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FREE DENDRITIC GROWTH OF SUCCINONITRILE-ACETONE ALLOYS WITH 

THERMOSOLUTAL MELT CONVECTION

C. Beckermann* and Q. Li

Department of Mechanical and Industrial Engineering, 2412 SC, University of Iowa, Iowa City, IA 52242, USA

Abstract
A stagnant film model of the effects of thermosolutal convection on free dendritic growth of alloys is 
developed, and its predictions are compared to available earth-based experimental data for succinonitrile-
acetone alloys. It is found that the convection model gives excellent agreement with the measured dendrite 
tip velocities and radii for low solute concentrations. However, at higher solute concentrations the present 
predictions show some deviations from the measured data, and the measured (thermal) Peclet numbers tend 
to fall even below the predictions from diffusion theory. Furthermore, the measured selection parameter 
σ*  is significantly above the expected value of 0.02 and exhibits strong scatter. It is shown that convection 
is not responsible for these discrepancies. Some of the deviations between the predicted and measured 
data at higher supercoolings could be caused by measurement difficulties. The systematic disagreement in 
the selection parameter for higher solute concentrations and all supercoolings examined, indicates that the 
theory for the selection of the dendrite tip operating state in alloys may need to be reexamined.

1. Introduction
Equiaxed dendrites are a frequently observed growth mode in metal alloy castings. Unlike columnar 
growth that occurs in directional solidification into a positive temperature gradient, equiaxed growth 
occurs within a supercooled melt where the crystals grow in an unconstrained or “free” manner until they 
interact with neighboring crystals or container walls. In free dendritic growth, the latent heat of fusion and 
the solute are rejected into the liquid ahead of the solid-liquid interface and the temperature gradient in the 
liquid at the interface is negative.

Free dendritic growth in pure substances, where the driving force is purely thermal, has been studied 
extensively and is reasonably well understood for both diffusion and convection controlled cases1-8. The 
presence of coupled heat and species transport significantly complicates the analysis of free dendritic growth 
in alloys. The velocity of the dendrite tip experiences a maximum at a small, but finite solute concentration. 
Solute additions destabilize the tip, resulting in a smaller tip radius and hence a larger tip velocity. On the 
other hand, the much lower diffusion rate of solute compared to heat slows down the growth. These two 
competing effects cause the velocity maximum at small solute concentrations. Theories that have been 
proposed for diffusion controlled free dendritic growth in alloys qualitatively predict the velocity maximum 
(see below for a review). However, on earth and at low supercoolings, buoyancy driven convection is known 
to significantly influence the tip velocities and the overall growth of a dendrite5. In alloys, such convection is 
driven by both thermal and solutal gradients in the melt. The effect of convection on the dendritic growth of 
alloys is not yet fully understood despite its importance in metal alloy casting.
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In this paper, a simple model is presented to describe the influence of thermosolutal convection on free 
dendritic growth of alloys. The model is developed within the framework of the well-known Lipton, 
Glicksman and Kurz (LGK) formulation9, 10 for diffusion controlled growth at low Peclet numbers, 
with the thermosolutal convection effects incorporated through a stagnant film approximation11, 12.  The 
model was primarily developed to predict quantitatively the dendrite tip velocities and radii measured 
in the earth-based succinonitrile-acetone (SCN-ACE) experiments of Chopra et al.13. To the authors’ 
best knowledge, these remain the only experiments where both the dendrite tip velocity and radius were 
measured over a sufficiently large range of supercoolings and alloy compositions, and under conditions 
where convection can be expected to be important. Other experimental studies on dendritic growth in 
alloys (see, for example, Refs.14-17) do not report both the tip velocity and radius. The SCN-ACE system is 
well suited for comparison with theories because of the availability of a large body of both microgravity 
(diffusion controlled) and terrestrial (convection controlled) experimental data in the limit of vanishing 
solute concentration (i.e., pure SCN)4, 5, 18, and because all relevant thermophysical properties are known 
accurately. The data of Chopra et al.13 displays the velocity maximum at small solute concentrations 
and has often been used to assess dendritic growth theories (see, for example, the review by Trivedi 
and Kurz19). These comparisons show relatively large discrepancies between the predictions and the 
measurements, especially at higher solute concentrations. It is shown in this paper that the discrepancies 
can only partially be explained by the influence of convection in the experiments, and that additional study 
of the alloy dendritic growth problem may be needed.

The paper is structured as follows. In Section 2, current theories of free dendritic growth of alloys are 
summarized, while Section 3 reviews previous models for pure substances that take into account the 
effect of natural convection. The present model of thermosolutal convection in free dendritic growth 
of alloy dendrites is presented in Section 4. Model results are presented in Section 5 and are compared 
to experiments for both pure SCN and SCN-ACE alloys. The conclusions of the present study are 
summarized in Section 6.

2. Theories of Free Dendritic Growth of Alloys
Before developing a model that includes convection, it is necessary to briefly review available theories 
of diffusion controlled free growth of alloy dendrites into a supercooled melt. These basic theories are 
concerned with the prediction of the steady-state tip velocity, V, and radius, R, of a branchless needle 
crystal. Langer20, Lipton, Glicksman, and Kurz (LGK)9, 10, and Karma and Langer21 have proposed the 
first model of free growth into a supercooled alloy melt.  These models all use marginal stability theory22 
to determine the operating point of the tip through the introduction of a stability constant σ* ~ 1/(R2V).  
Lipton, Kurz, and Trivedi (LKT)23 and Boettinger, Coriell, and Trivedi (BCT)24 generalized the LGK model 
and extended it to high growth rates. The LGK model (or LKT or BCT models for rapid growth) is now 
the most commonly used model for free dendritic growth from a supercooled alloy melt and is reviewed 
in greater detail next. In 1985, Karma and Kotliar25 developed the first microscopic solvability theory 
(MST) for the alloy case based on a boundary layer approximation for the thermal and solutal diffusion 
fields. Ben Amar and Pelce26 generalized this theory to a fully non-local model for alloy dendrites at low 
supercoolings. The MST theory uses the same framework as the LGK theory, except that the selection 
parameter σ* is a function of the surface energy anisotropy strength.

The dendrite tip velocity and radius can be predicted by first considering the thermal and solutal transport 
at the tip. Taking into account the capillary correction and neglecting the kinetic effect, the total imposed 
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supercooling is given by
     ∆T = ∆TT + ∆TC + ∆TR   (1)

where ∆TT, ∆TC and ∆TR are the thermal, solutal, and capillary contributions to the supercooling, 
respectively. The dimensionless thermal and solutal supercoolings are defined, respectively, as

     and    (2)

where Lf is the latent heat of fusion, cL is the liquid specific heat, k is the partition coefficient, T0 and C0 
are the initial or far-field melt temperature and solute concentration, respectively, and T*

t and C*
t are the 

temperature and solute concentration in the liquid at the dendrite tip, respectively. Approximating the 
capillary correction using the Gibbs-Thomson relation, Eq. (1) can be rewritten as19

    (3)

where Γ is the Gibbs-Thomson coefficient and ∆T0 = mC0 (1 - 1/k)  is the equilibrium freezing temperature 
range, in which m is the liquidus slope. The capillary contribution in Eq. (3) is relatively small for the 
supercoolings considered here, but is included nevertheless for completeness. The dimensionless thermal 
and solutal supercoolings in Eq. (3) are obtained from appropriate solutions of the transport problem for 
the dendrite tip. In the LGK model for diffusion controlled growth, they are calculated from the Ivantsov 
solutions for steady heat and species diffusion around a paraboloid of revolution, which can be written in 
terms of the thermal (PeT = VR/2α) and solutal (PeC = VR/2D) Peclet numbers as
    ΩT  = Iv(PeT)  and  ΩC  = Iv(PeC)   (4)
where Iv is the Ivantsov function19, D is the liquid mass diffusivity, and α is the liquid thermal diffusivity. 
According to the above equations, if the capillary correction can be neglected, the total supercooling is a 
function of the thermal and solutal Peclet numbers only. In the presence of convection, equations (4) are 
obviously not valid.

Introducing the stability constant or selection parameter σ∗, a second equation for the unknown dendrite 
tip velocity and radius is obtained. As shown by Trivedi and Kurz19, 27, 28, for an isothermal solid with no 
solute diffusion in the solid, this equation can be written in the following general form

     (5)

where the thermal, GT, and solutal, GC, gradients are given by the following general flux balances at the 
interface
      GT = -(V/α)Lf/cL   (6)

              GC = -(V/D)C*
t(1-k)   (7)

Corrections in Eq. (5) for large Peclet numbers19 are not needed for the small supercoolings considered 
here. Substituting Eqs. (6) and (7) into Eq. (5), the following tip radius selection criterion for free dendritic 
growth of alloys is obtained

    (8)
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where d0 = Γ/(Lf/cL)  is the capillary length. According to Trivedi and Kurz19, σ∗ as defined above is 
constant for a given alloy system (implying a fixed anisotropy strength) and independent of the Peclet 
numbers and solute concentration. Evidence indicates that for the experiments considered here, σ∗ is also 
independent of the convection velocities in the melt. This issue is examined in greater detail below. In the 
LGK model for diffusion-controlled growth, ΩC in Eq. (8) is calculated from the Ivantsov solution given 
by Eq. (4), ΩC = Iv(PeC). As mentioned above, a different relation for ΩC must be used in the presence of 
convection.

3. Models of Free Dendritic Growth of Pure Substances in The Presence of Natural Convection
The effects of melt flow on free dendritic growth of pure substances have been investigated both 
experimentally and analytically for almost three decades. Lee et al.5 present a comprehensive review of 
the literature on this subject. While most studies focus only on how heat transport away from the tip is 
modified by flow, Bouissou and Pelce29 have extended the linearized solvability theory, which assumes a 
parabolic tip shape, to make quantitative predictions of the effect of a forced flow on the tip selection, i.e., 
on σ∗.  They found that when the external flow velocity is small, the selection parameter σ∗ is independent 
of the flow, but after a critical threshold value of the flow velocity the inverse of the selection parameter 
1/σ∗ increases almost linearly with the external flow velocity.

The theories that have been developed to predict the heat transport away from the tip in the presence 
of convection all reduce to the Ivantsov solution, Eq. (4), in the limit of no flow5. Ananth and Gill8 and 
Canright and Davis30 derived exact solutions for various limiting cases involving thermally driven natural 
convection. These solutions are relatively complex and would be difficult to extend to thermosolutal 
convection in the case of alloys. A more simple approach is afforded by the use of so-called stagnant 
film models. Cantor and Vogel11 derived a modified Ivantsov solution where the far-field supercooling 
condition is not applied at infinity, but at a confocal paraboloid located at a distance δΤ from the dendrite 
tip, as

    ΩT  = PeTexp(PeT){EI(PeT) - EI[PeT(1 + 2δT/R)]}   (9)

where EI is the exponential integral function.  For δT/R® ¥, the above equation reduces to the Ivantsov 
solution. The effects of convection on the growth are incorporated into the stagnant film model by 
evaluating the thickness of the thermal boundary layer, δT.  This can be accomplished by choosing a 
suitable Nusselt number, Nu, correlation for the convective heat transfer at the dendrite tip and realizing 
that δT ~l/Nu

l

, where l is a characteristic length scale for convection. Then, the ratio δT/R needed in Eq. 
(9) is given by
      δT/R ~ (l/R)/Nu

l

    (10)

Cantor and Vogel11 used the dendrite tip radius as the characteristic length scale for convection, i.e. l = R, 
so that δT/R ~ 1/NuR. This implies that a larger or global length scale, such as the size of the entire crystal 
or the size of the system in which the growth takes place, does not influence the convective heat transfer 
and, hence, the growth.

Sekerka et al.12 used the stagnant film model to investigate the effect of orientation of a dendritic crystal 
relative to gravity on its growth in the presence of thermal natural convection. The characteristic length 
scale was chosen to be the length, L, of the dendrite arm, i.e. l = L, implying that the convection is driven 
by the overall size of the crystal. The Nusselt number was evaluated from a correlation for free convection 
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from a sphere of radius L, i.e. NuL ~ Ra1/4
L, where Ra is the Rayleigh number. Since RaL ~ L3, Eq. (10) can 

be rewritten in terms of a Rayleigh number based on the tip radius R as δT/R ~ (L/R)1/4(RaR)-1/4. Hence, in 
Sekerka et al.’s model the thermal boundary layer thickness increases with L1/4, or in other words, the heat 
transfer rate at the dendrite tip decreases with L-1/4. This would result in a decrease in the tip velocity as 
the dendrite continues to increase in size, something that has not been observed experimentally. Typically, 
one would expect an opposite behavior where the natural convection becomes stronger as the crystal 
increases in size. Sekerka et al. set the length L to a constant of the order of several millimeters and did 
not investigate variations in the tip velocity. It should be noted also that Sekerka et al. took the same 
value for σ* in diffusion dominated (microgravity) and convection (terrestrial) cases. They obtained good 
agreement with the pure SCN data from the earth-based experiments of Huang and Glicksman31.  

Based on the results of two-dimensional phase-field simulations, Tonhardt and Amberg32 recently 
proposed a Nusselt number correlation for a downward growing dendrite tip in the presence of thermal 
convection. This correlation is based on the concept that the dendrite tip is a small object in a forced flow 
that is driven by the natural convection on the scale of the entire crystal. Hence, the Nusselt number at 
the tip is evaluated using a correlation for forced convection from an object of characteristic size R, i.e. 
NuR ~ Pr0.4 Re1/2

R , where ReR = UR / ν  is the Reynolds number based on the tip radius, ν is the kinematic 
viscosity, and Pr is the Prandtl number. The velocity U is obtained by assuming that the flow is driven by 
natural convection on the scale of the entire crystal and by using the thermal convection analogy ReL ~ 
GrL

1/2, where both the Reynolds and Grashof numbers (Gr) are based on the dendrite arm length L. This 
concept leads to δT/R ~ (R/L)1/4(RaR)-1/4, implying that the heat transfer rate at the tip increases with L1/4. 
This behavior is opposite to that predicted by Sekerka et al.’s model and appears to be more realistic. 
However, Tonhardt and Amberg’s phase-field simulation results show that the tip heat transfer rate varies 
only with L1/8. This reflects an even weaker dependence on the crystal size and results in only a minor 
increase of the tip velocity during growth32. Again, no experimental evidence is available to support any 
variation with L.

Schrage33 also developed a simplified analytical model of dendritic growth of a pure substance under the 
influence of natural convection.  The natural convection is treated as a tip-local process and is simplified 
by using a control volume technique. Technically, this model is similar to the stagnant film approach. It 
also gives good agreement with available experimental data for pure SCN.

4. Model of Free Dendritic Growth of Alloys in the Presence of Thermosolutal Convection
The present model of free dendritic growth of alloys in the presence of thermosolutal convection is 
based on the LGK model reviewed in Section 2 and the stagnant film modified Ivantsov solution for 
incorporating the effect of convection, as reviewed in Section 3. The choice of σ* in the presence of 
convection is discussed in the next section. In the case of alloys, both thermal (δΤ) and solutal (δC) 
boundary layer thicknesses must be introduced to account for the thermosolutal convection effects in the 
stagnant film model. Thus, the Ivantsov solutions given in Eq. (4) are replaced by

    ΩT  = PeTexp(PeT){EI(PeT) - EI[PeT(1 + 2δT/R)]}   (11)
    ΩC  = PeCexp(PeC){EI(PeC) - EI[PeC(1 + 2δC/R)]}   (12)
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The boundary layer thicknesses are estimated from appropriate Nusselt (Nu) and Sherwood (Sh) number 
correlations as
    δT/l = B/Nu

l   

and δC/l = B/Sh
l

    (13)
where l is again a characteristic length scale for convection and B is a constant of proportionality.

Note that the same constant B is used in Eq. (13) for both boundary layer thicknesses. This is supported 
by the results of previous studies reviewed in Gebhart et al.34, which show that a constant value of B≈2 
is appropriate for both the thermal and solutal boundary layer thicknesses. This value is valid for the 
following ranges of the governing dimensionless parameters: Pr=0.7 to 7.0, Sc=0.94 to 100, and N=0.5 
to 2, where Sc is the Schmidt number and N is the buoyancy ratio. The buoyancy ratio is defined as N = 
βC∆C/(βT∆T), where βT and βC are the thermal and solutal expansion coefficients, respectively, and ∆T 
and ∆C are characteristic temperature and concentration differences, respectively. A positive value for N 
implies that the thermal and solutal buoyancy effects assist each other. It can be verified that the SCN-
ACE experiments considered here fall within the above ranges of the dimensionless parameters (see Table 
1 and the results presented in the next section). An exact value for B is difficult to specify because of the 
ambiguity in defining the edge of the boundary layers. However, B is not equal to unity. The final choice 
for B is discussed below.

Gebhart et al.34 examined numerous previous studies of external thermosolutal natural convection from 
a variety of geometries. They found that available Nusselt and Sherwood number correlations for N>0 
(assisting flows) can be written in the following general form

     (14)

     (15)

where A is a constant independent of Le and N. The Lewis number is defined as Le = Sc/Pr = α/D . In the 
present application to dendritic growth, the thermal and solutal Rayleigh numbers are given, respectively, 
by
       and   (16)

and the buoyancy parameter is given by
      (17)

In view of Eqs. (13) to (17), the ratio of the thermal to solutal boundary layer thicknesses is given by 
δT/δC = Shℓ/Nuℓ = Le3/8. Using the properties for SCN-ACE alloys provided in Table 1, it can be seen 
that the thermal boundary layer is approximately five times thicker than the solutal boundary layer. It is 
emphasized that the above correlations are not valid for alloys where the buoyancy ratio N is negative 
(such as Al-Cu)35, 36 and for liquid metals (Pr<<1). The convection correlations given by Eqs. (14) and (15) 
do not include the diffusion limit for vanishing Rayleigh numbers. This is done so that after substitution of 
the correlations into the stagnant film model, the Ivantsov solution is obtained as the diffusion limit.
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The correlations given by Eqs. (14) and (15) have been found to be applicable to both vertical plates 
and spheres34. Different geometries simply result in different values for the constant A. For example, 
the experiments of Mathers et al.35 showed that for spheres A=0.5, if the sphere diameter d is chosen as the 
characteristic length. In the limit of purely thermal convection (N=0), Eq. (14) becomes Nuℓ = A(Raℓ)

1/4. Hence, 
the value of the constant A may also be estimated from the extensive data and analyses available for purely 
thermal convection from various geometries. Acrivos37 developed a boundary layer analysis for laminar natural 
convection that can be used to find the Nusselt number for any surface of revolution about an axis of symmetry. 
As part of the present study, this method was applied to a paraboloid of revolution pointing downward. It was 
found that A≈0.9 for the local Nusselt number at the stagnation point (with ℓ = R). Since there is presently some 
uncertainty in the value for A for a dendrite, this issue is examined further below by comparing the predictions of 
the present model to experimental data for dendritic growth. Nonetheless, based on the analysis for a paraboloid 
of revolution, a value of A≈0.9 appears to be most appropriate for a downward growing dendrite tip.

The review of the previous convection models for dendritic growth of a pure substance in Section 3 and the 
discussion of Nusselt number correlations given above indicate that the tip radius R is an adequate characteristic 
length scale for natural convection from a downward growing dendrite tip. Furthermore, Chopra et al.13 do not 
report any temporal variations in the tip velocity in their SCN-ACE experiments, which implies no dependence 
on the dendrite arm length and provides only steady values of the tip radius and velocity. Using ℓ = R, Eqs. 
(14) and (15) can be combined with Eq. (13) to give the following final expressions for the thermal and solutal 
boundary layer thicknesses for use in the stagnant film model

    (18)

    (19)

Note that only the ratio B/A appears in the above expressions. Based on the previous discussion, the estimated 
value of this ratio for a downward growing dendrite tip is B/A ≈ 2.2. However, due to the uncertainties in 
both A and B, a more definite value of the ratio is determined in the next section by comparing the predictions 
of the present model with earth-based dendritic growth experiments for pure SCN. Here, it should be kept in 
mind that the ratio B/A can vary with the orientation of the dendrite with respect to gravity 12. 

5. Results and Discussion
5.1. Model calibration for pure SCN
The ratio B/A in the expressions for the boundary layer thicknesses, Eqs. (18) and (19), is determined 
using the free dendritic growth data for pure SCN listed in Koss et al.18. This can be accomplished by 
comparing measured and predicted Peclet numbers as a function of the imposed supercooling. The present 
model equations readily reduce to the limiting case of a pure substance by setting the alloy concentration 
to zero. Equation (18) for the thermal boundary layer thickness reduces to δT/R = (B/A)RaR,T

-1/4 . When 
convection is absent, RaR,T→ 0 and δT/R → ∞. Then, according to Eq. (11), PeT is a function of the thermal 
supercooling, ΩT, only. However, when predicting PeT as a function of the total supercooling, ∆T, PeT  also 
depends on σ*, because the capillary supercooling is a function of the tip radius R [see Eq. (3)]. According 
to Eq. (8), σ* is needed to calculate R. Fortunately, the capillary supercooling is relatively small for the 
∆T  considered here. In the presence of convection, the predicted PeT is a stronger function of σ*, because 
the thermal boundary layer thickness, δT, depends on the tip radius R. Hence, even though the variation of 

δT
R TR

B
A

Ra N
Le

= ( ) +







−
−

,
1 4

1 4

1

δC
R CR

B
A

Ra Le
N

= ( ) +










−
−

,

1 4
1 4

1



80 81

Table 1: Properties of Succinonitrile and Succinonitrile-Acetone Alloys
Symbol Property Value Ref.

SC
N

Tm Melting point 331.233 K [18]
α Liquid thermal diffusivity 1.134×105 µm2/s [18]
Γ Gibbs-Thomson coefficient 6.525×10-2 Kµm [18]

Lf/cL Unit supercooling 23.13 K [18]
d0 Capillary length 2.821×10-3 µm [18]
Pr Prandtl number 23.1 [6,8]

SC
N

-A
cetone

D Liquid mass diffusivity 1.27×103 µm2/s [10]
m Liquidus slope -2.16 K/mol% [10]
k Equilibrium partition ratio 0.103 mol%/mol% [10]
βT Thermal expansion coefficient 7.91×10-4/K at Tm [38]

βC Solutal expansion coefficient 1.68×10-3/mol% at Tm (con- 
verted from 2.32×10-3/wt%) [38]

PeT with ∆T can be used to assess the transport part of dendritic growth theories, a σ* dependence remains 
especially in the presence of convection.

An appropriate value for σ*  for pure SCN can be found from Eq. (8), which reduces for a pure substance 
to
      σ* = (20)

By substituting the measured dendrite tip radius and velocity data for both the microgravity and earth-
based experiments listed in Ref.18 into the above equation, a value of σ*=0.02 is found to reasonably well 
represent the data at all supercoolings. Hence, this measured value for σ* is taken here to determine the 
ratio B/A.

Figure 1. Comparison of measured and predicted tip Peclet numbers as a function 
of supercooling for pure SCN.

2d0α
R2V
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Figure 1 shows a comparison of the measured and predicted thermal Peclet numbers, PeT = RV/2α, as a 
function of the total supercooling. As shown before, excellent agreement is obtained between the diffusion 
theory and the microgravity data, except for some disagreement at very low supercoolings due to a wall 
effect18. For the present convection model, three different lines are drawn in Figure. 1, corresponding to 
B/A=1.75, 2.19, and 2.65 (i.e., 2.19 +/- 20%). The line for B/A=2.19 represents the best fit of the present 
model to the terrestrial data, and good agreement is obtained over the entire supercooling range. The lines 
for B/A=1.75 and 2.65 nicely envelope the terrestrial data, indicating that the uncertainty in B/A is less 
than 20%.

The value B/A=2.19 found above is very close to the estimate made in the previous section from an analysis 
of the thermal convection boundary layer thickness at the stagnation point of a paraboloid of revolution 
growing downward into the melt (i.e., B/A ≈ 2.2). This agreement lends considerable confidence to the 
present model, since the terrestrial data of Ref.18 can be assumed to correspond to downward growing 
dendrite tips. It also indicates that the choice of the convection length scale (R) is appropriate for pure 
SCN.

5.2. Model results for SCN-ACE alloys
Before comparing the present model for the effect of thermosolutal convection on free dendritic growth 
to the alloy experiments of Chopra et al. 13, it is instructive to examine the variation of the various model 
parameters with solute concentration. For this purpose, calculations were performed using the properties 
of SCN-ACE alloys listed in Table 1, B/A=2.19, and σ* = 0.02. As mentioned in Section 2, σ* as defined in 
Eq. (8) should be independent of the solute concentration19. Thus, the σ* value for pure SCN, as determined 
from both microgravity and terrestrial data (see Section 5.1), is used in this section. Note that the thermal 
and solutal expansion coefficients for SCN-ACE alloy melts listed in Table 1 have only recently been 
measured 38. The results of the model calculations are shown in Figure 2.

Figure 2.  Model results for SCN-ACE alloys: (a) variation of predicted tip Peclect numbers with C0 for 
three total supercoolings, (b) variation of predicted thermal, solutal, and capillary supercoolings and the 

buoyancy ratio with C0 for ∆T=0.1 K, and (c) variation of predicted Rayleigh numbers and boundary 
layer thicknesses with C0 for ∆T=0.1 K.

Figure 2a shows predicted thermal Peclet numbers, PeT, as a function of solute concentration for three 
different supercoolings (∆T = 0.1 K, 0.5 K, and 0.9 K) (note that the solutal Peclet number differs from 
PeT only by a constant factor equal to the Lewis number). Corresponding model predictions for diffusion 
controlled growth (labeled as “LGK”) are included in the figure for easy reference. At vanishing solute 
concentration (C0 = 0), the Peclet numbers in Figure 2a correspond to those shown in Figure 1 for pure SCN. 
With increasing solute concentration, the predicted Peclet numbers decrease for both the convection and 



82 83

the diffusion case. This can be explained by the much lower diffusion rate of solute compared to heat (α >> 
D), which tends to reduce the transport at the dendrite tip with increasing C0. The Peclet numbers predicted 
by the convection model are above those from the diffusion theory since in the present model convection 
always enhances the transport at the tip. As for pure SCN, the predicted convection effect is stronger at the 
lower supercoolings (0.1 K and 0.5 K) and relatively weak at 0.9 K. Although not readily apparent from 
the plot in Figure 2a (due to the log scale used; see also Figure 6 below), the Peclet numbers predicted by 
the convection model approach those from the diffusion theory for increasing solute concentration; i.e., the 
convection effect is weakening with increasing C0. As is shown below, this result can be explained by a 
drastic weakening of the thermal convection for increasing solute concentrations. However, it should not be 
generalized to solute concentrations greater than 0.5 mol% and alloys other than SCN-ACE.

Figure 2b shows the calculated variation of the thermal, solutal, and capillary supercoolings with solute 
concentration for a total supercooling of ∆T = 0.1 K. With increasing solute concentration, the solutal 
supercooling increases at the expense of the thermal supercooling, while the capillary contribution remains 
very small as expected. Interestingly, the differences between the present convection model and the diffusion 
theory (LGK) are relatively minor, with the convection model giving slightly larger solutal supercoolings. 
This can be attributed to the fact that regardless of the transport, the three individual supercoolings must add 
up to the total supercooling (0.1 K in Figure 2b). The shift between the thermal and solutal contributions 
to the total supercooling due to convection is simply a reflection of the relative strengths of the thermal 
and solutal buoyancy forces changing with C0. Figure 2b shows that the ratio of the solutal to the thermal 
buoyancy forces, as described by the parameter N, increases almost linearly with C0. At the largest solute 
concentration shown (0.5 mol%), the buoyancy parameter is approximately equal to two.

Figure 2c shows the calculated variation of the Rayleigh numbers and boundary layer thicknesses with 
solute concentration for a total supercooling of ∆T=0.1 K. The thermal Rayleigh number, RaR,T, decreases 
sharply as soon as some solute (ACE) is added to the SCN. This can be attributed to the simultaneous 
decreases in the thermal supercooling (see Figure 2b) and the dendrite tip radius, R, (see Figure 3a below) 
with increasing C0. The decrease in RaR,T becomes more gradual at solute concentrations greater than 
about 0.1 mol%. On the other hand, the solutal Rayleigh number, RaR,C, increases strongly for solute 
concentrations below 0.1 mol%, and then reaches an approximately constant value. This can be explained 
by the competition between the increasing solutal supercooling and the decreasing tip radius in RaR,C. 
Note that RaR,C/RaR,T=N.Le. The continued decrease in RaR,T, coupled with the constancy in RaR,C, for 
C0>0.1 mol% explains why the effect of convection on the predicted Peclet numbers (and, hence, the 
transport at the dendrite tip) diminishes with increasing solute concentration, as noted in connection with 
Figure 2a. Finally, Figure 2c shows that the dimensionless thermal, δT/R, and solutal, δC/R, boundary layer 
thicknesses both increase with increasing solute concentration. This also implies that the convection effect 
is weakening with increasing C0. It is interesting to note that the solutal boundary layer thickness ranges 
from one to five times the tip radius for ∆T=0.1 K. As noted earlier, δT/δC = Le3/8 ≈ 5.4.

5.3. Comparison of the stagnant film model with SCN-ACE experiments of Chopra et al.
The present model of free dendritic growth in the presence of thermosolutal convection is compared with 
the earth-based experiments of Chopra et al.13 for SCN-ACE alloys. The dendrite tip velocity and radius 
data were extracted from the figures in Chopra et al. The estimated uncertainty in reading each individual 
datum is included in the following Figures (Figures 3 to 5). No uncertainties are shown for the data at 0.5 
K, because these data could be read more accurately than the size of the symbols. Chopra et al. do not 
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discuss their experimental uncertainty. Also included in the following figures are some of the terrestrial 
data for pure SCN from Ref.18 already shown in Figure 1. The data from Chopra et al.13 for C0 = 0 agree 
well with those from Ref.18, indicating that the procedure used for extracting the data from the figures in 
Chopra et al. is relatively accurate. The agreement for C0 = 0  also implies that the data from 
Refs.13, 18 correspond to the same or similar orientations of the dendrite with respect to gravity (i.e., 
downward growth).

As a first step, the measured and predicted dendrite tip velocities and radii as a function of the solute 
concentration C0 are compared for imposed total supercoolings, ∆T, of 0.1 K, 0.5 K and 0.9 K in Figures 3, 
4 and 5, respectively. Corresponding model predictions for diffusion controlled growth (labeled as “LGK”) 
are included in the Figures for easy reference. In this comparison, B/A=2.19 and the σ* value determined 
for pure SCN (i.e., σ*=0.02) are used in the model calculations. As noted before, σ* as defined in Eq. (8) 
should be independent of the solute concentration19. Furthermore, since the microgravity and terrestrial 
data for pure SCN in Ref.18 yield approximately the same σ* at all supercoolings (see Section 5.1), it 
is reasonable to expect that σ* is also independent of the convection intensity in the alloy experiments 
of Chopra et al. 13. However, a more detailed examination of the effects of solute concentration and 
convection on σ* is provided in Section 5.4.

Figure 3. Comparison of measured and predicted dendrite tip growth velocities (a) and radii (b)
 as a function of solute concentration for SCN-ACE alloys at ∆T=0.1 K.

Figure 4.  Comparison of measured and predicted dendrite tip growth velocities (a) and radii (b) as a 
function of solute concentration for SCN-ACE alloys at ∆T=0.5 K.
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Figure 5.  Comparison of measured and predicted dendrite tip growth velocities (a) and radii (b) as a 
function of solute concentration for SCN-ACE alloys at ∆T=0.9 K.

It can be seen from Figures 3 to 5 that there is approximate, qualitative agreement between the predictions 
and measurements. Both the data and the model show an initial increase in the tip velocity with solute 
concentration, a maximum around 0.1 mol%, and a continual decrease at larger C0. On the other hand, the 
tip radii continually decrease with C0. As mentioned in the Introduction, the initial strong decrease in the 
tip radius is caused by destabilization of the tip by the solute, while the decrease in the tip velocity at larger 
C0 is due to the fact the mass diffusivity is much smaller than the thermal diffusivity.

Figures 3 to 5 show that the convection effect is strongest at the lowest supercooling. For the 0.1 
K supercooling (Figure 3), the maximum measured tip velocity is about four times higher than the 
prediction from diffusion theory. At the intermediate supercooling (0.5 K, Figure 4), the maximum tip 
velocity is still measured to be about twice the value predicted by the diffusion theory. For both the 0.1 
K and 0.5 K supercoolings, the measured tip velocities approach the diffusion theory curve at higher 
solute concentrations, indicating that the convection effect diminishes as C0 increases. At the highest 
supercooling (0.9 K, Figure 5), the present model indicates that the convection effect is small (see also 
Figure 2). Surprisingly, except for the datum at C0 = 0, it can be seen from Figure 5a that the measured tip 
velocities are, as much as a factor of two, below the curve corresponding to purely diffusive growth. On 
the other hand, the measured tip radii at 0.9 K are relatively close to the predictions.

It is apparent from Figures 3 to 5 that the present convection model agrees better with the Chopra et al. 
data than the diffusion theory. As expected from Figure 1, the agreement is excellent at vanishing solute 
concentrations. Overall, the agreement between the measured and predicted tip radii (Figures 3b to 5b) is 
relatively good at all supercoolings and solute concentrations. However, at higher solute concentrations, 
large disagreements can be observed in Figures 3a to 5a between the measured and predicted tip velocities. 
For example, for a supercooling of 0.1 K (Figure 3a) when the convection effect is strongest, the measured 
maximum tip velocity (at around 0.1 mol%) is still 50% higher than predicted by the present model. At 
the largest solute concentration (0.4 mol%), the measured velocity is significantly below the prediction 
from the convection model. At 0.5 K (Figure 4), the agreement between the convection model and the 
measured data appears to be somewhat better, but again the measured tip velocities decrease much faster 
with increasing solute concentration than predicted. At a supercooling of 0.9 K (Figure 5), when the 
convection effect is least important, the measured velocities at higher solute concentrations are below 
even the predictions from diffusion theory, and thus the convection model only worsens their prediction.
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To better understand the discrepancies between the present convection model and the measured tip 
velocities at all but the smallest solute concentrations, the measured and predicted thermal Peclet numbers, 
PeT, are compared in Figure 6 as a function of solute concentration. It can be seen that at lower solute 
concentrations (for C0 ≤ 0.05 mol%), the agreement between the measured and predicted Peclet numbers 
is good. At higher solute concentrations (C0 > 0.1 mol%), however, the experimental PeT numbers fall 
consistently below the convection model predictions and at the two higher supercoolings (Figures 6b and 
6c), they are even below the diffusion predictions.

             (a)              (b)               (c)   

Figure 6.  Comparison of measured and predicted thermal Peclet numbers as a function of solute 
concentration for SCN-ACE alloys at (a) ∆T=0.1 K, (b) ∆T=0.5 K, and (c) ∆T=0.9 K.

One possible reason for this behavior could be that the thermosolutal convection reduces the heat transport 
at the tip, below the diffusion rate. This, in turn, would imply that the melt flows downward along the 
dendrite, in the same direction as the downward tip velocity, and advects heat/solute from the upstream 
portion of the dendritic crystal toward the tip. Hence, with increasing solute concentration, the flow 
would need to reverse direction from upward for pure SCN to downward for more concentrated SCN-
ACE alloys. This behavior would be in contradiction with expectation and the present model. Since the 
buoyancy parameter N is positive in the present model (i.e., the heating of the melt by the dendrite and 
the rejection of ACE into the melt at the interface both decrease the melt density), the thermal and solutal 
buoyancy are aiding each other. The flow can be expected to be upward everywhere near the downward 
growing dendrite tip, because the large Pr and Sc numbers of the SCN-ACE system imply that the velocity 
boundary layer is thicker than the thermal and solutal boundary layers.

Another possibility is that the data of Chopra et al. do not correspond to downward growing dendrite 
tips, but to some other orientation of the dendrite with respect to gravity. For example, if a dendrite were 
growing upward, the flow would indeed be in the same direction as the tip velocity, resulting in a reduction 
in the heat/solute transport at the tip. Although Chopra et al. do not explicitly report the directions of the 
dendrite tip growth velocities with respect to gravity, there is strong evidence that all data correspond to 
approximately downward growing tips18. The good agreement between the measured and predicted Peclet 
numbers at low solute concentrations supports this conclusion. Hence, the orientation effect is unlikely to 
explain the disagreements in Figure 6 at higher solute concentrations.

It is especially puzzling that the largest deviations of the measured PeT from the model occur at a 
supercooling of 0.9 K (Figure 6c), where the convection effect on the growth is weakest. In other words, 
no matter what the direction of the flow is with respect to the dendrite, one would not expect at this 
supercooling that the measured PeT is different from the diffusion value by up to a factor of two.
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The above discussion indicates that a different convection model is unlikely to reduce the disagreement 
between the measured and predicted thermal Peclet numbers at the larger supercoolings and larger solute 
concentrations. It points to a more fundamental problem with the theory or perhaps the experimental data. 
Although the dependence of the Peclet number on σ* is weak at the larger supercoolings and larger solute 
concentrations, the use of σ*=0.02 in the above comparisons also needs to be examined further.

5.4. Examination of the selection parameter σ*

In view of the difficulties in reconciling the experiments and transport theories at higher solute 
concentrations, it is useful to also examine how the measurements of Chopra et al.13 agree with the 
selection criterion in the dendritic growth theory. The general selection criterion for alloys, as reviewed in 
Trivedi and Kurz19 and given by Eq. (8), can be solved for the selection parameter σ* as

    (21)

It is emphasized again that σ* as defined above should be independent of the solute concentration C0 and 
the imposed supercooling19. An experimental value for σ* can, in principle, be obtained by substituting a 
measured pair of dendrite tip velocity and radius into Eq. (21) (note that Pe ~ RV). However, the presence 
of the solutal supercooling ΩCin Eq. (21) renders σ* dependent on the transport at the tip. Note that for 
pure substances ΩC = 0 and σ* is independent of the transport. In the present determination of σ* from 
experimental data, ΩC must be calculated, since the solute concentration at the tip, C*

t, is not known from 
measurements.  Here, this is accomplished using either the Ivantsov solution given by Eq. (4) or the 
stagnant film modified Ivantsov solution given by Eq. (12), using measured V and R data.

Figure 7 shows the variation of the selection parameter σ*  calculated from the measured tip velocities and 
radii of Chopra et al. at three supercoolings as a function of the solute concentration C0. The uncertainty 
bars for σ* propagate from the uncertainties in the V and R data. It can be seen that all σ* obtained using 
the Ivantsov solution to calculate ΩC (labeled as “LGK”) are within about 2% of the σ* obtained using 
the stagnant film model for ΩC (labeled as “Present Model”). The difference can be expected to be small, 
because the solutal supercooling is only weakly affected by convection (see Figure 2b). Thus, the σ* 
plotted in Figure 7 are insensitive to the convection intensity in the transport solution used to calculate ΩC; 
however, this does not necessarily imply that σ* is independent of the convection intensity.

Figure 7.  Selection parameter σ* determined from Eq. (21) using the measured dendrite tip velocity 
and radius data for SCN-ACE alloys of Chopra et al.13. For the symbols labeled “Present Model,” the 
stagnant film model is used to determine ΩC in Eq. (21); for the symbols labeled “LGK Model,” the 

Ivantsov model is used for ΩC.
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Figure 7 shows that for C0 ≤ 0.05 mol%, σ* is indeed independent of the solute concentration. Furthermore, 
the value of 0.02 determined from the pure SCN microgravity and terrestrial data of Koss et al.18 is 
confirmed by the terrestrial Chopra et al. data for C0 ≤ 0.05 mol% and all three supercoolings. Since 
different supercoolings and solute concentrations imply different convection intensities, it can be said with 
certainty that σ* is indeed independent of the convection intensity for C0 ≤ 0.05  mol%.

However, at higher solute concentrations (C0 > 0.1 mol%) the experimentally determined σ* in Figure 
7 are much larger than 0.02 and can reach values as high as 0.08. There appears to be no pattern in the 
variation of σ* with the solute concentration. Even if the largest values are ignored, the σ* for C0 > 0.1 
mol% still average at least 0.04. Considering that only the Chopra et al. data appear to be available for 
direct testing of the free dendritic growth theory for alloys 19, and that this theory has been used literally 
hundreds of times in a variety of alloy solidification models39, the lack of agreement at higher solute 
concentrations is discouraging. Certainly, the scatter in the measured σ* for C0 > 0.1 mol% cannot be 
explained by any existing theory. As shown before, convection actually becomes weaker with increasing 
solute concentration; thus, convection is unlikely to be the reason for the scatter in σ* for C0 > 0.1 mol%. 
Furthermore, the convection intensity is primarily controlled by the imposed supercooling, and no 
consistent variation of the measured σ* with ∆T  can be discerned from Figure 7.

The issue of the dendrite tip operating state selection in SCN-ACE alloys can be viewed from a different 
perspective by using the following definition of the selection parameter19

      σ*
C =   (22)

This alternative definition gives a selection parameter that continually varies with C0 but is relatively 
independent of supercooling. Note that σ*

C
 = σ* for C0 = 0. An experimental value of σ*

C can simply be 
obtained by substituting a measured pair of V and R into Eq. (22); thus, the uncertainty with respect to 
calculation of ΩC in Eq. (21) is removed. A prediction of σ*

C can be obtained by using the present model 
to calculate a pair of V and R and then substituting it into Eq. (22).

The measured and predicted σ*
C are shown in Figure 8 as a function of C0 for the three supercoolings. 

The differences between the predictions of the diffusion (labeled as “LGK”) and convection (labeled as 
“Present Model”) models are negligibly small, indicating that the convection effect on the calculated σ*

C  
is small. As in the previous Figure the agreement between the experiments and theory is excellent for C0 
≤ 0.05 mol%. At higher solute concentrations, the measured σ*

C values are substantially larger than the 
predictions. The disagreement appears to be of a systematic nature (as opposed to the scatter in σ* in Figure 
7). Note that the differences between Figures 8a, 8b, and 8c are minor, indicating that σ*

C  is relatively 
independent of the supercooling within the range studied. Hence, the comparison in Figure 8 indicates 
again that the disagreement between the measured and predicted σ*

C at higher solute concentrations is 
not due to convection, since the convection intensity is primarily controlled by the imposed supercooling 
and actually decreases with increasing solute concentration. As with Figure 7, no explanation for the 
disagreement is currently available. The systematic nature of the disagreement in Figure 8 points to some 
problem with the selection theory for alloys.

2αd0
VR2
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    (a)            (b)                    (c)
Figure 8.   Comparison of the measured and predicted selection parameter σ*

C, as defined in Eq. (22), as a 
function of solute concentration for SCN-ACE alloys at (a) ∆T=0.1 K, (b) ∆T=0.5 K, and (c) ∆T=0.9 K.

5.5. Effect of the selection parameter σ* on the predicted Peclet number
As shown in Figure 7, the measured selection parameters σ* for higher solute concentrations are 
significantly different from the 0.02 value used in Section 5.3 (Figures 3 to 6) to assess the present 
convection model. Therefore, it is useful to examine the effect of σ* on the predicted thermal Peclet 
numbers, PeT. As mentioned above, σ* affects the heat and solute transport at the dendrite tip through the 
dependence of the convection boundary layer thicknesses on the tip radius and, to a lesser extent, through 
the capillary correction.

Using the measured σ* values from Figure 7, instead of a constant value of 0.02, the PeT numbers are re-
calculated with the convection model for each of the data points in the experiments of Chopra et al. These 
modified predicted PeT are included as open triangles in Figure 6. It can be seen that the predicted PeT 
using the measured σ* (open triangles) are somewhat closer to the experimental data (solid circles) than 
the predicted PeT using σ*=0.02 (solid line).

At the lowest supercooling of 0.1 K (Figure 6a), when the convection effect is strongest, the present model 
now shows reasonable agreement with the data over almost the entire solute concentration range. Hence, 
this comparison can be regarded as a validation of the present convection model.

At the two higher supercoolings of 0.5 K and 0.9 K (Figures 6b and 6c), the use of the measured σ* in the 
convection model still cannot explain the low values of the measured PeT for higher solute concentrations, 
although some improvement in the agreement can be noted. Since the convection effect is very small at 
0.9 K and, thus, the influence of σ* on PeT is small, the convection model is unlikely to be the reason for 
these discrepancies.

6. Conclusions
A stagnant film model of thermosolutal convection during free dendritic growth of alloys is developed. 
The model is based on the standard description of diffusion-controlled free dendritic growth in alloys at 
low Peclet numbers19, with the convection effects taken into account through the introduction of thermal 
and solutal boundary layer thicknesses in the transport solutions for the dendrite tip. The boundary layer 
thicknesses are evaluated through appropriate Nusselt and Sherwood number correlations for thermosolutal 
convection that are calibrated using available dendritic growth data for pure SCN. The predictions of the 
present model are compared to the earth-based experiments of Chopra et al.13 for SCN-ACE alloys.
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It is found that the convection model gives excellent agreement with the measured dendrite tip velocities 
and radii of Chopra et al. for low solute concentrations. This is significant because the measured 
tip velocities are up to a factor of four higher than the predictions of the diffusion model, while the 
measured tip radii are up to a factor of two lower than the diffusion predictions. However, at higher 
solute concentrations the present predictions show some deviations from the measured data, and the 
measured (thermal) Peclet numbers tend to fall even below the predictions from the diffusion theory. It is 
particularly puzzling that the largest deviations between the measured and predicted Peclet numbers occur 
at the highest supercooling (0.9 K) where the convection effect is very small. Thus, the convection model 
is unlikely to be the reason for these discrepancies at higher solute concentrations. It is also shown that 
the use of the measured selection parameter σ*, instead of a constant value equal to 0.02, leads to some 
improvement of the prediction of the measured Peclet numbers, particularly at the lowest supercooling 
when the convection effect is strongest.

The present comparison of the theories with the experimental data of Chopra et al. also shows that at 
solute concentrations above 0.1 mol% ACE, the measured selection parameter σ* is significantly above 
the expected value of 0.02 and exhibits strong scatter. Similarly, the selection parameter σ*

C, defined in 
Eq. (22), is systematically above the theoretical prediction at large solute concentrations. Convection 
is not responsible for these discrepancies, primarily because the disagreements are independent of the 
supercooling and because the convection effect becomes weaker with increasing solute concentration.

The above comparisons show that, despite the overall success of the present convection model, available 
free dendritic growth theories cannot accurately predict all measured dendrite tip velocities and radii in the 
SCN-ACE experiments of Chopra et al. The persistent disagreements at the highest supercooling (0.9 K) 
could be caused by experimental difficulties, since the high tip velocities and very small tip radii (of the 
order of 5 microns) in this regime can lead to a large measurement uncertainty18. On the other hand, the 
systematic discrepancies in the selection parameters for higher solute concentrations, even at the lowest 
supercooling (0.1 K) where the tip radii are relatively large (of the order of 100 microns), is most likely 
not due to measurement uncertainties. They indicate that the theory for the selection of the dendrite tip 
operating state in alloys may need to be reexamined. 
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