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Statement of Problem 
Formation flying systems can range from global constellations offering extended service 

coverage to clusters of highly coordinated vehicles that perform distributed sensing [ 11. 
Recently, the use of groups of micro-satellites in the areas of near Earth explorations, deep space 
explorations, and military applications has received considerable attention by researchers and 
practitioners . 

To date, most proposed control strategies are based on linear models (e.g., Hill-Clohessy- 
Wiltshire equations) [2-81 or nonlinear models that are restricted to circular reference orbits 
[9,10]. Also, all models in the literature are uncoupled between relative position and relative 
attitude. 

In this paper, a generalized dynamic model is proposed. The reference orbit is not 
restricted to the circular case like Refs [2-113. In this formulation, the leader or follower satellite 
can be in either a circular or an elliptic orbit. In addition to maintaining a specified relative 
position, the satellites are also required to maintain specified relative attitudes. Thus the model 
presented couples vehicle attitude and orbit requirements. Orbit perturbations are also included. 
In particular, the J, effects are accounted in the model. Finally, a sliding mode controller is 
developed and used to control the relative attitude of the formation and the simulation results are 
presented. 

Scope and Method of Approach 
The generalized equations of motion for a leader/follower satellite case are derived. 

Extensions to multiple follower systems are discussed. In order to consider non-circular orbits, 
the governing equations are regularized, resulting in a true anomaly dependence. In addition, the 
vehicles are considered to have finite dimensions, so their attitude dynamics are coupled to the 
orbit mechanics. Since, for the cases considered, singularities of Euler angles would not be 
encountered, this attitude representation was chosen. For completeness, the Euler parameters are 
also discussed. Finally, an attitude controller was implemented to control the attitude of the 
follower relative to the leader. In the open loop scenario, each satellite's z-axis points to its own 
nadir position (i.e. the vehicles are assumed to be gravity gradient stabilized). For the closed- 
loop scenario, both vehicles are required to point to the same position on the surface of the earth 
@e., the nadir of the leader). 

Statement of Data Used/Summaw of Important Conclusions 

The developed equations are validated by considering a leader-follower satellite system. 
The leader is in an equatorial orbit with eccentricity to be 0.5 and periapsis altitude is 5 0 0 k m .  
The follower satellite is in a 5" inclined orbit plane with eccentricity of 0.75 and periapsis 



altitude of 520 km . At epoch, the true longitude of the leader ( uOL ) is 0" and that of the follower 
( uOF ) is -5".  The difference between the developed model and the classical Keplerian orbit 
model are shown in Figure 1-1. It is seen that the model error is in the order of 0(104) . 

The leader is in a 
500 km altitude, circular equatorial orbit. The follower is also in a 500 km circular orbit with 0.1" 
inclination. Initially, uOL = 0" and uOF = -0.1". These conditions were chosen to keep the satellites 
within 20 km of each other. The nadir of the leader with respect to the follower is defined by 
angles e, and e, (see Figure 1-2). A 1 Hz. sliding mode controller is developed to maintain Ql 

and e, at zero (i.e., the follower is pointing at the nadir point of the leader). 
Figure 1- 3 and Figure 1- 4 shows the e, and e2 under the case without control. As 

expected, 0, is periodic and e, is a constant value. Figure 1- 5 shows the controlled response. 
The controller was capable of maintaining the desired point of the follower to the nadir of the 
leader. The error is in the order of 0(104) . Figure 1-6 shows the output commands of the sliding 
mode controller. 

The second example considers the relative attitude problem. 
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