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In this paper we present, a comparison of treject or?; optimization approaches 
,?or rile ~nii~iimirn h ie l  iefidewous problem. Bcvh indirt-cr and direct meth- 
nds are compared for a variety of kst cases. 'The inriirect a.pproach is 
based CY: primer vector theory. .The direct a.pproaches are irnpleiriented 
niumerically and include Sequential Quadratic: Prograxrxning (SQP). Quasi- 
Newiton. a.nd Nelder-hj1ea.de Simplex. Several cost, function paranieteriza- 
tions nre considered for the direct approa.ct. T4e chouse oiie direct approach 
tha.t appears to be the most flexible. Both the direct and indirect methods 
are applied to a variety of test cases which are chosen to demonstrate the 
performance of each method in different flight regimes. The first test case 
is a simple circular-to-circular coplanar rendezvous. The second test c2se is 
an elliptic-teelliptic line of apsides rotation. The final test case is an orbit 
phasing maneuver sequence in a highly elliptic orbit. For each t,est case we 
present a comparison of the performance of all methods we consider in this 
paper. 

INTRODUCTION 

The minimum hiel rendezvoiis problem has received considerable attentioE in the literature and 
numerous approaches to both posing and solving the problem have been developed. The basic objective 
is to find a minimum solution to a two-point boundary value problem (TPBVP) that has multiple feasible 
solutions. The primary difference between approaches is the choice of independent variables and how 
the TPBVP is posed in terms of these variables. Methods also differ on how constraints are handled. 
In the next few paragraphs we give a brief overview of the methods considered in this paper. IVe also 
discuss the test problems we used to allow a comparison of each method we consider for different flight 
regimes. 

This paper deals with the problem of optimizing trajectories where the maneuvers can be modeled 
impulsively. In general, two approaches are utilized for optimization: direct and indirect.' Both ap- 
proaches will be compared in this investigation. A survey of the rendezvous problem is provided by 
Jezewski et a1.' 

A direct optimization method tries to minimize the cost function by directly varying the control (in- 
dependent) variables. The methods employed for the optimization process are mathematical program- 
ming techniques3 The mathematical programming techniques utilized in this paper include Sequential 
Quadratic Programming (SQP), Quasi-Newton, and Nelder-Meade Simplex. (Other techniques, such as 
Genetic Algorithms, are under current investigation but are not discussed here). For direct optirnization 
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i hc, C h O i W  o! I l i ~ i ~ ~ ~ e i i ~ d ~ i ~ t  \ . a f ' i a ~ ~ ~ r s  anti cOrlSlrai?its IS ?>:Tl.el:?el>. i~i~portant .  l'or e:mllip~e. si l l~pose 1 i l i i t  

tlirrc w e  r j  iriipiilses in  I he trajectorl, of interest. Then. t v o  pussihle choices fur irdependent variables 
are (1) the actual 3 V . s .  or ( 2 )  the impulse locations and times. In this paper. we find tile i ~ p t i ~ l i  rbf i ~ s i ~ ; ~  

t l i r  impuiw locaiions arid t . i n m  more effective. This is consist~nt \with prryious ~ o r k  by I3rusc.h i He1.1c.e. 
14-e utilim a Lambert-type approach with imp1ic:it positinr. miiiinii.it>. 

change, ne\\- arcs are computed utilizing either Lambert a r c s  ( in  the two-body model) or differentially 
c.c;rrx:ed T.:'CS ( Z ~ Y S  fsi. i i i o ~ z  i:i,iiipies illodeis than Ine two-body niodei). I he result of computing the 
lambert. arcs is a pat,h continuous trajectory with velocity discontinuities. The velocitJ- discontinuities 
are then utilized tao fonnulate the cost function. Other approaches are possible but include t,he addition 
oi' position cont, ir ii 1 i tv 3,s constraints . ,' 

Thw. x1p the 

Tne paranmerization of the COST, fiincbion chosen in this work ensures that. for every cost function 
evaluation, the rendezvous constraints are satisfied implicitly. Hence. from the point-of-the-view of a 
numerica.1 optimizer, the problem is unconstra.ined. Several numerical optimization routines are con- 
sidered. Three of t~he routines are products of The hlathworks and are ava.ilable in their Optimizat,ion 
Todbcr,. The Matkxorks' routines that we employ are h incon,  fminunc, and fminsearch. The fmincon 
function is an SQP algorithm, fminunc is a Quasi-Newton algorithm: and fminsearch is a Nelder-Meade 
Simplex algorithm. For a detailed discussion of The htathworks' routines and their implementations, 
we refer the reader t,o The hlathworks Optimization Toolbox' documentation. We also use SNOPT, an 
SQP algorithm developed by Gill8 et. al. For details on SNOPT we refer the reader to the user's guide 
for SNOPTE 5.3. For the indirect met.hod we develop software in hlatlab that uses a fully automated 
algorithm which implements ihe primer vector theory firsi developed by L a ~ d e n . ~  

We employ three test cases to compare the performance of e x h  trajectory optimization method 
in different flight regimes. The first test case is a simple circular-to-circular: coplanar rendezvous. The 
second test case is an elliptic-to-elliptic, line of apsides rotation. The final test case is a phasing maneuver 
in a highly elliptic orbit. For each test case we generate numerous initial guesses. The initial guesses are 
generated using simple intuition. The times and locations of the initial and final maneuvers are chosen 
based on experience. Given the initial and final burn locations we generate a two-burn rendezvous 
sequence. Multiple maneuver sequences are generated by placing small maneuvers, equally spaced in 
time, along two maneuver initial guesses. Sequences of two, three, and four burns are considered. The 
performance of all methods for the test cases described above is presented in the final section. It is 
difficult to provide a single metric that can conclude which method is the best. Hence we have provided 
a variety of statistics to illustrate the performance of all of the trajectory optimization approaches we 
consider. It should be noted that we have not considered the rate of convergence to be a measure 
of importa.nce. Since all methods are acceptably fast, we use metrics based On the total ar/ of the 
converged solution to be the primary measures of performance. 

To solve the niinimum fuel rendezvous problem we must first develop a mathematical model. In the 
next section we discuss the distinction between an orbit transfer and an orbit rendezvous and develop a 
mode! for the rendezvous problem. 

PROBLEM STATEMENT 

The minimum fuel rendezvous problem can be posed in numerous ways. The primary difference 
between approaches is the choice of independent variables, how the boundary value problem is posed in 

2 



ter:.iis of 111~ i i i d q ~ e I i ~ i ~ i ! ~  \xriia)i'iw. ai:d iion- llir cm:+?;;ti:!t fii:ictinns a re  l i<i i idid.  it is i~.~cf'~!l ?:I i l l+  

point t o  n1~1kt3 a ci('ai distinction betu.reii a rendezvous p ~ ~ ) L l e ~ i i  ai!{.! a transfer problem. In a.n orbit 
t ralisfer problem we are  only c,oiicerned n-ith findi:i=; a niai ieuv~r sequence that will take ii sl>ai.e(.ri> Ft 
from sonx position in its iiiitial orbit. to soiiie po~ijtioii i i i  the  desired final orbit. For a transfer. the 

along the final orbit. without concern for the orbit phasing. However. for a rendezvous problem, we hme 
the ~ddi:ioiiiil wi&iraiiiis detei.~nineu by rne tinie and place of t,he spacecraft in the initial orbit, arid 
the time and place of the target spacecraft in its orhit. In this section we develop a mathematical model 
of the rendezvous problem. In later sections the model is used to develop optimization algorithms to 
find niininiiini fuel s~Ii!tioiis. 

initial maneu\'er can occur ani.nhcre along the initiijl  orhir . %E(! t!ic. fit!.! YP.!~ Y Y  ce:; s c c u r  ai,) '-'---- a-iiac 

where r r  m d  r; are the positions immediately before and after t.he ith burn respectively, t: and t; 
are the times immediately before and after the ith burn respectively, and V: and V; are the velocity 
vectors immediately before and after the ith burn respectively. The constraints in Eqs.(l) and (2) are a 
result, of the definition of an impulsive maneuvcr. 

Figure 1: Impulsive Orbit 'I'ransfer Diagram 

There are additional constra.ints that must be satisfied at the boundaries, and zt the interior impulses 
which are imposed by the orbit dynamics. We assume that the dynamics for the entire maneuver sequence 
are given by 

r r = -p-  
r3 (4) 

Let rf = f(ro: vo, to,  t f )  and vf = g(rol v,,, t o :  t f )  be the solution to Eq. (4), with the initial conditions 
(ro,vorto) and the final time of t j .  For a.n interior impulse i f; 1: i f n, and n > 2. The a.dditiona1 
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--, 
I he constraints tha t  must be satisfied a.t the  initial boundary are given b> 

where ( r f ,  \ - j .  f ; j  are Ghe positjon aid velocity of the initial orbit a t  the reference epoch t f .  and t ,  is 
:he time of the last rnaxeuver. Without loss of generality. we ca2 appropriately formulate the optimal 
control problem to ensure that the constraints r: = r, and t: = 1; are satisfied implicitly. For the 
remainder of' this work we drop the superscyipts on r and f~ aid asslime 

In summary, the problem is to find the set (rzr v: v;, it). where i = 1.2 ... n and n 2 2 ,  that satisfies 
the constraints 

and that is a minimum solution to the function 
R 

where n is the n m b e r  of maneuvers, the set (rot v,, t u )  defines the initia! orbit and the set (r,, vf. t f )  
defines the final orbit. 

There are two main methods availa.ble for solving the optimal control problem, including direct. and 
indirects approaches. Within each method there are numerous possible implementations. Often methods 
are actually a combination of indirect and direct techniques. For direct methods, the parameterization of 
the problem depends on the type of optimizers available. Indirect methods are sensitive to the constra.ints 
and often require complete reformulation if new constraints are imposed. In the next two sections we 
discuss severa.1 approaches for solving the minimum fuel rendezvous problem using both indirect and 
direct methods. 

DIRECT APPROACH 

The success of a direct method is intima,tely dependent on the choice of independent va.ria.bles and 
the constraint function formulation. In this section we discuss three parameterizations for solving the 
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Object ive Funct,ion Parameter izat ions 

. - . .  TLLF‘W uuniermic approaches to  SG!Y:II~ the  :i<i~,l1~i.i;1i fuel rentlm 
ods. For cun~enience we break down the rlirrrt aFpmzches considered here int.0 two c ~ i  ;e,oi&s caiieci ihe 
Feasible Iterate Approach end the infeasible Irerate Approach. 111 the Feasible 1:e;are Approach. each 
waluat,ion c\f the  objeciiv? function is a.l:;o n I‘easiblr- solution that sssisfies the rendezvous condit,ions. 
EIerice, froin t,he point of i i pw of the optimizer. the prohlern is unconstriiined. The Feasible 1t.ei.a.te 
Approach requires that. for ea.ch objective func.t,ion evaluation TBPVP is solved. The Feasible Iterate 
..lpproach also requires a. careful selection of independent variables for the objective function parameteri: 
za.tion. In the In-feasible Itera.te Approach. there is less restriction on the choice of independent variables, 
however; the constraii1t.s must, be defined ca,refully, and the optimizer must be able to handle nonlinear 
constraints. For continuity, we present the discussion of alternative parainet>eriza.tions in Appendix 1. 
Here we present, the param rization chosen for this work. 

Our Choice of independent vxiables is as follows: 

Given: (ro> vo, t o )  and (rf ,  vf; t f )  

Choose the independent variables: 

l, 

rj 

i = 1 , 2  ... n 

j = 2 , 3  .... n - 1 

where ti a,re the times of the maneuvers, and r j  are the positions of the intermediate burns. Given the 
independent variables defined in Eqs.(2l) and Eqs. (22), we must develop an a.lgorithm to determine the 
total Ab’ of the maneuver sequence. The boundary conditions rl, v:, r,, a.nd v; are determined using 
Eqs.(13),(14),(17),and (le),  where tl and t ,  are known from Eq.(21). After solving for the boundary 
conditions we know the times and positions of all the maneuvers. Therefore, we can solve for the 
velocities before and after each maneuver, by solving Lambert’s problem for each of the n - 1 trajectory 
segments. There are numerous well-known approaches to solving Lambert’s problem. We choose a 
method developed by Howell and PernickalO and further developed by Guzman.” The method developed 
by Howell is chosen because it can solve Lamberts’s problem with perturbations included, as well as when 
there is more than one significant. gravitational body. Perhaps more importantly, Howell demonstrated 
that using the method described below, we can provide analytic approximations for the gradient of the 
total AV with respect to the independent variables chosen in Eqs. (21) and Eqs.(22). The algorithm is 
described as follows. Given an initial position ri-1, and an initial velocity vi-1 both at time ti--l, find 
bvi-1 applied a.t time ti-l so that we achieve ri at  ti. Figure 2 illustrates the problem. The dark black 
arc denotes the path a spacecraft would follow if no bvi-1 is applied. For this arc: the final position 
denoted by r, is not equal to the desired final position ri. Hence 6ri # 0. The dashed arc denotes the 
trajectory that is the solution to Lambertk problem. For this arc ri = ra: or 6ri = 0. To solve for 
such that 6ri = 0 first define x as - -  

L J  
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Using the fact that brz- i  = 0 me can write 

Solving for 6vi-l we see that, 

From inspection of Fig. 2 we can write 

Solving for bri we have 

Substituting Eq.(29) into Eq.(27) yields 

6v,-l = Bci-lbri 

ri I 5ri = r, 

6r, = ra - ri 

6vi-I = B;i-l (r, - ri) (30) 

We can solve for such that bri is zero by iterating on Eq.(30) until (r, - ri) meets a user defined 
tolerance. It is important to note that this approach assumes that BCl-l exists. For cases when B<i-i 
is not invertible we use a method by Gedeon12 to solve the TPBVP. We solve all n - 1 trajectory arcs 
using the algorithm defined above, then the AV is calculated using Eq.(l9). Note that although the 
algorithm above can be extended to provide a gradient approximation, we have used finite differencing 
for gradients in this work. Analytic approximations for the gradient are. a topic-of current research. 

There are several other concerns to address to completely define the objective function parameteriza- 
tion. We also must choose appropriate time and coordinate systems to express the independent variables 
given in Eqs. (21) and (22). There are several issues in choosing a. time parameterization that must be 
considered. The first issue is to select appropriate units, the second is to select an appropriate reference 
epoch. We choose the units of seconds for time, and reference each time ti to the reference epoch t o  
given in Eq. (20). The positions in Eq. (22) are expressed in Cartesian coordinates in the Mean of 52000 
Earth Equatorial system and the units are in km. 

With the parameterization of the cost function described above, the rendezvous conditions are sat- 
isfied implicitly for every cost function evaluation. Hence, the problem is essentially an unconstrained 
optimization problem and we are free to use unconstrained as well as constrained optimization techniques 
to  find a minimum AV solution. It is exceedingly rare that both TPBVP methods described above fail to 
converge. In the case that neither method converges we must “inform“ the optimizer. This is discussed 
in a subsequent section. In the next subsection we discuss the numerical optimization packages we use 
in this work. 
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Direc t  Optimizers 

There are nuinerous optiiiiization package!: a\.ailalle tha;  sol\-e L I I 1 c O l I S t r i ~ : 1 I ~ d  optimizs t ion J.)rObiei?lS. 
\$-e irwestigat,e the performance of four routines for the paran!etcrizaticiii of t h c  ?i?i11im1.1.?n hw! w ~ c ! f m : ~ r y  

problern chosen a,bo-,.e. Three of the routines ase products of The AIathworks and are ax-aihble in their 
C)$imizn.:icn T ' a d S ~ x . ~  The first roiitiiie is a.n SQP aigorirnm cailed fmincon. The second routine is a 
quasi-Newton algorithm called fminunc. The third routine is a Nelder-ilfeade simples algorithm and is 
ca.lled fininsearch. For a detailed discussion of the optimization routiites developed bj- The  .\lat,liworks 
v\;e refer the reader to the 0ptiniiza.tion Tooihos documenta.tioil. ' The fourth numerical optimization 
routine n~ emplot- ic an SQP ;oiltine developed 11; Gill? et ui. calied SNOPT. For a. cieiai i r t l  discussion 
of SYo?T ??fer :,!IF 7 E i : d p r  :,(I rl-lp S ? T ~ I P T ~  5.3 d:>c:l;.neA 

Numerical ISSUPS 

To avoid numerical difficulties t,he independent variables and the objective function values are norrnal- 
ized to be on the order of one. Secondly. all derivatives are ca.lculated using finite differencing. Providing 
analyt,ic derivatives for grz.dieRt based nethods is a topic of curreiit research. The finai numerical issue 
occurs when both TPBVP solvers fail to converge. This is exceedingly rare. However when it occurs we 
must "inform" the optimizer. SNOPT has a built in capability to step back from a poorly conditioned 
state vector. Hence, for SNOPT, if both TPBVP solvers fail, the appropriate message is sent to  SNOPT 
and the SNOPT steps away from the poorly conditioned state. However; The Mathworks routines do 
not have this capability yet. As a temporary solution, when using a. hlathworks' routine. in the event of 
a poorly conditioned state vector we pass back a crude approximation of the total AV. 

To solve the minimum fuel rendezvous problem using direct methods we must choose an  appropriate 
parameterization of the problem, and aa appropriate numerical optimization routine. In this section 
we discussed some choices involved in choosing a specific Parameterization. We chose one method that 
performed well in a preliminary comparison. We also discussed several numerical optimization routines 
we employ and some numerical issues one must deai with to ensure adequate performance. In the next 
section we discuss an indirect approach to solve the minimum fuel rendezvous problem. 

INDIRECT APPROACH 

In this section, we present a review of the primer vector theory as well as the main challenges 
involved in its implementati~n.'~ Primer vector theory14 is an optimization technique based on calculus 
of variations. The theory has several appealing features including the indication of when and where to 
add an impulse to a non-optimal trajectory, and a visual assessment of the optimditjr of neighboring 
solutions. 

Primer Vector Theory 

Primer vector theory provides a set of first order necessary conditions, which a trajectory must meet 
to be locally optimal. The necessary conditions, first derived by Lawden, are expressed in terms of 
the primer vector, which is defined as the adjoint to the velocity vector in the variational Hamiltonian 
form~la t ion . '~  If any of Lawden's conditions are violated, the rendezvous trajectory is not optimal and 
we can use the primer vector history to obtain information on how to improve its AV cost. In his initial 
work, Lawden solved a fixed-time rendezvous and his theory was further extended by Lion and Handels- 
man and la.ter, by Jezewski and Razendaal to solve the n-impulse optimal rendezvous ~ r o b l e m . ' ~ . ' ~  A 
more detailed derivation of the primer vector theory is provided by Hiday.17 For the rendezvous problem 
considered in this pa.per. we can express the primer vector equations using calculus of varia.tions theory. 
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The primer vector must. be C1 (Le. the primer vect,or and its first derivntivi: are continuousj for 
the entire hist,ory. 

Between impulses: I /p/ I = p <= 1. Iinpuises occur when p = 1 

At. an impulse, p = p = u+. where ii; is the optimal thrust direction 

At. all interior impulses (not at the ir,itial or final times) p . p = 0. This condkion has iniplications 
on the slope of the primer vector magnitude since 

Therefore, = 0 at the intermedkte impulses. .41so: for convenience; let p = y. 
These conditions are necessary (but not sufficient) for an optimal trajectory. In this paper. a tra.jectory 
that meets the above conditions will be called an optimal trajectory. When solving a rendezvous problem 
using primer vector theory! we first, need to evaluate the primer vector history along the reference 
trajectory or initial guess. Solving for the primer vector history is equivalent to solving a TPBVP. Let's 
first assume that we are solving a two-burn rendezvous problem. We know from Lawden's conditions 
that. at an impulse, the primer vector is in the direction of the thrust vector. Thus, we can express the 

The initial and final primer vectors and the time-of-flight (tf - t o )  are known. Ilo-aever, to propagate 
Eq. (31), we need the complete primer initial state (pol p,). To obtain p,, we can either use a shooting 
method (TPBVP solver) or use the STM formulation from Eq. (34) below. 

where A, 33, C and D are 3x3 matrices, partitions of @(t,t,). In general, using the STh4 is faster and 
although not, as accurate as the TPBVP solver, it is sufficient. Using Eq. (34), the init,ial derivative of 
the primer vector can be expressed as: 

Po = B-l . (pi - A .  p,) (35) 
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I t  is ~ori!i:?-l~ile rioting that i f  B-’ is siiigular. p, caiiiint be coi1ip!itd using Lq. ( I n  tile t.\\.c,-Lot!!, 
probleni. tlierc are three iinoc-n singularities.” E,q. ( 3 5 )  cm be generalized for a n-impulse trajector!. 
b!. examining each individual t\\;o-biirn transfer. Once the priiiier \-ec.r.or histor>, ic coinpiited. ive cai! 
dcterinine the  optinialii>- of t,he trajectory using Layden’s necessary conditioiis. If m y  of La.n-den‘s 
conditions m? x,iolated. the r?ndezvoiis trajpc.in?;- i? II?? cptirna! and TC IiSe tlie pi-ii;lCI bt?ciol ~ L ~ L L J I ) ,  

to obtain information on how to improve its AV cost. Improving non-optimal trajectories using primer 
vector theory is  lie nia.in contribution of Lion and Handelsman.” Essentia.lly, first order va.riations of 
the total AV are considered for different. perturbed trajectories.’”-’’ For a. non-opt,inial primer vecmr 
hist,ory. two types of actions are possible t,o lower the AL7 cost: (I) moving the init,ial or final impulse and 
(11) adding andjor nioying an interior inipiilse. If the epoch of the endpoints is unconstraiiied. a n  a.ction 
of t:;pe I is pe:.formed vihenever the  initial md/’or t,he fimi primer vector magnitude slope iq diffrimt 
~ i c ~ r n  zero. T h e  general e ~ p  z. ion  for. tinle i-airiaiioiis ;!t !>ot,h elidpoinu is given by Rida,j,” its 

n-tiere the initid and ha1  t ine  mria.tions &re given by ( ! L o  and b t j  respecr,ively. F;xthermore, the icitia! 
x i d  final prinier ningniti.ide siopes are given by Po and ~ , f .  respective!?. To have a lower cost. J J  must 
be less than zero. If the following t,ermiriology is defixied; 1) iriitia! coast (dt, > 0 ) :  2) earl>- depature  
(d t ,  < 0) .  3 )  firial coast ( d t f  < 0 ). and. 4) late a.rrival (d f f  > 0 ): then. the following four cases cover 
all the non-zero primer slope comhiiia tions, 

0 If Po > 0 and 9, < 0 + Apply Initial Coast and Final Coast, 

If ?jo > 0 and @j > 0 + Apply Initial Coast and La.te Arrival. 

If & < 0 and p f  < 0 Apply Early Departure and Final Coast 

s If Po < 0 and $f > 0 + Apply Early Departure and Late Arrival 

See Hiday’’ for details. Of course: if the slopes are zero, no further improvement is achieved by varying 
the endpoints times. If t.he primer vector magnitude goes above one during a coasting phase on a given 
segment, an impulse is added to the trajectory (action type 11) to improve the overall AV budget. This 
impulse is examined by considering a neighboring path with an additional impulse. The two-impulse arc 
is perturbed with the addition of a. mid-impulse at some time, t,,, and position rm. f 6rm. (The position 
rm is the position along the unperturbed path at tm.) The initial and the final times and positions, 
( to,  r,) and (t,, r f ) ,  are fixed. The cost function variation is defined as 6 J  = J’ - J :  where J’ is the 
fuel cost on the perturbed trajectory. Then: considering first order terms only, it can be shown that 

6 5  = c(1 - p;fj), (37) 

where the following are mid-impulse parameters: c is the magnitude of the impulse, pm is the primer 
vector at. tm and fj is arl unit vector in the direction of the impulse. Then, for an improvement in 
cost, d J  < 0. Thus, using the definition of a dot product, if (Ipm[( > 1 at any time, a third impulse 
is beneficial. Furthermore, the greatest decrease in the cost funct,ion will be achieved if the impulse is 
applied at the maximum of I/pm(l at time tm and in the direction of 4. The position along the perturbed 
path and the magnitude of the impulse are yet to be determined. Consider finding the position of the 
impulse. Utilizing the fact that the position across an impulse is continuous, using the STM before and 
after the impulse, and utilizing the information obtained from Eq. (37), gives the following variational 
equation, 

br, - = & - l a  

l lpml l ’  

where 

9 



6 J  = (4p,,,)T dr,  + (AH,) d t ,  (39) 

where 4p,,, and AH,, are. respectivel!: the primer vector and t,he Hamilt.onian tliferenrss at  !he iin- 
pulse. If the traject.or>- is indeed optimal. t.lw first cost variation must vanish. Thus. it is required t h a t .  
~rj,,) = o and. AH,,, = O. it cifn he sliou-n that A>!,,, = p;'v, - p::Tv,:. 111 a11 ini,crestiuo; 'xI~x.. .  a 
direct optimization method <:ni.l i,e iipp1it.d 10 x ~ i r ~ '  t,he mid-impulse t,iine and position to inert thc above 
conditions. 111 t:iils investigatiorl, follon-iiig Hiday.' ' the Bro?.den-E'ic.t,r:her-Goldfar~~-~~Rri!io. (BFGS j .  

.- 

Primer Vector Implementation 

The'primer vector theory described above was implemented in Matlab in tool we call PVAT. PVAT has 
a fully automated algorithm, which iterates following the primer vector principles to optimize a non- 
optimal- reference trajectory. Most of the time multiple actions for improvements aae possible. However: 
there is yet no mathematical theory that determines the optimal sequencing of the actions and, in gen- 
eral, different sequencing will lead to  different neighboring solutions. One way of solving this problem is 
to combined Eqs. (36) and (39) to forin a unique cost function gradient. This gradient is then used in the 
BFGS optimization algorilhiri to simultaneously move the endpoints times and the midcourse impulses 
position and time. A separate check for the addition of an impulse is then required. In this paper, we 
choose to implement a sequential algorithm where the endpoint times and the midcourse impulses are 
varied with separate PVAT iterations. Each t,ime the underlying trajectory is changed, the algorithm 
recomputes the primer vector data and re-iterates unti! no improvement can be ma.de. A conceptual 
flowchart of PVAT is shown in Fig. 3. 

First, the initial and final endpoint gradients are e v a h t e d  to check whether their values are greater 
than zero within some specified tolerance e t .  Note t.hat only one endpoint is moved at a time for a given 
iteration and the priority is given to the boundary with the highest gradient value. To determine the de- 
parture/zr,rrival sta.te which corresponds to a zero initial slope, we implemente a bisection method. Both 
endpoint algorithms being identical, only the initial boundary is discussed here. Whenever the primer 
magnitude slope, p, ,  is positive the departure state is propagated forward, otherwise it is propagated 
backward. To quickly recompute the trajectory data, we use a Lambert solver. The primer magnitude 
slope is then updated for the new trajectory and the process is repeated until the value of the slope is be- 
low the tolerance. Whenever there are interna! impulses, the norm of the internal gradient is evaluated. 
The midcourse burn(s) are moved whenever the norm exceeds a specified tolerance cm. To move the 
midcourse impulses states, we use the BFGS minimization technique. This variant of the Quasi-Newton 
method uses an approximation of the Hessian ma.trix instead of its direct evaluation. The approximation 
formula is called a EFGS update. Finally, if the primer vector is above some maximum value, p threshold, 

during a. coasting arc: an impulse is added to the trajectory. Note that theoretically the threshold value 
is one but for numerical implementation, the value is typically chosen to be slightly higher than one. The 
value of perturbation impulse is computed using an estimate derived by Jezewski." However, we need 
to ensure that its magnitude remains small for the theory to be valid. In this paper, we implemented 
two different algorithms labeled PVATl and PVAT2 respectively. For PVAT1, the algorithm was not 
permitted to add a. burn in spite of indication of potential improvements by the primer vector history. 
The second implementation permitts the addition of burns to the rendezvous trajectory to take full 
advanta.ge of the primer vector theory. However, for pmctical reasons,we limited the number of burns 
to a maximum of six. For this first version of the code, the equations where not non-dimensiona.lized 
which means that the choices of the various tolerance are specific to the problem solved and tha.t the 
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Figure 3: PVAT Conceptual Flowchart 

final optimal solution will depend on their value. 

TEST CASES 

In order t o  compare the performance of each optimization method we utilize three test cases. The 
test cases are chosen to investigate the performance of the each method in different flight regimes. The 
first test case is a low-Earth, circular-to-circular, coplanar rendezvous. The second test case is an elliptic- 
to-elliptic line of apsides rotation. The third case is a highly elliptic orbit phasing sequence. For each 
test case there are numerous initial guesses. To generate different initial guesses for a particular test case 
we first define an initial and final orbit. Next, we vary the true anomaly and the epoch for the initial 
and final maneuvers. Given the times and positions of the initial and final maneuvers for a particular 
initial guess, we solve Lambert's problem to yield a two burn solution. A simple algorithm is used to 
place small maneuvers along the two-burn trajectory arc to generate multiple maneuver solutions. In 
the next three subsections we discuss the three test cases in more detail. 

Case One 

Test Case One is a simple circular-to-circular coplanar transfer. The optimal solution is simply the 
Hohmann AV. The orbital elements for this test case are shown in Eqs.(40) and (41). The format for 
the orbital elements is [ a e i w 0 v ] unless specified otherwise. Distance is measured in km, and angles 
are measure in degrees. 

Initial Orbit: oeo = [7000 0 0 0 0 01 ~ T = 0 
Final Orbit: oef = [7500 0 0 0 0 A I f ]  ~ T = Tj 
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Tlie A\,' for a Holiim~in Traiisfer for (.'we U n e  is 2.75.8 mj 's .  :I set of initial guesser; for case one is 
generated by va.ryirig ;\If and T f .  \ le  vary ;\I,, from 90" to 270" in increnients of 20". FOI. each value 
of Ai, we choose two v a l u ~ s  for TI. For each pair of AI,, and T f  are sol\;e Lambert's problem to obtain 
a two-maneuver rendezvous f ix  the i~iitial to  the final orbit. The values of Tf are chosen so t1ia.t the 
A\' for the initial guess is less than 1.5 i;m/s. Not,? this is considerably higher t h a n  the k~1on.n npti 
solution. For each two burn solution we add small interior burns to create similar three and four burn 
sohitioris. :n summary: there are nine diifferent values for .;\.:ff$ two different vaiues of TJ for ea.ch M f :  
and a two, three and four burn solution for each pair of Afj and TJ.  Hence there are fifty four initial 
guesses for Case One. A figure showing a sample of t,he initial guesses for Case One is shown in Figure 
(41. 

Figure 4: Sample of Initial Guesses for Case One and Two 

Case Two 

The second test case involves a combined maneuver that chmges both the semimajor axis and the 
inclination of the orbit. The orbital elements for Case Two are shown in Eqs. (42) and (43). The 
eccentricity of both orbits is 0.3. The semimajor axis for the initial orbit is 7000 km, and the semimajor 
axis for the final orbit is 8000 km. The initial orbit is equatorial, and has an argument of periapsis of 0". 
Hence the five degree plane change is a rotation about the line of apsides. We generate 180 sets of initial 
conditions by varying the position and epoch of the initial maneuver: v, and To respectively, as well as 
the position and epoch of the final maneuver, v f and Tj. We vary v, from 300" to 40° in increments 
of 20". We vary vj from 140, to 220" in increments of 20'. These ranges are chosen because we know 
the initial maneuver should occur near periapis, and the final maneuver should occur near apoapsis. For 
each possible pair of v, and vf we choose two times of flight and compute two transfer trajectories that 
result in a two-burn maneuver sequence with a total AV of less than 2 kmls .  Three and four burn 
maneuver sequences are generated from each two burn solution by putting small maneuvers, equally 
spaced in time along the initial two burn sequence. Hence, there are thirty combinations of v, and vf, 
two times of flight for each pair of v, and vf, and two, three and four burn sequence for each time of 
flight resulting in one hundred and eighty initial guesses. A representative sample of the initial guesses 
for Case Two are shown in Figure (4). Positions of the initial maneuvers are label by black asterisks. 
Positions of the final maneuvers are marked by red circles. 

Initial Orbit: oe, = (7000 0.3 0 0 0 v,] , T = To (42) 
Final Orbit: oej = [8000 0.3 5.0 0 0 vj] , T = Tf (43) 
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Case Three  

Case 1111-ee is a phasiiig i~ittiie~tver sequence in a highly clliptic orbit. The orbital e1emc~nt.s for tlie 
initial and filial orbits are given in Eqs.(44) and (45) \{.here E,  and E f  are the eccentric anomalies of 
t,he initial orbit and final orbit at times To and Tf respectively. To gerlerate a set of initial guesses for 
CSSP Three YJP 1:~ry Eo fr-,:n 0" to 345' i:: inciemclits O: 15'. Fo: eacli value of E, we crtlcuiaw LW'O 

values of Ej  such that. there is a 30 mint1t.e separa.tion in time between the initial and final orbits. The 
first value of E/: for a given E,. is calculated so that, the final position is t.hirty minutes ahead of the  
initial p o s i h i .  The second \ d u e  of Ej: for a given E,. is calculated so t h a t  the final position is thirt.. 
minutes behind the init-ial position. For ea.ch Et and E, pair we gezeretn a. two maneu:.er sequencn b>- 
soli.ing Lanihert's problem for i l l1  E,f n.nd E, pair krzming tha t  -I:, is tl:i~-~:j ~ t e i .  I hrec ;:lid  OUT 
b i ~ n  cases are generated k~>- insert in: srna.11 maneuver:: ~ l m g  the  txm b w n  sequence. Fa: Chse -r!iree 
there is a. total of 96 initial guesses. 

- _ .  

The test cases developed above a.ie intended t G  allow a. coinparison of 1.he methods for rendezvous 
sequences in different, flight. regimes. In the next section we present results tha.t compare the converged 
solutions for the six methods investiga.ted in this paper. 

RESULTS 

Comparing the performance of the trajectory Optimization methods studied in this work is non trivial. 
To begin, we must develop some metrics tha.t allow us to compare the solutions provided by the different 
techniques. The ultimate goal is to provide an analyst with some insight into which technique to employ 
for a given problem. So ultimately, we want to know which technique is most likely t.0 converge ho the 
lowest AV cost. However, this is not the only important statistic. We are also interested in determining 
the relative performance of different methods. For example, if one approach converges to a known 
optima! 70% of the time, and a second approach converges to a known optimal 25% of the time, the 
second approach may still be useful for several rezsons. Firstly, for a given problem the hypothetical 
method 1 will not converge to the known optimal 30% of the time. Hence we will need another approach. 
Secondly, the hypothetical method 2 might converge to a slightly higher solution in terms of the AV 
cost, but it might provide a solution that is better when other mission constraints are taken into account. 

We employ two statistics to capture the relative performance of the different trajectory optimization 
techniques. The first statistic is simply the percentage of initial guesses where a particular method yields 
the lowest AV cost. We denote this statistic SI. For example, there a e  54 initial guesses for Case One. 
If fmincon converges to the lowest AV cost of all the techniques, for 10 of the initial guesses, then SI for 
fmincon is 17.54%. According to this definition, the sum of the S1 statistic for for all of the techniques 
for a particular test; case is 100%. 

The second statistic we employ is intended to provide more insight into the relative performance of 
the different techniques. For example, if SNOPT converges to a solution of 260 m./s for a particular 
initial guess, and PVAT1 converges to a solution of 261 m/s for the same initial guess, then although 
PVAT1 has a higher solution, it still performed well relative to SNOPT. This is not captured in the SI 
statistic. We define a second statistic Sz: and define it as the percentage of initial guesses that converge 
to within 5% of the lowest solution yielded by t,he six techniques for the particular initial guess. An 
example makes this clear. Suppose we are comparing solutions from fminunc and fminsearch for a set of 
three initial guesses. Suppose fminunc converges to 100 m/s for the first initial guess, and fminsearch 
converges to 102 m/s for the first initial guess. For the second initial guess fminunc converges to 1-03. 
m/s and fminsearch converges to 120 m/s. For the third initial guess fminunc and fminsearch conyerge 
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Hutli tile 5 1   HI!^ S? statistic be> applied t o  rhe results in se\,eral n.ays. For exampie. if  ani?- 
four-biim init.ia1 guesses are used in generating an & statistic. we add  an additional siibscripi and  ral! 
the statistic S24. If all of the initial guesses are used for determining a n  S2 statistic. thew is no a.dditiona1 
subscript. This coci:ontion is ~ ! S C  wed fer t5e Si stztistic. 

In the next. three subsections we present a performancx comparison of the six t,ec:hniques for cadi 
of the three test cases. U'e use both the statkt,ics described above. as well as grapliical nierhrids ~ , C I  

il!iist rate ho\v t!?e techniques cnrr?pa.re n i l h  O J ~ P  another. 

Case One 

Rxxslli tha.? Case One is a simple ciIcular-t,c~circula? copianar renbezvcus problem. Hence t,he opti1na.i 
solution is simply the Hohmann A\', Khich for the orbits defined in Eqs. (40) a.nd ($1) is 255.8 m/s. 
A figure illust,rating the results for all six optimization techniques we investigate is shown in Fig. 5. 
The top suhpiot contains the solutions for a!l two burn maneuver sequences. The middle and bottom 
subplots contain the solut,ions for all three and four burn solutions respectivelv. On each subplot the 
x-axis is the initial guess number. The initial guesses have been numbered in order of increasing AV. 
This is done to enable one to draw conclusions as to the performance of each method as the AV of 
initial guess increases. Furthermore, the initial guesses between the subplots are similar. For exampie; 
the initial guess number one in the two-maneuver subplot is similar to initial guess number one in the 
three-maneuver subplot. The difference being only that a small mid-course maneuver is placed along the 
two-maneuver sequence to create a three maneuver sequence. The same is true for init.ia1 guess one of the 
four-maneuver subplot. On all subplots the y-axis is the AV in k m / s .  Solutions for all direct methods 
are plotted in black. Solutions for indirect methods are plot.ted in red. Statistics that aid in comparing 
the results for each of method are found in Tablel. By inspection of Fig. 5 we see that the direct methods 
outperformed the indirect met,hods. For all but one initial guess, the direct methods always converged 
to within a few m/s  of the known optimal solution for two-maneuver seqilences. For three and four burn 
sequences, fminsearch consistently had the poorest performarice of the direct methods. In comparisons 
between PVATl and PVAT2, PVL4T2 performed better. Examining the $1 statistics for Case One we 
see SNOPT found the lowest solution most often at 35.09% of the time. The method with the second 
best performance was fmincon, which found the lowest solution 31.58 % of the time. Examining the S2 
statistics we see that both SQP methods converged to within 5% of the lowest solutioin at  least 93% of 
the time. It is also important to note that although other methods performed poorly in comparison to 
SQP, about 33% of the time the lowest solution was found by a method other than SQP. This suggests 
that although SPQ is the single best performing method for Case One, it is not safe to rely only on SQP 
as an optimization approach. it is also important to note that although SPQ found the lowest solution 
most often, solutions from other methods were often close to the solution found by SQP methods. 

Table 1: Statistics: Case One Results 

fmincon 31.58 21.05 15.79 57.89 92.98 100 78.95 100 
s1 s1, s1, s1, s 2  s2, s2, s2, 

SNOPT 35.09 57.89 42.11 5.263 94 .74  100 89.47 94.74 
fminunc 10.53  5.263 5.263 21.05 78.95 94.74 52.63 89.47 

fminsearch 7 .018  10.53 0.00 10.53 43.86  100 21.05 10.53 
PVATl 3 .509  0.00 5.263 5.263 71 .93  94.74 42.11 78.95 
PV-4T2 12.28 5.263' 31.58 0.00 66 .67  57.89 57.89 84.21 
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The maneuver sequence in Case Two involves raising the semi-major axis an( rotating about t-.e line 
of apsides, as well as satisfying the rendezvous conditions. Hence, two burn solutions will often perform 
poorly. Figure 6 shows all of the converged solutions for Case Two. The results are plotted using 
conventions identical to the results for Case One and we refer the reader to the previous subsection 
for details. Table 2 summarizes the selected statistics for each method for Case Two. For the two- 
burn sequences seen in the first subplot, PVAT2 yielded the lowest AV about 48% of the time and 
converged 71% of time within 5% of the lowest solution. PVAT2 higher performance can be explained 
by its unique ability compared to the other methods to add maneuvers to lower the AT/ cost. For the 
two-burn sequences all methods, with the exception of PVAT2, frequently converged to the same local 
minimum. Note that PVATl did not perform as well as the direct methods for the two-burn sequences 
as it converged only 29% of the time within 5% of the best solution. For three-burn sequences, SNOPT 
and fmincon yielded to the lowest AV about 42% of the time and converged about 90% and 81% of the 
time, respectively, within 5% of the lowest solution. For this set of initial guesses, PVAT2 yielded the 
worst results. Finally, for the four-burn sequence, fmincon out-performed all the other methods. fmincon 
found the lowest solution 58% of the time and 93% of its converged solutions were within 5% of the lowest 
AV cost. fminunc is the second best with about 16% and 64% for SI and S, respectively. SNOPT, 
fminsearch and PV.4T1 have comparable statistics for this initial gucss scquence. PVAT2 performed 
poorly compared to the other methods. Overall, we can see that, for Case Two: when there are more 
than two-impulses, fmincon appears to be consistently better. However, for the two-burn sequence, 
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Table 2: Statistics Case Two Results 

fmincon 31.58 9.677 41.94 58.06 75.81 53.23 80.65 93.55 
SNOPT 24.73 22.58 41.94 9.677 56.99 48.39 90.32 32.26 
fminunc 6.452 1.613 1.613 16.13 50.00 48.39 37.1 64.52 

fminsearch 8.065 8.065 8.065 8.065 39.25 43.55 45.16 29.03 
PVATl 7.527 9.677 4.839 8.065 34.41 29.03 41.94 32.26 
PVAT2 16.67 48.39 1.613 0.00 33.33 70.97 17.74 11.29 

s1 s1, Sl, s1, s2 s2, s2, s2, 

Case Three 

Recall that Case Three involves a phasing maneuver in a highly eccentric orbit which implies that 
the initial guess is going to be critical in defining which optimal solution is achievable. This sequence 
is a pure phasing ~naneiiver where the number of revolutions is not to exceed one. Because of the 
high eccentricity of the orbit, moving the initial and final epochs of the rendezvous will in some cases 
change the trajectory dramatica.lly ma.king it more difficult to set the proper tolerances for the finite 
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tlifi~re!icing t u  m ! i i p u ~ v  a c ' c  i r a t e  gradieiits. Figure 6 si1on.s a l l  of t !le co~l\.crgetl solutions for Case I'1ii-w 

Table 3 sxnniarizcs the selected statistics for each nietliod for Case Three. For both the three-t~arn and 
four-burn sequences seen in t,he first subplot ~ all the indirect methods performed very poorly. fniincon 
out,pcrforii;ed a l l  ot lier ~iietliods nTith R b C J l l t  69%. m t l  66.7%. of the lowest solutions for the three-bum 
sequence and the four-burn sequence respectively. For the three and four burn sequences. & for fmincoii 
was 89.6%' and Y1.67'76 respectively. fminsearch and SNOPT were t,he direct methods n-ith the lowest 
pdormance rat.e for hnth burn sequwces. Nr)t.o that fminunc rocverged 62.5%, of the time xithin 557 c,f 
the best solution but was only the best method 10.42% of the time for the three-burn case. However: for 
the four-burn sequence. fminunc statistics improved to a convergence rate of Sl .W% within 3% of t,he 
best so!ution and it found the 1on:est 31,' 22.92% of the time. Overall. fniincon and fininimc seem to be 
the preferable inet,hods for solving a Case Three type of rendezvous. -411 the ot,her methods performed 
very poorly. 
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Figure 7: Results for Case One 

Table 3: Sta,tistics: Case Three Results 
s1 s1, s1, s 2  s 2 ,  SZ4 

fmincon 67.71 68.75 66.67 90.63 89.58 91.67 
SNOPT 11.46 16.67 6.25 25.00 25.00 23.00 
fminuric 16.67 10.42 22.92 75.00 62.50 87.50 

fminsearch 4.167 4.167 4.167 9.375 6.25 12.50 
PV.4T1 0.00 0.00 0.00 10.42 8.33 12.50 
PVAT2 0.00 0.00 0.00 10.42 8.33 12.50 
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CONCLUSIONS AND FUTURE WORK 

The minimuni fitel rendezi.ous problem has received extensive attention in the literature. There are 
two priniar!. nietliods to solying the problcn-1: dircct a i d  indirect,. ITon-ever. i~iiliiy I l l P t h i r ;  are  aCTiiall?’ 
a hybrid between a. direct and indirect approach. 

In this work we compared several apprnarbes for finding optimal re-dezvaxs ao!uticns. J.Ve ccmparPc! 
several parameteriza.tions for an objective function for a, direct approach, and chose the one that appeared 
the best after some preliminary comparisons. We applied four numerical optimiza.tion rout,ines t,o t,he 
direct method parameterization. It is important to note tha t  f3nit.e differencing was used to c:a.lculat e 
gra.dients for the gra.dient-based direct, methods. Providing analvtic gradients i s  a mpic of ~iirrent 
research a n 3   ill likelj, improve both the r a k  nf c ~ o i i v p ~ y i i c . ~ .  aiirl the  5:izi.I \:a!iies cd’ tE? fird con\’ 
soiutior1s. 

\.‘.e also ciei.eloped two indirect, a.ppr~.~;~.c.ilw. TIP iidirect appr.oaci!ez n-ere based ~,n, priner  recto^ 

theorp. ‘?he firsi approach does not ~ ~ G T V  additional impulses highe- than the number of impu!ses 
contained in the initial guess. The second a.pproach will include an ndditional impulse if the optimality 
conditions suggest that it will result in a. AT/- reduction. 

IdeaI!y: from a software maintenance point of vieu-: it is desira.ble for one inelhod t,o always excel 
over competing methods. However, in this work we found that no single method was always the best. 
Yet, there are certain methods that outperform rival methods a significant amount of time. In general. 
in comparing direct approaches, SQP outperformed other methods such as Quasi-Newton, and Nelder- 
Meade Simplex. However, these results are intimately dependent. on t.he parameterization of the objective 
function. For alternakive parameterizations, SQP might not necessarily outperform other methods. 

In comparisons between the direct and indirect approaches we implemented. we found that the 
direct approaches tended to find lower solutions more often. However, there were a significant number 
of cases where indirect methods outperformed direct approaches. Therefore, we cannot simply discard 
the indirect approaches in favor of the direct approaches. 
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APPENDIX 1 

There are numerous considerations to take int.0 account when selecting an objective hnction parani- 
eterization for a direct method. In this work we break down the types of parameterizations into two 
categories called the Feasible Itera.te Approach, and the Infeasible 1tera.te Approach. In the Feasible 
Iterat2 Approach the cost function is parameterized in such a way that t.he rendezvous constraints are 
satisfied implicitly for each cost function evaluation. Using a Feasible Iterate Approach allows one to 
choose between both constrained and unconstrained numerical optimization packages. However, we must 
provide a robust way to solve the TPBVP. In the Infeasible Iterate Approach the rendezvous constraints 
are not necessarily satisfied for each cost function evaluation. The rendezvous conditions are satisfied 
upon convergence of the numerical optimization routine. The strength of the Infeasible itera.te Approach 
is that we do not have to provide a robust TPBVP algorithm. However, it is necessary that we use only 
constrained optimization packages. Hence, in the Feasible Iterate Approach we are in a. sense applying 
a change of variables to convert a constrained problem into an unconstrained problem. In this appendix 
we present one possible parameterizatioii for each category to  illustrate some differences in the methods. 
One possible parameterization of the Infeasible Iterate Approach is 

Given: (r,, v,: to )  and (rf, VI, t f )  (46) 

Choose the independent variables: 

ti 
rj 

i = 1,2 ... n 
j = 1,2,3 .... n 
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Gi\en Gcp. (G') a d  (4s). tile entire maneuver sequence is dahned. By solving h m b e r t ' s  problem for 
each trajec.torv segnent. we can calc.ulat,e t.he total AV. 

Although many parameterizations of the Feasible Iberat,e .fipproach are possible. we o n l ~  present one 
here. One possihle param~.t,erizat,ion is 

For the this parameteriza.tion the entire maneuver sequence is determined aIid we can solve for the t,otal 
Ab- and satisfy t8he boundary conditions simiiltaneously. We first det.ermine 1-1 and v; from Eqs.(l3) 
and (14). The next, st.ep is to  solve 71. - 2 initial value problems by itera.ting on t,he follon.il?g algorithm 

for i = 1 t o n  - 2 

end 
Finally we ensure the rendezvous conditions are satisfied b y  solving Lambert's problem for rn-l: rn. and 
At = t ,  - tn-]. With the solution for Lambert's problem we can solve for and AVn and we then 
solve E.q. (19) for the total AV. There we many more possible choices for independent variables that 
fall under the Feasible Iterate Approach. Presenting all of the possibilities is beyond the scope of this 
work. However, it is worth mentioning that other Feasible Iterate Approaches are likely to be a hybrid 
of the method described by Eqs.(20): (21) and (22) or the method described by Eys.(.jl), (52) and (53).  

Choosing a specific parameterization for the objective function is nontrivial. Each of the parame- 
terizations discussed above have some strengths and some weaknesses. Although a detailed comparison 
of the Feasible Iterate Approach and the Infeasible Iterate Approach is beyond the scope of this work, 
preliminary comparisons suggest that the Feasible Iterate Approach performs better. This is expected 
because it is often better to convert a constrained problem to an equivalent unconstrained problem if an 
appropriate change of variables is possible. Therefore we have chosen to consider only Feasibie Iterate 
parameterizations. Choosing a specific parameterization of the Feasible Iterate Approach is also non- 
trivial. For this pa.per we choose to parameterize the objective function using the independent variables 
given in Eqs.(20), (21) and (22). The justification for choosing this parameteriza.tion is discussed in a 
previous section. 

20 


