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ABSTRACT - In this paper, we extend primer vector analysis to formation flying. 
Optimization of the classical rendezvous or free-time transfer problem between two 
orbits using primer vector theory has been extensively studied for one spacecraft. 
However, an increasing number of missions are now considering flying a set of 
spacecraft in close formation. Missions such as the Magnetospheric MultiScaIe 
(MMS) and Leonardo-BRDF (Bidirectional Reflectance Distribution Function) need 
to determine strategies to transfer each spacecraft from the common launch orbit to 
their respective operational orbit. In addition, all the spacecraft must synchronize 
their states so that they achieve the same desired formation geometry over each 
orbit. This periodicity requirement imposes constraints on the boundary conditions 
that can be used for  the primer vector algorithm. In this work we explore the impact 
of the periodicity requirement in optimizing each spacecraft transfer trajectory 
using primer vector theory. We first present our adaptation of primer vector theory 
to formation flying. Using this method, we then compute the AV budget for each 
spacecraft subject to different formation endpoint constraints. 

1 - INTRODUCTION 

Currently more than a dozen missions, each involving flying a set of spacecraft in formation, are 
envisioned [Leit 021. Clusters of spacecraft with a carefully designed relative motion enable a wide 
variety of applications ranging from co-observation of a location on the Earth (e.g. Leonardo- 
BRDF, Calipso, EO-1) to interferometry and improved coverage for communication and 
surveillance (TechSat2 1) to multi-point measurement of the Earth space environment (e.g. 
ClusterII, MMS, Aurora Lites, ST5). This concept has raised new challenges in designing and 
flying a mission. In the orbit design arena, three main topics have been identified: selecting the 
initial conditions for each spacecraft to best satisfy the science goals, initializing the formation from 
a common launching orbit, and maintaining the formation configuration in presence of the 
perturbations such as the Earth’s gravitational field, atmospheric drag, etc. Even though this paper 
will focus on the initialization, the three areas listed above are, in most cases, coupled [Scha 991. 
Increasing progress in nano-satellite technology has made multi-satellite launches feasible. The 
Cluster I1 mission successfully launched its four spacecraft formation using two dual-launches one 
month apart. A series of phasing maneuvers was used to initialize its tetrahedron-like formation 
[Dow 011. The ST5 mission, composed of 3 nano-spacecraft, envisions sharing a launch payload 
with a regular size satellite to drive its launch cost down [ST5]. In this paper, we assume that all 
the spacecraft are launched simultaneously into a common orbit referred to as the launching orbit at 



a common epoch to. We define formation flying as a set of spacecraft with designed periodic 
collaborative dynamics. This periodicity requirement imposes constraints on the boundary 
conditions that can be used for the primer vector algorithm. Ideally, one would search for the 
subset of initial conditions that minimizes the initialization and maintenance fuel cost of the 
formation while satisfying the science goals. However, in the paper, we assume that this search has 
already been performed and a set of formation initial conditions found. We focus on the 
optimization of the AV cost to transfer from the launching orbit to these initial conditions using 
primer vector theory [Lawd 631, which is an optimization scheme based on calculus of variations. It 
has several appealing features including the indication of when and where to add an impulse to the 
trajectory and a visual assessment of the optimality of neighboring solutions. In the next section of 
this paper, we present our formulation of the minimum fuel problem with a brief review of primer 
vector history along with the main challenges encountered in its implementation. Then, we 
introduce our approach to solve the formation flying initialization problem using primer vector 
theory with various types of boundary constraints. In the following section, we discuss the 
preliminary results obtained using our in-house development Primer Vector Analysis Tool (PVAT) 
to initialize a ‘Leonardo-type’ formation of six spacecraft. Finally, we talk about the domain of 
applicability of such an approach for formation flying initialization and its promising marriage with 
a more global optimization methodology such as genetic algorithms. 

2 - MINIMUM FUEL PROBLEM 

2.1 - Primer Vector Theory and Implementation 

In this section, we present a brief review of the primer vector theory as well as the main challenges 
involved in its implementation in PVAT [Guzm 021. Primer vector theory takes its roots in 
calculus of variations and requires a set of first order necessary conditions, which the trajectory has 
to meet to be locally optimal. The necessary conditions, first derived by Lawden, are expressed in 
terms of the primer vector, which is defined as the adjoint to the velocity vector in the variational 
Hamiltonian formulation [Lawd 631. If any of Lawden’s conditions are violated, the transfer 
trajectory is not optimal and we can use the primer vector history to obtain information on how to 
improve its AV cost. Lawden, in his initial work, solved a fixed-time rendezvous and his theory 
was further extended by Lion and Handelsman and later, by Jezewski and Rozendal to solve the N- 
impulse optimal transfer problem [Lion 68][Jeze 671. A more detailed derivation of the primer 
vector theory can be found [Hida 921. As a prerequisite to the formation flying problem, we look at 
how to solve the single spacecraft “fiee-time” transfer problem while minimizing its mission AV 
cost subject to the mission constraints. Assuming an N-impulse trajectory, the problem translates 
to: 

N 

Find Min J = C A T .  subject to x(t)= f ( . i , x , t ) ,  (1) 
i=l 

where f ( i , x , t )  represents the spacecraft two-body problem equations of motion. Equation (1) 
models the “free-time” problem (Le. there are no direct constraints on the departure epoch or the 
arrival epoch). The “fixed-time” problem represents a special case of Equation (1) with additional 
constraints on the initial and final time of the transfer. The problem defined, the primer vector 
equations can now be expressed using calculus of variations. The initial trajectory or first-guess, is 
labeled as the reference trajectory. Since primer vector is a first-order theory based on local 
variations, it will converge on local optimal neighboring trajectories of the reference trajectory. 
Therefore, the optimal solution is highly dependent on the reference trajectory but it will also 
depend on other design parameters discussed later in this paper. The primer vector obeys the 
second order canonical form of the Euler-Lagrange equation and its state cannot be integrated 
simultaneously as it is coupled with the spacecraft state. Solving for the primer vector history is 
equivalent to solving a two-point boundary value problem (TPBV). It can be demonstrated that the 



primer vector state b,>) can be obtained from an initial state, (jTo,F0), using q5(t,to) the satellite 
trajectory state transition matrix (STM). A STM developed by Der [Der 971, which is valid for 
arbitrary conics (i.e. the two-body problem), was implemented. Lawden derived four necessary 
conditions using the primer vector for an optimal rendezvous trajectory (i.e. “fixed-time” problem): 
(1) the primer vector and its first derivative must be continuous for the entire history, (2) the 
magnitude of the primer must be less than one during a coasting phase and equal to one when an 
impulse is performed, (3) at the impulse time, the primer is a unit vector in the thrust direction and 
(4) the derivative of the primer vector magnitude must be zero for all interior impulses (Le. not the 
initial or final impulse). Once the primer vector history is computed, we can determine the 
optimality of the trajectory using the four Lawden necessary conditions. For a non-optimal primer 
vector history, two types of actions are possible to lower the AV cost: (I) moving the initial or final 
impulse (i.e. changing the time-of-flight) and (11) adding and/or moving an interior impulse. If the 
epoch of the endpoints is unconstrained, an action of type I is performed whenever the initial and/or 
the final primer vector magnitude slope is different from zero. If the primer vector magnitude goes 
above one during a coasting phase on a given segment, an impulse is added to the trajectory (action 
type 11) to improve the overall AV budget. This impulse is examined by considering a neighboring 
path with an additional impulse. To get the most efficient decrease in cost, the impulse should be 
added at the time tmnX where takes on its maximum. A midcourse impulse is moved whenever 
the primer vector velocity and the Hamiltonian are discontinuous at the intermediate node (tm, Tm ) 
being considered. This midcourse impulse is examined by considering a neighboring path with an 
altered mid-impulse position and time. A first-order gradient of the cost function J expressed in 
terms of primer vector parameters is used in conjunction with a Broyden-Fletcher-Goldberg- 
Shanno minimization technique to move the midcourse impulse (tm, Fm ). The primer vector theory 
described above was implemented in PVAT. PVAT was developed in MATLAB and has a h l ly  
automated algorithm, which iterates following the primer vector principles to optimize a non- 
optimal reference trajectory. Usually a two-burn Lambert solution is input as a reference 
trajectory. Whenever multiple actions are possible, the algorithm always favors a change in time- 
of-flight versus adding an impulse to keep the number of bums to a minimum. However, there is 
no mathematical theory (of which we know) that determines the optimal sequencing of the actions 
and, in general, different sequencing will lead to different neighboring solutions as discussed in the 
results section. This paper will impose a constraint on the endpoints only, which translates into 
restricting potential improvement via an action type I. To better understand the impact of those 
constraints on the trajectory cost, we provide a more detailed derivation of the cost function J 
variation in terms of the primer vector parameters at the endpoints in the following section. 

2.2 - Formation Flying Problem Formulation 

In this section, we present our formulation of the boundary constraints to optimize a cluster of 
spacecraft using primer vector. After describing the different formation constraints envisioned, we 
provide a more detailed derivation of the cost function variation in terms of the primer vector 
parameters at the endpoints. Taking the first order gradient of the cost function enables us to better 
understand the implication of restricting the endpoint states and therefore, we can make wiser 
choices as to which constraint is more suitable for our problem at hand. In this paper, we assume 
that all the spacecraft are launched into a common orbit referred to as the launching orbit at a 
common epoch to. Consequently, no maneuvers can be performed earlier than to. Without loss of 
generality, the common launch epoch is set to zero and any subsequent epoch expressed as elapsed 
time from to. In general, when designing a formation, we must first define a reference spacecraft, 
fictitious or not, about which the formation spacecraft relative motion is specified at a given epoch 
t,,j Because of its inherent periodic nature, knowing the formation state at some arbitrary time tref 
and its period P, enforces all subsequent formation states, which can be expressed as: 

For t > tref b’ i E [I, .. .Nsc] Fi (tre, + P) = Fi (tref ) (2) 



where Fi represents the ith spacecraft state relative to the reference, Nsc the total number of 
spacecraft in the formation, t,,. the time at which the formation initial conditions are specified and 
P the formation period. In this paper, the formation is to be first initialized at an arbitrary common 
epoch tr, which implies that, all the spacecraft reference trajectories start with the same time-of- 
flight to$ Any given spacecraft reference trajectory will be constrained to the formation { F i )  
specified at tf. To summarize, the initial endpoint constraint is imposed by the launch vehicle 
jettison location at to and the final endpoint constraint is imposed by the formation periodicity. 
Once the initial common endpoints are defined, there are three possible scenarios: (constraint I) the 
cluster spacecraft must all leave at to and be initialized at @(‘strict’ rendezvous), (constraint 11) the 
spacecraft must reach their initial state at tr, and no maneuver should be performed later than t) and 
(constraint 111) the initialization of the spacecraft can happen at an epoch later than which is 
determined by PVAT to minimize the formation AV cost. In general, in the pre-launch phase, 
without any consideration of operational constraints, a type I11 constraint should always be 
considered. However, a type I1 or even type I constraint might be applied in case of an 
initialization maneuver failure or multiple operational and science data collection constraints. 
Figures la-d illustrate the constraint I11 concept through a simple scenario involving a formation of 
three spacecraft. Note that for constraint 111, the formation will not be initialized until the last 
maneuver of the cluster set is performed. Providing that the formation flying constraints or 
common initial endpoints are set properly, each spacecraft trajectory can be optimized individually 
by PVAT. The final maneuvering history sequence as well as the formation initialization time will 
be fully known only when all the spacecraft have been optimized. To better understand how to 
handle the different constraints with primer vector theory, we examine the first-order cost variation 
6J, as a function of changes in the departure time and in the arrival time: 

where ( ~ ~ , j ? ~ )  and ( P ~ , ; ~ )  are the primer vector states at the departure and amval orbit 

respectively. It was shown that hT. p is equivalent to the slope of the magnitude of the primer 

vector [Hida 921. By inspection of Eq (3), if the initial slope of the primer magnitude is positive 
then a first-order decrease in AV (Le. dJ < 0) is obtained by a positive change in initial time (Le. the 
departure burn should be performed later) and vice-versa if the initial slope is negative. Therefore, 
in the “free-time” transfer problem, whenever the initial and/or final primer vector slope is different 
from zero, we can improve the total trajectory cost. Table 1 lists the allowed changes in initial and 
final epoch for the three different constraints. 

Table 1. Endpoint Constraints Summary. 

d/ = -5; * poIAV,/ ‘dt ,  - 5; * Pr IAV, I .dtr (3) 

(Bum Later) (Bum Sooner) (Bum Later) (Bum Sooner) 
Constraint I No No No No 
Constraint I1 Yes No No Yes 
Constraint I11 Yes No Yes Yes 

Some action for improvements being forbidden by the boundary constraints, the three different 
constraints will have a different action sequence in the primer vector tool and in some cases, will 
converge to completely different neighboring trajectories with various numbers of burn. For 
example, constraint I, the strictest of all three, will only allow adding/moving an internal impulse. 
Note that in our problem we arbitrarily assumed two variables to be known: (1) the true anomaly 
(eo) at which the launch vehicle jettisons the spacecraft (2) the epoch at which the formation initial 
state is known (9). The first variable controls the initial geometry of the transfers and the second 
their initial energies. In mission such as MMS those variables are mostly fixed by other constraints 



in the miision such as dwell time in the magneto-tail, shadow minimization etc. However, other 
missions such as Leonardo-BRDF have currently more freedom in picking those parameters 
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Fig. l a  Formation initialization for a given initial true 
anomaly in the launching orbit (Bo) and final time ( 9 )  
at which the formation initial conditions are defined. 
This initial boundary problem is used as a first-guess 
for the primer vector code PVAT using a two-impulse 
Lambert scheme. Each spacecraft is optimized 
individually as shown in this schematic with three 
spacecraft in formation with their relative motion 
defined about a reference orbit. 
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Fig. IC Spacecraft 2 (circle) is optimized and the final 
neighboring optimal trajectory is composed of a first 
bum at t2 > tl and a final bum at tf2 < tf. Thus, 
spacecraft 2 will be in formation before spacecraft 1. 
The formation will not be initialized earlier than tfl. 
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Fig. l b  Spacecraft 1 (represented as a square) initial 
two-impulse transfer is optimized using PVAT. The 
final neighboring optimal trajectory is composed of a 
first bum at tl > t,, and a final burn at tfi > tf This 
implies that the formation will not be fully initialized 
at any time earlier than tfl. Spacecraft 2 (represented 
as a circle) and spacecraft 3 (represented as a triangle) 
are not yet optimized which is indicated by a shape 
with a stripe pattern. At tf, spacecraft 1 is not in 
formation yet which is represented in this schematic by 
a shape without pattern. 

Fig. Id Finally, Spacecraft 3 (triangle) performs its 
first optimally placed bum at t3 < tl < t2 and its final 
bum at tf3 > tfl > tf. Once the last spacecraft is 
optimized, the entire timeline sequence is determined. 
Spacecraft 2 performs its first maneuver last but gets in 
formation first. Then, spacecraft 1 is initialized 
forming a sub-cluster with spacecraft 2. At tf3, 
Spacecraft 3 joins the sub-cluster (1-2) and the 
formation is fully initialized. 



3 - PRELIMINARY RESULTS 

In this section we present some preliminary results to initialize a ‘Leonardo-type’ formation of six 
spacecraft using the approach discussed above. For our test case, we picked an arbitrary launch 
orbit (Sc-L) as Leonardo’s is not yet defined. Each orbital element composing the launch orbit is 
an average of the six spacecraft in formation in a preliminary attempt to distribute the initialization 
AV cost among all the spacecraft. Future work will include a more detailed and thorough analysis 
on the best launch orbit to uniformly distribute the AV among the formation. The formation’s six 
spacecraft and the launch orbital elements are listed in Table 2. 

Table 2. Orbital Elements of the Formation. 
Orbital sc-L Scl sc2 sc3 sc4 sc5 Sc6 

a (km) 6803.13 6802.79 6804.84 6802.79 6802.79 6802.79 6802.79 
e 0.00169 0.001 17 0.00313 0.00136 0.00136 0.00136 0.00175 

i (deg) 1.50841 3.6042 1.52049 0.10719 0.010719 0.10719 3.6042 
IR (deg) 278.395 256.791 124.344 320.196 319.49 3.6042 330.059 
a (deg) 329.589 284.266 230.026 53.894 363.17 330.059 50.372 

0 nla 184.186 6.65201 352.978 39.1 138 278.395 345.157 

Elements 

As mentioned earlier, the Leonard0 mission does not have specific initialization period constraints 
at this stage in the mission. Therefore, the entire (e,, space is a valid search space for a solution. 
For this example, we chose a true anomaly of 175 degrees and a time-of-flight of 77 mins. For 
each spacecraft, a Lambert two-bum solution is computed with a first bum performed at to 
(arbitrarily set to 0) and a second bum 77 mins later. This two-bum initial solution is given to the 
primer vector code PVAT as a first-guess for the iterative optimization process. First, we set each 
spacecraft boundary problem with a type I constraint. Consequently, the spacecraft has to perform 
a first maneuver at to and the last maneuver to reach its final state has to occur at q. For constraint 
11, both the departure and arrival epoch are allowed to float within the initial [to, 91 interval and no 
maneuver later than 9 will be performed in spite of an indication of potential AV savings by PVAT. 
Finally, constraint I11 is similar to constraint I1 but allows the final maneuver to occur at a later time 
than + Table 3 summarizes the results obtained using the different constraints. The last row shows 
the average AV per spacecraft in the formation as well as the average number of bums needed for 
the trajectory to be initialized. The first column displays the AV cost associated with the reference 
trajectory prior to any optimization. 

Table 3. Formation AV summary (for 8,= 175” and tf= 77 mins) 
Reference Traj. Constraint I Constraint I1 Constraint I11 

I 

, # AVtOt # AVtOt # AVtOt # AVtOt 
Bum ( d S >  Bum ( d s )  BUm ( d S )  Bum ( d S )  

sc  1 2 355.3 4 344.78 3 343.8 3 314.4 
sc2 2 754.6 5 401.96 2 395.6 2 395.6 
sc3 2 382.5 3 290.15 4 288.6 3 220.5 
sc4 2 336.4 4 208.12 3 203.2 3 193.1 
sc5 2 335.4 4 207.97 3 203.6 3 192.4 
Sc6 2 536.0 3 45 1.75 3 433.5 3 433.5 

Avg. 2 450.0 3.83 31 7.45 3 311.4 2.83 291.6 

As expected, constraint I (C,) exhibits the higher number of bums which is often not desirable 
operationally. However, we observe a significant decrease of the average AV per spacecraft of 
about 132 m/s (Le. about 35% decrease) over the 2-bum first guess (Reference Traj.). Constraint 
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I1 (CII) has an average number of bums lower than constraint I but barely improves the average AV 
cost by about 6 m/s compared to constraint I. Constraint I11 (CIII) has, in average, the lowest 
number of bums and the lowest AV cost and saves an additional 25 m / s  compared to constraint I. 
That is expected as constraint I11 has the most freedom in making the proper improvement to the 
trajectory when necessary. It is also very instructive to look at the individual spacecraft results. 
For example, Sc2 trajectory converged to an identical optimal 2-burn scenario under both constraint 
I1 or I11 by moving the epochs of the endpoints, which resulted in a 50% decrease from the 
reference trajectory AV. When under a constraint I which enforces bum at those non-optimal 
epochs, the primer vector theory reduces their magnitude close to zero and places additional 
internal bums at about the same location as the ones under constraint I1 and I11 (tl = 12 mins and t2 
= 59 mins). For this case, it appears that no matter what boundary constraint is imposed, PVAT 
tends to converge to the same local optimal trajectory. Table 4 lists the AV budget for Sc2. Figures 
2a-c shows the primer vector magnitude history of Sc2 for the reference trajectory and the final 
optimized trajectories under the three constraints. The primer vector history is given as a fbnction 
of elapsed time in seconds from the first bum of the transfer and each bum location is marked by a 
dot. On the other hand, in the case of Sc3, we observe that the different boundary constraints lead 
to distinctly different optimal trajectories. As seen in table 5 ,  constraints I and I11 converged to two 
different 3-bum optimal transfer and constraint I1 converged to a 4-bum optimal trajectory. The 
different constraints limit the possible actions for AV improvement at a given iteration and in doing 
so, enforces a specific sequencing. 

Table 4. Sc2 AV Budget for the different constraints. 

CI 0 0.02 12.62 387.8 50.29 3.76 58.04 3.68 77.0 6.703 401.9 
CII 12.38 155.0 59.18 240.6 n/a n/a n/a n/a n/a n/a 395.6 
CIII 12.38 155.0 59.18 240.6 n/a n/a n/a n/a n/a n/a 395.6 

tl AV1 t 2  AV2 t3 AV3 t4 AV4 ts AVS AVt 

Table 5. Sc3 AV Budget for the different constraints. 
tl AV1 f2 AV2 t3 AV3 t4 AV4 AVt 

CI 0 120.21 57.00 135.45 77.0 54.48 n/a n/a 382.5 
C I ~  7.36 185.9 49.59 6.1 56.7 27.8 77.0 68.8 288.6 
CIII 13.12 84.2 53.42 5.5 97.06 130.8 n/a n/a 220.5 
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Fig. 2a Initial Primer Vector History for Sc2. Fig 2c Final Primer Vector History for Sc2 (CII / CIII) 
I A .  
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Fig 2b Final Primer Vector History for Sc2 (C,) 



4 - CONCLUSIONS 

This paper presented a preliminary effort to use primer vector theory to initialize a formation of 
spacecraft from a common launching orbit. The classical primer vector theory was implemented in 
our Primer Vector Analysis Tool application (PVAT), which was developed in MATLAB. PVAT 
has a fully automated algorithm, which iterates following the primer vector principles to optimize a 
non-optimal reference trajectory. We enforced the formation flying constraints by initially setting 
all the spacecraft with identical boundary constraints. The initial endpoint constraint was imposed 
by the launch vehicle jettison location at an arbitrary epoch and the final endpoint constraint was 
imposed by the formation periodicity (assuming that we know the formation state at some reference 
time +). Once the reference trajectory common boundaries were defined, each spacecraft transfer 
was optimized individually by PVAT and we investigated three possible endpoint constraint 
scenarios, which spanned from a “strict” rendezvous case to allowing the epoch at which the 
formation is formed to be varied. As expected, the less restricted constraint led to optimal 
trajectories with the lowest AV and the least number of bums. In some cases, a decrease in AV of 
up to 50% was obtained as compared to the initial trajectory. In general, we showed each 
formation flying boundary constraints imposed a different prioritized action sequence for AV 
improvement and therefore, converged to a different neighboring path. However, in some 
instances, different constraints resulted in identical trajectories. Since primer vector is a first-order 
theory, it will converge on local optimal neighboring trajectories of the reference trajectory, which 
the optimal solution will highly depend on. The reference trajectory supplied in this paper was a 
two-burn Lambert transfer and we assumed that the true anomaly at which the spacecraft are 
launched into and the initial epoch at which the formation is formed were known. When those two 
variables are not determined by other mission constraints, or can be vaned within some specific 
limits, we envision using a more global optimization technique such as a genetic algorithm to 
search the appropriate (Bo, tj solution space as a higher hierarchy driver to the PVAT algorithm. In 
addition, PVAT can be applied to a wide range of transfers from highly eccentric to low Earth and 
the methodology developed in this paper can be used for various formation flying missions such as 
MMS as well as Techsat21 or Leonardo-BRDF. This work can also be extended to applications 
such as resizing or reconfiguration of a formation. 
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