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Executive Summary 
 
In this report, a fault detection and isolation (FDI) system which utilizes a bank of Kalman filters is 
developed for aircraft engine sensor and actuator FDI in conjunction with the detection of component 
faults.  This FDI approach uses multiple Kalman filters, each of which is designed based on a specific 
hypothesis for detecting a specific sensor or actuator fault.  In the event that a fault does occur, all filters 
except the one using the correct hypothesis will produce large estimation errors, from which a specific 
fault is isolated.  In the meantime, a set of parameters that indicate engine component performance is 
estimated for the detection of abrupt degradation.  The performance of the FDI system is evaluated 
against a nonlinear engine simulation for various engine faults at cruise operating conditions.  In order to 
mimic the real engine environment, the nonlinear simulation is executed not only at the nominal, or 
healthy, condition but also at aged conditions.  When the FDI system designed at the healthy condition is 
applied to an aged engine, the effectiveness of the FDI system is impacted by the mismatch in the engine 
health condition.  Depending on its severity, this mismatch can cause the FDI system to generate incorrect 
diagnostic results, such as false alarms and missed detections.  To partially recover the nominal 
performance, two approaches, which incorporate information regarding the engine’s aging condition in 
the FDI system, will be discussed and evaluated.  The results indicate that the proposed FDI system is 
promising for reliable diagnostics of aircraft engines. 
 
 
 
Nomenclature 
 
 
A16 : Variable bypass duct area PS15 : Bypass duct static pressure 
A8 : Nozzle area PS3 : Combustor inlet static pressure 
BST : Booster PS56 : LPT exit static pressure 
CLM  : Component Level Model  T27D : Booster inlet temperature 
FAN : Fan T56 : LPT exit temperature 
FDI : Fault detection and isolation TMPC : Burner exit heat soak (metal temp.) 
FOD : Foreign object damage WF36 : Fuel flow 
HPC : High-pressure compressor XN2 : Low-pressure spool speed, measured 
HPT : High-pressure turbine XN25 : High-pressure spool speed, measured 
LPT : Low-pressure turbine XNH   : High-pressure spool speed, state variable 
P27 : HPC inlet pressure XNL  : Low-pressure spool speed, state variable 
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1.0  Introduction 
 
Fault detection and isolation (FDI) logic is critical to the safe and reliable operation of aircraft gas turbine 
engines.  It is desirable to detect and identify any fault as soon as possible so that the scenario of a minor 
fault escalating into a more serious failure can be avoided.  However, achieving the FDI task with high 
reliability is a challenging problem.  Faults may occur in various degrees of severity at various locations; 
therefore numerous fault scenarios are possible.  Moreover, the engine’s complex structure and harsh 
operating environment make interpretation of the available information difficult.  For instance, the sensor 
measurements from which the FDI decision is made can often be unreliable due to bias or intense noise.  
To deal with such problems, the introduction of analytical redundancy has become common and is 
considered more cost-effective than hardware redundancy.  With the increase of digital computational 
power, more sophisticated approaches such as the utilization of an on-board engine model have become 
possible. 
 
In this paper, a model-based approach utilizing a bank of Kalman filters is investigated for aircraft engine 
sensor and actuator FDI in conjunction with the detection of component faults.  This approach uses 
multiple Kalman filters each of which is designed for detecting a specific sensor or actuator fault.  In the 
event that a fault does occur, all filters except the one using the correct hypothesis will produce large 
estimation errors.  By monitoring the residual of each filter, the specific fault that has occurred can be 
detected and isolated.  In the meantime, a set of parameters which indicate engine component 
performance is estimated for the detection of abrupt degradation.  This FDI logic is currently stand-alone 
and is not integrated with a control system.  Therefore, fault accommodation is not discussed although 
failed sensor measurements and true actuator positions are estimated to ensure that further sensor/actuator 
accommodation steps are possible.  The proposed FDI logic is applied to a nonlinear engine simulation 
and evaluated for various engine faults at cruise operating conditions.  In order to mimic the real engine 
environment, the nonlinear simulation is executed not only at the nominal, or healthy, condition but also 
at the aged conditions.  Although the effectiveness of the FDI system is impacted by aging engine effects, 
two approaches to recover the performance will be discussed and evaluated. 
 
 
 
2.0  Background of Fault Detection and Isolation 
 
When a fault occurs, the first step is to detect it as soon as possible.  The approach commonly used for 
model-based fault detection is composed of two steps: 1) generate residual signals from the sensor 
measurements and their estimated values, and then 2) compare the residuals with thresholds to make fault 
detection decisions.1  Sensor noise and modeling uncertainty are key factors that affect detection 
performance.  A fault signature contained in the measurements is often corrupted by sensor noise, and un-
modeled engine dynamics may generate a fault-like signature.  These factors lead to missed detections 
and false alarms.  To reduce the effects of noise, the sensor measurements can be averaged over a given 
length of time (i.e., window averaging).  Although this approach may remove spike-like fault signatures, 
it can retain fault information which spans a period of time.  To deal with modeling uncertainty, robust 
detection approaches have been investigated by some researchers.2,3,4  In the robust design approach, 
modeling uncertainty is accounted for in the residual generation process.  Therefore, a fault detection 
system can be sensitive to faults while being robust to modeling uncertainty. 
  
In the study done by Khargonekar et al.4, a fault detection approach was investigated in the presence of 
modeling uncertainty with the following two assumptions: 1) a weighting transfer function that bounds 
the modeling uncertainty magnitude is known, and 2) complete knowledge of all possible failure signals 
is available.  In this study, the difference between the weighted partial L2 norm of input signal and that of 
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the output signal of a normalized system is computed.  The weighted partial L2 norm indicates the energy 
of the signal.  Therefore, if the output energy exceeds the input energy by some amount, it indicates that a 
fault has occurred in a system. 
 
In Patton et al.2, an observer-based robust sensor fault detection approach was applied to a jet engine 
simulation.  In order to decouple the effects that uncertainties and faults have on the system being 
monitored, all uncertainties are treated as disturbances acting on the system.  An important assumption 
made in this approach is that the disturbance (uncertainty) distribution matrix is known.  Although a 
generalized approach to determine this matrix is not available, a technique to estimate such a matrix is 
discussed in this and other references.5,6  The robust sensor fault detection approach was demonstrated 
under the presence of modeling uncertainty and parameter variations due to changes in the operating 
point. 
 
Once a fault is successfully detected, the next step is to isolate the particular fault from other potential 
faults.  A single fault isolation technique for aircraft engine performance diagnostics was investigated by 
Volponi et al.7  Assuming that a fault has already been detected, this approach processed Kalman filter 
equations iteratively for each of the root causes under consideration and subsequently ranked fault 
candidates in order of likelihood based on the estimation error norms.  The application of a bank of 
estimators for fault detection and isolation was conducted by Merrill et al.8, Duyar et al.9, and Menke et 
al.10  This approach uses multiple estimators, each of which is designed for detecting a specific fault.  
Since each estimator is designed based on a specific hypothesis (such as the failure of a single sensor or 
actuator), all estimators except the one using the correct hypothesis will produce large estimation errors 
when a fault occurs.  By monitoring the residual of each estimator, the specific fault that has occurred can 
be detected and isolated. 
 
In the study done by Merrill et al.8, a bank of Kalman filters was applied for aircraft engine sensor FDI.  
This study successfully demonstrated improved control loop tolerance to sensor failures (bias and drift), 
which were considered the most likely engine failures to happen under the harsh operating environment.  
Those sensors used in the control loop were monitored and accommodated in the event of failure.  In this 
study, actuation failure was not considered. 
 
In Duyar et al.9, a fault detection and diagnosis (FDD) system was developed and applied to the Space 
Shuttle main engine simulation for actuator, sensor, and component faults.  A bank of three hypothesis 
testing modules, each of which was designed for a specific fault category (actuator, sensor, or component 
category), was utilized for fault isolation.  Each module identified specific fault parameters followed by 
the construction of output estimates.  The validity of the FDD system was successfully demonstrated for 
actuator and sensor fault cases in the simulation environment.  However, it was noted that further research 
is needed to achieve the component fault diagnosis. 
 
In the study done by Menke et al.10, a bank of Kalman filters was applied to detect and isolate hard 
failures in sensors and actuators of the F-16 aircraft.  In this study, the faults were assumed to be known; 
the hard failure was modeled by zeroing out a row or a column of the state space matrices corresponding 
to the failed sensor or actuator.  Kalman filters were designed for the possible sensor and actuator faults.  
With the assumption that the sensors and actuators can fail one at a time, the outputs of Kalman filters 
were used for computing the conditional probability from which a failed or non-failed decision was made.  
It was noted that this approach requires a stimulus, such as control surface perturbations, for disturbing 
the system in order to generate adequate growth in the residual signals.    
 
The detection and isolation of soft actuator failures is a challenging problem.  In the problem setup for 
model-based estimators such as Kalman filter, it is assumed that actuators are properly configured to their 
commanded positions so that plant responses to actuator perturbations are canceled out in the estimation 
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loop.  Obviously, if there is a large difference between true and commanded actuator positions, this 
discrepancy will result in estimation error.  Unlike the bank-of-filters approach for sensor FDI where one 
sensor is excluded from the sensor suite for each detection filter design, an actuator position or command 
signal cannot be excluded for its failure detection.  Therefore, a different approach is needed for actuator 
FDI. 
 
In Hajiyev et al.11, a Kalman filter was applied for aircraft sensor and actuator fault diagnosis.  This 
approach was based on an assumption that the statistics of a faulty sensor would change much more than 
those of the other sensors.  A sensor fault that shifted the mean of the innovation sequence could be 
detected and isolated.  However, actuator fault diagnosis was not successful.  
 
 
 
3.0  Approach to Propulsion Health Management 
 
The FDI logic discussed in this paper is a part of the Propulsion Health Management System (PHMS) 
investigated at NASA Glenn Research Center.  The PHMS is composed of two parts: 1) steady-state 
condition monitoring, and 2) real-time in-flight FDI logic.  The PHMS architecture is shown in Figure 1.  
 
The steady-state condition monitoring is conducted using steady-state flight data.  The monitoring system 
can be on-board or ground-based.  The objective of condition monitoring is achieved by accurately 
estimating a set of unmeasurable parameters that indicate the engine health condition.  These parameters 
are referred to as “health parameters.”  By accurately tracking the health parameter deterioration from the 
nominal, or healthy, baseline condition, proper maintenance can be performed as needed.  However, 
accurately estimating the health parameters is a challenging problem because of several issues.  First, the 

Analysis Results 
• Sensor/actuator validation
• Health trending
• Generate trim values and linear models at new baseline

Steady-State
Condition

Monitoring

In-flight
FDI

Flight Data

Actuators

Sensors

Engine Control

Update
baseline 
condition

Propulsion System

Analysis Results 
• Sensor/actuator validation
• Health trending
• Generate trim values and linear models at new baseline

Steady-State
Condition

Monitoring

In-flight
FDI

Flight Data

Actuators

Sensors

Engine Control

Update
baseline 
condition

Propulsion System

 
 
 

Figure 1.  Structure of the Propulsion Health Management System 
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sensor and actuator measurements, from which the health parameters are estimated, may be distorted by 
bias.  Estimation techniques often attribute a measurement bias to a component health degradation which 
may lead to an incorrect conclusion; therefore the pre-validation of measurements is critical.  Secondly, 
the location and the number of sensors limit the number of health parameters that can be estimated 
accurately.  The number of health parameters often exceeds the number of available sensors, and the 
observability of some parameters may be limited due to sensor location.  To partially deal with the 
underdetermined condition, flight data at multiple operating points12 or the past trend of component 
condition13 may be used.   Finally, the combination of the above issues and highly nonlinear engine 
dynamics may result in multiple health degradation scenarios producing similar measurement shifts.  In 
such a case, ranking the probable solutions14 and further investigation may be necessary to avoid making 
a decision based on an incorrect estimation.  Achieving accurate estimation in the presence of the above 
issues is a time consuming process.   This process time may not be so critical for trend monitoring since 
engine degradation due to aging progresses gradually in general.  However, it would be beneficial if the 
estimation process could be completed for each flight leg. 
 
The steady-state condition monitoring approach developed in previous in-house research15 at NASA 
Glenn Research Center utilized a nonlinear engine model, neural networks, and genetic algorithms for 
health parameter estimation and validation.  The nonlinear engine model was used as analytical 
redundancy of an entire engine and tuned based on the health condition estimated by neural networks and 
genetic algorithms.  This approach fulfills the first part of the PHMS.  The focus of the current study is 
the second part of the PHMS: the development of real-time in-flight FDI logic.  An FDI system will be 
developed using a linear estimation approach and applied to a nonlinear engine simulation for 
performance evaluation.    
 
 
Engine Model 
 
The engine model being used for in-house research is the nonlinear simulation of an advanced military 
twin-spool turbofan engine.16  This simulation is constructed as a Component Level Model (CLM), which 
assembles the major components of an aircraft engine.  Engine performance deterioration is modeled by 
adjustments to efficiency and/or flow coefficient scalars of the following five components: Fan (FAN), 
Booster (BST), High-Pressure Compressor (HPC), High-Pressure Turbine (HPT), and Low-Pressure 
Turbine (LPT).  These scalars representing the component performance deterioration are the health 
parameters.  The engine state variables, health parameters, actuation variables, and sensor measurements 
used in the current research are shown in Table 1.  The actuator dynamics are much faster than the engine 
dynamics, and therefore the actuator state variables are ignored. 
 
 
Engine Component Baseline Degradation Versus Component Fault 
 
It is well known that the physical engine components deteriorate gradually due to wear and tear on blades 
and the casing as an engine operates over time.17,18,19,20,21  In this paper, such gradual component 
deterioration due to aging is referred to as “baseline degradation” and represented by deviations in all 10 
health parameters from the healthy baseline condition.  As discussed, the baseline degradation can be 
tracked by steady-state condition monitoring systems.  Besides this gradual process of deterioration, the 
health parameters may also degrade abruptly during a mission flight due to incidents such as foreign 
object damage (FOD).  Such abrupt degradation is defined as “component fault” in this paper.  The 
objective of the FDI system to be developed is to detect component faults in addition to sensor and 
actuator FDI.   
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As shown in Figure 1, the FDI system is integrated with the steady-state condition monitoring system 
developed in the previous research in order to improve its robustness to variations in the baseline 
condition.  After the completion of the steady-state condition monitoring process in which the nonlinear 
engine model is tuned based on estimated baseline degradation, the trim values at the new baseline 
condition and a linear state-space model are extracted from the nonlinear engine model.  The extracted 
information is then used to design or update the FDI system so that the baseline condition of the FDI 
system will match with that of an operational (aging) engine.  In the later section, the approaches for 
integrating the FDI system with the steady-state condition monitoring system will be discussed in detail. 
 
 
 
4.0 Development of Fault Detection and Isolation Logic  
 
A depiction of the FDI logic integrated with the propulsion system is shown in Figure 2.  The FDI logic 
uses two sets of input signals; sensor measurements and control commands.  Sensor measurements are 
corrupted by noise and may be faulty due to sensor failure.  Actuators may also experience mechanical 
and/or electrical failures.  As shown in Figure 2, the FDI logic uses control commands (ucmd).  
Alternatively, the true actuator positions (utrue) may be directly measured, and the sensed values may be 
used by the FDI logic.  However, using sensed actuator positions would add complexity to the FDI 
problem, since an actuator fault can happen not only to an actuator itself but also to an actuator position 
feedback sensor.  Therefore, an actuator failure is simply defined as an inconsistency between true 
actuator position and control command.  The sensor and actuator failures dealt with in this paper are so-
called “soft” failures.  Soft failures are defined as inconsistencies between true and measured sensor 
values (or true and commanded actuator values) that are relatively small in magnitude and thus difficult to 
detect by a simple range-checking approach, whereas “hard” failures are larger in magnitude and thus 
more readily detectable.  Soft failures can take different forms such as a fixed scalar, a fixed bias, a drift, 
or intermittent spikes.  Among these failures, fixed bias will be investigated although the proposed 
approach can be applied to time-varying soft failures as well.   

Table 1.  State Variables, Health Parameters, Actuators, and Sensors of the Engine Model 
State Variables Health Parameters Actuators Sensors 

XNL  FAN efficiency WF36 XN2 
XNH  FAN flow capacity A8 XN25 

TMPC  BST efficiency A16 T27D 
  BST flow capacity  T56 
  HPC efficiency  PS15 
  HPC flow capacity  P27 
  HPT efficiency  PS3 
  HPT flow capacity  PS56 
  LPT efficiency   
  LPT flow capacity   
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In the development of the FDI logic, it is assumed that only one of the sensors or actuators will fail at a 
time.  Multiple sequential and multiple simultaneous failures are not addressed in this paper.  The 
likelihood of multiple simultaneous failures is considered to be very low.  To handle multiple sequential 
failures, a hierarchical fault isolation structure, as demonstrated by Menke et al.10, must be added to the 
proposed FDI logic. 
 
 
Component Performance Analysis 
 
The proposed FDI logic uses the Kalman filter approach in order to estimate the state variables, health 
parameters, and engine output values from a given set of sensor measurements and control commands.  A 
linear model under consideration is represented by the following state-space equations: 
 
 

 vDuMhCxy
BuLhAxx

cmd

cmd

+++=
++=&

      (1) 

 
 
where the vectors x, h, and ucmd represent state variables, health parameters, and control commands, 
respectively.  The sensor measurement vector, y, is corrupted by the sensor noise vector, v.  The matrices 
A, B, C, D, L, and M have appropriate dimensions.  The influence of the health parameters on an engine is 
similar to that of the actuation variables; they set the operating condition of an engine.  However, unlike 
the actuation variables, they are not deterministic in nature and must be estimated in order to detect 
component faults.  In the Kalman filter problem setup, the engine state vector is augmented with health 
parameters as follows22: 
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Figure 2.  Propulsion System with Fault Detection and Isolation Logic 
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and w and v are the process and sensor noise, respectively.  They are uncorrelated, white noise with the 
following covariance matrices: 
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Kalman filter has the following structure: 
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where ex~  and ey  are the estimates of the augmented state vector and sensor measurements, respectively, 
and K is a Kalman gain matrix.  The matrix P is the solution of the following steady-state Riccati 
equation: 
 

 
0~~~~ 1 =+−+ − QPCRCPAPPA TT      (5) 

 
 
In general, the matrix R is derived from available sensor noise characteristic data while the matrix Q is 
tuned for obtaining a desired Kalman gain.  In order for the Kalman filter to converge, the matrix pair 
( CA ~,~ ) must be observable.  Moreover, the current problem setup requires the number of health 
parameters in the augmented state vector to be less than or equal to the number of sensor measurements.23  
The above state-augmented approach is used for designing a bank of Kalman filters for sensor and 
actuator FDI. 
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Sensor Fault Detection 
 
The structure for sensor FDI using a bank of Kalman filters is shown in Figure 3.  The bank of Kalman 
filters contains m Kalman filters where m is the number of sensors being monitored.  Each filter estimates 
the augmented state vector given in Equation (2) using (m-1) sensors.  The sensor which is not used by a 
particular filter is the one being monitored by that filter for fault detection.  For instance, the ith filter uses 
the sensor subset yi that excludes the ith sensor, where i is an integer from 1 to m.  Thus, filter #1 uses all 
sensors except sensor #1, filter #2 uses all sensors except sensor #2, and so on.  In the event that sensor #1 
is faulty, all filters will use corrupted measurements, except for filter #1.  Consequently, filter #1 is able to 
estimate the augmented state vector from fault-free sensor measurements, whereas the estimates of the 
remaining filters are distorted by the fault in sensor #1. 
 
After the estimation of augmented state variables, the sensor measurement estimates are constructed as 
described in Equation (4).  In order to evaluate the accuracy of the state estimation, the following residual 
vector is generated for each filter: 
 
 

ii
e

i yye −=         (6) 
 
From this residual, a weighted sum of squared residual (WSSR) is computed: 
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Figure 3. Structure of Bank of Kalman Filters 
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The vector σi represents the standard deviations of the ith sensor-subset, and it normalizes the residual 
vector.  The additional weight Wr is a scalar, and it is selected so that the value of the WSSR signal will 
be less than a given threshold under the normal condition where all sensors are fault free.  The scalar Wr is 
a tuning parameter that influences the FDI performance.  It is desirable to see an obvious increase in the 
WSSR signal when a sensor is faulty.  If the weight Wr is too small, the increase in WSSR will not be 
observed, causing missed detections.  On the other hand, if this scalar is too large, the WSSR signal will 
be too sensitive to sensor noise and modeling uncertainty and may generate false alarms.  The fault 
indicator signal (i.e., WSSR) will be compared against the detection threshold in order to detect a sensor 
fault. 
 
 
Actuator Fault Detection 
 
Actuator FDI is more challenging than sensor FDI in model-based estimation approaches.  In the general 
Kalman filter approach, it is assumed that the actuators are properly configured to the positions that a 
control system demands, thus any engine responses to actuator perturbations are cancelled out in the 
estimation loop.  However, if a large discrepancy between commanded and true actuator positions does 
exist due to an actuator fault, it can result in significant state estimation errors.  In this paper, an actuator 
fault is modeled as a bias, which results in inconsistency between an actuator command used as a Kalman 
filter input and a true actuator position under which the engine is operating.   
 
To account for a potential bias, the following linear model is used in the actuator FDI design approach: 
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Equation (9) shows the actuator bias vector b added to the actuator command inputs.  Equation (9) can 
easily be modified such that the bias vector is incorporated in the actuator outputs (See Appendix).   
 
A bank of Kalman filters is also applied for the actuator FDI though its structure will be different from 
that of the sensor FDI.  Unlike the sensor FDI approach where each filter excludes one sensor from the 
sensor suite, each filter in the actuator FDI will use all m sensors and estimate an augmented state vector, 
which includes a potential actuator bias.   Similar to the sensor FDI approach, the engine state variables in 
Equation (9) are augmented with health parameters and, in addition, one actuator bias.  For bias 
estimation of the kth actuator, the following model equation is used: 
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and k is an integer from 1 to p, where p is the number of actuators.  The scalar bk is a bias in the kth 
actuator, and the vectors Bk and Dk are the kth columns of B and D matrices, respectively.  Based on the 
above state-space structure, a Kalman filter for each actuator is designed using Equations (3) through (5). 
 
After the estimation of the augmented state variables and sensor measurements, a fault indicator signal is 
generated for each filter similar to the sensor FDI approach.  The residual signal of the (m+k)th filter, 
where m is the number of sensors, is given as: 
 
 

yye k
e

km −=+         (11) 
 
 
where the vector k

ey  is the sensor estimates generated by the (m+k)th filter.  From this signal, the 
following weighted sum of squared residual (WSSR) is generated: 
 
 

kmTkmk
r

km eeVWSSR +−++ Σ= 1)()(      (12) 
 
where 
 

2][σdiag=Σ         (13) 
 
 
The vector σ is the noise standard deviation, and the scalar Vr is a weighting parameter used for the FDI 
performance trade off.  The fault indicator signal (i.e., WSSR) in Equation (12) will be compared against 
a given detection threshold in order to detect an actuator fault.  When an actuator is biased, all filters use 
corrupted information, however, the one filter with the correct hypothesis is able to accommodate it.  
Therefore, this particular filter will maintain a low residual value and consequently can be isolated from 
the rest of the filters.   
 
 
Integration of Bank of Kalman Filters with Fault Isolation Logic 
 
The overall architecture of the FDI system is shown in Figure 4.  The functionality of the bank of Kalman 
filters with an augmented state vector is summarized as follows. 
 

1) When there is no sensor or actuator fault, with or without component faults, all Kalman filters 
should retain low fault indicator signals, indicating there is no sensor/actuator fault, and should 
generate accurate health parameter estimates. 

 
2) When one of the sensors or actuators failed, with or without component faults, only the one filter 

with the correct hypothesis should generate a low fault indicator signal and accurate health 
parameter estimates. 

 
 
The fault indicator signals generated by the above approach must be further processed in order to identify 
a fault.  The FDI process can be completed by integrating the bank of Kalman filters with fault isolation 
logic as shown in Figure 4.  In general, fault isolation logic is constructed from detection thresholds and 
decision rules.  The decision rules check for fault indicator signal violation of the pre-established 
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detection thresholds.  If the necessary rules for the existence of a fault are satisfied, then the fault isolation 
logic declares a fault.  Fault isolation is achieved if a fault is declared for all the fault indicator signals 
except for the one corresponding to a correct fault hypothesis.  The development of fault isolation logic is 
application-dependent.  An example will be given in the following section where the FDI design 
methodology is applied to the aircraft engine model. 
 
 
 
5.0  Application of FDI Methodology to the Aircraft Engine 
 
In this section, the FDI design methodology is applied to the aircraft engine model described in Section 
3.0.  An assumption made for this application problem is discussed followed by a discussion of various 
design parameters for the FDI system and a description of the fault isolation logic development. 
 
 
Application Specific Engine Model Assumption 
 
As shown in Table 1, the aircraft engine model has three state variables, 10 health parameters, three 
actuators, and eight sensors.  The standard deviation of the sensor noise vector used in this study is shown 
in Table 2.  These numbers are rough estimates derived from Lu et al.24  Information regarding sensor 
accuracy can be also found in Pinelli et al.25 
 
 

Table 2.  Sensor Noise Standard Deviation in % of the Nominal Engine Trim Values 
Sensor XN2 XN25 T27D T56 PS15 P27 PS3 PS56 

σ 0.25 0.25 0.5 0.5 0.5 0.5 0.5 0.5 
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Figure 4.  FDI System Architecture 
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An assumption is made in this application problem.  It is assumed that the first four health parameters 
(FAN and BST efficiency and flow capacity scalars) in Table 1 are sufficient to represent component 
faults of interest during a flight.  As discussed in Section 3.0, the health parameters deviate from the 
initial healthy baseline condition over time due to gradual degradation (baseline degradation) and possibly 
abrupt degradation (fault).  The focus of the current research is the detection of component faults.  The 
four health parameters are used to represent an abrupt, moderate degradation due to foreign object 
damage (FOD), as done by Kerr et al.26  The detection of such faults is achieved by accurately estimating 
those selected health parameters.  The four health parameters are included in the augmented state vector 
and estimated as described by Equations (2) through (5).  The selection of the four health parameters was 
based upon their correlation to FOD events and the relative likelihood of an engine experiencing FOD 
versus other possible abrupt component degradations during a flight.  If alternative faults are known to be 
more probable, the FDI system can be re-designed using those health parameters which correlate to the 
faults of interest.  The design constraint is that the selected health parameters must be observable through 
the given sensor suite. 
 
 
Design Parameters for the FDI System 
 
Some of the design parameters, such as sensor and process noise covariance matrices and residual 
weighting factors, are specified in this section.  The Kalman filter covariance matrices for the ith sensor 
are given as: 
 
 

 [ ] trimsensor

i
sensor

i

xdiagQ
R

~03.003.003.003.002.002.002.0=
Σ=

 

 
 
where iΣ  is the noise weighting factor (Equation 8), and trimx~  is the trim values of the augmented state 
vector (Equation 2) at the nominal baseline condition.  Since all eight sensor FDI filters are estimating the 
same augmented state vector, the process noise covariance is the same for all filters. 
 
The Kalman filter covariance matrices for the kth actuator are given as: 
 
 

  [ ] k
trimactuator

k
actuator

xdiagQ
R

~02.003.003.003.003.002.002.002.0=

Σ=
 

 
 
where Σ  is the noise weighting factor (Equation 13), and k

trimx~  is the trim values of the augmented state 
vector (Equation 10) at the nominal baseline condition.  Since all three actuator FDI filters are using the 
same eight sensors, the measurement noise covariance is the same for all filters. 
 
Initially, for all 11 FDI filters, the same fraction (0.02) of the trim values was used for all augmented state 
variables in the process noise covariance matrices.  The intent was to simplify the design process by not 
using different weights for each augmented state variable.  After some investigation, the weight for the 
health parameters was increased to 0.03 in order to improve the robustness of health parameter 
estimation. 
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The residual weighting factors for the sensor (Equations 7) and actuator (Equations 12) FDI filters are: 
 
 
  7

1=i
rW   miwhere ~1=  

  8
1=k

rV   pkwhere ~1=  
 
 
With the above residual weights, the mean values of the fault indicator signals of all 11 Kalman filters are 
slightly below one when there is no fault in the sensors or actuators.  Although the same weighting factors 
were used for both the sensor and actuator sets, they can be varied for performance trade off. 
 
 
Development of Fault Isolation Logic 
 
In order to isolate a fault using the bank of Kalman filters developed in the previous sections, fault 
isolation logic must be developed.  This decision-making logic is discussed in this section in the context 
of a simulated example.  Consider an example in which the fault indicator signal generation process in 
Figure 4 is applied to the nonlinear engine simulation for a scenario where all the sensors and actuators 
remain fault free.  Figure 5 shows the actual sensor measurement responses and their estimates produced 
by the 11 FDI filters.  Figure 6 shows the actual health parameter perturbations and the estimates 
produced by the 11 FDI filters.  Figure 7 shows the fault indicator signals (WSSR) of the 11 FDI filters; 
these signals have been filtered through a low-pass filter with a cutoff frequency of 1.0 rad/sec.  It can be 
observed that the noise in the sensor measurements is quite significant, causing large variations in health 
parameter estimates and fault indicator signals. 
 
Two factors that are of main concern in developing the fault isolation logic are false alarms and missed 
detections.  Reducing one of these factors often causes an increase in the other.  To illustrate how the 
isolation logic affects false alarms and missed detections, assume that, in the current case, a fault is 
declared for an FDI filter when the corresponding fault indicator signal exceeds a given detection 
threshold.  If the detection threshold is set at the value of one, all of the fault indicator signals in Figure 7 
exceed the detection threshold; therefore multiple false alarms would have occurred.  To avoid such false 
alarms, two options are possible: 1) increase the detection threshold value, or 2) smooth the fault indicator 
signals by modifying the bandwidth of the low-pass filter.  Both options, however, may cause missed 
detections.  A fault may result in a shift in the mean value of some fault indicator signals without any 
spike-like responses. In such a case, a failure scenario will go undetected until the magnitude of the fault 
becomes severe enough to reach the higher threshold.  Also, reducing the bandwidth of the low-pass filter 
will eliminate any spike-like fault signatures in the fault indicator signals, making such failures more 
difficult to detect. 
 
In the current study, a modified approach for fault isolation is developed in order to reduce false alarms 
and missed detections as much as possible.  First of all, the fault indicator signals of all 11 FDI filters are 
averaged over non-overlapping, ten-second intervals.  For sensor FDI filters, two thresholds are used: the 
first threshold is set at the value of one, and the second is set at the value of two.  A fault is declared if the 
ten-second averaged fault indicator signal exceeds the first threshold three consecutive times, or if the 
non-averaged fault signal exceeds the second threshold.  The first rule (using the averaged signal) 
addresses a mean value shift of the fault indicator signal that is sustained.  This rule results in a minimum 
fault identification time of 30 seconds.  The second rule (using the non-averaged signal) obviously takes 
into account spike-like fault signatures.  The second threshold is set high enough so that sensor noise or 
modeling uncertainty will not cause the fault indicator signal to exceed it. 
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Figure 5.  Actual and Estimated Measurement Responses of 11 FDI Filters 
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Figure 6.  Actual and Estimated Health Parameters of 11 FDI Filters 
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Figure 7.  Fault Indicator Signal Responses of 11 FDI Filters 
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For actuator FDI filters, only one threshold, set at the value of one, is used.  A fault is declared if the ten-
second averaged fault indicator signal exceeds the threshold four consecutive times.  The reason for 
applying a different rule for actuator failures is as follows.  For actuator FDI, the response of the “correct” 
Kalman filter is influenced by an actuator bias, whereas a sensor bias does not influence the response of 
the “correct” filter for sensor FDI.  When an actuator is biased, the actuator position estimated by the 
“correct” Kalman filter initially follows the control command, indicating that there is no bias.  After going 
through this initial error phase, the estimated position starts converging to the true actuator position.  This 
initial estimation error can be huge depending on the bias magnitude.  Therefore, spike-like signatures, 
which could be generated by both “correct” and “wrong” Kalman filters, cannot be used as an actuator 
fault indicator.  Moreover, the initial estimation error transient of the “correct” Kalman filter may result in 
high residuals which persist for longer periods than in the sensor FDI case.  To account for this fact, the 
detection threshold must be violated four consecutive times before declaring a fault, instead of three times 
as for the sensor FDI. 
 
The sensor and actuator FDI decision process is shown in Figure 8.  Fault isolation is successfully 
achieved when the isolation logic detects a fault in all FDI filters except for the one “correct” filter.  If a 
“wrong” filter is isolated, it is considered a false alarm.  If the isolation logic detects a fault in at least one 
filter, but multiple filters indicate no-fault, it means that a fault was detected but not isolated.  FDI 
performance depends on the decision rules and the values of the detection thresholds.  They are adjusted 
by the designer in order to meet the desired system performance requirements. 
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Figure 8. FDI Decision Process 
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6.0 Integration of the FDI System with the Steady-State Condition 
Monitoring System 

 
In the real engine environment, a mismatch in the health condition between an operational (aging) engine 
and the “nominal” engine model used by the FDI system almost always exists.  As discussed in Section 
3.0, gradual degradation due to aging is referred to as baseline degradation and is represented by 
deviations in all 10 health parameters from the healthy baseline condition.  If the baseline degradation is 
not accounted for in the FDI design, the baseline mismatch will impact the FDI performance.  To 
demonstrate this impact, three baseline conditions shown in Table 3 are considered.  The effects of 
baseline mismatch on the FDI performance are shown in Table 4, where the FDI system designed at the 
healthy baseline condition is applied to the nonlinear engine simulation at three baseline conditions in 
Table 3.   
 
 

Table 3.  Baseline Degradations in % from the Nominal Baseline Condition 
 Condition 1 

Nominal (Healthy) 
Condition 2 

Moderate degradation
Condition 3 

Severe degradation 
FAN efficiency 0 -1.00 -1.80 
FAN flow 0 -1.25 -2.20 
BST efficiency 0 -1.00 -2.00 
BST flow 0 -1.10 -2.20 
HPC efficiency 0 -1.00 -1.50 
HPC flow 0 -0.80 -1.20 
HPT efficiency 0 -1.00 -2.00 
HPT flow 0  0.75 1.50 
LPT efficiency 0 -1.00 -1.20 
LPT flow 0  1.65 2.00 

 
 
 
Table 4 shows the estimation performance of the 11 FDI filters.  The engine simulation was run at a 
steady-state cruise point over 100 seconds (no control perturbations) without any sensor, actuator, or 
component faults.  All estimation values were averaged over 100 seconds.  Note that the sensor and 
actuator bias estimates are also given.  As expected, the deviations in all 10 health parameters (baseline 
degradation) for conditions #2 and #3 are incorrectly attributed, or “smeared,” to the four health 
parameters being estimated, resulting in unacceptable health estimation.  A similar result was observed in 
real engine testing conducted by Luppold et al.27  Moreover, the overall sensor/actuator FDI performance 
varied apparently with the baseline degradation: none of the FDI filters caused the fault isolation logic to 
declare a fault for baseline condition #1, whereas all 11 FDI filters resulted in declaring a fault for 
baseline condition #3.  For baseline condition #2, six out of 11 FDI filters resulted in declareing a fault.  
The FDI filters which generated false alarms are highlighted in Table 4.   This example demonstrates the 
sensitivity of the FDI system, which is designed based on a healthy engine, to the baseline degradation of 
aging engines.  
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  Table 4.  Estimation Performance of the FDI System at Steady-State Cruise Condition 

(FDI system is designed at baseline condition #1.) 
  Average Estimation 

FDI Filter 
# 
 

Nonlinear 
Baseline 

Condition 

Bias 
 

(% of trim) 

FAN 
Efficiency 

(%) 

FAN 
Flow 
 (%) 

BST 
Efficiency 

(%) 

BST 
Flow 
 (%) 

1 1 -0.03 -0.05 -0.11 0.09 0.05 
(XN2) 2 -3.06 -8.32 -10.36 4.63 4.92 

 3 -3.95 -11.45 -13.98 1.37 6.13 
2 1 0.00 -0.01 -0.02 0.01 0.01 

(XN25) 2 0.16 -2.56 -1.92 -3.33 1.21 
 3 0.34 -3.62 -3.03 -8.94 1.37 

3 1 0.00 0.00 -0.02 0.01 0.01 
(T27D) 2 -0.59 -3.33 -1.02 -3.26 0.51 

 3 -0.88 -5.00 -1.67 -8.85 0.28 
4 1 -0.01 -0.01 -0.02 0.01 0.01 

(T56) 2 0.21 -2.80 -1.84 -2.93 1.09 
 3 0.20 -4.18 -2.86 -8.77 1.12 

5 1 0.00 0.00 -0.02 0.03 0.01 
(PS15) 2 -0.56 -2.69 -1.30 -1.81 2.02 

 3 -0.94 -3.91 -1.96 -6.87 2.60 
6 1 0.00 0.00 -0.02 0.00 0.01 

(P27) 2 0.75 -4.58 -2.91 0.59 2.57 
 3 1.26 -7.12 -4.64 -2.62 3.56 

7 1 0.00 0.00 -0.02 0.02 0.01 
(PS3) 2 -0.29 -2.77 -1.91 -3.29 0.89 

 3 -0.64 -4.01 -3.00 -9.35 0.55 
8 1 0.00 0.00 -0.02 0.02 0.01 

(PS56) 2 0.33 -2.93 -2.08 -3.86 0.88 
 3 0.60 -4.34 -3.28 -10.23 0.67 

9 1 0.02 0.00 -0.01 0.03 0.01 
(WF36) 2 0.36 -2.75 -1.71 -3.02 1.23 

 3 0.42 -4.11 -2.71 -8.80 1.27 
10 1 -0.01 0.00 -0.01 0.04 0.03 

(A8) 2 0.47 -2.90 -2.55 -4.68 -0.12 
 3 1.02 -4.29 -4.36 -12.20 -1.56 

11 1 -0.01 0.00 -0.02 0.02 0.01 
(A16) 2 -2.01 -2.62 -1.47 -2.83 1.54 

 3 -3.07 -3.87 -2.29 -8.43 1.77 
 
 
 
 
Robustness Improvement Through the System Integration 
 
The loss of FDI performance due to aging effects can be partially recovered by modifying any of the 
following three parts of the FDI system shown in Figure 9: 1) Trim Value Data, 2) Bank of Kalman 
Filters, and 3) Fault Isolation Logic.  
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The trim value data contains sensor and actuator steady-state values at a trim condition where the bank of 
Kalman filters is designed.  (Note that the actuator trim condition is currently independent of baseline 
degradation since the FDI system is running in an open-loop manner.)  As the baseline degradation 
worsens, the difference in the steady-state values at the trim point between the degraded and healthy 
engines increases, causing a loss of FDI performance.  If the trim value data is updated to account for 
baseline degradation, the initial steady-state estimation errors can be eliminated.  In this approach, a 
mismatch between the dynamics of the operational engine and the nominal model used by the FDI system 
may still exist.  A more involved option for reducing the estimation errors is to update the bank of 
Kalman filters based on the baseline degradation.  After updating the trim value data, a linear model can 
be generated at the corresponding trim condition.  By designing a bank of Kalman filters based on this 
linear model, both the initial steady-state condition and the dynamics of the FDI system will match with 
those of the operational engine.  The ease with which such linear model generation can be achieved is key 
for making this approach practical.  Another option for regaining the lost FDI performance is to modify 
the fault isolation logic.  The difference in the initial steady-state values between the operational engine 
and the nominal trim value data causes an increase in the steady-state values of the fault indicator signals.  
By simply setting the threshold at a higher value, a false alarm can be avoided.  However, this approach 
results in conservative performance when the operational engine is healthy.  Among the three options 
discussed above, the first two options (updating the trim value data and updating the bank of Kalman 
filters) will be evaluated in the following section.  It is considered that these updates are done by the 
steady-state condition monitoring system discussed in Section 3.0. 
 
 
 
7.0 Performance Evaluation of the FDI System 
 
The performance of the FDI system is evaluated in this section by applying it to the nonlinear engine 
simulation trimmed at a cruise operating point.  The FDI performance is evaluated based on the minimum 
bias magnitude which can be isolated, and the accuracy of health parameter estimates.  Multiple scenarios 
are considered to ensure that the FDI system does not identify any component faults as a sensor or 
actuator fault.  To capture a range of expected component faults, the eight scenarios, shown in Table 5 
with health parameter and control command perturbation magnitude and injection time information, are 
investigated.  In the simulation, these perturbations are injected as step changes at the specified time.  The 
perturbations in the four health parameters represent abrupt component degradation due to a FOD event.  
Since field data indicating actual component degradation profiles due to FOD was not available, the 
magnitudes and injection times were selected arbitrarily.  Likewise, control command perturbations were 
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Figure 9.  Structure of the FDI System 
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selected arbitrarily to represent operation around the fixed operating point.  As shown in Table 5, multiple 
health parameters are perturbed in order to introduce the nonlinear effects on the engine simulation 
outputs.  The control command perturbations disturb the engine operating point; however, they must not 
cause a false alarm.  Given these perturbations, the nonlinear engine simulation generates the sensor 
measurements, which are then used by the FDI system.   
 
 

Table 5.  Engine Operating Scenarios for Evaluation of the FDI System at Cruise 
 Perturbation Description (magnitude and step time) 

Scenario 
# 

FAN 
efficiency 

FAN 
flow 

BST 
efficiency 

BST 
flow 

WF36 A8 A16 

1 0 0 0 0 0 0 0 

2 0 0 0 0 2% 
at 5 sec 

-1% 
at 8 sec 

-3% 
at 7 sec 

3 -1% 
at 5 sec 

-1% 
at 6 sec 

-1% 
at 10 sec 

-1% 
at 12 sec 0 0 0 

4 -1% 
at 5 sec 

-1% 
at 6 sec 

-1% 
at 10 sec 

-1% 
at 12 sec 

2% 
at 20 sec 

-1% 
at 23 sec 

-3% 
at 22 sec 

5 -2% 
at 5 sec 

-2% 
at 6 sec 

-2% 
at 10 sec 

-2% 
at 12 sec 0 0 0 

6 -2% 
at 5 sec 

-2% 
at 6 sec 

-2% 
at 10 sec 

-2% 
at 12 sec 

2% 
at 20 sec 

-1% 
at 23 sec 

-3% 
at 22 sec 

7 -3% 
at 5 sec 

-3% 
at 6 sec 

-3% 
at 10 sec 

-3% 
at 12 sec 0 0 0 

8 -3% 
at 5 sec 

-3% 
at 6 sec 

-3% 
at 10 sec 

-3% 
at 12 sec 

2% 
at 20 sec 

-1% 
at 23 sec 

-3% 
at 22 sec 

 
 
 
Performance Evaluation Results 
 
The performance of the FDI system is evaluated by applying it to the nonlinear simulation for the eight 
scenarios in Table 5.  For each scenario, the nonlinear simulation is executed for 100 seconds at the three 
baseline conditions shown in Table 3.  The abrupt health parameter perturbations in Table 5 are 
deviations from the baseline conditions in Table 3.  Therefore, a 3% reduction in FAN flow capacity 
(Scenarios 7 and 8) for engine baseline #3 (Table 3) means 5.2% degradation in total.  In the cases where 
the FDI system is applied to the nonlinear simulation at baseline conditions #2 and #3, two parts of the 
FDI system, 1) trim value data and 2) bank of Kalman filters, are updated based on the baseline 
degradation, and the benefits of this update is assessed. 
 
A sensor or actuator bias is injected as a step change when the simulation time reaches 30 seconds.  As 
previously mentioned, the FDI performance is evaluated based on the minimum magnitude of the 
sensor/actuator bias which can be isolated, and the accuracy of health parameter estimates.  The smaller 
the minimum bias that can be isolated, the better the performance of the FDI system is considered to be.  
However, if the minimum isolated bias becomes too small relative to noise, the assumption that one 
sensor or actuator may be biased at a time may no longer hold since multiple sensors and actuators may 
have small biases in the real engine environment.  Therefore, it is undesirable to have an FDI system 
which is overly sensitive to small sensor or actuator bias.  For health parameter estimation, the 
performance is considered acceptable if the average estimation error (the difference between true and 
estimated values) is less than 0.5%. 
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1) Nominal Performance: Baseline Condition #1  
 
In this section, the FDI system designed based on baseline condition #1 is applied to the nonlinear 
simulation at baseline condition #1.  Prior to determining the minimum bias that can be isolated, it must 
be verified that the FDI system would not generate a false alarm when there is no sensor or actuator fault.  
This was confirmed for all eight simulation scenarios.  
 
Table 6 shows the results of the FDI performance evaluation for the positive bias case.  For each of the 
eight simulation scenarios, a bias was injected into one of the sensors or actuators, and then the bias with 
the smallest magnitude that could be isolated by the FDI system was determined.  The isolated minimum 
positive bias is in % of trim value of the nominal baseline condition.  It is desirable to normalize the bias 
by full-scale values in addition to trim values.  However, full-scale values for this engine model are 
currently not available.  The numbers in parentheses indicate the Euclidian distance (square root of sum 
of squares) of four health parameter estimation errors, each of which was averaged over the last 50 
seconds of the simulation.  The entries that correspond to cases where at least one health parameter 
estimation error was larger than or equal to 0.5% are shaded.  It should be noted that the health parameter 
estimation accuracy of each of the eight sensor FDI filters is independent of a bias in the corresponding 
sensor.  The FDI system was successfully able to detect and isolate the fault in all sensors and actuators 
for all scenarios (88 cases) without generating a false alarm.   
 
From Table 6, it is observed that the magnitude of the minimum isolated bias for individual sensors and 
actuators varies slightly with the simulation scenario.  However, apparent variations in bias magnitude 
can be observed between different sensors and actuators.  For instance, the bias in the XN25 sensor can be 
isolated at low magnitude while the minimum bias that can be isolated in the A16 actuator is quite large.  
The performance variations among the FDI filters are considered to be mainly due to the uniqueness of 
the information provided by the sensors and actuators.  During the course of the performance evaluation, 
it was found that the following pairs of FDI filters were difficult to isolate from each other: T56 and 
WF36, PS15 and A16, and PS56 and A8.  It should be note that these sensors (T56, PS15, PS56) are 
directly influenced by the corresponding actuators (WF36, A16, A8).  Particularly, in the cases where 
either PS15 or A16 is biased, the two FDI filters focused on these parameters retain low fault indicator 
signals until the bias magnitude becomes very large (see Table 6).  A possible approach to handle such a 
problem is to utilize additional information, besides the sensor estimation error, in the fault decision-
making process.  Although two filters generate small sensor estimation errors, it was found that the 
“wrong” filter usually generates health parameter estimates that are beyond the expected linear range.  For 
instance, in scenario 1, all filters except for PS15 and A16 filters exceed the detection threshold when the 
bias in PS15 is 1.5%.  Although the two filters retain low residuals, the A16 filter generates a health 
parameter estimate above 5.0%, which is considered well beyond the linear range.  By putting some 
bounds on health parameter estimates, any filter which generates estimated values beyond those bounds 
could be penalized when the fault indicator signal is computed. 
 
The difficulty of accurately estimating health parameters increases as the magnitude of the step 
perturbations in these parameters (component fault) increases.  For most of the FDI filters, the health 
parameter estimates are acceptable except for scenario 7.  Scenario 7 can be considered a borderline case 
where the estimation performance of the FDI filters starts to deviate from the acceptable level.  FDI filter 
#1 (XN2) generates at least one health parameter estimation error above 0.5% in scenarios 6 and 8.  The 
low-spool speed provides essential information for estimating health parameters; therefore the cases 
where the XN2 sensor is biased are very challenging in terms of obtaining accurate estimation of health 
parameters. 
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Table 7 shows the results of the FDI performance evaluation for the negative bias case.  The overall 
results are very similar to the positive bias case though some minor differences in the bias magnitude and 
the accuracy of health parameter estimation are observed. 
 

 
 
 

Table 7.  Performance of the FDI System Applied to Nonlinear Simulation  
at Baseline Condition #1, Negative Bias Case 

Isolated Maximum Negative Bias in % of Nominal Trim Value 
(Euclidian distance of health parameter estimation errors in parentheses) 

Si
m

ul
at

io
n 

Sc
en

ar
io

 #
 

XN2 XN25 T27D T56 PS15 P27 PS3 PS56 WF36 A8 A16 

1 -3.3 
(0.11) 

-0.9 
(0.01) 

-1.3 
(0.01) 

-2.4 
(0.01) 

-13.8 
(0.07) 

-3.3 
(0.01) 

-1.3 
(0.05) 

-4.3 
(0.05) 

-2.6 
(0.01) 

-5.1 
(0.06) 

-27.6 
(0.02) 

2 -3.3 
(0.23) 

-1.1 
(0.21) 

-1.3 
(0.17) 

-2.3 
(0.18) 

-12.5 
(0.20) 

-3.9 
(0.23) 

-1.4 
(0.16) 

-4.6 
(0.21) 

-2.6 
(0.17) 

-6.4 
(0.21) 

-31.5 
(0.20) 

3 -3.5 
(0.26) 

-1.0 
(0.33) 

-1.2 
(0.34) 

-2.7 
(0.36) 

-10.2 
(0.34) 

-3.5 
(0.32) 

-1.3 
(0.34) 

-4.2 
(0.35) 

-2.9 
(0.36) 

-6.5 
(0.35) 

-31.6 
(0.33) 

4 -3.5 
(0.34) 

-1.2 
(0.21) 

-1.3 
(0.20) 

-2.2 
(0.24) 

-8.9 
(0.21) 

-3.6 
(0.21) 

-1.3 
(0.22) 

-3.6 
(0.25) 

-2.6 
(0.24) 

-6.8 
(0.28) 

-38.0 
(0.20) 

5 -2.8 
(0.49) 

-0.9 
(0.56) 

-1.1 
(0.57) 

-2.3 
(0.56) 

-9.7 
(0.58) 

-3.4 
(0.60) 

-1.4 
(0.59) 

-3.4 
(0.57) 

-2.7 
(0.60) 

-5.4 
(0.61) 

-28.6 
(0.59) 

6 -2.9 
(0.70) 

-0.9 
(0.44) 

-1.2 
(0.45) 

-2.2 
(0.45) 

-10.3 
(0.47) 

-3.4 
(0.53) 

-1.4 
(0.48) 

-3.4 
(0.47) 

-2.6 
(0.48) 

-5.5 
(0.50) 

-26.5 
(0.47) 

7 -3.5 
(0.76) 

-1.0 
(0.77) 

-1.3 
(0.76) 

-2.6 
(0.76) 

-11.2 
(0.77) 

-3.1 
(0.82) 

-1.5 
(0.78) 

-4.3 
(0.80) 

-3.0 
(0.81) 

-6.3 
(0.86) 

-30.9 
(0.78) 

8 -3.5 
(0.86) 

-1.0 
(0.66) 

-1.3 
(0.64) 

-2.6 
(0.65) 

-11.3 
(0.66) 

-3.1 
(0.78) 

-1.4 
(0.67) 

-4.3 
(0.68) 

-2.9 
(0.68) 

-6.3 
(0.71) 

-30.5 
(0.67) 

Table 6.  Performance of the FDI System Applied to Nonlinear Simulation  
at Baseline Condition #1, Positive Bias Case 

Isolated Minimum Positive Bias in % of Nominal Trim Value 
(Euclidian distance of health parameter estimation errors in parentheses) 

Si
m

ul
at

io
n 

Sc
en

ar
io

 #
 

XN2 XN25 T27D T56 PS15 P27 PS3 PS56 WF36 A8 A16 

1 3.3 
(0.11) 

0.9 
(0.01) 

1.4 
(0.03) 

2.8 
(0.03) 

12.1 
(0.07) 

3.2 
(0.01) 

1.4 
(0.01) 

4.8 
(0.05) 

2.6 
(0.01) 

5.6 
(0.06) 

25.1 
(0.02) 

2 3.3 
(0.23) 

1.1 
(0.19) 

1.3 
(0.17) 

2.4 
(0.19) 

12.1 
(0.20) 

3.9 
(0.23) 

1.5 
(0.16) 

4.7 
(0.21) 

3.2 
(0.19) 

6.0 
(0.19) 

32.3 
(0.18) 

3 3.6 
(0.27) 

1.1 
(0.32) 

1.3 
(0.34) 

2.6 
(0.33) 

10.2 
(0.34) 

3.5 
(0.32) 

1.5 
(0.36) 

4.2 
(0.35) 

3.1 
(0.34) 

5.5 
(0.34) 

34.9 
(0.33) 

4 3.5 
(0.35) 

1.3 
(0.21) 

1.3 
(0.21) 

2.9 
(0.22) 

9.7 
(0.21) 

3.7 
(0.22) 

1.3 
(0.23) 

3.5 
(0.25) 

3.1 
(0.19) 

5.3 
(0.26) 

32.8 
(0.18) 

5 2.8 
(0.49) 

0.9 
(0.58) 

1.2 
(0.59) 

2.1 
(0.59) 

9.7 
(0.58) 

3.9 
(0.60) 

1.3 
(0.58) 

3.5 
(0.57) 

2.4 
(0.60) 

5.8 
(0.62) 

25.1 
(0.59) 

6 2.8 
(0.70) 

0.9 
(0.47) 

1.1 
(0.47) 

2.1 
(0.48) 

10.1 
(0.47) 

3.8 
(0.53) 

1.3 
(0.46) 

3.5 
(0.46) 

2.7 
(0.46) 

5.7 
(0.50) 

25.6 
(0.47) 

7 3.4 
(0.76) 

1.1 
(0.77) 

1.4 
(0.78) 

2.6 
(0.78) 

11.9 
(0.76) 

3.1 
(0.82) 

1.4 
(0.79) 

4.2 
(0.80) 

2.9 
(0.80) 

5.9 
(0.86) 

30.1 
(0.77) 

8 3.3 
(0.86) 

1.1 
(0.66) 

1.3 
(0.65) 

2.6 
(0.66) 

11.8 
(0.65) 

3.1 
(0.77) 

1.4 
(0.66) 

4.2 
(0.68) 

3.0 
(0.68) 

5.9 
(0.71) 

30.4 
(0.65) 
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2) FDI Performance Recovery Through Updating the Trim Value Data 
 
In this section, the FDI system designed based on baseline condition #1 is applied to the nonlinear 
simulation at baseline conditions #2 and #3.  A loss of FDI performance due to baseline mismatch was 
investigated in Section 6.0.   In order to partially recover the FDI performance, the trim value data is 
updated based on the new baseline condition so that the initial steady-state mismatch is eliminated. 
 
a. Baseline Condition #2 
 
Tables 8 and 9 show the performance evaluation results when the FDI system is applied to the nonlinear 
simulation at baseline condition #2.  Table 8 shows the positive bias case while Table 9 shows the 
negative bias case.  No false alarms were generated on any simulation scenario with sensor/actuator bias 
(88+88 cases) or without sensor/actuator bias (8 scenarios). 
 
It can be observed that the magnitude of the minimum isolated bias is very close to the previous case, 
indicating that the loss of sensor/actuator FDI performance due to mismatch in the baseline condition can 
be recovered by updating the trim value data.  However, health parameter estimation accuracy is not 
recovered.  The estimation errors become very large when health parameter step perturbations exceed 2% 
(scenarios 5 through 8).  Although the initial steady-state values were made to match, the new steady-state 
values after the perturbations do not match because of the difference in the dynamics (specifically, steady-
state gain) between the nonlinear simulation and the FDI system.  As discussed before, when there is a 
mismatch in the steady-state condition, the mismatch is “smeared” to the four health parameters being 
estimated.  Thus, the four health parameters may no longer represent the actual health parameters.  
Instead, they become “tuning” parameters.  A Kalman filter tunes these four health parameters so that its 
sensor estimates will match with the outputs of the nonlinear simulation.  To improve the estimation 
accuracy, it is expected that the bank of Kalman filters must be updated based on the baseline 
degradation. 
 
 

Table 8.  Performance of the FDI System with Updated Trim Value Data Applied to Nonlinear 
Simulation at Baseline Condition #2, Positive Bias Case 

Isolated Minimum Positive Bias in % of Nominal Trim Value 
(Euclidian distance of health parameter estimation errors in parentheses) 

Si
m

ul
at

io
n 

Sc
en

ar
io

 #
 

XN2 XN25 T27D T56 PS15 P27 PS3 PS56 WF36 A8 A16 

1 3.3 
(0.11) 

0.8 
(0.01) 

1.4 
(0.03) 

2.8 
(0.03) 

12.1 
(0.07) 

3.2 
(0.01) 

1.4 
(0.01) 

4.8 
(0.05) 

2.6 
(0.01) 

5.6 
(0.06) 

25.1 
(0.03) 

2 3.4 
(0.50) 

1.2 
(0.19) 

1.4 
(0.20) 

2.3 
(0.15) 

12.5 
(0.22) 

3.9 
(0.23) 

1.4 
(0.20) 

4.6 
(0.21) 

3.0 
(0.23) 

6.2 
(0.20) 

31.0 
(0.21) 

3 3.6 
(0.44) 

1.0 
(0.56) 

1.3 
(0.56) 

2.2 
(0.58) 

10.4 
(0.59) 

3.6 
(0.56) 

1.3 
(0.59) 

4.2 
(0.58) 

3.2 
(0.58) 

5.8 
(0.58) 

31.9 
(0.56) 

4 3.5 
(0.25) 

1.1 
(0.44) 

1.3 
(0.48) 

2.1 
(0.47) 

9.8 
(0.48) 

3.7 
(0.36) 

1.3 
(0.49) 

4.5 
(0.49) 

3.0 
(0.44) 

5.2 
(0.45) 

32.5 
(0.43) 

5 3.0 
(0.92) 

0.9 
(1.08) 

1.2 
(1.09) 

2.4 
(1.08) 

9.1 
(1.07) 

3.8 
(0.99) 

1.3 
(1.08) 

3.8 
(1.07) 

2.6 
(1.10) 

5.7 
(1.08) 

23.8 
(1.08) 

6 3.0 
(0.47) 

1.0 
(1.00) 

1.2 
(1.02) 

2.3 
(1.01) 

9.3 
(0.98) 

3.8 
(0.87) 

1.3 
(0.99) 

3.8 
(0.98) 

2.6 
(1.00) 

5.9 
(0.96) 

24.2 
(1.01) 

7 3.5 
(1.39) 

1.1 
(1.57) 

1.2 
(1.57) 

2.6 
(1.55) 

11.3 
(1.56) 

3.1 
(1.39) 

1.4 
(1.58) 

4.5 
(1.56) 

3.1 
(1.56) 

6.1 
(1.56) 

34.1 
(1.53) 

8 3.5 
(0.82) 

1.1 
(1.52) 

1.3 
(1.54) 

2.6 
(1.51) 

11.5 
(1.49) 

3.1 
(1.31) 

1.4 
(1.51) 

4.3 
(1.50) 

3.0 
(1.50) 

6.3 
(1.48) 

32.7 
(1.51) 
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Table 9.  Performance of the FDI System with Updated Trim Value Data Applied to Nonlinear 
Simulation at Baseline Condition #2, Negative Bias Case 

Isolated Minimum Positive Bias in % of Nominal Trim Value 
(Euclidian distance of health parameter estimation errors in parentheses) 

Si
m

ul
at

io
n 

Sc
en

ar
io

 #
 

XN2 XN25 T27D T56 PS15 P27 PS3 PS56 WF36 A8 A16 

1 -3.3 
(0.11) 

-0.8 
(0.01) 

-1.3 
(0.01) 

-2.4 
(0.01) 

-13.8 
(0.07) 

-3.3 
(0.01) 

-1.3 
(0.05) 

-4.3 
(0.05) 

-2.6 
(0.01) 

-5.1 
(0.06) 

-27.6 
(0.02) 

2 -3.3 
(0.47) 

-1.1 
(0.20) 

-1.3 
(0.20) 

-2.4 
(0.17) 

-12.3 
(0.22) 

-3.8 
(0.23) 

-1.4 
(0.20) 

-4.4 
(0.21) 

-2.7 
(0.20) 

-6.5 
(0.18) 

-32.1 
(0.21) 

3 -3.5 
(0.46) 

-1.0 
(0.58) 

-1.2 
(0.59) 

-2.5 
(0.58) 

-10.3 
(0.60) 

-3.5 
(0.56) 

-1.2 
(0.59) 

-4.0 
(0.59) 

-3.0 
(0.59) 

-6.2 
(0.56) 

-34.1 
(0.57) 

4 -3.4 
(0.29) 

-1.2 
(0.44) 

-1.2 
(0.50) 

-2.7 
(0.51) 

-9.3 
(0.48) 

-3.5 
(0.37) 

-1.4 
(0.46) 

-4.3 
(0.49) 

-3.0 
(0.49) 

-6.8 
(0.42) 

-33.3 
(0.46) 

5 -2.8 
(0.92) 

-1.0 
(1.07) 

-1.3 
(1.08) 

-2.5 
(1.07) 

-10.2 
(1.07) 

-3.4 
(0.99) 

-1.3 
(1.08) 

-3.4 
(1.07) 

-2.7 
(1.09) 

-5.6 
(1.09) 

-31.5 
(1.06) 

6 -2.7 
(0.47) 

-1.0 
(0.98) 

-1.2 
(1.02) 

-2.5 
(0.99) 

-10.0 
(0.98) 

-3.4 
(0.87) 

-1.3 
(1.00) 

-3.4 
(0.98) 

-2.8 
(1.00) 

-5.5 
(0.98) 

-30.5 
(1.00) 

7 -3.4 
(1.41) 

-1.1 
(1.58) 

-1.3 
(1.57) 

-2.7 
(1.56) 

-11.6 
(1.56) 

-3.0 
(1.38) 

-1.5 
(1.58) 

-4.1 
(1.56) 

-3.0 
(1.58) 

-5.9 
(1.56) 

-32.5 
(1.53) 

8 -3.4 
(0.84) 

-1.0 
(1.53) 

-1.2 
(1.54) 

-2.8 
(1.50) 

-11.4 
(1.49) 

-3.2 
(1.31) 

-1.5 
(1.51) 

-4.2 
(1.50) 

-3.1 
(1.51) 

-5.9 
(1.49) 

-32.9 
(1.50) 

 
 
 
b. Baseline Condition #3 
 
Tables 10 and 11 show the performance evaluation results when the FDI system is applied to the 
nonlinear simulation at baseline condition #3.  Table 10 shows the positive bias case while Table 11 
shows the negative bias case.  Again, the trim value data has been updated so that the initial steady-state 
mismatch is eliminated.  No false alarms were generated on any simulation scenario with sensor/actuator 
bias (88+88 cases) or without sensor/actuator bias (8 scenarios). 
 
As seen in the previous case of baseline condition #2, a similar trend can be observed; the sensor/actuator 
FDI performance can be recovered by updating the trim value data.  The health parameter estimation 
accuracy, however, worsens compared to the previous case.  As the baseline degradation worsens, the 
mismatch in the dynamics between the FDI system and the nonlinear simulation increases and the 
“smearing” effect becomes more prominent.  This example indicates that large health parameter 
estimation errors do not necessarily result in large sensor estimation errors.  Therefore, determining the 
confidence in estimated health parameters, which is currently based on sensor estimation errors, is always 
a challenging issue in the health estimation problem.  With the current FDI design, component faults can 
be inferred from changes in the estimated health parameters; however, the corresponding damage level 
cannot be estimated accurately. 
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Table 10.  Performance of the FDI System with Updated Trim Value Data Applied to Nonlinear 
Simulation at Baseline Condition #3, Positive Bias Case 

Isolated Minimum Positive Bias in % of Nominal Trim Value 
(Euclidian distance of health parameter estimation errors in parentheses) 

Si
m

ul
at

io
n 

Sc
en

ar
io

 #
 

XN2 XN25 T27D T56 PS15 P27 PS3 PS56 WF36 A8 A16 

1 3.5 
(0.14) 

0.8 
(0.01) 

1.4 
(0.03) 

2.8 
(0.03) 

11.6 
(0.07) 

3.2 
(0.01) 

1.4 
(0.01) 

4.8 
(0.05) 

2.6 
(0.01) 

5.5 
(0.04) 

25.1 
(0.02) 

2 3.5 
(0.83) 

1.1 
(0.41) 

1.4 
(0.43) 

2.5 
(0.34) 

13.2 
(0.38) 

3.7 
(0.37) 

1.5 
(0.40) 

4.2 
(0.41) 

2.9 
(0.45) 

6.7 
(0.41) 

29.2 
(0.41) 

3 3.1 
(0.55) 

0.9 
(0.68) 

1.2 
(0.68) 

2.2 
(0.68) 

11.3 
(0.70) 

3.3 
(0.62) 

1.5 
(0.72) 

4.2 
(0.70) 

3.0 
(0.68) 

5.8 
(0.69) 

32.0 
(0.67) 

4 3.5 
(0.41) 

1.0 
(0.60) 

1.4 
(0.64) 

2.1 
(0.61) 

11.4 
(0.60) 

3.4 
(0.34) 

1.5 
(0.63) 

4.2 
(0.63) 

3.1 
(0.61) 

5.2 
(0.59) 

31.4 
(0.59) 

5 3.0 
(1.29) 

0.9 
(1.30) 

1.1 
(1.30) 

2.4 
(1.28) 

9.9 
(1.26) 

3.6 
(1.19) 

1.4 
(1.33) 

3.8 
(1.30) 

2.6 
(1.34) 

4.8 
(1.32) 

27.0 
(1.28) 

6 3.1 
(0.44) 

1.0 
(1.19) 

1.1 
(1.23) 

2.2 
(1.19) 

9.9 
(1.18) 

3.7 
(0.95) 

1.4 
(1.22) 

3.9 
(1.20) 

2.9 
(1.20) 

4.8 
(1.19) 

26.6 
(1.21) 

7 3.6 
(2.11) 

1.0 
(1.89) 

1.3 
(1.88) 

2.8 
(1.85) 

11.3 
(1.87) 

3.2 
(1.74) 

1.4 
(1.91) 

4.6 
(1.88) 

3.1 
(1.92) 

5.9 
(1.94) 

34.3 
(1.84) 

8 3.6 
(1.14) 

1.1 
(1.79) 

1.4 
(1.82) 

2.6 
(1.78) 

11.5 
(1.79) 

3.1 
(1.54) 

1.4 
(1.81) 

4.3 
(1.76) 

3.0 
(1.81) 

6.2 
(1.77) 

33.8 
(1.79) 

 
 
 

Table 11.  Performance of the FDI System with Updated Trim Value Data Applied to Nonlinear 
Simulation at Baseline Condition #3, Negative Bias Case 

Isolated Minimum Positive Bias in % of Nominal Trim Value 
(Euclidian distance of health parameter estimation errors in parentheses) 

Si
m

ul
at

io
n 

Sc
en

ar
io

 #
 

XN2 XN25 T27D T56 PS15 P27 PS3 PS56 WF36 A8 A16 

1 -3.5 
(0.14) 

-0.8 
(0.01) 

-1.3 
(0.01) 

-2.4 
(0.01) 

-13.6 
(0.07) 

-3.3 
(0.01) 

-1.3 
(0.04) 

-4.3 
(0.05) 

-2.6 
(0.01) 

-5.1 
(0.07) 

-27.5 
(0.03) 

2 -3.4 
(0.84) 

-1.1 
(0.41) 

-1.3 
(0.41) 

-2.7 
(0.32) 

-11.9 
(0.38) 

-3.6 
(0.35) 

-1.4 
(0.40) 

-4.6 
(0.41) 

-2.9 
(0.40) 

-5.9 
(0.41) 

-32.8 
(0.42) 

3 -3.3 
(0.61) 

-1.0 
(0.67) 

-1.3 
(0.69) 

-2.5 
(0.70) 

-11.9 
(0.70) 

-3.5 
(0.61) 

-1.3 
(0.69) 

-3.8 
(0.70) 

-2.9 
(0.72) 

-6.6 
(0.68) 

-27.6 
(0.67) 

4 -3.4 
(0.43) 

-1.0 
(0.61) 

-1.2 
(0.66) 

-2.7 
(0.63) 

-10.6 
(0.60) 

-3.5 
(0.36) 

-1.3 
(0.62) 

-4.1 
(0.63) 

-3.1 
(0.63) 

-6.5 
(0.55) 

-30.9 
(0.61) 

5 -2.8 
(1.27) 

-1.0 
(1.29) 

-1.3 
(1.30) 

-2.2 
(1.28) 

-10.6 
(1.26) 

-3.7 
(1.20) 

-1.4 
(1.33) 

-3.4 
(1.30) 

-2.7 
(1.33) 

-5.8 
(1.34) 

-26.9 
(1.28) 

6 -2.9 
(0.49) 

-0.9 
(1.21) 

-1.2 
(1.25) 

-2.5 
(1.21) 

-10.1 
(1.18) 

-3.6 
(0.95) 

-1.5 
(1.21) 

-3.5 
(1.20) 

-2.8 
(1.22) 

-6.0 
(1.18) 

-26.8 
(1.21) 

7 -3.4 
(2.11) 

-1.2 
(1.89) 

-1.4 
(1.88) 

-2.6 
(1.85) 

-12.2 
(1.87) 

-3.0 
(1.76) 

-1.4 
(1.91) 

-4.1 
(1.88) 

-2.9 
(1.93) 

-6.1 
(1.93) 

-32.4 
(1.84) 

8 -3.3 
(1.14) 

-1.0 
(1.77) 

-1.3 
(1.83) 

-2.8 
(1.77) 

-12.0 
(1.79) 

-3.1 
(1.55) 

-1.4 
(1.81) 

-4.3 
(1.77) 

-3.0 
(1.80) 

-6.0 
(1.80) 

-32.8 
(1.79) 
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3) FDI Performance Recovery Through Updating the Bank of Kalman Filters 
 
In this section, the bank of Kalman filters is updated to account for baseline degradation.  The updated 
FDI system is then applied to the nonlinear simulation at baseline conditions #2 and #3.  Since the bank 
of Kalman filters is designed at new trim conditions, the trim value data is also updated.  Therefore, the 
initial steady-state values and the dynamics of the FDI system match with those of the nonlinear 
simulation. 
 
 
a. Baseline Condition #2 
 
Tables 12 and 13 show the performance evaluation results when the FDI system is applied to the 
nonlinear simulation at baseline condition #2.  Table 12 shows the positive bias case while Table 13 
shows the negative bias case.  No false alarms were generated on any simulation scenario with 
sensor/actuator bias (88+88 cases) or without sensor/actuator bias (8 scenarios). 
 
From the tables, it can be observed that the primary benefit of updating the bank of Kalman filters based 
on the baseline condition is the improved accuracy of the health parameter estimation.  When the trim 
value data alone was updated, the health parameter estimation error exceeded 0.5% in 43 of 88 cases as 
seen in Tables 8 and 9.  When the bank of Kalman filters is updated, only one case (Scenario 8 for the 
XN2 bias) violated the 0.5% estimation error bound.   
 
The benefit of isolating bias at the smaller magnitude level can be observed most prominently in the XN2 
sensor.  Some benefits are also seen in XN25, T27D, P27, PS3, PS56, and A8.  However, the magnitudes 
of the isolated bias in T56, PS15, and A16 are much higher in this case than the previous case where the 
trim value data alone was updated. 
 
 

Table 12.  Performance of the FDI System with Updated Bank of Kalman Filters Applied to 
Nonlinear Simulation at Baseline Condition #2, Positive Bias Case 

Isolated Minimum Positive Bias in % of Nominal Trim Value 
(Euclidian distance of health parameter estimation errors in parentheses) 

Si
m

ul
at

io
n 

Sc
en

ar
io

 #
 

XN2 XN25 T27D T56 PS15 P27 PS3 PS56 WF36 A8 A16 

1 2.6 
(0.10) 

1.1 
(0.03) 

1.4 
(0.01) 

2.6 
(0.04) 

13.7 
(0.07) 

3.6 
(0.02) 

1.3 
(0.01) 

4.9 
(0.05) 

2.9 
(0.01) 

6.2 
(0.01) 

42.1 
(0.04) 

2 2.4 
(0.48) 

1.0 
(0.19) 

1.2 
(0.11) 

3.2 
(0.16) 

13.7 
(0.30) 

2.8 
(0.12) 

1.2 
(0.16) 

4.9 
(0.16) 

3.1 
(0.15) 

6.2 
(0.34) 

41.6 
(0.14) 

3 2.5 
(0.11) 

1.0 
(0.13) 

1.3 
(0.13) 

3.1 
(0.08) 

12.0 
(0.11) 

3.2 
(0.11) 

1.1 
(0.13) 

3.8 
(0.13) 

3.1 
(0.15) 

5.2 
(0.15) 

42.4 
(0.12) 

4 2.5 
(0.53) 

1.0 
(0.10) 

1.2 
(0.09) 

3.1 
(0.10) 

11.2 
(0.21) 

3.2 
(0.15) 

1.0 
(0.12) 

3.7 
(0.20) 

3.3 
(0.10) 

4.5 
(0.44) 

44.8 
(0.05) 

5 1.9 
(0.26) 

0.9 
(0.14) 

1.1 
(0.10) 

2.4 
(0.06) 

11.7 
(0.11) 

3.6 
(0.09) 

1.2 
(0.12) 

3.5 
(0.15) 

3.1 
(0.11) 

5.9 
(0.24) 

34.3 
(0.10) 

6 1.9 
(0.74) 

0.8 
(0.08) 

1.1 
(0.04) 

2.5 
(0.10) 

11.7 
(0.21) 

3.5 
(0.22) 

1.2 
(0.07) 

3.6 
(0.14) 

3.1 
(0.07) 

5.6 
(0.40) 

34.3 
(0.12) 

7 2.1 
(0.49) 

0.9 
(0.20) 

1.1 
(0.19) 

2.6 
(0.18) 

12.0 
(0.24) 

3.0 
(0.16) 

1.3 
(0.17) 

3.9 
(0.20) 

3.1 
(0.16) 

5.9 
(0.38) 

40.9 
(0.20) 

8 2.1 
(0.86) 

0.8 
(0.17) 

1.1 
(0.14) 

2.6 
(0.22) 

11.9 
(0.36) 

2.9 
(0.36) 

1.3 
(0.16) 

3.9 
(0.10) 

3.1 
(0.15) 

5.8 
(0.27) 

41.1 
(0.24) 
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Table 13.  Performance of the FDI System with Updated Bank of Kalman Filters Applied to 
Nonlinear Simulation at Baseline Condition #2, Negative Bias Case 

Isolated Minimum Positive Bias in % of Nominal Trim Value 
(Euclidian distance of health parameter estimation errors in parentheses) 

Si
m

ul
at

io
n 

Sc
en

ar
io

 #
 

XN2 XN25 T27D T56 PS15 P27 PS3 PS56 WF36 A8 A16 

1 -2.7 
(0.07) 

-1.2 
(0.03) 

-1.4 
(0.01) 

-2.5 
(0.03) 

-15.4 
(0.07) 

-3.6 
(0.01) 

-1.3 
(0.01) 

-4.4 
(0.05) 

-2.6 
(0.02) 

-7.7 
(0.05) 

-44.5 
(0.04) 

2 -2.4 
(0.48) 

-1.1 
(0.19) 

-1.3 
(0.12) 

-2.9 
(0.17) 

-14.7 
(0.30) 

-3.1 
(0.12) 

-1.3 
(0.14) 

-4.6 
(0.16) 

-3.1 
(0.16) 

-6.3 
(0.38) 

-38.6 
(0.14) 

3 -2.6 
(0.11) 

-1.2 
(0.13) 

-1.2 
(0.12) 

-2.4 
(0.11) 

-11.1 
(0.11) 

-3.2 
(0.11) 

-1.6 
(0.14) 

-3.8 
(0.13) 

-2.5 
(0.14) 

-7.1 
(0.19) 

-41.2 
(0.14) 

4 -2.5 
(0.53) 

-1.2 
(0.10) 

-1.2 
(0.11) 

-2.2 
(0.12) 

-10.7 
(0.21) 

-3.3 
(0.15) 

-1.6 
(0.09) 

-3.3 
(0.20) 

-2.3 
(0.12) 

-7.8 
(0.47) 

-40.9 
(0.04) 

5 -2.1 
(0.26) 

-0.8 
(0.13) 

-1.1 
(0.12) 

-2.3 
(0.10) 

-11.2 
(0.11) 

-3.2 
(0.09) 

-1.3 
(0.11) 

-3.4 
(0.15) 

-2.6 
(0.14) 

-7.3 
(0.22) 

-38.1 
(0.13) 

6 -2.2 
(0.74) 

-0.8 
(0.07) 

-1.2 
(0.04) 

-2.3 
(0.08) 

-11.3 
(0.21) 

-3.3 
(0.21) 

-1.3 
(0.07) 

-3.3 
(0.14) 

-2.6 
(0.08) 

-7.5 
(0.38) 

-38.1 
(0.08) 

7 -2.2 
(0.49) 

-0.9 
(0.20) 

-1.2 
(0.19) 

-2.5 
(0.18) 

-12.4 
(0.24) 

-3.2 
(0.15) 

-1.3 
(0.17) 

-3.4 
(0.20) 

-2.8 
(0.16) 

-6.6 
(0.38) 

-37.7 
(0.20) 

8 -2.2 
(0.86) 

-1.0 
(0.17) 

-1.2 
(0.14) 

-2.5 
(0.22) 

-12.4 
(0.36) 

-3.2 
(0.36) 

-1.3 
(0.16) 

-3.3 
(0.10) 

-2.7 
(0.14) 

-6.6 
(0.27) 

-37.4 
(0.24) 

 
 
 
b. Baseline Condition #3 
 
Tables 14 and 15 show the performance evaluation results when the FDI system is applied to the 
nonlinear simulation at baseline condition #3.  Table 14 shows the positive bias case while Table 15 
shows the negative bias case.  No false alarms were generated on any simulation scenario with 
sensor/actuator bias (88+88 cases) or without sensor/actuator bias (8 scenarios). 
 
Unlike the previous case shown in Tables 12 and 13 (baseline condition #2), improved health parameter 
estimation accuracy is not seen in this case.  It is suspected that the reason for not obtaining better 
estimation accuracy is due to linearization error playing a significant role in this example.  In all of the 
eight simulation scenarios, the steady-state responses of the sensor measurements were compared 
between the linear engine model and the nonlinear simulation.  For baseline condition #3, a large steady-
state response (i.e., steady-state gain) error was found in the XN2 sensor measurement.  As the health 
parameter perturbations increased to 1%, 2%, and 3%, the XN2 error worsened to 0.1%, 0.22%, and 
0.35% of the nominal trim value, respectively.  These errors are quite large relative to the standard 
deviation of noise on this measurement (Table 2).  The XN2 error due to linearization appears like a bias 
and consequently corrupts the performance of all FDI filters, except for filter #1.  Since FDI filter #1 does 
not use the measurement XN2, it performs well in the presence of this linearization error as seen in Tables 
14 and 15.  (For baseline degradation condition #1, the worst steady-state response error was 0.3% in PS3 
for scenario 7.  For baseline degradation condition #2, the worst steady-state response error was 0.08% in 
T56 for scenario 2.) 
 
The benefit of isolating bias at the smaller magnitude level can be observed most prominently in the XN2 
sensor.  Some benefit is also seen in P27.  However, the magnitudes of the isolated bias in T56, PS15, 
PS56, WF36, A8, and A16 are much higher in this case than the previous case where the trim value data 
alone was updated. 

NASA/CR—2003-212298 28



Table 14.  Performance of the FDI System with Updated Bank of Kalman Filters Applied to 
Nonlinear Simulation at Baseline Condition #3, Positive Bias Case 

Isolated Minimum Positive Bias in % of Nominal Trim Value 
(Euclidian distance of health parameter estimation errors in parentheses) 

Si
m

ul
at

io
n 

Sc
en

ar
io

 #
 

XN2 XN25 T27D T56 PS15 P27 PS3 PS56 WF36 A8 A16 

1 2.1 
(0.22) 

1.1 
(0.04) 

1.4 
(0.13) 

3.6 
(0.07) 

14.2 
(0.04) 

3.1 
(0.04) 

1.6 
(0.06) 

5.5 
(0.06) 

3.3 
(0.06) 

7.6 
(0.05) 

43.5 
(0.02) 

2 2.0 
(0.31) 

1.0 
(0.26) 

1.3 
(0.10) 

3.5 
(0.16) 

13.8 
(0.32) 

3.2 
(0.15) 

1.5 
(0.14) 

5.6 
(0.19) 

3.4 
(0.13) 

7.6 
(0.47) 

43.8 
(0.18) 

3 1.8 
(0.07) 

1.0 
(0.64) 

1.3 
(0.67) 

3.6 
(0.59) 

16.7 
(0.52) 

3.3 
(0.36) 

1.6 
(0.51) 

5.2 
(0.52) 

3.2 
(0.53) 

7.2 
(0.52) 

48.8 
(0.54) 

4 2.0 
(0.39) 

0.9 
(0.32) 

1.3 
(0.58) 

3.7 
(0.46) 

15.7 
(0.57) 

3.3 
(0.30) 

1.5 
(0.40) 

5.4 
(0.40) 

3.2 
(0.40) 

6.7 
(0.60) 

48.9 
(0.51) 

5 1.8 
(0.17) 

1.0 
(1.31) 

1.3 
(1.46) 

3.3 
(1.28) 

11.2 
(1.14) 

3.2 
(0.79) 

1.4 
(1.11) 

4.5 
(1.11) 

3.3 
(1.10) 

6.5 
(1.12) 

44.7 
(1.17) 

6 1.7 
(0.47) 

1.0 
(1.01) 

1.2 
(1.33) 

3.4 
(1.17) 

11.3 
(1.11) 

3.2 
(0.71) 

1.3 
(0.95) 

4.7 
(0.93) 

3.4 
(0.95) 

6.0 
(1.01) 

44.4 
(1.08) 

7 1.7 
(0.30) 

1.2 
(2.14) 

1.3 
(2.40) 

3.7 
(2.11) 

15.0 
(1.94) 

2.9 
(1.30) 

1.5 
(1.84) 

4.3 
(1.83) 

4.0 
(1.82) 

5.4 
(1.87) 

35.2 
(1.93) 

8 1.7 
(0.57) 

1.2 
(1.92) 

1.2 
(2.21) 

3.7 
(1.94) 

14.9 
(1.82) 

2.9 
(1.23) 

1.5 
(1.67) 

4.4 
(1.64) 

4.0 
(1.65) 

5.3 
(1.67) 

35.6 
(1.80) 

 
 
 

Table 15.  Performance of the FDI System with Updated Bank of Kalman Filters Applied to 
Nonlinear Simulation at Baseline Condition #3, Negative Bias Case 

Isolated Minimum Positive Bias in % of Nominal Trim Value 
(Euclidian distance of health parameter estimation errors in parentheses) 

Si
m

ul
at

io
n 

Sc
en

ar
io

 #
 

XN2 XN25 T27D T56 PS15 P27 PS3 PS56 WF36 A8 A16 

1 -2.0 
(0.22) 

-1.0 
(0.04) 

-1.5 
(0.12) 

-3.7 
(0.05) 

-16.2 
(0.04) 

-3.1 
(0.03) 

-1.5 
(0.06) 

-4.6 
(0.06) 

-3.6 
(0.03) 

-8.0 
(0.02) 

-38.6 
(0.01) 

2 -2.2 
(0.32) 

-1.1 
(0.21) 

-1.5 
(0.10) 

-3.4 
(0.16) 

-15.8 
(0.32) 

-3.4 
(0.15) 

-1.6 
(0.15) 

-4.5 
(0.19) 

-3.4 
(0.12) 

-8.4 
(0.46) 

-39.9 
(0.17) 

3 -1.8 
(0.08) 

-0.9 
(0.64) 

-1.3 
(0.66) 

-3.1 
(0.59) 

-15.4 
(0.52) 

-3.2 
(0.37) 

-1.3 
(0.52) 

-5.0 
(0.52) 

-3.5 
(0.52) 

-8.6 
(0.52) 

-43.9 
(0.50) 

4 -1.8 
(0.39) 

-1.0 
(0.31) 

-1.2 
(0.58) 

-3.1 
(0.47) 

-15.4 
(0.57) 

-3.2 
(0.30) 

-1.3 
(0.38) 

-4.7 
(0.40) 

-3.2 
(0.39) 

-8.8 
(0.57) 

-43.9 
(0.50) 

5 -1.8 
(0.19) 

-0.9 
(1.26) 

-1.2 
(1.47) 

-2.8 
(1.24) 

-12.7 
(1.15) 

-3.2 
(0.79) 

-1.2 
(1.14) 

-4.4 
(1.10) 

-3.1 
(1.09) 

-6.8 
(1.12) 

-39.9 
(1.16) 

6 -0.17 
(0.52) 

-0.9 
(0.96) 

-1.4 
(1.34) 

-2.7 
(1.09) 

-12.9 
(1.11) 

-3.2 
(0.71) 

-1.2 
(0.97) 

-4.0 
(0.93) 

-3.0 
(0.94) 

-6.6 
(1.02) 

-39.7 
(1.09) 

7 -2.0 
(0.30) 

-0.9 
(2.11) 

-1.5 
(2.40) 

-2.6 
(2.06) 

-15.2 
(1.94) 

-3.1 
(1.32) 

-1.5 
(1.86) 

-4.3 
(1.84) 

-2.8 
(1.80) 

-7.1 
(1.91) 

-35.1 
(1.95) 

8 -2.1 
(0.57) 

-0.9 
(1.86) 

-1.5 
(2.21) 

-2.6 
(1.89) 

-15.3 
(1.82) 

-3.1 
(1.24) 

-1.5 
(1.69) 

-4.2 
(1.65) 

-2.8 
(1.62) 

-7.3 
(1.71) 

-34.6 
(1.81) 
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8.0 Concluding Remarks 
 
An FDI system which utilizes a bank of Kalman filters with an augmented state vector was developed for 
aircraft engine sensor/actuator FDI in conjunction with the detection of component faults.  Each Kalman 
filter was designed to detect a specific sensor or actuator fault while estimating the selected four health 
parameters which could degrade abruptly.  Based on the fault isolation logic, one filter in the bank was 
isolated from the rest, and consequently the isolated filter itself indicated which sensor or actuator had 
failed.  Moreover, the FDI filter using the “correct” fault hypothesis detected component faults by 
estimating the four health parameters from the fault-free sensor measurements.   
 
The performance of the FDI system was evaluated against the nonlinear engine simulation at cruise 
operating conditions.  The performance was evaluated based on the minimum magnitude of the isolated 
sensor/actuator bias and the accuracy of the health parameter estimation.  Eight simulation scenarios, 
where the selected four health parameters and the control commands were perturbed, were investigated.  
The perturbations in the four health parameters represented abrupt component degradation due to a FOD 
event, while the control command perturbations disturbed engine operating condition.   
 
Furthermore, the “baseline degradation” was used in order to investigate the benefit of incorporating 
information regarding the engine’s aging condition in the FDI system.  It is well known that the physical 
engine components deteriorate gradually due to wear and tear on blades and the casing as an engine 
operates over time.  Such an aging phenomenon was referred to as baseline degradation and represented 
by a set of deviations in all 10 health parameters from the healthy baseline condition.  When the FDI 
system designed at the healthy baseline condition was applied to the healthy engine (nonlinear simulation 
at baseline condition #1), the FDI system performed well in most of the simulation scenarios.  When the 
same FDI system was applied to the aging engine (nonlinear simulation at baseline conditions #2 and #3), 
the deviations in all 10 health parameters were “smeared” to the four health parameters being estimated, 
resulting in unacceptable health parameter estimation accuracy.  Moreover, multiple FDI filters generated 
false alarms.  If an FDI system which does not account for baseline degradation is applied to a physical 
aged engine, the same results can be expected.  The performance loss of the FDI system due to the aging 
effects was partially recovered by updating either 1) the trim value data or 2) the bank of Kalman filters. 
 
When the trim value data was updated based on the baseline degradation, the mismatch in the steady-state 
condition values at the initial trim point between the “nominal” FDI system and the “aged” nonlinear 
engine simulation was eliminated, and consequently the ability of isolating the sensor and actuator fault 
was retained for both aging conditions (baseline degradations #2 and #3).  However, the accuracy of 
estimating health parameters was not as good as the nominal baseline case.  Although the initial steady-
state condition values were made to match, the mismatch in the dynamics caused errors in the steady-state 
response (i.e., steady-state gain) after health parameter and control command perturbations, resulting in 
the loss of estimation accuracy. 
 
In order to regain the estimation accuracy, the bank of Kalman filters was updated based on the baseline 
degradation.  Since both the initial steady-state condition values and the dynamics matched between the 
FDI system and the nonlinear engine simulation at the degraded baseline condition, the accuracy of the 
health parameter estimation was significantly improved for baseline condition #2.  Also, a benefit of 
isolating bias at a lower magnitude was observed in some of the sensors. 
 
For baseline condition #3, the aforementioned benefits of updating the bank of Kalman filters were not 
observed.  The accuracy of the health parameter estimation was low, and the isolated bias magnitudes 
were much higher than the case where the trim value data alone was updated.  It was found that, when 
multiple health parameters were perturbed, a large difference in the steady-state response of the XN2 
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measurement existed between the linear engine model and the nonlinear engine simulation, even though 
the baseline degradation matched.  This steady-state response error in XN2 was suspected as the cause of 
the unsatisfactory results.  It is not known whether this steady-state error is due to the linearization 
process or the nonlinear effects at this baseline condition.  However, this example reveals the significance 
of the linear model accuracy in order to accurately estimate the health parameters.  In this paper, it is 
assumed that the baseline degradation is tracked by the steady-state condition monitoring system, and the 
linear models are generated at new baseline conditions.  For this approach to be practical, further research 
is needed on how the linear models are to be generated and validated. 
 
Significant robustness in terms of detecting and isolating sensor and actuator faults was observed by 
updating the trim value data or the bank of Kalman filters.  For a total of 920 simulation cases 
investigated in this paper, the FDI system did not generate a false alarm.  It is considered that the 
augmented state vector, which was incorporated into the Kalman filter design for health parameter 
estimation, played a significant role.  The initial objective of estimating a selected set of health parameters 
was to avoid a scenario where abrupt component degradation is incorrectly identified as a sensor or 
actuator fault by the FDI system.   This objective was satisfied in all simulation cases.  When both the 
initial steady-state and the dynamics of the FDI system matched with that of the nonlinear engine 
simulation, the Kalman filters accurately estimated the selected four health parameters.  When the 
dynamics of the FDI system did not match well with that of the nonlinear engine simulation, the Kalman 
filters “tuned” these selected health parameters so that the measurement estimates will match with the 
outputs of the nonlinear simulation.  Because of this “tuning” effect, low sensor estimation errors were 
retained, and as a result, no false alarm was generated.   
 
For further research, it is interesting to use a subset of the 10 health parameters as a tuner for 
improvement of the FDI performance.  The idea of parameter tuning has been investigated in the adaptive 
control area.27,28  In this paper, abrupt component degradation due to a FOD event was modeled as step 
changes in the health parameters of a fan and a booster.  During a flight, some other component faults can 
happen such as domestic object damage (DOD) due to failed HPC or HPT blades.  If such faults 
happened, it is not known how the current FDI system would react.  The best approach to capture the all 
component faults is to estimate all 10 health parameters.  However, the number and the location of the 
available sensors restrict the estimation accuracy.  If a subset of the health parameters is used as a tuner, it 
is expected that the sensor and actuator FDI performance would be retained even in the event of FOD, 
DOD, or other component faults.  A drawback of using a subset of health parameters as a tuner is that 
those selected parameters no longer represent the actual health parameters, thus the purpose of estimating 
the component damage is compromised.   
 
It is also interesting to assess the FDI performance using modified fault indicator signals (i.e., WSSR).  
As previously discussed, some pairs of FDI filters were difficult to isolate from each other; however, a 
“wrong” filter usually generated health parameter estimates well beyond the expected linear range.  
Incorporating such information in the fault indicator signal may help in isolating between a troublesome 
pair of FDI filters at a much smaller bias level.  In future work, the above issues will be considered in 
addition to extending the FDI capability over a wider flight region. 
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Appendix 
 
 
The actuator bias can be injected either in the actuator inputs or actuator outputs as shown in Figures 10 
and 11.  Although Equation (9) incorporates the actuator bias vector in the actuator inputs, it can be easily 
modified such that the bias vector is incorporated in the actuator outputs. 
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Figure 10.  Actuator Bias Added to the Actuator Input Vector 
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Figure 11.  Actuator Bias Added to the Actuator Output Vector 
 
 
 
Let the state-space model of the engine be given by: 
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Let the state-space model of the actuator be given by: 
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When the engine and actuator state-space models are combined, the combined state-space model is given 
as (assume that “0” and “I” in the following equations are the matrices with appropriate dimensions): 
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If the bias vector is added to the actuator inputs as shown in Figure 10: 
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If the bias vector is added to the actuator outputs as shown in Figure 11: 
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If the engine dynamics are ignored as the example given in this paper (See Section 3.0), the actuator state-
space model (Equation 15) reduces to: 
 

0=actA ,  0=actB ,  0=actC ,   I=actD       
 
 
Therefore, Equations (17) and (18) are equivalent. 
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