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Abstract 
In this paper, a sumlllary of primer vector theory is presented. The applicability of primer 

vector theory is examined in an effort to understand when and whv the theorv can fail. For exam­
ple, since the Calculus of Variations is based on "small" variatio~~, singularities in the linearized 
(variational) equations of motion along the arcs must. be taken into account. These singularities 
a.re a recurring problem in analyses that employ "small" variations. Two examples, the initiali:<a­
hon of an orbit and a line of apsides rotation, are presented. R.ecommendations future work and 
the possible addition of other optimization techniques are also discussed.' , 

Introduction 
The work presented in this paper focuses on tra­

jectory optimization using Lawden's primer vector 
theory.! Primer vector theory can be considered to 
be a byproduct of applying the Calculus of Varia­
tions (COV) to the problem of minimizing the fuel 
usage of impulsive trajectories. For an n-impulse 
trajectory, it involves the solution of n-l two-point 
boundary value problems. The application of COV 
requires a path or initial guess to evaluate the vari­
ations. As a result, the analysis requires an a priori 
specification of the time of flight and/or an initial 
guess for the path. Therefore, this type of analysis is 
termed a time-fixed problem. However, variations in 
the endpoints might be allowed to explore neighbor­
ing solutions with different times of flight. In this 
paper, a general formulation of the primer vector 
is employed. Most importantly, the applicability 6f 
primer vector theory is examined in effort to under­
stand when and why the theory can fail. Potential 
problems are discussed candidly to motivate further 
study and understanding. (Some examples are uti­
lized to illustrate some of the issues.) Of course, 
one of the reasons for examining extreme cases is to 
develop software tools that can somehow "communi-
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cate" to the user potential problems. Understanding 
these problems, in turn, helps in developing robust 
tools that can be exploited for a variety of missions 
including single and multiple coordinated spacecraft. 
The addition of state dependent constraints is, how­
ever, not considered in this paper. Two examples, 
the initialization of an orbit and a line of apsides 
rotation, are presented. Recommendations, future 
work, and the possible addition of other optimiza­
tion techniques are also discussed. 

Historical Background 
The contributions in the area of trajectory opti­

mization utilizing primer vector theory are numer­
ous. The ones that were used for this investigation 
will be discussed here. Lawden applied COY tech­
niques to the problem of optimizing rocket trajec­
tories and coined the name "primer vector" for the 
adjoint vector variable associated with the velocity. 
Lawden recognized and exploited the significance of 
the primer vector and collected his work in a book.! 
(It should be remarked that other researchers also 
utilized COY for a variety of problems related to 
trajectory optimization. 2,3) With primer vector the­
ory, Lawden provided a set of necessary conditions 
for the fuel optimality of impulsive trajectories. In 
1968, Lion and Handelsman extended the theory by 
developing methods to improve - in terms of fuel 
cost - non-optimal trajectories.4 (In this context, 
non-optimal trajectories are those that do not meet 
the set of necessary conditions outlined by Lawden.) 
The methods developed by Lion and Handelsman 



included adding an impulse and coasting along the 
initial and final orbits. Perhaps more importantly, 
their work extended the theory to "find" the opti­
mal number of impulses. Utilizing Lawden's work 
and with the concepts from Lion and Handelsman, 
Jezewski and Rozendaal developed an efficient algo­
rithm for calculating n-impulse trajectories. 5 The 
paper by Jezewski and Rozendaal also contains a 
clever combination with a direct method (Fletcher­
Powell modified descent) to achieve optimality in 
the primer vector sense. Furthermore, Jezewski and 
Faust also considered adding constraints.6 Jezewski 
collected his work in a NASA technical report. 7 

The extensive work by Prussing8- 14 has provided 
much needed insight into the orbit to orbit and/or 
rendezvous transfer problem. Then, the work by 
Hiday and Howell has elegantly extended the the­
ory (the previous references are in the two-body 
problem, 2BP) to transfers between libration point 
orbits in the elliptic restricted three-body problem 
(ER3BP).15,16 In this investigation, interest is in 
understanding, applying, and extending primer vec­
tor theory to create robust software tools that can 
be used for the new set of upcoming challenging mis­
sions. These missions might include regimes such 
as Earth orbiting platforms (including orbits that 
might have high eccentricity), Moon orbiters, libra­
tion point orbiters and other deep space probes. 
Clearly, understanding how and when the theory can 
be applied is critical. 

Primer Vector Theory 
In this section, a general formulation of primer 

vector theory - based on a general force model that 
might be expressed in a rotating frame15 - is em­
ployed to review the theory. 

Equations of Motion 

, Consider a general case where the spacecraft non­
linear equations of motion are given by, 

r = g(t, f, f) + rUT, (1) 

where rand UT are the thrust acceleration magni­
tude and unit direction respectively. The function 
g is referred to as the coastal acceleration. Letting 
T equal the thrust force and m the spacecraft mass, 
r = T/m. Furthermore, letting v = f, Equation (1) 
in state space form is given by, 

{~}={ v } 
g(t,f,v) + rUT . 

(2) 

These are the nonlinear, first order differential equa­
tions. 
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Linearization 

For coast arcs, i.e., null thrust arcs (NT arcs), 
Equation (2) can be linearized about some reference 
path as follows, 

{ M} {Of} ov = A(t)lref ov ' (3) 

where A is the Jacobian matrix, 

A(t) = [cir 6v]' (4) 

and, where Gr = ~ and Gv = ~. The linear sys­
tem in Equation (3) has the following solution, 

{ ~~ } = ~(t, to) { ~~: }, (5) 

where ~(t, to) is the state transition matrix (STM) 
from to to t along the reference path, 

Depending on the regime, analytical (or approxi­
mate) STMs might be available. Nevertheless, for 
generality, the STM should be numerically inte­
grated. This presents no significant computational 
speed problem in today's computers. 

Rocket Engine Definition 

The solution of the rocket equation17 in field-free 
space yields the following equation for the change in 
velocity, or ~v 

~v = cevln (:;) , (7) 

where Cev is the rocket's effective exhaust velocity 
and mo and mf are the initial and final masses re­
spectively. From conservation of mass, the mass flow 
rate is given by 

(8) 

where T is the thrust magnitude. For a realistic 
rocket engine, the mass flow rate is limited. As a 
result, there is a maximum attainable thrust, T, that 
can be achieved. This maximum thrust is given by 

T = -COy mmax (9) 

Thus, 0 :5 T :5 T. This can be transformed into an 
equality constraint, 15 

T(T - T) - q2 = 0, (10) 

where q ~ O. 



Optimal Control Problem Formulation 

As an optimal control problem, and to minimize 
the total fuel usage, the problem can be stated as, 
minimize 

J = Cev In (:; ) , (11) 

subject to the differential constraints (state equa­
tions), 

v, f 

v g(t,f,v)+fuT, 
T 

and to the control constraints, 

IIUII 
T(T - T) _ q2 

1, 
O. 

(12a) 

(12b) 

(12c) 

(13a) 

(13b) 

The above cost function and constraints formulation 
is sometimes referred to as the problem of Mayer. 
(In this case, control equality constraints have been 
added.) The interested reader will find an excellent 
COY reference in the book by Citron. IS It should 
be remarked that the addition of path constraints 
augments the cost function. As a result, the addition 
of constraints requires modifications in primer vector 
theory. 12 

Hamiltonian 
If the maximum principle* is utilized, the Hamil­

tonian function is defined as, 

(14) 

where X is an unknown vector of Lagrange multipli­
ers (co-state variables), 1 is a vector containing the 
system equations, and L is the integrand in the cost 
function or index of performance. For the current 
problem formulation, 1 = {f, v, m}T and L = O. 
Therefore, the Hamiltonian is given by 

H = Ar v + Av 9 + -UT - Am -. -T- -T (_ T.) T 
m Cev 

For NT arcs, T = 0 and H is given by, 
-T- -T-

HNT = Ar v + Av g. 

(15) 

(16) 

It can also be shown that the time derivative of 
Equation (16) is given by,15 

. -Tog 
HNT = Av ot' (17) 

*Pontrya.gin's maxim 11m (or minimum) principle can be 
derived by utilizing COY in a problem formulation that in­
cludes control variables. It can be shown that the maximum 
principle is equivalent. to t.he \Veierstrass condition18 

Therefore, if 9 is not an explicit function of time, 
!!Jt = 0 and a first integral exists. That is, HNT = 
constant. In rotating frames, under an inverse­
square gravitational field, a first integral exists if 
the frame is rotating at a constant rate in the in­
ertial frame. 

Primer Necessary Conditions 

Considering the optimal control problem formula­
tion and applying COY (or the maximum principlet ) 
and letting the co-state vector associated with the 
velocity, Xv be equal to p, yields the following nec­
essary conditions: 

1. The primer evolution is governed by 

(18) 

2. During transfers Ilpll = p <= 1, with impulses 
at instants for which p = 1. 

3. At an impulse time p = p = uT, where uT is 
the optimal thrust direction. 

4. At all interior impulses (not at the initial or final 
times) p.p = O. This condition has implications 
on the slope of the primer vector magnitude 
since 

Therefore, d1ftll = 0 at the intermediate im­

pulses. Also, for convenience, let p = diJitIi. 

These conditions are necessary (but not sufficient) 
for an optimal trajectory (time-fixed problem). In 
this paper, a trajectory that meets the above condi­
tions will be called an optimal trajectory. 

Primer Vector Evolution 

Consider the first primer condition as expressed in 
Equation (18). If the following two conditions+ are 
met, 

then the primer equations are given by, 

(19a) 

(1gb) 

t Lawdell applied the calculus of varia.tions. Alternatively, 
·these conditions can be derived utilizing the maximum prin­
ciple. 

>These conditions are 11 result of t.he kinemat.ics of the 
problem. 
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In this case the spacecraft linearized equations of 
motion have the same form as the primer differential 
equations. In fact, the time histories of Gr(t) and 
Gv(t) do not depend on the primer vector. As a 
result, the primer vector solution is, 

where the STM blocks are evaluated along the ref­
erence path and the initial conditions, (Po, Po), are 
still required. These will be obtained by consider-

. ing the arc boundaries. Before that, the theory of 
adjoint systems is briefly examined. 

Adjoint System 
There is a complete theory of adjoint systems that 

utilizes the concept of adjoint differential forms. 18 

Suppose that a linear system is given by, 

Z = A(t)Z, (22) 

then, an adjoint system to the above one is given by 

(23) 

where T is the transpose. Let A(t) be the Jacobian 
matrix, Equation (4), and let 

Z = { 

¢ { 

Then, 

{ ¢r 
} = [ 

0 

¢v -J 

Of ov }T, 

¢r - }T ¢>v . 

-G; ] { ~r } 
-G;; ¢>v' 

(24) 

(25) 

(26) 

is the adjoint system to the linearized system in 
Equation (3).. Then, taking the derivativ~ of the 
equation for ¢v and using the equation for ¢n 

¢v = (Gr - Gvf¢v - G~¢v' (27) 

Thus, "the adjoint differential equations and the 
primer vector differential equations (18) are the 
same for an NT arc. This fact has implications in the 
behavior and applicability of primer vector theory. 

Another interesting fact is that, from the defini­
tion of an adjoint system, it can be shown that, 

where L(Z) and fiI(¢) are vectors oflinear differen­
tial forms given by 

L(z) I = Z - A(t)Z, (29) 

fiI(¢) -1> - AT(t)¢, (i~O) 
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in this case, L(Z) = fiI(¢) = 0, therefore, 

¢T Z = constant. (31) 

So, 

¢; Of + ¢~ ov = constant. 

Letting ¢v = p and utilizing the second equation in 
(26), 

Thus, 

This equation was employed by Lion and Handels­
man when considering contemporaneous variations 
of the cost function. 4 It has been derived in an iner­
tial frame in the 2BP by Jezewski7 and in rotating 
frame in the ER3BP by Hiday.15 To distinguish this 
equation from the adjoint or co-state equations, call 
it the variational adjoint equation §. It is very use­
ful when considering different variations of the cost 
function to improve the trajectory. 

Impulsive Maneuvers 

At the impulses the primer vector is given by 

_ .:lV A A 

P = lI.:lvll = L..).V. (33) 

Now, suppose there is an arc from to to t f with an 
impulse at to and an impulse at tf and no thrust in 
between. Then, 

Po .:lvo, 

Pf = .:lvf· 

(34a) 

(34b) 

To obtain the primer vector time history in between 
the impulses, Equation (21) is used. Nevertheless, 
the primer vector slope Po at to is needed. Utilizing 
the first equation in Equation (21) and evaluating at 
t = tf, 

provided iI>;:v1 (t, to) is defined (Le., iI>rv is nonsingu­
lar). If the nominal path and the initial and final 
times are known, the STM is readily available. As 
a result, no iteration is needed. Alternatively, a 
shooting method can be applied to the two point 
boundary value problem given by initially guessing 
Po and using Equations (20) and (34). 

§Jezewski and Hiday call this equation the o.djoint equa­
tim"/.. 



Improving Non-Optimal Trajectories 

Improving non-optimal trajectories using primer 
vector theory is the main contribution of Lion· and 
Handelsman. 4 Essentially, first order variations of 
the cost function (i.e., .6.Vtotal in the impulsive ap­
proximation) are considered for different perturbed 
trajectories. 4,5,15 

Impulses and Continuous Quantities 
For the cost function variations, it is of iriterest 

to understand what quantities are continuous across 
an impulse. The time and the position vector are, 
of course, continuous but not the velocity. The 
velocity discontinuity is due to the application of 
the impulsive maneuver. Thus, for a mid-impulse, 
.6.vm = v;t;, - v;;. Therefore, the coastal accelera­
tion (Le., 9 = 9(t,f,v)) is not continuous across an 
impulse. Nevertheless, suppose that 

(36) 

where the 91 and 92 vector functions are force model 
dependent. If 92 can be expressed as 

(37) 

where Gv = ~ = ~, then, Equation (36) can be 
written as, 

9(t, f, v) - Gvv = 91 (t, f). (38) 

Since 91 is a function of time and position only, 
across an impulse, 

(39) 

If Equation (39) and the variational adjoint Equa­
tion (32) are satisfied, then the cost function varia­
tions presented next can be utilized. 

Criteria for Three Impulses 

Perturb a two-impulse arc with the addition of .a 
mid-impulse at some time, tm , and position fm + 
afm. (The position fm is the position along the un­
perturbed path at tm .) The initial and the final 
times and positions, (to, fo) and (tf' ffJ, are fixed. 
Define the cost function variation as oJ = J' - J, 
where J' is the fuel cost on the perturbed trajec­
tory. Then, considering first order terms only, it can 
be shown that 

8J = c(l - p~ij), (40) 

where the following are mid-impulse parameters: c 
is the magnitude of the impulse, Pm is the primer 
vector at tm and f] is an unit vector in the direc­
tion of the impulse. Then, for an improvement in 

cost, oJ < O. Thus, using the definition of a dot 
product, if IIPmll > 1 at any time, a third impulse 
is beneficial. Furthermore, the greatest decrease in 
the cost function will be achieved if the impulse is 
applied at the maximum of IIPm II at time tm and in 
the direction of ij. The position along the perturbed 
path and the magnitude of the impulse are yet to be 
determined. 

Calculation of the Interior Impulse 
Consider finding the position of the impUlse. Uti­

lizing the fact that the position across an impulse is 
continuous, using the STM before and after the im­
pulse, and utilizing the information obtained from 
Equation (40), gives the following variational equa­
tion, 

where 

~- A--1 Pm 
urm = C !!Pm!!' 

<Pvv(tm, tf )<prv(tm, tf )-1 

-<Pvv(tm, to)<prv(tm, to) -1. 

(41) 

This equation, of course, is valid only for non­
singular A and determines the position of the mid­
impulse~. Now, to estimate the magnitude, c, of 
the impulse, the expression for the cost on the per­
turbed path, J', can be expressed as a function of c 
and minimized. Two estimates are presented in the 
literature in terms of the order of the cost variational 
that is minimized. Specifically, Jezewski and Rozen­
daal5 retain up to second order terms and obtain an 
analytical approximation, while Hiday uses the exact 
expression and solves for the minimum iteratively. 
The first estimate is appropriate for most applica­
tions in the two-body problem while the second is 
more general and perhaps better for a robust tool. 
In any case, the mid-impulse should decrease the 
cost but might not produce an optimal trajectory in 
the sense of Lawden. The subsequent optimization 
of the three-impulse trajectory is presented next. 

Convergence to the Optimal Trajectory 
For a three-impulse arc, if the time and position of 

the mid-impulse are allowed to vary, it can be shown 
that, 

oJ = (.6.Pmf dfm + (.6.Hm) dtm (42) 

where .6.Pm and .6.Hm are, respectively, the primer 
vector and the Hamiltonian differences at the im­
pulse. If the trajectory is indeed optimal, the first 

~Not surprisingly, Equation (41) appears in differential 
correction schemes filr position continuity. ComparE', for 
instance, the 1'.11> matrix in equation 15 of Pernicka and How­
ell! 9 with ii above. 

5 



cost variation must vanish. Thus, it is required that, 
tl:Pm = 0 and, !:l.Hm = o. It can be shown that 
!:l.Hm = jx;;"Tv;;" - fi;;"Tv;;'. (In this paper, for the 

. primer vector data figures, let the scalar ii be given 
by fiT v.) In an interesting "mix", a direct optimiza­
tion method can be applied to vary the mid-impulse 
time and position to meet the above conditions. In 
this investigation, following Hiday,15 the Broyden­
Fletcher-Goldfarb-Shanno, BFGS, algorithm is uti­
lized. 

An additional complication might appear if after 
solving for the time and position of the mid-impulse, 
the primer vector history exceeds unity at some 
point. In that case, an additional impulse must be 
implemented. Hiday remarks that in the ER3BP, 
each additional impulse is solved for one at a time 
to avoid "destroying the integrity of the numerical 
solutions" for the initial and final orbits. Thus, if 
K additional impulses are needed, K BFGS mini­
mizations of Equation (42) are performed. In the 
2BP, however, it is possible to compute the times 
and positions of all the additional impulses simulta­
neously. Thus, a single function of 4K variables is 
minimized. 5 

Varying the Endpoints 
So far the trajectory has been optimized by adding 

additional impulses while keeping the endpoints' 
times (and thus, the . positions) fixed. Not surpris­
ingly, additional improvement is possible by varying 
these times. The general expression for time varia­
tions at both endpoints is given by, 15 

where the initial and final time variations be given 
by dto and dt!, respectively. Furthermore, the initial 
and final primer magnitude slopes are given by Po 
and Pi, respectively. Now, to have a lower cost, 8J in 
Equation (43) must be less than zero. If the follow­
ing terminology is defined, 1) initial coast (dto > 0), 
2) early departure (dto < 0), 3) final coast (dt! < 0 
), and, 4) late arrival (dt.f > 0 ); then, the following 
four cases cover all the non-zero primer slope com­
binations, 

• If Po > 0 and P! < 0 ::::} Apply Initial Coast and 
Final Coast. 

• If Po > 0 and P.f > 0 ::::} Apply Initial Coast and 
Late Arrival. 

• If Po < 0 and P! < O::::} Apply Early Departure 
and Final Coast. 

• If Po < 0 and P.f > 0 ::::} Apply Early Departure 
and Late Arrival. 

6 

Again, see Hiday for details.15 Of course, if the 
slopes are zero, no further improvement is achieved 
by varying the endpoints' times . 

Applicability of Primer Vector Theory 
Two issues that cause problems in the applica­

tion of primer vector theory have been observed in 
this investigation. First, recall that the primer vec­
tor system in Equation (18) is adjoint to the linear 
system in Equation (3). Moreover, the primer Vec­
tor differential equations and the (linear) variational 
equations of motion have the same form. As a result, 
the primer vector and its derivative follow Equation 
(21). Unfortunately, depending on the force model, 
on the flight regime (e.g. circular or eccentric orbit), 
and on the length of the propagation, the linearized 
dynamics might not be adequate to represent the 
natural dynamics of the system. That is, "small" 
variations might not remain "small" and solving for 
the primer vector history becomes numerically in­
tractable. Second, there might be isolated points 
along the nominal path or orbit where the upper 
right hand block of the STM, <I>rv' is singular. This 
singularity prevents the computation of the initial 
primer derivative via Equation (35) (the initial vec­
tor derivative is needed to use Equation (21) for the 
primer vector history). Next, these two issues are 
examined more carefully. 

Linear Theory Range 

The first issue deals with the sensitivity of the lin­
earized system in Equation (3). Specifically, interest 
is in understanding how "close" the solution of this 
system, i.e., Equation (5), is to the nonlinear system 
solution (numerically propagated). Recall, that the 
primer vector magnitude is equal to 1 at the places 
where impulses are applied. Then, it turns out that 
an ad-hoc test could be done in the following way: 

1. Perturb the initial state as follows, 

(44) 

where d is a positive scalar such that 0 < d < < 1. 

2. The magnitude of 01'0 is required to be a "small" 
number, say 1 unit of length (for the cases 
that will be considered). That is, if II oro I I = 
d lIfoil = 1, then d = 1/111'011. 

3. Propagate the path of interest using two meth­
ods: i) with the STM (integrated along the 
nominal orbit) and ii) numerically integrating 
the nonlinear system. 
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Fig. 1 Linear and NonLinear Propagation 

Comparing how "close" the final states are in the 
integrations (last step) gives a rough estimate of 
the numerical sensitivity of the problem. For exam­
ple, consider the following two cases in the two-body 
problem: 1) a circular orbit at a 1,500 km altitude 
(low Earth orbit) propagated for .5 days (about 5 
revolutions), and 2) a highly eccentric orbit, e = 
0.95, with a perigee altitude of 2,703 km propagated 
for 9.2 daysll. For both cases, the magnitude of the 
perturbed position vector is 11151'011 = 1 km. The 
magnitude of the perturbed velocity vectors, Ilc5vo ll, 
are 0.000903 and 0.001019 km/sec, respectively. See 
Figure 1 for qualitative results. The results illus­
trate how for the highly eccentric orbit the STM 
propagation breaks down before one complete rev­
olution. The onset of the "breakdown" takes place 
as the spacecraft approaches perigee and the carte­
sian STM changes very quickly. This type of be­
havior creates serious numerical problems in trying 
to obtain the primer vector history between peri­
apsis points. Switching to a different formulation, 
e.g. orbital elements, might alleviate this problerri. 
Schemes that utilize linear propagation for targeting 
and/or Monte Carlo analyses should investigate the 
linear theory range for all Initial conditions.21 

Isolated Singularities 

Moreov~r, there might be singularities (in the up­
per right hand block of the STM, <I>rv) at some 
specific points along the orbit. Singularities in the 
2BP elliptic arcs occur when: 

1. The difference between the initial and final 
---_. __ ._----

liThiH case was obtained from the Microwave Anisotropy 
(MAP) miHsion llominal orbit aft(lr it first perigee maneu­
ver. 20 

times is a multiple of the reference orbit period. 

2. The difference between the initial and final true 
anomalies are given by k1r, for k = 0,1,2,3, ... 
- note that this covers the first case, thus, the 
additional singularities occur when the differ­
ence between the initial and final true anomalies 
given by (2k + 1)71', for k = 0,1,2,3, ... , and 

3. The time of flight is a minimum for the given 
difference in true anomaly. 

The above conditions are detailed in the 1964 re­
port by Stern.22 According to Stern, the first two 
are readily explained on physical grounds while the 
third is a consequence of the initial assumption of 
a linearized model. In the first case, the initial and 
final position perturbations are not independent. In 
the second case, the out-of-plane components are not 
independent. (Thus, specifying the transfer plane 
and considering only planar variations can remedy 
this situation.) The third case is more complex and 
depends on the eccentricity of the reference orbit as 
well as on the initial and final eccentric anomalies 
(Eo and Ef ). Stern shows that for this third case 
the following expression vanishes at the singularity 
points, 

X (3EM - esinEM cos Ep)(cos EM + e cos Ep) 

-4sinEM, (45) 

where EM = ~(Ef - Eo), and Ep = ~(Ef + Eo). 
Figure 2(a) displays a plot of X versus number of 
revolutions for various eccentricities (0, 0.25, 0.5, 
0.75). For the cases shown, the first crossing occurs 
after 1 revolution. See Figure 2(b) for a closer view 
at the crOSSing points. Therefore, as Stern remarks, 
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there are no singularities (of any type) for true 
anomaly differences greater than 0 degrees and less 
than 180 degrees. Nevertheless, general tools should 
be able to handle other cases that might include 
multiple revolutions. In fact, these multiple revo­
lution cases allow the designers to use the concept 
of "phasing" orbits when implementing orbit trans­
fers and/or rendezvous.23 For a mission designer, 
these phasing orbits provide more opportunities to 
plan and execute maneuvers to correct errors (such 
as launch vehicle injection errors, implementation er­
rors, thruster failures, and other errors). A multiple 
revolution procedure has been examined by Prussing 
and successfully applied to the case of two-impulse 
rendezvous with a target in the same circular or­
bit.14 For other force models (non-Keplerian), the 
situation appears more complex. In fact, these sin­
gularities (in <I>rv) might be the cause of "spikes" 
in the ~v cost observed in targeting/optimization 
schemes that utilize the <I>rv STM block.24 

Test Cases 
The primer vector theory described in this pa­

per was implemented in an "in-house" Primer Vec­
tor Analysis Tool (PVAT) to optimize a non­
optimal reference trajectory. PVAT was developed 
in MATLAB® and has a fully automated algorithm. 
Two sample cases are considered in the 2BP. Plots 
are expressed as a function of elapsed time in seconds 
from the initial burn. 

Orbit Initialization 

In this case, PVAT is utilized to optimize an or­
bit initialization for the Leonardo mission concept25 

without any consideration of the formation flying 
constraints. The orbital elements (semi-major axis, 
eccentricity, inclination, right ascension of the as-
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cending node, argument of perigee, true anomaly) 
for the initial and final Leonardo orbits are: (6803.1, 
0.0017, 1.5084, 278.4, 329.59, unspecified), and 
(6802.8, 0.0012, 3.6042, 0256.79, 284.27, 184.19), 
where the semi-major axis is in kilometers and all 
angles are in degrees. With a two-burn Lambert arc 
as an initial guess, FreeFlyer™ is used to vary the 
position of the first maneuver in the departure orbit 
and the transfer time of flight such that the fuel cost 
of the transfer to the final orbit is reasonable « 1 
km/s). With this procedure, an initial trajectory 
with an initial true anomaly of 40 degrees, a time of 
flight of about 20 minutes and an initial cost of 323 
m/s was selected. Figure 3 shows the primer vector 
data for this reference trajectory. Note that, by in­
spection of Figure 3, a decrease in the total ~v can 
be achieved by moving the initial departure point. 
Once this is done, the final optimal primer veCtor 
history is plotted in Figure 4. In Figure 5 the total 
~v history for each iteration is shown. Interestingly, 
while varying the endpoints, there was an option to 
switch from a Lambert type I to a Lambert type II 
transfer arc. A type I/type II arc has a transfer angle 
less/greater than 180 degrees. The results presented 
in Figure 4 are for a two-burn type I transfer where 
a choice was made to continue the iteration instead 
of switching the Lambert type. . Figure 6 displays 
a plot of the primer vector data right after switch­
ing to a type II, which is equivalent to switching to 
a different initial guess. Right after switching to a 
type II transfer, the primer vector history indicates 
that adding an impulse will improve. the total trajec­
tory cost. After several iterations, PVAT converges 
to a 3-burn optimal trajectory with a total cost of 
283 m/s (Figure 7). Figure 8 displays the total ~v 
history for this case. 
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Line of Apsides Rotation 

Next, PVAT is used to analyze a rotation of the 
line of apsides. In this scenario, the line of ap­
sides should be rotated by 90 degrees. The orbital 
elements (semi-major axis, eccentricity, inclination, 
right ascension of the ascending node, argument of 
perigee, true anomaly) for the initial and final orbits 
are: (45763.14,0.672473,0,0,180, unspecified), and 
(45763.14, 0.672473, 0, 0, 270, unspecified), where 
the semi-major axis is in kilometers and all angles 
in degrees. Thus, the orbit shape remains identical, 
only the argument of perigee changes. There is an 
additional challenge for this mission as the chosen or­
bit is highly eccentric compared to the initialization 
example. Nevertheless, no computational issues ap­
pear since between maneuvers the STM propagation 
holds and no isolated singularities are encountered. 
Initial guesses (with two-impulses) based on analysis 
by Lawden26 are considered. Two different semi­
major axis values are used for the initial guesses 
(Le., different times of flight). The initial guess with 
the lower semi-major axis is referred to as initial 
guess number 1. The trajectory with the higher 
semi-major axis is referred to as initial guess num­
ber 2. Initial guess number 1 (with a shorter time of 
flight) has a total ~v of 3.636 km/s. For this case, 
the primer vector data in Figure 9 indicates that 
the fuel expense can be improved. After several it­
erations of PVAT, where two impulses were added 
to the trajectory, the code converges to a optimal 
four-impulse transfer with a total ~v of 1.876 km/s 
(about 52% decrease). The optimal primer vector 
data is displayed in Figure 10. Figure 11 illustrates 
the impulsive fuel cost as a function of the PVAT 
iterations. Now, initial guess number 2, is almost op­
timal according to the primer vector data illustrated 
in Figure 12 with a total ~v of 1.536 km/s (about 
18% lower than the optimal four-burn solution com­
puted for initial guess number 1). This example 
illustrates that, in general, any solution computed 
using primer vector theory is a local optimum and, 
therefore, highly dependent on the initial guess. 

Conclusions 
In this investigation, interest is in applying, test­

ing, and extending primer vector. theory to create 
robust software tools that can be used for the new set 
of upcoming challenging missions. As a result, the 
range of applicability and some possible numerical 
problems have been discussed. The theory was also 
outlined and applied to some sample cases. When 
applicable, it is clear that primer vector theory is 
a quick and efficient method to minimize spacecraft 
fuel usage. Nevertheless, depending on the initial 
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guesses provided, a particular problem might have 
multiple locally optimal solutions (with different fuel 
costs). This, of course, highlights the local opti­
mality of this technique. Also, since primer vector 
theory is a byproduct of the Calculus of Variations, 
success is dependent on the existence of other so­
lutions in the neighborhood of the initial guesses. 
As a result, further research could include utiliz~ 

ing a stochastic method, such as Genetic Algorithms 
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and/or Simulated Annealing, to increase the prob­
ability of finding a global solution by driving the 
generation of initial guesses. Furthermore, in the 
two-body problem, investigations of the applicabil­
ity of primer vector theory to multiple revolution 
orbits (including high eccentricities) is of interest. 
Also, the application of primer vector theory to for­
mation flying missions should be investigated. 
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