.

2. Collectives: A Summary

In this section, we summarize the portion of the theory of collectives
required for the experiments described in this article [15]. Let 2 be
an arbitrary vector space whose elements z give the joint move of all
agents in the system (i.e., z specifies the full “worldline” consisting of
the actions/states of all the agents). The provided world utility G(z),
is a function of the full worldline, and the problem at hand is to find
the z that maximizes G(z).

In addition to G, for each agent 7, there is a private utility func-
t ions {g7]}. The agents act to improve their individual private func-
tions, even though, we, as system designers are only concerned with
the value of the world utility G. To specify all agents other than 7, we
will use the notation?.

Our uncertainty concerning the behavior of the system is reflected
in a probability distribution over 2. Our ability to control the system
consists of setting the value of some characteristic of the collection of
agents, e.g., setting the private functions of the agents. Indicating that
value by s, our analysis revolves around the following central equation
for P(G I s), which follows from Bayes’ theorem:

- _. - - - -
where Z‘’ i s the vector of the “intelligences” of the agents with respect
to their associated private functions, and <G is the vector of the intelli-
gences of the agents with respect to G. Intuitively, what these vectors
indicate what percentage of 7’s actions would have resulted in lower
utility. In this articIe, we use intelligence vectors as decomposition
variables for Equation 1 (see [15] for details on intelligence).

Note that, from a game-theoretic perspective, a point z where all
players are rational, (eg7 = 1 for all agents 7, is a game theory Nash

jobac.tex; 16/C1/2003; ?5:28; p . 5

6 K. Turner and J. Lawson

equilibrium [15]. On the other hand, a z at which all components of
ZG = 1 is a local maximum of G (or more precisely, a critical point of
the G(z) surface).

The design of collective problem can be best illustrated by the trade-
off presented in Equation 1. If we can choose s so that the third
conditional probability in the integrand, P(Zg I s), is peaked around
vectors Zg all of whose components are close to 1 (that is agents are
able to “learn” their tasks), then we have likely induced large private
utility intelligences. If we can also have the second term, P(& I Zg, s),
be peaked about ZG equal to Zg (that is the private and world utilities
are aligned), then Z , will also be large. Finally, if the first term in the
integrand, P(G 1 ZG, s), is peaked about high G when ZG is large, then
our choice of s will likely result in high G, as desired. Note, this first
t e rn requires global information (search for ghbal optina, rather thac
local optima). In problems where such communication/control is not
possible, only terms two and three can be optimized.

2.1. FACTOREDNESS AND LEARNABILITY

The requirement that private functions have high “signal-to-noise” .(an
issue not considered in conventional work in mechanism design) arises
in the third term. It is in the second term that the requirement that
the private functions be “aligned with G” arises. In this work we con-
centrate on these two terms, and show how to simultaneously set them
to have the desired form.

Details of the stochastic environment in which the collection of
agents operate, together with details of the learning algorithms of the
agents, are reflected in the distribution P (z) which underlies the dis-
tributions appearing in Equation 1. Note though that independent of
these considerations, our desired form for the second term in Equation 1
is assured if we have chosen private utilities such that Zg equals ZG
exactly for all x . We call such a system factored. In game theory
language, the Nash equilibria of a factored system are local maxima of
G. In addition to this desirable equilibrium behavior, factored systems
also automatically provide appropriate off-equilibrium incentives to the
agents (an issue rarely considered in the game theory / mechanism
design literature).

As a trivial example, any “team game” in which all the private
functions equal G is factored [4]. However team games often have very
poor forms for term 3 in Equation 1, forms which get progressively
worse as the size of the system grows. This is because for large systems
where G sensitively depends on all components of the system, each
agent may experience difficulty discerning the effects of its actions on

. - -- . - - - . - - - - . - . . - . - -

I

jobsc.tex; i6/0i/2003; i5:28; p . 6

. I

Collectives for Multi-Resouce Job Schedulini 7

z

72 0 0 0

to “null” 0 1 0

Figure 1. This example shows the impact of the clamping operation on the joint
state of a four-agent system where each agent has three possible actions, and each
such action is represented by a three-dimensional unary vector. The f i s t matrix
represents the joint state of the system z where agent 1 has selected action 1, agent
2 has selected action 3, agent 3 has selected action 1 and agent 4 has selected action
2. The second matrix displays the effect of clamping agent 2’s action to the “null”
vector (i.e., replacing z,, with 6).

G. As a consequence, each 77 may have difficulty achieving high g, in a
team game. We can quantify this signaljnoise effect by comparing the
ramifications on g7](z) arising from changes to z, with the ramifications
arising from changes to z i (Le., changes to all nodes other than 7).
In particular, the learnability of private utility g, gives the ratio of
the sensitivity of g7(z) is to changes to agents other than 77, to the
sensitivity of g,(z) to changes to 7. So at a given state z [15]. the
higher the learnability, the more gq(z) depends on the move of agent
7 , i.e., the better the associated signal-to-noise ratio for 7. Intuitively
then, higher learnability means it is easier for 7 to achieve a lkrge value
of its intelligence.

2.2. PRIVATE UTILITIES

As discussed above, designing the private utilities for the agents is one
of the main challenges in a collective. One private utility function which
is factored and generally provides good learnability is the Wonderful
Life Utility (WLU) [15, 17, 121. The WLU for agent 7 is parameterized
by a pre-fixed clamping parameter CL, chosen from among 7’s legal
or illegal moves:

..-~ .-.. _ _ ~ _ . -WLUT.= G(z). -:-G(.z+CL,) ~ . - -. . - -.

Figure 1 provides an example of clamping. As in that example, in
many circumstances there is a particular choice of clamping param-
eter for agent 7 that‘ is a “null” move for that agent, equivalent to
removing that agent from the system, hence the name of this private
function. For such a clamping parameter WLU is closely related to
the economics technique of “endogenizing a player’s (agent’s) external-
ities” [8]. Indeed, WLU has conceptual similarities to Vickrey tolls [13]

iobsc.tex; 161‘01/2003; 15:28; p . 7

8 K. Turner and J. Lawson

in economics, and Groves’ mechanism [5] in mechanism design. How-
ever, because WLU can be applied to arbitrary, time-extended utility
functions, and need not be restricted to the “null” clamping operator
interpretable in terms of “externality payments”, it can be viewed a
generalization of these concepts.

It can be proven that in many circumstances, especially in large
problems, that WLU has higher learnability than does the team game
choice of private utilities [15]. This is mainly due to the second term
of WLU which removes a lot of the effect of other agents (i.e., noise)
from q’s utility. The result is that convergence to optimal G with WLU
is much quicker (up to orders of magnitude so [15]) than with a team
game.

Intuitively, one can look at WLU from the perspective of a human
C A T - .,a,,,: TVT

fied with the employees of that company, and the associated gs given by
the employees’ performance-based Compensation packages. For exam-
ple, for a “factored company”, each employee’s compensation package
contains incentives designed such that the better the bottom line of the
corporation, the greater the employee’s compensation. As an example,
the CEO of a company wishing to have the private utilities of the
employees be factored with G may give stock options to the employees.
The net effect of this action is to ensure that what is good for the
employee is also good for the company. In addition, if the compensation
packages have “high learnability” , the employees will have a relatively
easy time discerning the relationship between their behavior and their
compensation. In such a case the employees will both have the incentive
to help the company and be able to determine how best to do so.
Note that in practice, providing stock options is usually more effective
in small companies than in large ones. This makes perfect sense in
terms of the COIN formalism, since such options generally have higher
learnability in small companies than they do in large companies, in
which each employee has a hard time seeing how his/her moves affect
the company’s stock price.

with G the “bottom line” of the cempaEy, the agents q identi-

. . . _ _ -

3. Collectives for Multi-Resource Optimization

With increasing demand for supercomputing resources (e.g., biological
applications), the ability of a system to efficiently schedule and process
jobs is becoming increasingly important. As such, heterogeneous com-
putational grids where jobs can enter the network from any point and
be processed at any point are becoming increasingly popular. Below, we

jobsc.tex; 15/01/2003; 15328; p.8

Collectives for Multi-Resouce Job Scheduling 9

discuss such a grid of computational servers, and show how the theory
of collectives summarized above can be applied to this problem.

3.1. SYSTEM MODEL

We modeled such a computational system as a network of N servers
each with K resources (q, ... Q). Each server had a specified capacity
for each resource assigned to be an integer ranging from [I, MI. Thus,
M was a measure of the heterogeneity of the resources. The first re-
source TI corresponded to the processing speed of the server. The other
resources corresponded to other, and perhaps limited, quantities, such
as memory. In general, each server had 2-4 neighbors with which it had
a direct connection.

Jobs were also specified by K resource requirements ranging from
[l , M] . The first job resource TI was an indication of the number of
cycles the job required to be processed. The other resources, again,
corresponded to other quantities, such as memory. An important point
is that for resources T ~ , i > 1, the server resource capacity must equal
or be greater than the job’s requirement in order for a job to run on
a particular server. This could correspond to the requirement that a
server must have enough memory to accommodate a given job.

Each server had its own wait queue for jobs. For simplicity, we al-
lowed only one job to run on a server at a time; the other jobs remained
in the queue until the processor became available. Jobs entered the
local queues either externally (to the system) or were shipped from
other servers. Jobs entering externally were sent to the back of the
queue while jobs received from other queues go to the front. Shipped
jobs go to the Gont for two reasons. First, they have already had to
wait in the queue they were originally placed. Secondly, shipped jobs
are often “difficult” jobs in the sense of finding an appropriate server
to run them. Putting them in the front of the queue forces the system
to deal with these jobs now rather than postponing action by having
them wait in another queue. Otherwise, it would be easy to imagine
difficult jobs being endlessly shuffled.

If the processor was available, and the resource requirements met,
the server wod3 activated tl ie-fiTst- job--iZ-tXFquiiiG.-If -t7iGproi?eXoT-
was available, but the server did not have the resource capacity to
run the job, the server would remain idle until the problem job was
sent to another server. This is expected to be one the main causes of
bottlenecks in the system and will be an issue that an intelligent job
management system will need to address.

The dynamics of our simulations thus proceeded as follows. At each
time step 7, new jobs were added to the system and placed in the wait

. . - - -_ - - - __ - - .

jobsc.tax; 15/91/2003; 15:28; 2.0

10 K. Turner and J. Lawson

queue of randomly selected servers. In particular, each server had a
probability T of receiving a new job at each time. If a given processor
was idle, and the first job in the queue met the resource requirements,
that job would be activated. If not, the server would remain idle. In
addition, for each 7 , the server would make a decision about the first
job in the queue, deciding whether to keep the job or sent it to a
neighboring server. These decisions were made based on the agents’
probability vectors which in turn are set using reinforcement learning
algorithms. This will be discussed in more detail below.

Thus, there were two main sources of inefficiency in the system. The
first were the bottlenecks created by jobs whose requirements exceeded
the capacity of their server. When such a job got to the front of the
queue, the server remained idle until the job was shipped to a neigh-
bor. The second source of inefficiency arose from mismatches between
a processor’s speed and a job’s cycle requirement. Clearly, jobs that
require more cycles should run on faster machines.

3.2. MULTI-AGENT ARCHITECTURE

These inefficiencies were the main issues that agents as shipping deci-
sion makers needed to manage. The heterogeneity of both the servers
and the jobs resulted in many possible combinations of assignments of
jobs to servers. This was especially true as M , the resource range, grew,
and could potentially create a very noise environment in which the
agents had to learn. To reduce this noise, we instead assigned multiple
agents to each server where each agent dealt with a subset of jobs. In
particular, for jobs with K resources we assigned 2K agents per server
where agent 1 deals with jobs such that q e [l , M/2] , ..., r k c [l , M/2] ,
agent 2 deals with jobs rlc[M/2 + I, MI, rze[l, M/2] ..., r k c [l , M / 2] , etc.
Thus the resource specifications of a job determined which agent would
make its shipping decision.

We will distinguish between two time scales that will be used through-
out this article: 7 gives the time steps at which the jobs enter the
system, move between queues, and are processed, whereas t gives the
time steps at-whicXthe agents- observe -their utilitreq change their
actions, etc. This distinction is important because it is the only way an
agent can get a “signal” from the system that will reflect the impact
of its decision, i.e, the system has to settle down before a reward can
be matched to an action. Therefore, an agent 7 changes its probability
vector at each time t. Withing a single time step t though, many jobs
enter the system, are executed, routed etc. each of which occurs at time
interval 7 (t >> 7).

.

jobsc.tex; 16/01/2003; 15:28; p.10

Collectives for Multi-Resouce Job Scheduling 11

The learning was organized as follows. For each t , the probability
vectors were fixed, and the simulation run for fixed number of time
steps (typically, 400). At the end of this run, the utility functions
were calculated and the rewards recorded in the agents’ training sets.
In order to be able to compare the performance individual probability
vectors, we cleared the system (Le. the queues) after each t. During
the initial phase, 0 5 t 5 100, the proability vectors were set at
random, and the utilities recorded. After this “data collection” phase,
t 1 100, the agents utilized reinforcement learning algorithms to set
their probability vectors.

The learning algorithm proceeds by first generating a set of candi-
date probability vectors with a Gaussian distribution about the cur-
rent probability vector. Reward estimates were made by performing
a weighted zverzge over reward values from the age&’ traidng set.
These values were weighted by both how long ago the value was recorded
(data aging) and the distance between the candidate and the previous
probability vector

R = x,g,e-dTz e - d P ~ / ~ , e - f l ~ e-@%. (3)

Here, dTa = QT(T - ta) where T is the current learning period, t, is
the period for data 92, and c t ! ~ is a parameter. Also, dP, = cypll$ -pill
where P‘ is the current probability vector, pi is the vector for data gz,
and a p is a parameter. The new probability vector was then chosen
by sampling a Boltzmann probability distribution over these reward
estimates.

3.3. STATE SPACE AND WORLD UTILITY

Let us define the state of each agent at time t as by

where jk identifies job k, Wk is the wei ht of that job which gives the
importance of that job in the system, 12’ is the “job indicator” function
and is equal to 1 if job k was “touched” by agent q at time step t , and

- 0 otherwise, and ept determines whether job k was executed at agent
77 at time step t.

- -

Now, the state of the full system, zt at time t , is given by:

Zt = {(jo, wo, 1, e:>, . * , (jk, Wk, 1, e:), ’ .} (5)

where e: determines whether job k was executed at time step t. Note
that the job indicator function 1; is always set at 1 for the full sys-
tem, since by definition, if the job is in the system, it must have been

jobsc.tex; 16/01/2003; 15:28; p.11

12 K. Turner and J. Lawson

“touched” by at least one agent. Nevertheless, we keep the notation,
both for ensuring consistency between the state vector of an agent and
that of the full system, and because its presence in the world utility
will facilitate the derivation of the private utilities of the agents.

Based on this, the world utility at time t is given by:

Intuitively, G gives the weighted ratio of the all the jobs that were
processed at time step t to all jobs that entered the system at that
time step (recall that “time step t is a window of time, not a single
time step from the point of view of the jobs”.)

For all the reasons highlighted in Section 2, using G as the reward
for all the agents introduces significant signal to noise issues. In order to
overcome such difficulties, we explored the use the of collective based
private utilities discussed in 2. In particular, we investigate the case
where the clamping parameter set to the null vector. This corresponds
to I:’t being set to 0 for all jobs k for which it was set to 1 at time step
t. With this choice for clamping, the WLU is given by:

(8)

where Tlyt is the complement of I:9t and equals 1 when equals 0
and 0 when c’t equals 1. Intuitively, WLU(z,) represents the weighted
fraction of jobs that were touched by agent q to the jobs that entered
the system. Note, this is different than what a “selfish utility” (SU) only
concerned with its own jobs would do. More precisely, let us define such
a-utility :

Intuitively, SU gives the ratio of the jobs processed by the system at
time step t , to the total jobs that passed through that agent, hence
the indicator function in the denominator. In the language of collec-
tives, this utility has higher learnability than does the WLU, but it is

jobsc.tex; 16/01/2003; 15:28; p.12

Collectives for Multi-Resouce Job Scheduling 13

not factored with G. The impact of this tradeoff is explored below in
Section 4.

3.4. LOAD BALANCING ALGORITHM

We compared our agent-based approach against a fixed, deterministic
algorithm. In particular, we considered a distributed version of multi-
resource load balancing. For each server, we calculated a load for each of
the k resources, lk = Cz(jF /sk) where j z is the resource k of job n and
s k is the the capacity of resource k of the server. Thus, the resource
load has been normalized to the resource capacity of the server. We
assign a load to a particular server i as the average of its individual
resource loads Li = Avg(Zk). We, then, calculate the system load as the
average over the servers Lavg = Avg(Li1.

The load balancing algorithm proceeds as follows. At each time step
T, each server calculates its own load and compares it with the global
load Lavg. If the server's load is greater than the global, modulo some
tolerance, the servers looks to get rid of its highest load job. Each
server has access to global information about the loads on the all the
other servers. Using this information, the server determines which of
the other servers has the lowest load. It then ships its high load job to
the low load server via the one of its neighbors that lies on the shortest
path between the sending and the receiving servers.

Table I. System Processing Efficiency
(r=0.2,M=2)

1 Algorithm I Net Efficiency I Perc Gain 1
~~ ~

I Opt Estimate 1 1.0 I - I
I RAND 1 0.9318 I - I

I 0.9317 1 -0.20% 1
1 0.9470 I 22.33% I

1 WLU 1 0.9788 I 68.83% I

. . . . I su ~ - ~. - _ . . . - . . ~ . . ~-~ .

I TG

I 0.9971 I 95.70% I I LB

iobsc.tex; 16/01/2003; 15:28; v.13

14 K. Turner and J. Lawson

1.02 1 1
1

0.98

- := 0.96
5
0 0.94
b ’ 0.92

0.9

0.88

> c.

0 50 100 150 200 250 300 350 400
t

Figure 2. Simulations results for 50 servers with 4 agents each with parameter values
(r=0.2,M=2). Each t represents a “run” of 400 T time steps with each agent having
a fixed probability vector p’ during the run. At the end of each run, utilities are
calculated, the queues cleared, and the agents reset/modify their p’based on their
learning algorithms. Results are averages over 50 different systems configurations.

Table 11. System Processing Efficiency
(r=0.2,M=8)

I Algorithm I Net Efficiency I Perc Gain I
I Opt Estimate I 1.0 1 - , I
I RAND I 0.6435 I - I

~

1 0.6345 1 -2.53% 1
I 0.6703 I 7.51% 1

I WLU I 0.7932 1 41.97% 1

I su
I TG

1 0.2254 I -117.28% 1 I LB
. . . .

4. Results

We ran extensive simulations on networks of N = 50 servers having
K = 2 resources. The 50 servers had 4 agents each, making for 200
total agents in the system. The servers were connected into a network
having a ring configuration with random connections added in the spirit

jobsc.tex; 16iOli2003; 15:28; p.14

1.

0.8

0.7

0.6

Collectives for Multi-Resouce Job Scheduling 15

0.3

0:2

0 50 100 150 200 250 300 350 400
t

Figure 3. Simulations results for 50 servers with 4 agents each with parameter values
(r=0.2,M=8). Load balancing does especially poorly in cases of large heterogeneity
M = 8 due to its inability to deal effectively with bottlenecks. In learning based
methods TG, SU, WLU, agents set probability vectors randomly for t _< 100 as part
of their training. Even the training period RAND performance is better than load
balancing.

of "small world's'' networks. In general, each server had 2-4 neighbors
with which it had a direct connection.

We examined the performance for different job arrival probabilities
T and different resource ranges M . We tabulated the performance for

Table 111. System Processing Efficiency
(r=0.8,M=2)

1 Algorithm 1 Net Efficiency 1 Perc Gain 1
r.

I Opt Estimate I 0.781 I - I

1 0.6140 I -7.78% 1 I su
I 0.6376 1 7.48% I I TG

I WL,U 1 0.6911 I 41.98% 1
1 0.6446 I 11.97% I I LB

jobsc.tex; 15/0?/2003; 15:28; F.15

16 K. Turner and J. Lawson

0.7 r I

0.68 1
0.66

5 0.64

u .- - .-

0.58
I

0 50 100 150 200 250 300 350 400
t

Figure 4 . Simulations results for 50 servers with 4 agents each with parameter values
(r=0.8,M=2).

Table IV. System Processing Efficiency
(r=0.8,M=8)

1 Algorithm 1 Net Efficiency I Perc Gain 1
I Opt Estimate I 0.395 I - I
1 RAND I 0.1944 I - I
I su 1 0.2024 1 4.01% I

1 0.1984 I 1.98% 1 I TG
1 WLU 1 0.2490 1 27.25% I

I 0.0974 1 -48.32% I I LB

the multi-agent approach with learning agents, a load balancing algo-
rithm generalized for the multi-resource case, and a random shipping
algorithm RAND. In the RAND algorithm, the proportion vectors for
shipping/holding the first job in the queue was set randomly. This is
is basically the situation when the agents are in the training phase of
their learning algorithm. For scenarios involving learning agents, we did
runs using personal utilities based on team games (TG), selfish agents

jobsc.tex; 16/31/2303; 15:28; p.16

Collectives for Multi-Resouce Job Scheduling 17

0.26

0.24

0.22

0.2

3 0.18
2 0.16

0.14

0.12

- .- - .-

0.1

0.08
0 50 100 150 200 250 300 350 400

t
Figure 5. Simulations results for 50 servers with 4 agents each with parameter values
(r=0.8,M=8).

(SU), and theory of collectives (WLU). The results were averaged over
50 different randomly generated network configurations.

Certain parameter values, especially for large heterogeneity (large
M), introduced a large amount of frustration into the system. In these
cases, it would be impossible for the system to achieve 100% processing
efficiency. For these cases, we made an estimate of what we might expect
the theoretical optimal possible performance to be. These estimates are
included in the tables. To further compare the results, we calculated
the performance gain of the different methods. This gain is measured
relative to the gap between random shipping and a theoretical upper
bound on the performance of the system.

We obtained this bound by first analyzing what percentage of in-
coming jobs can be processed at their point of entry into the system,
if the incoming rate were set to one (i.e., T = l), meaning each server
receives a job at each time step. In such cases, no job shifting can take
place, since each Server SimTly- procesies t h F jobs it-receives-.-T~n,-€~r~
other values of T , we assumed instantaneous shipping across the servers,
allowing the job that cannot be processed at their point of entry to
reach servers in which they can be processed. This is not a particularly
tight bound since it ignores how the “slack” in the system picks up
the unprocessed jobs (i.e., ignores how a server with high capacity will
receive and schedule these jobs), and simply assumes that if there is
room at some server, the jobs will appear there and be processed.

- - - - - -. - . -.

jobsc.tax; 16/0?/2003; 15:28; p.17

18 K. Turner and 2. Lawson

Tables I-IV show the absolute and relative performance numbers
for the different algorithms at t = 400. Notice that in all cases the
learning based approaches are competitive or significantly outperform
load balancing. Load balancing does well for low arrival rates T- and
low heterogeneity M . But its performance degrades markedly for high
T-, and especially for high M. In fact, even setting the probability
vectors at random (RAND) outperforms load balancing for M = 8
independent of T . This can be understood by the fact that the agent
based approaches make decisions about only the first job in the queue.
But it is this first job that can create serious bottlenecks in the system;
if the first job needs more resources than the server can provide, the
job cannot run and remains in queue, blocking other jobs from being
processed as well. Load balancing, on the other hand, is attempting
d y to eqdalize the lzad 2crcss CI? the entire queue acd dnes nothing
to deal with such potential bottlenecks. For large M, the potential for
bottlenecks increases markedly. Random probability vectors have the
advantage over load balancing that they operate directly on the place
where a bottleneck can occur.

It is also in these large M regimes that approaches based on adap-
tive learning algorithms would be expected to do well. Simulations
results show large increases in performance by having the probability
vectors set using reinforcement learning. These results also show the
importance of setting the agents’ personal utilities to be functions that
are both “factored” and “learnable”. The team game (TG) utility is
factored trivially, but has poor learning properties for the individual
agents since it includes information from the full system. The selfish
(SU) utility is expected to be more learnable since it only includes ef-
fects of individual agents, but it is not factored (aligned with the global
goal), and therefore could be doing a good job of learning the wrong
thing. The Wonderful Life (WLU) utility derived using the theory of
collectives is both factored and learnable. It consistently outperforms
TG and SU for all parameter pairs (.,Ad). Figures 2-5 provide the
results for two r and two m combinations. In addition, WLU outper-
forms load balancing in all but the simplest case. The performance gap
is especially large for the M = 8 simulations, where WLU outperforms
-load balancing-by a factor of 2.4. . _ _

5. Conclusions

In this work we investigated how a collective of reinforcement learn-
ing agents can learn to effectively solve a multi-resource optimization
problem. In particular we focus on the multi-resource job scheduling

jobsc.tax; 16/C1/2303; 15128; p . t8

Collectives for Multi-Resouce Job Scheduling 19

problem across a heterogeneous network. Conventional approaches to
such problems (e.g., as load balancing) work well when there is in-
stantaneous, centralized control. For all but very few applications, this
is an unreasonable assumption on the system’s capabilities. Practical,
heuristics based approaches on the other hand provide good solutions
for the resource problems, but often break down in the more general,
multi-resource optimization case.

The collective based solution we propose is based on assigning agents
to each server whose actions are to determine whether a job should be
processed at that server or shipped to another agent, and if so, to which
server. These decisions are based on private utility functions (i.e., local
goals) which are constructed to be aligned with the world utility (i.e.,
optimizing the overall efficiency of the system).

Our results democstrate that in a collective in which all the agents
attempt to optimize the same global utility function (team game) only
provide marginal improvements over conventional load balancing. How-
ever, those marginal improvements are obtained without requiring a
centralized controller (only requirement is of world utility being broad-
cast at regular intervals). Furthermore, agents using private utility
functions based on the theory of collectives outperform both team
games and load balancing (up to four times), despite requiring less
information.

6. Acknowledgments

The authors would like to thank David Wolpert for helpful discussions.

References

1.

2.

3.

4.

5.

J. A. Boyan and M. Littman. Packet routing in dynamically changing net-
works: A reinforcement learning approach. In Advances in Neural Information
Processing Systems - 6, pages 671-678. Morgan Kaufman, 1994.
J. A. Boyan and A. Moore. Learning evaluation functions for global opti-
mization and-boolean satisfiability . .In Proceedings .of the Fifteenth Natio.nu1
Conference on Artificial Intelligence. AAAI Press, 1998.
J. Bredin, R.T. Maheswaran, C. Imer, T. Basar, D. Kotz, and D. Rus. A game-
theoretic formulation of multi-agent resource allocation. In Proceedings of the
fourth International Conference of Autonomous Agents, pages 349-356, 2000.
R. H. Crites and A. G. Barto. Improving elevator performance using reinforce-
ment learning. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors,
Advances in Neural Information Processing Systems - 8, pages 1017-1023. MIT
Press, 1996.
T. Groves. Incentives in teams. Econometrica, 41517-631, 1973.

jobsc.tex; 15/01/2(333; 15:28; p.19

.

20 K. Turner and J. Lawson

6.
7. W. Leinberger, G. Karypis, V. Kumar, and R. Biswas.

G. Hardin. The tragedy of the commons. Science, 162:1243-1248, 1968.
Load balancing

across near-homogeneous multi-resource servers. In Proceedings of the ninth
heterogeneous Computing Workshop, pages 61-70, Cancun, Mexico, 2000.

8. W. Nicholson. Microeconomic Theory. The Dryden Press, seventh edition,
1998.

9. B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Scheduling and Load Balancing
in Parallel and Distributed Systems. IEEE Computer Society Press, 1995.

10. P. Stone. TPOT-RL applied to network routing. In Proceedings of the Sev-
enteenth Internationai Machine Learning Conference, pages 935-942. Morgan
Kauffman, 2000.
K. Tumer, A. Agogino, and D. Wolpert. Learning sequences of actions in
collectives of autonomous agents. In Proceedings of the First International Joint
Conference on Autonomous Agents and Multi-Agent Systems, pages 378-385,
Bologna, Italy, July 2002.
K. Tumer and D. H. Wolpert. Collective intelligence and Braess' paradox. In
Proceedings of the Seventeenth National Conference on Artificial Intelligence,
pages . ~ 104-109, . -. Austin, . . ~ TX, 2000.

13. W. Vickrey. Counterspeculation, auctions and competitive sealed tenders.
Journal of Finance, 16:8-37, 1961.

14, D. H. Wolpert, S. Kirshner, C. J. Merz, and K. Tumer. Adaptivity in agent-
based routing for data networks. In Proceedings of the fourth International
Conference of Autonomous Agents, pages 396-403, 2000.
D. H. Wolpert and K. Turner. Optimal payoff functions for members of
collectives. Advances in Complex Systems, 4(2/3):265-279, 2001.
D. H. Wolpert, K. Turner, and J. Frank. Using collective intelligence to route
internet traffic. In Advances' an Neural Information Processing Systems - 11,
pages 952-958. MIT Press, 1999.
D. H. Wolpert, K. Wheeler, and K. Tumer. Collective intelligence for control
of distributed dynamical systems. Europhysics Letters, 49(6), March 2000.
M.-J. Yoo. An industrial application of agents for dynamic planning and
scheduling. In Proceedings of the First International Joint Conference on
Autonomous Agents and Multi-Agent Systems, pages 264-271, Bologna, Italy,
July 2002.
W. Zhang and T. G. Dietterich. A reinforcement learning approach to job-shop
scheduling. In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 1114-1120, 1995.
W. Zhang and T. G. Dietterich. Solving combinatorial optimization tasks by
reinforcement learning: A genera! methodology applied to resource-constrained
scheduling. Journal of Artzficial Intelligence Research, 2000.

11.

12.

15.

16.

17.

18.

19.

20.

jobsc.tex; 16/01/2003; 15:28; p.20

