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Abstract
Understanding the kinetics of nucleation and coalescence of heteroepitaxial thin films is a crucial step in 
controlling a chemical vapor deposition process, since it defines the perfection of the heteroepitaxial film 
both in terms of extended defect formation and chemical integrity of the interface.  The initial nucleation 
process also defines the film quality during the later stages of film growth.  The growth of emerging new 
materials heterostructures such as InN or In-rich GaxIn1-xN require deposition methods operating at higher 
vapor densities due to the high thermal decomposition pressure in these materials.  High nitrogen pressure 
has been demonstrated to suppress thermal decomposition of InN, but has not been applied yet in chemical 
vapor deposition or etching experiments.  Because of the difficulty with maintaining stochiometry at 
elevated temperature, current knowledge regarding thermodynamic data for InN, e.g., its melting point, 
temperature-dependent heat capacity, heat and entropy of formation are known with far less accuracy 
than for InP, InAs and InSb.  Also, no information exists regarding the partial pressures of nitrogen and 
phosphorus along the liquidus surfaces of mixed- anion alloys of InN, of which the InNxP1-x system is the 
most interesting option.  A miscibility gap is expected for InNxP1-x pseudobinary solidus compositions, but 
its extent is not established at this point by experimental studies under near equilibrium conditions.  The 
extension of chemical vapor deposition to elevated pressure is also necessary for retaining stoichiometric 
single phase surface composition for materials that are characterized by large thermal decomposition 
pressures at optimum processing temperatures.

Introduction
In this paper we describe our progress in establishing a high-pressure chemical vapor deposition (HPCVD) 
system with integrated real-time optical monitoring capabilities[1-3].  The objective of this work is the real-
time evaluation of the growth kinetics of nucleation and coalescence of heteroepitaxial thin films, which 
is an important step of chemical vapor deposition since it defines the perfection of the heteroepitaxial film 
both in terms of extended defect formation and chemical integrity of the interface.  Presently, most growth 
efforts focus on low pressure processing to minimize the influence of flow dynamics on process uniformity 
and favors for III-V compounds organometallic chemical vapor deposition (OMCVD).  However, the 
extension to above atmospheric pressures is necessary for retaining stoichiometric single phase surface 
composition for materials that are characterized by large thermal decomposition pressures at optimum 
processing temperatures.  For example, GaxIn1-xN heterostructures have been identified as an important 
basis for manufacturing of optoelectronic and microelectronic devices, such as, light sources, detectors 
and high power microwave devices for which large potential markets can be identified.  Due to the high 
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thermal decomposition pressure of InN, these devices are at present limited to gallium-rich compositions.  
High nitrogen pressure has been demonstrated to suppress thermal decomposition of InN, but has not been 
applied yet in chemical vapor deposition or etching experiments.  Because of the difficulty with maintaining 
stochiometry at elevated temperature, current knowledge regarding thermodynamic data for InN, e.g., its 
melting point, temperature-dependent heat capacity, heat and entropy of formation are known with far 
less accuracy than for InP, InAs and InSb.  Gaining access to these data will require the development of 
new real-time optical diagnostics, capable to obtain sufficient accurate data on flow conditions, gas phase 
reactions as well as on the surface reaction kinetic to support modeling and simulations of thin film growth 
under laminar and/or turbulent flow conditions at sub-atmospheric pressure.  

The here-presented research focuses on the base material InN and addresses both: (a) the prediction and 
simulation of gas phase reactions and surface kinetics of InN growth at high pressures (up to 100 bar) 
and (b) real-time optical monitoring of gas phase- and surface chemistry processes during high pressure 
chemical vapor deposition (CVD) of InN.  We describe the present status of our modeling and simulations 
efforts on gas phase and surface reactions kinetics for InN growth at high pressures, which is based on 
a numerical solution of nonlinear, coupled partial differential equations representing the conservation of 
momentum, energy and total mass as well as balances over the individual species involved in the InN 
deposition.  The operating conditions modeled correspond to flow dominated by forced convection where 
Gr << Re2.  We also describe the capabilities of the implemented high-pressure CVD reactor and the real-
time optical monitoring techniques available in this reactor. 

High-pressure Reactor
The growth of III-nitrides under HPCVD conditions with integrated optical diagnostics requires a 
complete new reactor design as well as new gas mixing and gas injection controls. Figure 1a) depicts a 
side view of the assembled HPCVD reactor with flow direction from right to left.  The flow control panel 
depicted in Figure 1b) is fully computer interfaced and provides:
   •  the compression of the III- and V-gas sources ( ≤ 100bar), 
   •  the mixing of the gas sources and dilution of the gases in nitrogen carrier gas, 
   •  the pulsed injection of all gas sources,
   •  the pressure control of the reactor in the pressure range of 1 to 100 bar.

The flow channel of HPCVD reactor has constant cross section from entrance to the exit with symmetric 
sapphire substrates arrangements in the upper and lower channel walls. Details in the design were reported 
previously[3]. Thus the bifurcation of nutrient fluxes to the top and bottom channel walls is symmetric 
to the center-line.  Thus well behaved flow and deposition can be expected in the targeted pressure 
range.  Pressure tests were performed up to 120 bar with flows from 10 slm to 50 slm.  In the next step 
we interfaced the reactor to the gas injection panel shown in Figure 1b. The gas injection sequences are 
presently tested and optimize in timing and flows.  An exact timing is not only important to avoid pressure 
fluctuations during the switching sequences, but also to synchronize the gas precursor injection with the 
optical monitoring techniques. 
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Figure 1a. Side view of the completely assembled HPCVD reactor with gas injection from 
the right. The optical monitoring plane is in the center of the substrates.

Figure 1b. Flow control panel for precursor compression and pulsed precursor gas injection.

For real-time gas flow dynamics studies as well as the analysis of the gas-phase decomposition kinetics 
during the thin film growth process, we integrated optical access ports in the reactor as schematically 
shown in Figure 2.  The access ports allow the optical monitoring perpendicular to the flow direction at 
the center line of the two symmetric in the upper and lower channel walls inserted substrates.  Two optical 
ports provide access to flow channel and allow the monitoring of gas flow and gas-phase decomposition 
kinetics. As depicted in Figure 3a, three ports in each half of the symmetric reactor provide access through 
the backside of the substrate to the growth surface and with it to the growth process itself.  The optical rods 
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are made of sapphire and with it refractive index matched to the sapphire substrates.  The rods are inserted 
through he outer reactor shell in the inner shell and touch the substrates from the back.  The pressure is 
retained by a double o-ring seal within the outer reactor shell. A protective cap on the outer side of the 
holder prevent the rod from moving outwards.

Figure 2. Cross Section of HPCVD reactor, which contains the integrated optical access ports. The cut is 
perpendicular to the flow channel.  

Figure 3a.  Optical access rods to monitor the growth 
process through the backside of the substrates.

 
The optical real-time monitoring capabilities will provide crucial experimental data as they are entering 
as  input parameter for process models and simulation codes as well as to establish growth parameter 
sets needed for analysis and control of chemical vapor deposition at elevated pressure.  Access to a 
microgravity environment will allow to retain laminar flow at high pressure conditions, which is essential 

Figure 3b.   Double O-ring sealed sapphire 
rod assembly before inserting in reactor.
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for successful acquisition and interpretation of the optical data.  In the following, we present our modeling 
and simulations efforts on gas phase and surface reactions kinetics for InN growth at high pressures.  

Modeling and Simulations
The HPCVD reactor simulations are based on a numerical solution of nonlinear, coupled partial differential 
equations representing the conservation of momentum, energy and total mass as well as balances over the 
individual species.   The modeling equations were solved using the finite volume element method based 
upon an integral form of the equations to be solved.  The integration of the differential equations leads to 
a set of algebraic equations which are solved internally by the CFD-ACE(U) iterative, segregated solution 
method wherein the equation sets for each variable are solved sequentially and repeatedly until a converged 
solution is obtained.  The operating conditions correspond to flow dominated by forced convection where 
Gr << Re2.  Details on the boundary conditions are given elsewhere[4] 

The surface reaction mechanism for growth of InN has been described by a reduced-order model, noting 
that a larger number of possible reactions may have to be taken in account[5-7].  The reduced order model 
is based on pulsed chemical vapor deposition, which substantially reduces the number of reacting species.  
A typically precursor injection sequence is depicted in Figure 4.  The V/III ratio has to be chosen properly 
to assure the incorporation of In-atoms supplied to the surface into the InN lattice.  The assumed surface 
reactions are summarized in Table 1. showing the adsorption of the reactive species that are present in the 
gas phase, with rate parameters given by Cardelino et al.[8].  The growth of InN from trimethylindium 
(TMI) and ammonia (NH3) has been simulated based on the reduced-order model, with flow, heat and 
mass transfer in the HPCVD reactor evaluated for a symmetrical substrate wafers positioning.

Figure 4. Schematic timing sequence for the precursor injection for InN growth.

The gas phase reactions of TMI according to Table 1 were obtained in the pressure range of 10 to 100 
atm as a function of substrate temperature and centerline flow velocity under steady-state conditions.  The 
predicted gas phase reaction variations with centerline flow velocity for p = 100 atm and Ts= 900 K are 
depicted in Figure 5.  The simulations show the vapor phase concentration of MMI at the gas - substrate 
interface with  p = 100 atm, u = 12 slm and Ts = 900 K and with p = 10 atm, u = 60 slm and Ts = 900 K, 
in Figures 5a and 5b, respectively.  A comparison shows that for u = 12 slm and p = 10 atm the maximum 
concentration of MMI is at the center of the substrate (see Figure 5a),  whereas for  u = 60 slm and p = 
10 atm, the maximum concentration of MMI has shifted downstream.  The simulations indicate that for 
higher centerline velocities the maximum concentration of MMI will shift downstream, which would 
prevent the maximum MMI flux to become adsorbed at the center of the substrate.  When the flow rates 
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increased to 120 slm at p = 10 atm and Ts = 900 K, the Re number equals 3000, which requires the use of 
the k-epsilon model to account for the effects of turbulence.

Table 1. Reduced-Order Model:  Pulsed TMI followed by Pulsed NH3

Gas Phase Reactions: TMI(g)        →      DMI(g) + CH3      
                             
DMI(g)       →      MMI(g) + CH3                                    

NH3(g) + hν (170-220 nm)    →      NH(g) + H2              

Surface Reactions: MMI(g) + S1        →      MMIad   

NH(g)+MMIad → (HN:MMI)ad → InN(s) + CH4↑          

a) 

b) 

Figure 5.  Effect of Centerline flow velocity for P = 100 atm and Ts= 900 K.

 At the optimum growth temperature of Ts = 900 K in the pressure range of 10 to 20 atm, the concentration 
of MMI and atomic indium is evenly distributed over the substrate surface as seen in Figures 6 (a-d), 
respectively.   The effect of the increasing pressure on the gas phase kinetics is summarized in Figure 7 for 
a substrate temperature of 1000K and a centerline velocity u=12 slm.
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 a) 

 b) 

 c) 

 d) 

Figure 6. Trimethlyindium (TMI) gas phase decomposition in monomethylindium (MMI) and atomic 
indium at 10 and 20 bar at a substrate temperature of 1000 K and a flow of 12 slm.
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The most dominate changes in the DMI, MMI and atomic indium concentrations are expected in the 
pressure range between 1 and 20 atm. As depicted in Figure 7, a further pressure increase beyond 40 bar 
does not significantly alter the MMI and atomic indium concentration at the center of the substrate, which 
is accessible for experimental validation.  These results are in good agreements with ab initio calculations 
by Cardelino et al.[9], which show in inversion of monomethylindium versus atomic indium concentration 
in the pressure range of 1 bar to 20 bars.

Figure 7.  Effects of pressure on gas phase kinetics at  Ts = 1000K  and  u = 12 slm. 

InN Growth Rate Simulations 
A 2-dim, time-dependent simulation model was used to combine the gas phase reactions and transport with 
surface reactions leading to InN formation using a pulsing sequence as illustrated in Figure 4.  The timing 
of the precursor injection keeps the process gases separate and thus precludes homogeneous formation and 
transport of adducts in the gas phase.  The injection sequence introduces N2 + TMI; N2; N2 + NH3; N2. into 
the reactor flow channel with an experimental limit of approximate 0.2 seconds.  

Figure 8a illustrates the site fraction of MMI adsorbed to the surface as a function of time.  As shown in 
Figure 7, the surface of the substrate is completely covered by MMI until NH is introduced and InN is 
formed. This film growth begins when NH is generated and interacts with the MMI covered substrate.  The 
results are tentative in that experimental work needs to be done to validate the mechanisms selected and 
preliminary reaction rates theoretically derived. 
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Figure 8.   a) Site fraction of adsorbed MMI as a function of time. b) Deposition rate of 
InN vs. time at the center of the substrate.  
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