Dr. Michael D. Pedley ISS Materials and Process Manager NASA Johnson Space Center

NASA -	Research Needs in Fire Safety for the Human Exploration and Utilization of Space
GOX IGNITION MECHANISMS	
•	Two important areas of limited understanding with respect to materials ignition and combustion in oxygen systems
	 In recent years, several oxygen system fires have been attributed to a phenomenon christened (possibly erroneously) as "flow friction" Occurs only at high pressures (> 2500 psia) Occurs in pressurized static systems (all other known ignition mechanisms are tied to motion – rapid pressurization, particle impact, friction Appears to result from leakage through a seal Ignition mechanism not understood, so cannot be controlled by design/materials selection
	Limited studies of particle impact ignition have shown that high flow velocities are required and that metallic particles are probably worse than nonmetals – but we don't know in any detail: Velocity effects for different particulate contaminants Effects of particle size and quantity Effectiveness of filters as protection (as functions of filter size and filter material) True hazards from gas streams exiting valve seats/orifices at sonic velocity
	Michael D. Pedley/NASA JSC Page 12 of 14 June 2001

