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Abstract 

We present techniques for discovering and exploiting regularity 
in large curvilinear data sets. The data can be based on a single 
mesh or a mesh composed of multiple submeshes (also known as 
zones). Multi-zone data are typical to Computational Fluid Dynam- 
ics (CFD) simulations. Regularities include axis-aligned rectilinear 
and cylindrical meshes as well as cases where one zone is equiv- 
alent to a rigid-body transformation of another. Our algorithms 
can also discover rigid-body motion of meshes in time-series data. 
Next, we describe a data model where we can utilize the results 
from the discovery process in order to accelerate large data visual- 
izations. Where possible, we replace general curvilinear zones with 
rectilinear or cylindrical zones. In rigid-body motion cases we re- 
place a time-series of meshes with a transformed mesh object where 
a reference mesh is dynamically transformed based on a given time 
value in order to satisfy geometry requests, on demand. The data 
model enables us to make these substitutions and dynamic transfor- 
mations transparently with respect to the visualization algorithms. 
We present results with large data sets where we combine our mesh 
replacement and transformation techniques with out-of-core paging 
in order to achieve significant speed-ups in analysis. 

CR Categories: E. Data (large); 1.1.3 Languages and Systems, 
Evaluation strategies; 1.3.8 Computer Graphics Applications 

Keywords: regularity finding, data models, object-oriented, C++, 
templates, scientific visualization, paging, demand-driven evalua- 
tion. 

1 Introduction 

In scientific data set meshes there are often geometric and topolog- 
ical regularities. By regularities we mean patterns that can be ex- 
ploited by visualization systems in order to accelerate the analysis 
process, or to enable the analysis of much larger data than would be 
otherwise feasible. Regular meshes - meshes that can be defined 
as the Cartesian product of regularly sampled intervals - may be 
the example that first comes to mind when one thinks of regulari- 
ties, but there are many others. Rectilinear (the Cartesian product 
of intervals that are not necessarily evenly sampled) and cylindri- 
cal meshes all possess regularities. Regularities may also be found 
in meshes composed of multiple submeshes, also known as zones. 
For example, a domain may be covered with overlapping curvilin- 
ear meshes in expected regions-of-interest but utilize simpler reg- 
ular or cylindrical meshes in the remainder of the domain, such as 
in “free stream” regions. Unstructured meshes - Le., meshes that 
do not have the uniform topological regularity of structured meshes 
- may also potentially possess some regularities. Here we restrict 
ourselves to single and multi-zone structured objects. 

The regularities described above suggest two categories of accel- 
eration opportunities. First, we can construct meshes without ex- 
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plicitly storing the coordinates for every vertex. This is a potential 
savings both in disk space and main memory usage. There is also 
a savings at mesh construction time since little disk UO is required. 
In essence the regularity provides significant compression opportu- 
nities. This compression is for the most part lossless, though there 
may be some slight perturbations due to working with floating-point 
numbers. Second, there are straight-forward point location and in- 
terpolation acceleration techniques that apply to meshes with regu- 
larities. With a carefully designed data model we can provide these 
advantages in a manner transparent to the data analysis algorithms 
operating on model objects. 

Time-series data tend to act as a multiplier with respect to the 
opportunities described above. Savings in disk or memory usage 
are multiplied by hundreds of time steps. Performance savings due 
to more efficient point location and interpolation routines are also 
magnified. Time series data provides a further opportunity: in many 
cases the mesh at time step t + 1 is the same as in time step t ,  except 
for a rigid-body transformation. With multi-zone meshes we may 
have a mix of static and moving submeshes. Given the appropriate 
transformations, we can load a mesh once and then apply the trans- 
formations on demand for successive time steps. Again, a carefully 
designed data model can apply these techniques in a manner trans- 
parent to the analysis algorithms. 

One impediment to exploiting regularity is that essential data 
about the data - metadata - are not always explicitly available to 
analysis tools. For example, file formats such as PLOT3D [31] save 
all structured meshes using the most general type: curvilinear. The 
file format does not provide a general means for storing metadata, 
thus regularity information tends to get separated from the raw data. 
Clearly, one option is to ask the original scientist for the metadata, 
but sometimes that option is not available. Even if the scientist 
is available, the necessary metadata may not be readily accessi- 
ble. The original meshes may be the product of automated mesh 
generation or adaptive simulation tools. Such tools may not be in- 
strumented to output regularity information in a form that is easily 
used by analysis systems. A second impediment to exploiting regu- 
larity is that even with the prerequisite metadata, techniques such as 
mesh substitution and dynamic transformation may require signif- 
icant changes to one’s visualization algorithm implementations if 
the data model does not insulate the analysis algorithms from how 
the data are provided. The effort required to modify the analysis 
software may be more than one is willing to make. 

In this article we present techniques that enable regularity dis- 
covery and exploitation in large curvilinear data sets. In the follow- 
ing section we review related work in large data analysis strategies 
and data models. Next we describe the regularity-finding algorithm 
in detail, followed by an overview of the data model. Following our 
overview of the regularity discovery algorithms and data model, we 
present results from three large data sets. Finally, we conclude with 
a summary of what has been accomplished so far and some thoughts 
on future work. 



Figure 1: Two views of the same turbo-pump data set: to the left we highlight a subset of the 114 zones in the data set. Using the subset of 
zones as reference meshes, we can use transformed meshes to represent the remainder of the geometry. To the right is a visualization of the 
same data set. The number of turbine rotors and stators are relatively prime. While it is not obvious without an extreme close up, the pressure 
and thus the color mapping on each blade is not exactly the same, thus we cannot simply replicate the graphics primitives from a subset of 
the blades in order to produce the full visualization. 

2 Related Work 

2.1 Large Data Strategies 

Large data visualization has been an active area of research in re- 
cent years. Most strategies depend on avoiding the need to load 
the whole data set into memory at one time. UFAT [15] uses an 
approach to particle tracing in time-series data where only a small 
working set of time steps were loaded at once. UFAT also sup- 
ported a small number of other visualization techniques. Cox and 
Ellsworth [6] describe a more general out-of-core paging system 
that exploited the fact that many visualization algorithms exhibit 
spatial and temporal locality in data access. An alternative to pag- 
ing is the streaming approach described by Law et aZ[16]. 

There are also numerous efforts that are specific to particular 
visualization techniques. For example, there have been many algo- 
rithms proposed that accelerate isosurface computation by creating 
an index beforehand that enables an isosurface algorithm to only 
load data in the neighborhood of the surface [4,29, 13, 5,241. An 
octree-based approach to limiting the amount of data loaded for 
streamline computation was described by Ueng et al [30]. Shen 
er aZ [25] describe a Time-Space Partitioning (TSP) tree approach 
volume rendering time-series data. 

2.2 Data Models 

The importance of a well-designed data model has been recognized 
early on in the visualization community, and there have been a 
number of efforts to develop a general design with a strong, for- 
mal foundation. One of the earliest was the fiber bundle model by 
Butler and Pendley [Z]. Their model was inspired the mathemat- 
ical abstraction of the same name. Fiber bundles have proven to 
be somewhat difficult to implement in their pure form, though the 
concepts have inspired several follow-on efforts. The original fiber 
bundle abstractions did not provide a convenient means to access 
the underlying discretization (mesh) of a data set. This was a prob- 
lem since many visualization algorithms operate by iterating over 
various types of cells of the mesh. 

One system in particular that has been influenced by fiber bundle 
concepts is OpenDX (formerly IBM Data Explorer[l7, 11). Begin- 
ning with Haber et a1 [9], the fiber bundle model was adapted into a 

model that would support a general-purpose data-flow visualization 
system. OpenDX can handle both vertex-centered and cell-centered 
fields. 

Another field modeling effort was Field Encapsulation Library 
(FEL) [20]. FEL excelled with the multi-zone curvilinear grids. 
FEL differed from most other modeling efforts in that it defined 
separate class hierarchies for meshes and fields, rather than a single 
combined object type. FEL introduced fundamental design features 
that enabled the library to operate with far larger data sets, including 
a consistent demand-driven evaluation model [ 191 and the integra- 
tion of demand-paging techniques [6]. FEL assumed that all objects 
were in R3 physical space and vertex-centered. 

The Visualization Toolkit (vtk) [23], like OpenDX, is an open 
source visualization system with a fairly general data model. The 
vtk data model uses an extended concept of cells, including such 
primitives as polylines and triangle strips as cell types. Recent ex- 
tensions [16] have focused on enabling the data model (and thus 
the whole system) to handle large data via streaming. Like FEL, 
vtk utilizes a demand-driven evaluation strategy. 

VisAD [ 11, 101 is a relatively general, object-oriented model for 
numerical data. The user can construct dataobjects with a style sim- 
ilar to expressing mathematical functions. In contrast to the models 
described previously, VisAD is implemented in Java. The VisAD 
model is quite flexible, though the Java implementation makes it 
less suitable for very large data. The VisAD model does put more 
effort into the inclusion of metadata - data about data - than most 
other designs. 

3 Regularity Finding 

The first step to exploiting regularities in large data sets is to find the 
regularities. The regularities are found using a discovery algorithm 
which is run as a preprocessing step before any visualizations are 
computed. The algorithm recognizes three types of zones. It rec- 
ognizes regular meshes, which includes meshes with both regular 
and irregular spacing; axis-aligned cylindrical meshes; and trans- 
formed meshes, ones that are transformed versions of other zones. 
The high level algorithm tries the regular mesh discovery algorithm; 
if that fails, it tries the cylindrical algorithm, and finally runs the 
transformed mesh algorithm. For each of these zone types, the al- 



gorithm first attempts to recover the parameters that describe the 
transformed or procedural zone. If the parameters are recovered 
successfully, all of the vertices in the zone are checked to ensure 
that they match. If either step fails, the next type is checked. The 
complete check is time consuming, but is required since we want to 
guarantee a close match: one that models every vertex correctly. 

3.1 Errors 

Unfortunately, floating point errors prevent exact matching between 
the modeled and actual zone. These errors come from the inexact 
nature of floating point calculations [22,21]. The errors come from 
three sources. One source is floating point errors introduced when 
the the vertices in the input files are computed. They may not be 
exactly equal to, for example, a cylinder if the calculation was not 
done carefully or was done using single precision. Or, errors can 
be introduced when a rotated zone is created from another existing 
zone and the rotation matrix used is not exactly as intended due to 
floating point errors. A second source of error is part of the dis- 
covery algorithm. The calculations to recover the modeled zone’s 
parameters may not recover the parameters exactly due to floating 
point error. The third source of error occurs during the verification 
step, where floating point error can cause the modeled vertices to 
not be computed exactly even if the model parameters are exact. 

These error sources mean that the modeled and actual vertices 
can only be compared to a given error tolerance. This error toler- 
ance should be given as an absolute error tolerance because recog- 
nizing zones using relative errors (errors expressed as a magnitude 
of the values being compared) would require loose error bounds. 
The loose relative error bounds are needed for vertices that have 
a component that is near zero. For example, if the 2D point (IO, 
0.0001) is rotated by 20 degrees using single precision math, the 
resulting point is (9.3968915, 3.4202952). When the transformed 
point is rotated by -20 degrees, the result is not the original point but 
(9.9999990, 0.0001001517). The relative error in the y coordinate 
is noticeably large, 0.1%, while the absolute error in both coordi- 
nates is small. Because of this, while we have the user specify a 
relative error for convenience, the actual algorithm uses an absolute 
error. The absolute error is calculated by multiplying the relative 
error by the size of the zone’s bounding box. 

3.2 Recognizing Regular Zones 

Recognizing regular zones is fairly simple. First, each of the com- 
putational coordinate axes i, j ,  and k are examined to see whether 
only one physical coordinate changes when each axis is traversed, 
and that the physical coordinate that changes represents each of the 
three physical axes. This is done by checking the vertices with 
i = j = 0, k = j = 0, and i = k = 0, not the entire mesh. 
If the computational axis checks succeed, then the mesh spacing is 
extracted from the vertices along the computational axes, and then 
all of the vertices are checked. 

3.3 Recognizing Cylindrical Zones 

Cylindrical zones are recognized by first determining which com- 
putational axis corresponds to the the length of the cylinder, which 
corresponds to the radius (from the middle of the cylinder to the 
outside), and which axis corresponds to the rotation of the cylinder; 
these axes are called the length, radius, and theta axes, respectively. 
The theta axis direction is determined by examining the three sets of 
edges starting at one of the comers. Edges along the theta axis will 
not have collinear edges, while the others will. If any degenerate 
edges are found, the process restarts at another corner. 

The next step is to assign the radius and theta axes to the two 
remaining computational axes. This is done by noting that adjacent 

edges along the rotation of the cylinder and going down the length 
of the cylinder are parallel, while adjacent edges going in and out 
of the cylinder (that are on the same face or slice of the cylinder) 
are not parallel. Then the algorithm computes the center of the 
cylinder by intersecting two radial lines. To reduce numerical error, 
these lines are chosen to be about 90 degrees apart and to extend the 
the full radius of the cylinder. The final discovery step is to find the 
mesh intervals for the length, radial, and theta axes. The final veri- 
fication step checks that each vertex matches the cylindrical model 
of the mesh. 

3.4 Recognizing Transformed Zones 

The algorithm for recognizing transformed zones can either find 
zones that are transformed versions of ones in the same file, or 
zones found in a second reference file. The reference file is typi- 
cally the first file in the time series. When looking at zones from 
a single file, the algorithm only considers lower-numbered zones, 
while it considers all of the zones from the reference file. The algo- 
rithm will find a match between the current zone in the current file, 
and a matching zone from either the current or first file, as appro- 
priate. The recovered transformation is a general transformation: 
it is a a general 3 x 3  transformation matrix that includes rotations, 
scales, and shears and a separate translation vector. However, the 
algorithm is optimized for finding rotations around a single physical 
coordinate axis, possibly combined with a translation. 

The transformation is recovered using four main steps: a dimen- 
sions check, a direct solution step, an error minimization step, and 
a heuristic cleaning step. The dimensions check simply verifies that 
the dimensions of the current and matching zones are the same. The 
direct solution step gets a good solution of the 12 values that spec- 
ify the 3 x 3 matrix and the translation vector by solving a system of 
linear equations. The error minimization step refines the solution 
by minimizing the errors between a set of vertices from the cur- 
rent and matching zones. The cleaning step applies heuristics that 
recognize rotations and reduces the residual error. 

The direct solution step uses the fact that the zone-to-zone corre- 
spondence between four non-collinear vertices with the same i , j , k  
location in each mesh is sufficient to determine the transforma- 
tion, provided of course that the zones are actually transformed 
versions of each other. The transformation can be determined by 
starting with the transformation equations for a set of vertices, 
mi = Aci + t, where mi is a vertex from the matching zone, 
ci is a vertex from the current zone, A is the 3 x 3 transformation 
matrix, and t is the translation vector. The m, and ci vertices share 
the same locations in the zone. The direct solution step generates 
a set of 12 linear equations defined by the equation above and the 
four selected vertex pairs, and then solves the equations for A and 
t. 

The four vertices used to recover the transformation are found 
using a greedy algorithm that tries to place them far apart phys- 
ically. Using widely-spaced vertices avoids a problem seen with 
closely-spaced vertices: vertices near each other can have coordi- 
nates with many digits in common, which would limit the precision 
of the recovered transformation. The first vertex is chosen to be the 
zone’s computational origin. The second vertex is chosen from a 
set made up of a 9 x 9 ~ 9  lattice of vertices spaced evenly compu- 
tationally through the mesh, and is the one from the set that creates 
the longest line from the origin. The third vertex is the vertex from 
the set that, given the first two vertices, would create the triangle 
with the largest area. The fourth vertex is the one from the set that 
creates the tetrahedron with the largest volume given the first three 
vertices. 

Given the four vertices, the algorithm solves the system of equa- 
tions using first LU decomposition and then iterative improve- 
ment [22] to reduce computation errors. Then, an error minimiza- 



tion step further reduces the error using Polak-Rebiere conjugate 
gradient minimization [22]. This step is used because the transfor- 
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mation defined by the four pairs of vertices might not be exactly the 
same as the transformation applied to the zone due to floating point 
errors created when the pairs of vertices were calculated. The mini- 
mization step minimizes the distance between a large set of vertices 
from the current and transformed modeled zone. The set of vertices 
is the unique vertices in the 9 x 9  x 9 lattice that were considered as 
candidates for the four vertex pairs used in the direct solution step. 

The final heuristic cleaning step tries to recognize rotations 
around a coordinate axis and reduce the error. For each coordinate 
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is usually small compared to the cost of point location. 

Rotor 

axis in turn, the transformation matrix is examined to see whether it 
looks like a rotation around that axis. A rotation matrix should have 
a single value near one, four values near zero, two cosine values 
nearly equal to each other, and two sine values that have opposite 
signs and nearly the same magnitude. The location of the one, zero, 
cosine, and sine values within the matrix vary according to the ro- 
tation axis. In addition, the cosine and sine values must correspond 
to nearly the same angle. If the matrix is a rotation matrix, the rota- 
tion angle is calculated and the matrix is computed from scratch to 
further reduce numeric errors. 

The final part of the cleaning is to remove any small translation 
values. Here small is defined as values smaller than one LSB in 
the single precision floating point value of the size of that zone’s 
bounding box. This step is used because, in practice, the previous 
calculations do not recover a zero translation when no translation 
was used. Not deleting these small translations would noticeably 
affect vertices with components near zero, if the transformation was 
indeed zero. On the other hand, for most of the larger vertices, the 
resulting vertices would be the same whether or not these small 
translations are included since the translation makes no difference 
in the final floating point value. 

Once the transformation has been recovered, all of the zone’s 
vertices are checked to see whether they have been indeed trans- 
formed from the other zone’s vertices. If so, the algorithm reports 
the transformation and quits; otherwise, the algorithm checks the 
remaining zones. 
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4 Data Model 

Result 

The data model used for the experiments is called Field Model 
(FM). Like its predecessor FEL [20], FM is object-oriented, written 
in templated C++, with out-of-core paging functionality [6] and a 
consistent, demand-driven evaluation philosophy [19]. Both FEL 
and FMprovide data access via a t -cel l  calls. FMgoes further in 
terms of generality: FM can handle mesh and field objects in spaces 
other than R3 as well as “cell-centered” data. Like FEL, FM strives 
to provide flexibility while still maintaining performance. FM also 
provides optimized classes for particular mesh types, such as the 
regular and cylindrical meshes used in our experiments. A broader 
overview of FM can be found in a previous technical report [18]. 
Field Model is as an Open Source project [8]. 

Transformed meshes in FM are constructed with a reference 
mesh and a transformation T .  T defines the transformation from 
the native coordinate system of the reference mesh to the new co- 
ordinate system emulated by the transformed object. For example, 
a transformed mesh could apply a 30 degree rotation about the X- 
axis to its reference mesh. Requests for coordinates are forwarded 
through the transformed mesh to the reference object, and the trans- 
formation T is applied to the reference mesh results. Point location 
requests are satisfied by applying the inverse transformation T-’ to 
the query point in order to place it in the native coordinate system 
of the reference mesh, and then calling the point location routine of 
the reference mesh. The inverse transformation is applied just once 
per point location request; the cost of applying the transformation 
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I Statistic 1 Rotor I Delta I Turbo I 
I Zones I 210 I 1 1  24 I 

Vertices (millions) I 57.7 I 0.69 I 19.5 
NumberofTimeSteus I 1 I 600 1 300 I Data Set Size(GiB) I 1.61 1 12.3 I 187.2 I 

Table 1: Data set statistics. 

Table 2: Data set statistics and results from the discovery algorithm. 
The last line shows the fraction of the original data that might need 
to be loaded as a fraction of the original data size, and includes the 
IBLANK portion (see text for details). 

Field Model is organized as a set of modules. The central mod- 
ule, FM, provides standard classes shared by all modules. Addi- 
tional modules provide functionality specific to various file formats 
and data standards. The PLOT3D [31] module is of particular in- 
terest here since our experimental data sets are in that format. A 
PLOT3D data can include what are known as BLANK’S: associ- 
ated with each vertex in the mesh is a 32-bit integer that serves two 
purposes. First, it can flag whether the field data associated with 
the vertex is valid (1) or invalid (0). For example, in the Rotor data 
(see Figure 2) vertices falling withing the rotor blade from regular 
meshes have their IBLANK values set to 0. The second function of 
IBLANK’s is to indicate mesh overlaps in multi-zone data, using 
negative integers. The overlap information is crucial for efficient 
point location in multi-zone data. 

5 Regularity Discovery Results 
The regularity discovery algorithm has been implemented using 
FM [18]. The results from running the algorithm show that con- 
siderable data savings are possible, and are summarized in Table 2. 
One data set is static, two vary with time. All of the data sets are 
fairly large curvilinear CFD simulations; see Table 1. 

Two of the data sets are PLOT3D multi-zone files, with 
IBLANK’s [31]. Since the IBLANK data cannot be modeled as 
part of a regular, cylindrical, or transformed zone, they must be 
read from the files. However, most of the IBLANK’s have a value 
of 1, indicating valid data. When the IBLANK data comes from 
out-of-core paged files, we losslessly compress the all-1 regions on 
a block-by-block basis. If al l  of the IBLANK’s in a 8 x 8 x 8 data 
block are equal to 1, that block is not stored in the paged file, and 
that fact is recorded in the file. When that block is needed during 
the visualization run, the block of 1 values is not read from disk; 
instead, the internal block pointer is set to point to a constant block 
filled with 1’s. 

The first data set, Rotor, is a steady-state rotorcraft simulation. 
Most of the vertices are in regular grids because it simplifies the 
computation and also eases running the CFD algorithm on multiple 
processors, as shown in Figure 2. Only a few zones near the rotor 



blade contain curvilinear data, so that only 2.4% of the vertices need 
to be read during visualization. Since about half of the IBLANK’s 
can be compressed, at most 13% of the original grid file would need 
to be read. 

The second data set, Delta, is a simulation of a delta wing rolling 
left and right, and is shown in Figure 4. This is a single zone data set 
without any regular or cylindrical zones. This means that all of the 
vertices from the first file may need to be read. However, vertices 
from subsequent time steps can be be computed by rotating vertices 
from the first time step. Since this data set does not have IBLANK 
information, only the first time step is needed, which results in a 
600 to 1 compression ratio over the entire time series. 

The third data set, Turbo, is a turbo-pump simulation. We regret 
that we cannot show images of this data set, but it has some similar- 
ities to the turbo-pump data set shown in Figure 1. The discovery 
algorithm finds that there are several blades that are identical except 
for rotation, and that there are two cylindrical zones. Since only the 
first blade’s geometry needs to be read, and the cylindrical zones 
do not need to be read, only 41.8% of the vertices need to be read. 
The IBLANK data can be compressed by 43.8% (leaving 56.2%), 
which means that, at most, 45.5% of the first file’s data may need 
to be read. 

Because portions of the turbo-pump are either static or rotate 
over time, subsequent timesteps do not need any vertex data to be 
read from the mesh files. Instead, either vertices from the first file 
(possibly rotated) or vertices generated from a cylinder model can 
be used to produce visualizations. Only the incompressible portions 
of the IBLANK data may need to be read from the mesh file, reduc- 
ing the data requirements to 14.1% of the original file data. This is 
a large reduction in data size since there are currently 300 files in 
this data set. The original mesh files have a total size of 87 GB, 
while the compressed IBLANK data has only 8.5 GB - a savings 
of over 90%. 

When the algorithm is run on a Dell Precision 530 Workstation 
on a single 2 GHz processor, the discovery algorithm takes 1 second 
per Delta mesh file, and 35 seconds per Rotor or Turbo mesh file. 

6 Visualization Computation Results 

While the savings of disk and main memory space can be impor- 
tant, increasing the performance of the visualization computation is 
also important. We have implemented a visualization system that 
exploits most of the regularities that were discussed in the previous 
section, and measured its performance when computing a simple 
visualization of each data set. Each visualization contains scalar- 
mapped surfaces showing the object being simulated along with 
streaklines for the time-varying data sets, and with streamlines for 
the steady data set. The visualization algorithms were provided by 
the VisTech library [27]. 

The visualizations were computed as a batch process using a sin- 
gle processor of a Dell Precision 530 workstation with two 2 GHz 
Pentium Xeon processors, 4 GB of memory, and with the Rotor and 
Delta data stored on three striped 73 GB 10000 RPM SSCI disks. 
The Turbo data was stored on a remote file server since it was too 
large to fit on local disk. It was accessed using the custom remote 
access protocol described in [7], but without the multi-threading 
features described in that paper. The file server had two 1 GHz 
Pentium I11 processors, 2 GB of memory, and eight 120 GB 5400 
RPM IDE disks combined into one logical volume using software 
RAID-5. The two systems were connected with Gigabit Ethernet. 
In order to provide consistent results, the disk cache on each system 
was flushed before each run by allocating nearly all of the system’s 
memory and then randomly reading a portion of a large file. 

Most of the grid and solution data was loaded on demand using 
the out-of-core paging system [6]. This gives better performance 
compared to completely loading each time step since only a small 

fraction of the data is used to compute the visualization. However, 
we completely loaded the first grid file of the time series to im- 
prove performance because the data would be used repeatedly as 
a reference for transformed zones, and completely-loaded data can 
be accessed with less overhead compared to data that is loaded on 
demand. 

6.1 Rotor 

The largest reduction in time was observed with the Rotor data set 
(see Figure 2) .  The time decreased from 47 seconds using the orig- 
inal data to 22 seconds using the replacement regular meshes. This 
large time reduction occurred because there was a reduction in both 
data loading and computation. The data loading reduction occurred 
since the regular mesh vertex data (which represented 97.6% of the 
total number of vertices) did not need to be loaded. The compu- 
tation reduction occurred because it is much simpler to perform 
point location and interpolation in regular meshes than curvilinear 
meshes. 

Figure 3 illustrates a case where we see a difference in the visu- 
alization due to the replacement of the original curvilinear meshes 
with regular meshes. The vertex geometry errors due to our replace- 
ment meshes were very small: at most 0.0001% of the size of the 
overall mesh. When rendering surfaces of transformed objects, the 
perturbations in the coordinates were not perceptible in the visual- 
ization. We did observe minor differences in the computed stream 
and streak lines, as seen in Figure 3. These differences occur be- 
cause the particle integration accumulates the small vertex errors as 
the particle is advanced. The errors are only noticeable after thou- 
sands of integration steps, and the difference is still not very large. 
In practice, stream and streak line advection tends to be sensitive to 
many things: the choice of integration algorithm, the accuracy of 
the interpolation techniques, and so on. Users of advection visual- 
ization techniques are accustomed to using them to answer qualita- 
tive questions about the flow rather than specific “does a massless 
particle advect exactly from A to B?”. Thus we concluded that the 
perturbations were acceptabIe. 

6.2 Delta 

The rolling delta wing data set 131 is a classic in large data visualr 
ization and has appeared in numerous previous visualization studies 
[14, 26, 24, 25, 191. Mesh motion in the original data was repre- 
sented by 600 mesh files, even though the motion is simply rigid 
body rotation. Here we obviate the need for reading all the steps 
through the use of a a dynamically transformed mesh. Using the 
transformed object the time to compute the visualization (shown in 
Figure 4) decreased from 31.3 to 18.3 minutes, a reduction of 42%. 
This reduction is larger than for the Turbo data set described be- 
low because the Delta data set does require IBLANK information; 
disk seeks for mesh data after the first time step were completely 
eliminated . 

6.3 Turbo 

The turbo-pump data set is the most challenging of the three, since 
it is both multi-zoned and time-varying. When the mesh data was 
read from the original paged files, the computation required 198 
minutes. The time decreased to 162 minutes when the cylindrical 
and transformed zones were used, a reduction of 18%. The reduc- 
tion is less than one might expect, given that only 14% of the data 
from the original mesh files are needed after the first time step (see 
Table 2). The initial indications are that the reduced time was due 
to the reduction of data loaded from the remote file server. The time 
reduction was only 18% since both runs loaded the same amount of 
solution and IBLANK data, and because that data was larger than 



Figure 2: A close-up of the Rotor data set: The mesh consists of 210 zones, 206 of which are regular meshes. The remaining 4 zones are 
curvilinear and surround the blade, blade end, and central hub. 

Figure 3: An illustration of how streamlines can diverge when the original submeshes are replaced by regular meshes. 
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Figure 4 A snapshot from the rolling delta wing simulation: The wing surfaces and particles are color mapped with pressure. 

the loaded mesh data. In addition, we believe that the time reduc- 
tion was small due to file layout. Because vertex and IBLANK data 
blocks are adjacent in the disk file, the time to load the vertex and 
IBLANK data together is not much more than the time to load only 
the IBLANK data since both sets of data can be loaded using a sin- 
gle disk seek. 

There are further regularity opportunities with the Turbo data 
which have not been exploited yet. For simplicity in the initial tests 
each blade was represented by a transformed version of itself from 
the initial time step. Further reductions could be achieved by taking 
advantage of the fact that a single blade in the initial data could be 
used as the reference both for itself and for other blades. Creating 
transformed meshes, each with its own transformation but based on 
the same reference, would further reduce the amount of geometry 
data that would have to be accessed. 

7 Conclusion 

We have presented a discovery algorithm for identifying regulari- 
ties in large, curvilinear data sets. We then show how we can ex- 
ploit these regularities within a data model that provides optimized 
regular and cylindrical meshes as well as dynamically transformed 
meshes. Using our techniques we were able to reduce the visu- 
alization times by 53%, 42% and 18% for the rotor, rolling delta 
wing, and turbo-pump data sets, respectively. We expect that the 
same techniques could be applied to many other data, in particular 
other time-series data sets. Our data model makes relatively easy 
to experiment with alternative “virtual mesh” objects since we can 
substitute for original mesh objects in our visualizations without 
modifying our visualization algorithms. 

In the future we expect that the performance gains for data sets 
with IBLANK’s could be further improved. Allocating 32 bits per 
vertex for the amount of information IBLANK’s contain is known 
to be not particularly efficient. Using more sophisticated compres- 
sion techniques, such as those proposed by Hultquist [12], we antic- 
ipate that the performance of multi-zone data visualizations could 
be significantly improved. With time-series data in particular, there 
are opportunities to replace IBLANKs in regions that do not vary 
with time with a more efficient representation. Another possibil- 
ity would be to replace solution data at IBLANK 0 (invalid) ver- 
tices with a special value, such as a NaN. With this replacement 
invalid solution data could be detected without having to consult 
IBLANKs at all. With the turbo-pump, for example, this technique 

would speed up the scalar mapping on the turbo-pump blades. 
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