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The interest lies in a dynamic formulation capable of simulating the flight of flexible aircraft 
on a computer. Such simulations can speed up the aircraft design process. Moreover they are 
indispensable to autonomous aerial vehicles, which require autopilots. 

Computer simulation of the flight of flexible aircraft is no trivial matter. Indeed, they require 
a new paradigm, discarding confining assumptions and adopting potent methodology. This work 
develops such a paradigm, which amounts to treating the aircraft as a single system. To this 
end, it integrates into a single mathematical formulation the disciplines pertinent to the flight of 
flexible aircraft, namely, analytical dynamics, structural dynamics, aerodynamics and controls. 
The unified formulation is based on fundamental principles and incorporates in a natural manner 
both rigid body motions of the aircraft as a whole and elastic deformations of the flexible compo- 
nents (fuselage, wing and empennage), as well as the aerodynamic, propulsion, gravity and control 
forces. The aircraft motion is described in terms of three translations (forward motion, sideslip 
and plunge) and three rotations (roll, pitch and yaw) of a reference frame attached to the unde- 
formed fuselage, and acting as aircraft body axes, and elastic displacements of each of the flexible 
components relative to corresponding body axes. The equations of motion are expressed in a form 
ideally suited for efficient computer processing. A perturbation approach permits division of the 
problem into a nonlinear flight dynamics problem for maneuvering quasi-rigid aircraft and a linear 
“extended aeroelasticity” problem for the elastic deformations and perturbations in the rigid body 
translations and rotations, where the solution of the first problem enters as an input into the second 
problem. The term “extended aeroservoelasticity” refers to a family of problems, each problem 
characterized by an input from a different aircraft maneuver, with the corresponding equations in- 
volving not only both elastic and rigid body variables but also coefficients depending on any given 
maneuver, and hence coefficients depending generally on time. This is materially different from 
the common aeroservoelasticity, which involves for the most part elastic variables alone and is not 
subject to inputs from aircraft maneuvers. The control forces for the flight dynamics problem are 
obtained by an “inverse” process. On the other hand, the feedback control forces for the extended 
aeroelasticity problem are derived by means of LQG theory. A numerical example presents time 
simulations of rigid body perturbations and elastic deformations about 1) a steady level flight and 
2) a steady level turn maneuver. 

It should be pointed out that sufficient details are provided so as to permit interested parties to 
replicate the results. 
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1. Introduction and Literature Review 

This investigation is concerned with a dynamic formulation capable of simulating the flight of 
flexible aircraft. It integrates seamlessly in a single and consistent mathematical formulation all 
the necessary material from the pertinent disciplines, namely, analytical dynamics, structural dy- 
namics, aerodynamics and controls. The unified formulation is based on fundamental principles 
and incorporates in a natural manner both the rigid body motions and the elastic deformations, 
and the couplings thereof, as well as the aerodynamic, propulsion, control and gravity forces. In 
essence, the formulation not only unifies flight dynamics and aeroelasticity, traditionally treated as 
separate disciplines, but, going beyond that, it permits a computer simulation of the response of 
flying flexible aircraft to external stimuli. 

In describing the motion of rigid bodies in space, it is convenient to attach a set of axes to 
the body, where the axes are commonly known as body axes, and express the motions in terms 
of components along these body axes. It is quite common to describe the motion of rigid bodies 
in terms of the translation of the origin of the body axes and the rotation of the body axes; the 
corresponding variables, particularly the rotations, are referred to as quasi-coordinates. If the origin 
of this reference frame coincides with the mass center of the body, the translations and rotations 
are independent of each other. Moreover, if the body axes themselves coincide with the principal 
axes of the body, then the products of inertia are zero, so that the inertia matrix is diagonal. 

The situation is more complicated forflexible bodies, in which case there are basically two types 
of reference frames: 

i. Fixed in the undeformed body - In this case, it is convenient to define the translation of 
the origin of the reference frame and the rotation of the reference frame as the rigid body 
translation and rotation of the body, and regard any displacement relative to the reference 
frame as elastic deformation. 

ii. Moving relative to the undeformed body - In this case, it is common to choose the reference 
axes so that the linear momentum and angular momentum vectors due to elastic deformations 
vanish; axes satisfying these conditions are called mean axes. Because the elastic defor- 
mations depend in general on time, the mean axes are continuously moving relative to the 
undeformed body. Of particular interest are mean axes with the origin at the system mass 
center, because in this case the three types of motion, namely, the translations of the refer- 
ence frame, the rotations of the reference frame and the deformations measured relative to this 
frame, are all inertially decoupled. The price to be paid for the use of mean axes is very steep, 
however, as the constraints defining these axes are not easy to enforce. For this reason, it is 
common to invoke the use of mean axes to justify inertial decoupling, but without enforcing 
the constraints. 

Whereas proper use of mean axes for flexible bodies in vacuum can produce inertial decoupling, 
in the case of aircraft any such benefits are questionable, because the equations of motion remain 
coupled through the aerodynamic forces. Moreover, if one insists on the use of mean axes, then 
the aerodynamic forces must also be expressed in terms of components along the same mean axes, 
which is a very tedious task at best. 

The motion of force-fYee rigid bodies in space is unstable. Under certain circumstances, the 
motion of rigid bodies can be stabilized by imparting them some spin about the axis of either 
the minimum or the maximum moment of inertia. On the other hand, flexible bodies cannot be 
stabilized if the spin is about the axis of minimum moment of inertia. The preceding statements 
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imply that the motion takes place in vacuum, such as in the case of a spacecraft. Matters are 
entirely different for flexible aircraft, which are neither force-free, nor do they operate in vacuum. 
In fact, aircraft are subjected to aerodynamic and wind forces, and any stabilization is done by 
active means, namely, by the engine throttle and control surfaces, where the latter consist of the 
aileron, elevator and rudder. 

The flight of aircraft tends to be quite diverse, ranging from steady level cruise to complex 
maneuvers, and stabilization requires the use of controls permitting the aircraft to carry out the 
intended maneuver while suppressing any deviations from it, whether in the form of rigid body 
displacements or elastic deformations. Both flight dynamics and aeroelasticity are concerned with 
aircraft stability. But, whereas flight dynamics is concerned mainly with rigid body motions, aeroe- 
lasticity is concerned with vibration and flutter. 

A stability analysis tends to be limited in scope, in the sense that it can only yield a qualitative 
statement about the nature of motion in the neighborhood of an equilibrium state of a system. 
More specifically, it can state whether the equilibrium is merely stable, asymptotically stable, or 
unstable. The time plays no role in a stability analysis. In fact, stability analyses tend to be limited 
to cases in which the time variable can be eliminated, such as when the equations of motion can 
be reduced to an eigenvalue problem. The stability of time-dependent maneuvers can only be 
evaluated numerically. 

To obtain information going beyond stability statements, such as the time response of aircraft 
to external stimuli, it is necessary to undertake a simulation of the equations of motion, which 
amounts to the integration of the equations of motion. Such a dynamic simulation can be used for 
parametric studies in preliminary design. Moreover, it can be used to determine aircraft perfor- 
mance, thus reducing the time required for flight testing by “flying the aircraft on a computer.” 

The choice in this paper is to work with a reference frame attached to the undeformed aircraft, 
which has many advantages over mean axes. But, because the elastic deformations prevent the 
origin of a frame attached to the undeformed body from coinciding with the mass center and the 
axes themselves from coinciding with the principal axes for all times, there is no preferred choice 
of a reference frame; we base the choice on geometric considerations. In particular, we attach a 
set of body axes to the undeformed fuselage, where one of the axes is along the symmetry axis. 
For convenience, sets of body axes are also attached to the other flexible components, such as the 
wing and the empennage. Ultimately, however, all motions are referred to the fuselage body axes, 
which act as a reference frame for the whole aircraft. 

The mathematical formulation is based on equations of motion in terms of quasi-coordinates 
derived earlier by the first author for flexible spacecraft and later adapted by him to flexible aircraft. 
The formulation is hybrid in nature, in the sense that it consists of ordinary differential equations 
for the rigid body translations and rotations of the aircraft as a whole and boundary-value problems 
for the elastic deformations of the flexible components of the aircraft, namely, the fuselage, wing 
and empennage. For practical reasons, the distributed variables describing the boundary-value 
problems for the individual components are discretized in space, obtaining a relatively large set 
of second-order ordinary differential equations for the whole aircraft. The discretization process 
amounts to representing the distributed variables as finite series of known space-dependent shape 
functions multiplied by time-dependent generalized coordinates. The derivation of the equations 
of motion in conjunction with the extended Hamilton principle requires expressions for the ki- 
netic energy, potential energy and virtual work, all scalar quantities. In turn, the kinetic energy 
requires the velocity of every point of the aircraft, which can be obtained by means of an orderly 
kinematical synthesis, going from the fuselage to the wing and to the empennage. The potential 
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energy is merely equal to the strain energy. Moreover, the aerodynamic, propulsion, control and 
gravity forces are accounted for through the virtual work. Rather than deriving first hybrid equa- 
tions of motion and then discretizing them in space, it is perhaps more expeditious to carry out the 
discretization directly in the kinetic energy, potential energy and virtual work, thus obtaining the 
desired set of ordinary differential equations for the whole flexible aircraft without the need to de- 
rive boundary-value problems. For integration of the differential equations and for control design, 
it is necessary to transform the set of second-order differential equations into a set of first-order 
differential equations, namely, into a set of state equations. It turns out that, for the problem at 
hand, it is more convenient to work with momenta rather than with velocities. Although the result- 
ing first-order equations actually represent phase equations, we shall continue to refer to them as 
state equations. 

The simulation of the flight of an aircraft amounts essentially to integration of the state equa- 
tions. Because of various nonlinearities involved, such as those due to rigid body motions and 
aerodynamic forces, the integration must be carried out numerically on a computer. In one way or 
another, computer integration can only be done in discrete time, which raises the question of the 
size of the sampling period, or time step. Of course, the answer depends on the desired accuracy 
of the simulation, and it is intimately related to the dynamic characteristics of the system. If the 
aircraft is to be controlled by an autopilot, then the simulation must be carried out in real time. If 
the dynamic characteristics are such that the time step must be relatively short, perhaps of the order 
of O.Ols, most aerodynamic theories in current use must be ruled out, as the computation of the 
dynamic pressure over the entire aircraft is sure to take considerably longer time than that. Hence, 
a new method for computing the dynamic pressure must be developed, one characterized by high 
computational speed, even if some accuracy must be sacrificed. Moreover, the method for com- 
puting the dynamic pressure must be compatible with the method for modeling the airframe. If the 
formulation is to be used for aircraft design, then real-time simulation may not really be necessary, 
although on-line simulation may. But, the size of the sampling period, which is determined by the 
system dynamic characteristics, remains the same regardless of whether the simulation is in real 
time or only on-line. The implication is that the computation of the dynamic pressure must still be 
relatively fast. Indeed, a mere 10 s simulation requires 1,000 time steps. Hence if the computation 
of the dynamic pressure takes one hour, the simulation requires over 40 days. This demonstrates 
the need for a method for computing the dynamic pressure in a very short time period. In this 
regard, a reasonably accurate approximate method may be acceptable. 

As indicated above, the equations of motion for a flying flexible aircraft are nonlinear, where the 
nonlinearity is due to the rigid body motions and the aerodynamic forces. Moreover, the equations 
tend to be of high order, the order depending on the discretization procedure employed. Hence, one 
can expect difficulties both with a stability analysis and with control design. In addition, difficulties 
can be experienced in the integration process, because some of the variables describing the aircraft 
rigid body motions tend to be large and the variables describing the elastic displacements tend to 
be small. A perturbation approach to the solution can obviate many of these difficulties. More 
specifically, the solution can be represented as the sum of a zero-order part for the large rigid body 
variables and a first-order part for the small elastic variables and perturbations in the rigid body 
variables, where the zero-order quantities are larger than the first-order quantities by at least one 
order of magnitude. Then, the equations of motion can be separated into a zero-order problem 
for the rigid body motions alone and a $first-order problem for the elastic displacements and the 
perturbations in the rigid body motions. The state equations for the zero-order problem are of 
order 12 at most; they can be identified as the equations of flight dynamics and can be used to 
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describe aircraft maneuvers. On the other hand, the state equations for the first-order problem 
are of order 12 + 2ne, where ne is the number of elastic degrees of freedom; they represent the 
extended aeroelasticity equations, where “extended” is in the sense that they include not only 
the elastic displacements but also perturbations in the rigid body variables, where the latter are 
sometimes referred to as “body freedoms.” 

The flight dynamics equations are in general nonlinear and describe the translations and rota- 
tions of the aircraft as if it were rigid. They can be used to design given maneuvers of an aircraft, 
which amounts to solving an “inverse” problem. In the commonly encountered direct problems 
in dynamics of rigid bodies, the forces are given and the equations of motion are solved for the 
state, i.e., for the positions and velocities. In the context of the present formulation unifying flight 
dynamics and aeroelasticity, however, the state representing a desired maneuver is given and the 
problem amounts to determining the engine thrust and the control surface forces permitting the 
realization of the maneuver; this represents an inverse problem. On the other hand, the extended 
aeroelasticity equations are linear, but they contain the state and forces from the flight dynamics 
problem as coefficients and as an input. Hence, there is a set of extended aeroelasticity equations 
for every conceivable aircraft maneuver. If the flight dynamics problem represents steady level 
cruise or a steady level turn maneuver, then the zero-order state and forces are constant and the 
system of extended aeroelasticity equations is linear time-invariant. In this case, the state equa- 
tions lend themselves to a standard stability check, such as one based on the roots of the eigenvalue 
problem, to control design by commonly used techniques, such as the LQG method, and to ready 
integration for simulation of the aircraft response to external stimuli. If the flight dynamics prob- 
lem represents a time-dependent maneuver, such as the transition from one steady state to another, 
then the zero-order state and forces depend on time and the extended aeroelasticity state equations 
are linear time-varying, which precludes a standard stability analysis. However, the state equations 
still permit control design and response simulation. 

The following literature review should help relate the present paper to previous investigations: 
Although flight dynamics and aeroelasticity have been developed traditionally as separate disci- 
plines, the need for considering interacting efforts was recognized quite ea r l~ . l -~  Still, relatively 
few attempts have been made to link the two disciplines, and when such attempts were made almost 
invariably the scope was quite limited. This lack of interest in linking flight dynamics and aeroe- 
lasticity can be attributed to a reluctance to increase the complexity of the problem to a significant 
extent at a time when powerful computers capable of solving such problems were not available. 
As a result, problems combining flight dynamics and aeroelasticity effects have tended to be sub- 
jected to many simplifying assumptions designed to permit largely analytical solutions. In one of 
the first references on the subject, Bisplinghoff and Ashley derived scalar equations of motion for 
an unrestrained flexible vehicle. The equations consisted of three inertially decoupled sets, one for 
the rigid body translations, one for the rigid body rotations and one for the elastic deformations, 
the latter expressed in terms of aircraft structural natural modes. Although not stated explicitly, 
this implies the use of principal mean axes with the origin at the vehicle mass center. Moreover, 
the inertia matrix was assumed to be constant, which implies that the contributions from the elastic 
deformations to the inertia matrix were ignored. Aerodynamic forces for the case of small dis- 
turbed motions from steady rectilinear flight were given in terms of an influence function for an 
unrestrained aircraft. An integrated analytical treatment of the equilibrium and stability of flexi- 
ble aircraft was presented by Milne.5 In Part I, he derived linearized equations of motion about a 
steady state, assuming not only that the elastic deformations but also the rigid body translations 
and rotations were small. Although the constraint equations defining the mean axes were given, 
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the formulation seems to have used body axes attached to the undeformed aircraft. The equations 
are expressed in a vector-dyadic form that does not permit a ready check for missing terms and, 
more importantly, does not lend itself to ready computer solutions. In Part 11, the general analysis 
was applied to the study of equilibrium and longitudinal stability about equilibrium of an aircraft 
having longitudinal flexibility only. A monograph by Taylor and Woodcock6 consists of two parts 
representing different approaches to the same problem. In Part I, Taylor presents a very lucid sum- 
mary of the equations of motion for deformable aircraft derived by Bisplinghoff and Ashley4 and 
by Milne.5 Following a reduction to scalar form, the equations are simplified to permit the study 
of some special cases. In Part 11, Woodcock uses an unorthodox form of Lagrange’s equations 
to derive scalar perturbation equations of motion about a given “datum motion,” not necessarily 
corresponding to steady level rectilinear flight; the equations are in terms of body-fixed axes. The 
question of aerodynamics receives scant attention in both parts. An extensive report by Dusto et 
al.,7 resulting in a computer program known as FLEXSTAB, integrates flexible body mechanics 
with a low frequency aerodynamics employing linear influence coefficients. The flexible aircraft 
mechanics uses free vibration modes superimposed on rigid body dynamics. Aerodynamic influ- 
ence coefficients are derived using a paneling scheme lending itself to empirical corrections. The 
equations are expressed in terms of steady perturbations about a reference motion to determine dy- 
namic stability by characteristic roots or by time histories following an initial perturbation or some 
gust disturbance. There are two major concerns. The first consists of the fact that the structural 
dynamics formulation is in terms of mean axes and the aerodynamics is in terms of a different 
set of axes, namely, “fluid axes,” where the latter move with a steady velocity relative to the un- 
deformed aircraft body axes; using two different sets of axes in the same formulation, without 
making the necessary transformation from one set to another, is a very questionable proposition. 
The second source of concern is the time required to run FLEXSTAB (see Ref. 24). Several ana- 
lytical methods for mathematical modeling of aircraft active control system design are described 
by Roger,’ placing the emphasis on aerodynamics. Inconsistencies in control configured vehicles 
are highlighted by Schwanz? He suggests that familiarity of flight control specialists with a broad 
spectrum of pertinent disciplines, including aerodynamics, structures, modern dynamics and con- 
trol, can minimize and perhaps avoid altogether these inconsistencies. Free-free dynamic analyses 
of forward swept wing aircraft by Miller, Wykes and Brosnanl’ have shown that the static aeroe- 
lastic divergence exhibited by a cantilevered forward swept wing is replaced by a low-frequency 
flutter mode due to coupling between the wing divergent mode and the aircraft short-period mode. 
This coupling is shown to have detrimental effects on flying qualities, ride qualities and gust loads, 
but these effects can be minimized by an active flutter control system. In the same spirit, Weisshaar 
and Zeiler” discuss the importance of including aircraft rigid-body modes in the aeroelastic anal- 
ysis of forward swept wing aircraft. They show that body-freedom flutter and aircraft aeroelastic 
divergence, not wing divergence, are the primary aeroelastic instabilities. Rodden and Love12 point 
out that equations of motion derived using mean axes for the inertial terms and axes attached to the 
undeformed structure for the flexibility terms are likely to be incorrect; such flexibility terms are 
obtained when using structural influence coefficients. Cerra, Calico and No11 l3 developed a linear 
model of an elastic aircraft providing the capability of analyzing the coupling between the rigid 
body motions and the elastic motions. The model can be used for stability and control analyses. 
As in Ref. 4, the rigid body translations, rigid body rotations and elastic deformations are assumed 
to be inertially decoupled. A framework for constructing simulation models for flexible aircraft is 
described by Arbuckle, Buttrill and Zeiler.14 The objectives are to increase simulation model fi- 
delity and to reduce the time required for developing and modifying these models. The framework 
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has been applied to the development of an open-loop F/A- 18 simulation model. Buttrill, Zeiler 
and Arbuckle15 considered a mathematical model integrating nonlinear rigid body mechanics and 
linear aeroelasticity in conjunction with Lagrangian mechanics to derive the equations of motion 
for flexible aircraft. Undamped vibration modes satisfying first-order mean axes constraints were 
used as generalized coordinates. Considering a model of an F/A-18 aircraft, elastic modes sig- 
nificantly affected by inertial coupling were found to be aerodynamically decoupled from the rest 
of the model. Zeiler and Buttrill" used the extended Hamilton principle to derive equations of 
motion for a flexible body. The equations include inertial terms due to flexibility, as well as terms 
coupling rigid body and flexible momenta. In addition, a nonlinear strain-displacement relation 
permits centrifugal stiffening to be taken into account. The equations are used to simulate the 
motion of a structure spinning initially about an unstable principal axis in gravity-free vacuum. 
Using Lagrange's equations, Waszak and Schmidt17 derived the equations of motion for a flexible 
aircraft. The strip theory was used to obtain closed-form integral expressions for the generalized 
aerodynamic forces. Moreover, the use of mean axes permitted inertial decoupling of the rigid 
body translations, rigid body rotations and elastic deformations, the latter being expressed in terms 
of aircraft vibration modes. The modeling method was applied to a generic elastic aircraft, and the 
model was used for a parametric study of the flexibility effects. Nonlinear equations of motion for 
elastic panels in an aircraft executing a pull-up maneuver of given velocity and angular velocity 
were derived by Sipcic and Morino." The effect of the maneuver on the flutter speed and on the 
limit cycle amplitude was discussed for various load conditions. Accurate modeling of aeroelas- 
tic vehicles, with emphasis on the rigid body and elastic degrees of freedom, was discussed by 
Waszak, Buttrill and Schmidt.lg A comparison of the approach of Ref. 17 on the one hand and that 
of Refs. 15 and 16 on the other hand was presented and various model reduction techniques were 
reviewed. An integrated analytical framework for modeling elastic hypersonic flight vehicles was 
developed by Bilimoria and Schmidt.20 A Lagrangian approach was used to derive equations of 
motion including rigid body motions and elastic deformations, as well as effects due to fluid flow, 
rotating machinery, wind and a spherical rotating Earth. The elastic deformations are represented 
in terms of modal coordinates relative to mean axes. A paper by Olsen21 reveals new insights in 
the aeroelasticity and flight mechanics of flexible aircraft by obtaining and solving the equations 
of motion for an accelerating, rotating aircraft. General equations in terms of quasi-coordinates are 
first obtained and then reduced to the case of a "flat" airplane. The influence of gusts on the dy- 
namics of large flexible aircraft is analyzed by Teufel, Hanel and who present an integrated 
flight and aeroelastic control law reducing gust sensitivity. Moreover, the control laws, designed by 
p-synthesis, are such that flight maneuvers do not excite elastic motions. Konig and S ~ h u l e ? ~  de- 
scribe how an integral model for large flexible aircraft can be derived and how an integral control, 
covering flight control, load control and structural mode control, can be designed by multiobjec- 
tive parameter optimization. Samareh and Bhatia24 presented a unified three-dimensional approach 
that reduces the number of interactions among various disciplines by using a computer-aided de- 
sign model. Results were presented for a blended wing body and a high-speed civil transport. 
Schmidt and R a n e ~ ~ ~  considered the effects of flexibility on the flight dynamics of large flexible 
aircraft. In particular, when the frequencies of the lower elastic modes approach those of the rigid 
body modes the handling characteristics can suffer and the flight control system design tends to 
become significantly more complex. Expressing the motion in terms of components along mean 
axes, they add the flexible degrees of freedom to an existing simulation model of the vehicle's rigid 
body dynamics. The NASA Langley Research Center simulation facility was used to obtain the 
dynamic response of two different aircraft. 
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With some exceptions, the equations of motion in Refs. 3-23,25 were derived either by means of 
Newtonian mechanics or by means of standard Lagrange’s equations. These approaches are more 
suitable when the motions are expressed in terms of inertial axes and/or when the rotations are in 
terms of Euler’s angles. Yet, in the case of aircraft it is more convenient to express the motion 
in terms of components along body axes. In this regard, we should point out that this is common 
practice in flight dynamics, in which case the angular veolcities in terms of body axes are the well- 
known roll, pitch and yaw. Of course, equations in terms of inertial axes and/or Eulerian angles can 
always be transformed into equations in terms of body axes through coordinate transformations. It 
is appreciably simpler, however, to derive the equations of motion directly in terms of body axes, 
which can be done through the use of Lagrange’s equations in terms of quasi-coordinates?6 

Motivated by problems in dynamics of spacecraft with flexible appendages, Meirovitch and 
Nelson27 derived for the first time hybrid (ordinary and partial) differential equations of motion 
coupling rigid body rotations and elastic deformations. The elastic deformations were measured 
relative to a set of body axes attached to the undeformed spacecraft and the rotational motions were 
in terms of quasi-coordinates. The explicit formulation of Ref. 27 was extended by Meirovitch28 
to a generic whole flexible body by deriving a set of hybrid equations of motion in terms of quasi- 
coordinates, treating for the first time translational velocities as quasi-velocities; the equations were 
then cast in state form. The equations of motion in terms of quasi-coordinates of Ref. 27 were used 
by Platus2’ to derive coupled equations of motion governing the aeroelastic stability of spinning 
flexible missiles. The coupling between the elastic deflections and rigid-body motions was nonlin- 
ear, but the equations were linearized so as to permit a stability analysis. The developments of Ref. 
28 were extended by Meirovitch30 and Meirovitch and Stemple3I to flexible multibody systems. 
Then, the approach of Refs. 28,30 and 3 1 was used by M e i r ~ v i t c h ~ ~  to produce a definitive unified 
theory for the flight dynamics and aeroelasticity of whole aircraft. Generic state equations describ- 
ing the flight of flexible aircraft were first derived in hybrid form and subsequently discretized in 
space. Then, using a perturbation approach, the discrete state equations were separated into a set of 
nonlinear flight dynamics equations for the rigid body variables and a set of linear extended aeroe- 
lasticity equations for the elastic variables and perturbations in the rigid body variables. Nydick 
and F ~ i e d m a n n ~ ~  applied the equations of motion in terms of quasi-coordinates derived in Ref. 28 
to the analysis of a hypersonic vehicle in free flight. To this end, they simplified the equations by 
considering only the pitch and plunge rigid body degrees of freedom and small elastic displace- 
ments. The nonlinear equations were linearized about a trim state obtained by using a rigid body 
trim model and steady hypersonic aerodynamics. Flutter derivatives were calculated by means of 
piston theory. The generic formulation of Ref. 32 was used by Meirovitch and T U Z C U ~ ~  to carry out 
the derivation of explicit equations of motion in terms of quasi-coordinates for a flexible aircraft 
model and to cast the equations in a special state form suitable for simulation on a computer. Due 
to relative ease of integration into the unified formulation and computational speed advantages, the 
aerodynamic forces were derived by means of strip theory. Then, equations for flight dynamics 
and extended aeroelasticity were derived. An approach entirely different from that in Ref. 34 is 
proposed by Fornasier et al?5 Indeed, Ref. 35 is concerned essentially with the fluid-structure in- 
teraction in a flexible aircraft. To this end, it uses “temporal and spatial algorithms” to make two 
independently developed computer codes, one for the aerodynamics (CFD) and one for structural 
mechanics (CSM), work together. The scope of Ref. 35 is relatively limited, as the aircraft is as- 
sumed to follow a known preset trajectory, so that there are no rigid body degrees of freedom, and 
there are no controls. Worthy of notice is the fact that several 5 s simulations, including some of 
the wing tip displacement, took approximately 35 hrs on a 32-processor Sgi computer. 
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The present paper represents an extension of the developments in Ref. 34. In addition to some 
modeling refinements, the paper contains a numerical example for a model of a flexible aircraft 
containing 76 states, 12 rigid body states and 64 elastic states. Two flight dynamics problems are 
considered, the steady level cruise and a steady level turn maneuver. The corresponding extended 
aeroelasticity problems are derived and used to design feedback controls guaranteeing the vanish- 
ing of the rigid body perturbations and the elastic vibration, and hence the stability of the maneuver 
and the comfort of the flight. The control design consists of a linear quadratic regulator in conjunc- 
tion with a stochastic observer. The integrated process is demonstrated by means of a numerical 
example including a variety of rigid body and elastic displacements time simulations together with 
the corresponding controls time histories, all carried out on a 1 GHz PC using MATHEMATICA. 
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2. Hybrid Equations of Motion in Terms of Quasi-Coordinates 

We regard the aircraft model shown in Fig. 1 as a flexible multibody system subjected to gravity, 
aerodynamic, propulsion and control forces, where the bodies can be broadly identified as the fuse- 
lage, wing and empennage. The motion of the aircraft can be conveniently described by attaching 
a reference frame x f g f z f  to the undeformed fuselage (Fig. I), as well as corresponding reference 
frames x,yu,z, and Z e Y e Z ,  to the wing and empennage, where the various reference frames repre- 
sent respective body axes. Then, the motion can be described by six rigid body degrees of freedom 
of the fuselage body axes, three translations and three rotations, and by the elastic deformation of 
every point of each flexible component relative to the respective body axes. 

From Ref. 32, and making provisions for members in torsion, as well as for structural damping, 
the hybrid equations of motion for the whole flexible aircraft in terms of quasi-coordinates have 

Figure 1. Flexible Aircraft Model 

the generic form 

- F  d L  d L  +Wr--cfw- dVf 

i = f (fuselage), w (wing), e (empennage) 

where 

L = Lagrangian for the whole aircraft 
Vf ,  wf = vector of translational, angular quasi-velocities of xfgfzf 

V', W f  = skew symmetric matrices derived from Vf, w 

Cf = matrix of direction cosines between Lcfgfzf and X Y Z  (inertial axes) 
Rf = R f ( X f ,  Y f ,  Zf) = position vector of origin Of of xfgfzf relative to X Y Z  
E, = matrix relating Eulerian velocities to angular quasi-velocities 
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8, = symbolic vector of Eulerian angles between xfyfzf and X Y Z  
ui, vi = elastic displacement, velocity vectors for body i 
+i, ai = elastic angular displacement, velocity vectors for body i 

Li = Lagrangian density for body i exclusive of strain energy 

Yui, FQi = Rayleigh's dissipation function37 densities for body i 
Cui, CQi = matrices of stiffness differential operators for body i 

F, M = resultant of gravity, aerodynamic, propulsion and control force, moment vectors 
acting on the whole aircraft in terms of fuselage body axes components 

Ui, !Pi = resultant of gravity, aerodynamic, propulsion and control force, moment density 
vectors for body i 

Assuming that axes x~fyfzf  are obtained from axes X Y Z  through the sequence of rotations $ 
about 2 to axes zlylzl, 0 about y1 to z2y2z2 and 4 about x2 to xfyfzf, the matrices Cf and Ef  
have the form36 

in which s = sin, c = cos. The elastic displacement vectors u, and +i are subject to given 
boundary conditions at the interface between bodies. Equations (1)  involve the Lagrangian L = 
T - V, in which T is the kinetic energy and V the potential energy, the Rayleigh dissipation 
function densities 9.i and .k&, which contain the information about the structural damping, and 
the stiffness operators Cui and CQi, which are related to the strain energy. Before more explicit 
equations of motion can be derived, it is necessary to produce these quantities. The kinetic energy 
for the whole aircraft can be written as 

where 

(4) T,  = i SV, Vidmi, i = f, w, e 

are kinetic energies of the individual components, in which Vi are velocity vectors of typical points 
in the components and dmi are corresponding mass differential elements. The velocity of a point 
in the fuselage can be written as 

- T -  

Vf(rf,  t> = V,(t> + Ff + Wf, t>I'[wr(t> + ' Y f h  t>l + vf(rf, t )  
2 v, + (Tf + iif)'Wf + +f + Vf ( 5 )  

where rf is the nominal position of the mass element dmf, ?f and iif are skew symmetric matrices26 
corresponding to rf and uf and vf and af are elastic velocities associated with bending and tor- 
sion, respectively. Then, denoting by C, the matrix of direction cosines between x,yu,z, and 
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in which rf, is the radius vector from the origin of xfpfzf to the origin of xU,pwzw, 

is the angular velocity of the fuselage at rfw due to bending and afw = [afw 0 01 Itfw is the elastic 
velocity of the fuselage at rfw due to torsion. The velocity Ve(re, t )  of a point on the empennage 
can be obtained from Eq. (6) by simply replacing w by e. The total kinetic energy can be expressed 
in the general form 

The potential energy can be expressed in terms of the operators Li, LQi (i = f, w, e), but is more 
conveniently expressed as the strain energy. Moreover, the Rayleigh dissipation function densities 
can be expressed in the form 

where G ~ ,  cQi are damping functions and Eli, GJi are flexural and torsional rigidities ( i  = 

and the operators .Cui and C,,,, 
when inserted into Eqs. ( l ) ,  permit the derivation of explicit hybrid equations of motion. Because 
for all practical purposes it is not feasible to work with hybrid equations, we do not pursue this 
subject any farther, and approximate instead the partial differential equations by sets of ordinary 
differential equations. 

f, w, e ) .  
Equation (S), the potential energy V, the functions .& and 
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3. Spatial Discretization of the Distributed Variables 

For the most part, aircraft are modeled as discrete systems, either by regarding the inertia and 
stiffness properties as lumped from the onset or by describing their elastic motions in terms of 
aircraft structural modes. For undamped structures in vacuum, the use of structural modes yields 
complete decoupling, Le., it yields a set of independent modal equations of motion. In the case 
of aircraft, however, complete decoupling is not possible, even when aircraft structural modes are 
used, as the aerodynamic forces guarantee that the equations of motion remain coupled. Spatial 
discretization using aircraft structural modes not only does not offer any particular advantage but 
also has the disadvantage that some geometric details of the aircraft are lost in the process. Hence, 
a discretization procedure that does not require the structural modes, which may not be readily 
available and/or may not be compatible with the rest of the formulation, and retains some sense of 
the aircraft geometry seems desirable. Consistent with this, we consider spatial discretization of 
the individual aircraft components separately. To this end, we use either the Galerkin method or 
the finite element method37 and introduce the expansions 

where and are matrices of shape functions and qui and q@i are corersponding vectors of 
generalized coordinates. Note that the choice of shape functions is very important. Indeed, for 
accurate modeling, the shape functions must reflect the mass and stiffness characteristics of the 
components. Some guidelines concerning the choice of shape functions can be found in Ref. 37. 
Moreover, we denote the associated generalized velocities by 

sui(t) = qui(t), s@i(t) = q*i(t), i = f , w , e  (1 1 )  

In anticipation of later needs, we write the velocity vectors for points on the individual components 
in the two discrete forms 

in which 

Expression analogous to QUf can be written for and @,,,. Moreover, V, ( re,t) can be obtained 
from Vw(rw,t) by simply replacing w by e. Inserting the first forms of Eqs. (12) into Eq. (8) and 
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where 

are damping matrices. 
Next, we denote the momentum vector for the whole aircraft by p = [sf pzf p z f  pzu, pZe p;f 

p&, p,,] T T  = [p: p r  . . . p:jT, so that we can write 

p = m/av = MV (20) 
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where the individual momenta are given by 

8 

P V f  = m/avf = p1= C M l j V j  
j=l 

8 

j=1 

8 

Puf  = m/asuf = p3 = MSjVj 
j = 1  

Finally, adding some obvious kinematical identities to the discretized version of Eqs. ( I ) ,  the state 
equations can be written in the special form 

Rf = Cf’Vf, bf  = Ey’wf; qui = sui, q + i  = s+i, i = f ,  w, e 

Moreover, 

Kui = J@~iLui@uidDi, KQi = J’@;iL+i@$idDi, i = f ,  w, e (24) 

are component stiffness matrices. In practice, Kui and KQi (i = f ,  w, e) can be obtained with 
greater ease from the strain energy directly, as shown in the Numerical Example. 

The quantities F, M, Qui and QILi (i = f ,  w, e) appearing in the state equations, Eqs. (22) ,  
represent generalized forces. They are related to the actual forces, which consist of the distributed 
force fi(ri, t )  over component i due to gravity, aerodynamics and controls and the engine thrust 
FES(r - rE), where S(r - rE) is a spatial Dirac delta in which r E  denotes the location 
of the engines. If some control forces are concentrated, they can also be treated as distributed, as 
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in the case of the engine thrust. The relation between the generalized forces and the actual forces 
can be obtained by means of the virtual work, which can be expressed as 

(25) ST@ = E, J', [f: + FgS(r - r,)]SRrdD, 

where is the virtual quasi-displacement vector of a typical point on component i (i = f, w, e). 
The vector S R  is related to the virtual quasi-displacement vectors corresponding to the quasi- 
velocities used to describe the motion of the aircraft components. Indeed, using Eqs. (12), we can 
write - 

SR; = SR; + (Tf + @,fq,,)'SO; + @,fSqUf + T T @ @ f S q + f  

SR, = C,SR; + [Cw(Tfw + @,fwq,f)T + ( T ,  + @uwq,wt)TCu~]60~ 
- - 

(26) -T + (~,C,a@',f, + Cw~@uf , )~q tLf  + @uwSquw 

+ (TuTc,@@f, + cuf;u!@~ful)Sqwf + C @ @ w S q @ m  

and we note that sR,* can be obtained from mu, by replacing w by e. Inserting Eqs. (26) into Eq. 
(25), and collecting terms, we can write the virtual work in terms of virtual generalized displace- 
ments as follows: 

SW = FT6R; + MT68; + C,<Q~,bqzlz + Q$,dqQz) (27) 

from which, assuming that the engines are mounted on the fuselage (Fig. l), we obtain 

F = S,, [ff + F E S ( ~  - rE)]dDf + C:JDuf,dD, + C,TJDefedDe - 
= JD,(Tf+',f9,,f)[ff + F E S ( r - r E ) ] d D f + S ~ _ [ ( T f w  + @UfWquf)': - - - 

+~,T(r,+@,s~lw)]fiL~d~zL' + S,, [(.re + @ u j e q u f ) C , T  + C,T(Fe + @ u e q z l e ) ] f e d ~ e  

Q u j  = JD,@:f[ff + F d ( r  - rE)]dDf ,,fD,(f$CulA@~f~- C w @ ~ f w ) ~ f w d D w  
(28) + JD,(pTCeA@ufe + Ce@ufe)TfedDe, 

&@f = JD, @:fTj[fj + F&(r - r~) ]dDf  + sou, ( ~ ~ C W @ Q ~ W  4- C W ~ ~ , @ @ ~ W ) ~ ~ W ~ D U ~  

&,, = JD,@:,fzdD2, Q@t = ~ D , @ ~ z T z f z d D z ,  i 

+ JD, ( T T C e Q Q j e  + CeTfr ,@+je)TfedDe 

w, e 

To complete the state equations, Eqs. (22), it is necessary to derive the stiffness matrices K,, and 
KQz (i = f, w, e), the aerodynamic forces and the control forces. 
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4. The Aerodynamic and Gravity Forces 

The forces acting on the aircraft can be identified as the aerodynamic, propulsion, control and 
gravity forces. Equations (28) give the generalized forces in terms of actual distributed and con- 
centrated forces, where the first imply prescribing the forces at every point of the aircraft. Of 
the forces acting on an aircraft, the aerodynamic and control forces require special attention. We 
discuss the aerodynamic forces in this section and the control forces in a later section. 

There are a number of aerodynamic theories available, some of them capable of prescribing the 
pressure distribution at every point of the aircraft. However, as pointed out in the Introduction 
and Literature Review, any aerodynamic theory to be used in a dynamic simulation such as that 
described in this paper must satisfy certain requirements. Indeed, one of the requirements is that 
the aerodynamic forces be expressed in a form compatible with the present general dynamic for- 
mulation, which implies that they be in terms of the same variables and be referred to the same 
body axes attached to the undeformed aircraft as here. Another requirement is that the aerody- 
namic forces lend themselves to sufficiently fast computation as to permit time simulation of the 
aircraft behavior. Such computational efficiency does not appear to be within the state of the art. 
Hence, an aerodynamic theory capable of fitting within the framework of a computer simulation 
of the type envisioned here must yet be developed. Such a theory need not be unduly accurate, be- 
cause a feedback control design tends to be sufficiently forgiving to tolerate small deviations from 
the actual aerodynamic forces. Until such a theory becomes reality, it is still possible to demon- 
strate how aerodynamics fits in the integration process by using an existing theory satisfying the 
requirement described above, namely, strip even though the theory may not be entirely 
suitable otherwise. 

(i = f, w, e) acting on the 
aircraft by means of strip theory, we regard the fuselage, wing and empennage as two-dimensional 
aerodynamic surfaces. The lift force per unit span of fuselage can be written a$8 

(29) 

To derive the aerodynamic forces included in the distributed forces 

Cf = Q f C f C L a f a f  = 4 f C f C L f  

where cf is the chord, CLaf the slope of the lift curve, CLf the lift coefficient and 
- 

qf = ;p(v;L, + V&), af = tan-’(Vfz/Vfz> (30)  

are the dynamic pressure and angle of attack, respectively, in which p is the air density and Vfz 
and Vfz are components of the velocity vector Vf, Eq. (5). Similarly, the drag force per unit span 
of fuselage is given by 

where C O ~ O  is the drag coefficient corresponding to af  = 0 and k, is a constant. The fuselage 
has also vertical surfaces subjected to aerodynamic forces. The lateral force per unit span can be 
expressed as 

Sf = Q s f C s f C s P f P f  = 4 s f C s f C s f  (32) 

where csf is the lateral chord, Cspf the slope of the lateral force curve, Csf the lateral force coeffi- 
cient and 
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are the dynamic pressure and the angle of attack of the lateral force, respectively, in which V j ,  and 
Vj, are components of Vj. Hence, the aerodynamic forces on the fuselage can be written in the 
vector form 

ef sin aj - d cos af [ -e, cos aj - d j  sin aj 

s j  sin ,f?j 
0 ] 7 f s f  = [ - s f r P f ]  (34) f a j  

In a similar fashion, the lift and drag per unit span of wing are given by 

e, = qwc, (CLau&t + ~ L b a & )  , d, = quvc, ( CDWO + F;,c;, ) = QUI c, ( C o w 0  + ku!c;au>a: ) (35 

where c, is the chord, Sa an aileron rotation, CLba a control effectiveness coefficient17 and 

(36) 1 -  
(2, = &$/ + v:,), = tan-'(V,,/V,y) + +wz 

in which the velocity components V,, and VWz of V, can be obtained from Eq. (6) .  Moreover, 
~ , z  is the angular displacement of the wing about axis 2 ,  due to torsion. There is no meaningful 
lateral force on the wing, so that 

1 0 
tu, sin a, - d, cos a, 
4, cos a ,  - d, sin a ,  

(37)  

The empennage has both lift and lateral surfaces. The lift, drag and lateral forces per unit span of 
empennage are 

l e  = q e C e ( C L a e a e  + C L b e S e ) ,  d e  = q e C e ( C D e 0  + keCiaeaf), s e  = qseCse (CspePe  + CsSrSr) (38) 

where c, and c,, are the chords, Se and S, are rotations of the elevator and ruder, C L ~ ,  and Csb, are 
respective control effectiveness coefficients and 

Hence, the aerodynamic force vectors per unit span of empennage can be written as 

0 0 
e, sina, - de cos a, ] , f se  = [ s, sinp, ] 

-le cos a, - de sin a, -s, cos pe 

For a typical component, the lift, lateral force and drag per unit span are applied at the line 
of aerodynamic centers. Hence, in Eqs. (28), the domain of integration for the terms involving 
the aerodynamic forces is the line of aerodynamic centers. The gravity forces per unit volume of 
components are simply 

Note that the aerodynamic and gravity forces are in terms of respective component body axes. 



5. A Unified Theory for Flight Dynamics and Aeroelasticity 

To complete the discussion of the forces acting on an aircraft, we turn our attention to the control 
forces. Aircraft control is carried out by means of control surfaces, as well as by the engine thrust. 
Before we consider the problem of control design, it will prove beneficial to examine the nature 
of the controls. Controls are of two general types, one designed to steer the aircraft as a whole 
and the other to suppress the effects of any undesirable disturbances. The first type involves rigid 
body motions of the aircraft, which are in general large, and traditionally lies in the domain of 
flight dynamics. On the other hand, the second type involves elastic deformations of the aircraft, 
which tend to be small compared to the rigid body motions, and traditionally lies in the domain of 
aeroelasticity. Hence, the formulation given by Eqs. (22) can be regarded as spanning the fields of 
flight dynamics and aeroelasticity. 

From the above discussion, it appears that control of the aircraft as a whole is likely to be 
different in nature from control of disturbances. In this regard, we observe that the state equations, 
Eqs. (22), are in general nonlinear and of high dimension, where the nonlinearity can be traced to 
the large rigid body variables. On the other hand, the high dimensionality can be traced to the small 
elastic variables. In view of this, a solution by a perturbation approach seems indicated, which 
amounts to a separation of the problem into a zero-orderproblem for the large variables and ajrst-  
order problem for the small variables, where the difference between the large and small variables 
is one order of magnitude, or more. Physically, in the zero-order problem the aircraft executes 
a given maneuver as if it were rigid, in which case the mathematical formulation consists of a 
maximum of six coupled, generally nonlinear ordinary differential equations, three for rigid body 
translations and three for rigid body rotations. They correspond to the equations commonly used 
in JEight dynamics. On the other hand, the first-order problem involves the elastic deformations, 
as well as small perturbations in the rigid body variables. In view of the inclusion of the latter, 
the first-order problem defined here represents an extended aeroelasticity theory, in which the 
rigid body degrees of freedom are included in a natural manner. This is in contrast with some 
occasional p r a ~ t i c e , ~ ~ ~ ~ ~  in which “body freedoms” are included in an ad hoc manner. We note that 
the solution of the zero-order problem enters into the first-order problem, so that this new theory 
provides one set of extended aeroelasticity equations for every conceivable rigid body maneuver 
of the aircraft, rather than the single set of equations commonly associated with steady cruise. We 
express the perturbation solution as follows: 

where the superscripts (0) and (1) denote orders of magnitude. All the quantities related to the 
elastic deformations are regarded as being of first order. Then, inserting Eqs. (42) into the state 
equations, Eqs. (22) ,  and separating different orders of magnitude, we obtain the zero-order prob- 
lem, or the JEight dynamics problem 

in which CF’ and E?’ can be obtained from Cf and E f ,  Eqs. ( 2 ) ,  by replacing $, 8 and 4 by 
$(‘I, 8(’) and 4(’), respectively. Moreover, from Eqs. (28), the zero-order generalized force and 
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moment are given by 
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where 

in which 
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Then, from Eqs. (28), the first-order generalized forces are ’ 
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where 
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where hfj!) and Mi;) are the zero-order part and first-order part of M j ,  Eqs. (15). Equations (59) 

and do) and the result inserted in Eqs. (50). 
The zero-order problem, or flight dynamics problem, represents an inverse problem, which 

amounts to determining the controls permitting realization of a given rigid body maneuver. The 
first-order equations representing the extended aeroelasticity problem are linear and tend to be of 
high order. Moreover, they contain the zero-order variables Vy’ and wy’ ,  representing a given 
maneuver, as coefficients and as an input. If Vy’ and wy’ are constant, then the system is time- 
invariant, and if Vy’ and wy’ depend on time, then the system is time-varying. In either case, 
controls can be designed by various methods. In the time-invariant case, a stability analysis for the 
closed-loop system can be carried out by solving an eigenvalue problem. Such a stability analysis 
is precluded in the time-varying case. Simulation of the response of the closed-loop system to 
external excitations, such as gusts, can be obtained in both the time-invariant case and time-varying 
case. 

are to be solved for Vy), w (1)  , s,,, sUw , . . . , Sqve in terms of pi,,, (1)  p,,, ( 1 )  puf, puu,, . . . , PQe V, (0 )  
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6. Control Design 

Flying aircraft are subjected to various disturbances tending to drive them from the intended ma- 
neuver and to cause vibration. If the system is controllable, these effects can be suppressed through 
controls, which are carried out by means of actuators; in the case of aircraft they consist of the en- 
gine thrust and the control surfaces. A system is said to be controllable if there exists a piecewise 
continuous input that will drive the initial state to any final state within a finite time interval. Sys- 
tem controllability can be determined by checking the rank of a so-called controllability matrix?' 
which may not be feasible if the system order is large. In practice, controllability can be ascer- 
tained on physical grounds by making sure that the input forces, namely, the forces due to the 
engine thrust and control surfaces, affect all the state variables. 

As indicated in earlier sections, there are two types of controls, one type designed to permit the 
aircraft to execute a desired maneuver as if it were rigid and the other type to reduce any deviations 
from the rigid body maneuver to zero, which amounts to suppressing vibration and perturbations 
in the rigid body motions of the aircraft. The first is associated with the flight dynamics problem 
and the second with the extended aeroelasticity problem. In general, the engine thrust and control 
surfaces are designed so as to ensure that the aircraft is able to carry out the required maneuvers, 
as well as to suppress any undesirable disturbances, thus addressing the needs of both the flight 
dynamics problem and extended aeroelasticity problem. 

Using Eqs. (43), we write the flight dynamics problem, or the zero-order problem, in the com- 
pact state form 

X ( O )  ( t )  = f [x@) ( t )  , vg (t)] + do) [V$' (t)] U(O) ( t )  (60) 

which, from Eqs. (49), must be considered in conjunction with 

(61) (0) (0) P$)(t) = Mrb vrb (t> 
~ ( o ) ~  (o)T (o)= T is 

where the zero-order quantities are identified as follows: x ( O )  = [RY)' f P V f  Puf 1 
the state vector, f is a nonlinear function of the state vector and the zero-order rigid body velocity 

control vector, in which FE', SF', @' and 6"' are the engine thrust and control surfaces angles, 
p$ = [ptr  p;jTlT is the rigid body momentum vector and 

vector ~ $ 1  = [vYlT u Y ) T ~ ~ ,  ~ ( 0 )  is a coefficient matrix, u(0) = [ F ~  (0) S, (0) S, (O)  6, (0) 1 T is the 

is the rigid-body mass matrix. In the context of the present integrated approach, Eqs. (60) and (61) 
represent an inverse problem, in the sense that a state vector x(O) describing a desired maneuver is 
postulated and a force vector do) permitting a realization of the given maneuver is determined. 

Next, we assume that x(O)(t) and V $ ) ( t )  are known and use Eqs. (50) and (59) to express the 
extended aeroelasticity problem, or first-order problem, in the form 

(63) X ( ' ) ( t )  = A(t)xc1)( t )  + B(t)u( ' ) ( t )  + [0 IITFext(t)  

and 



(1)T f p T  T T (1)T p t j T  *Tr T T T  respectively, in which x( l )  = [Rr q:r q,, . . q,, pvr Pu, - * P*el 
is the first-order state vector, A(t) = A[x(')(t), V z ' ( t ) ]  and B(t)  = B [ ~ ( ~ ) ( t ) , V $ ) ( t ) ]  are 
coefficient matrices, u(l)(t) = [ F g )  C52) C5L1) C5:1)]T is a first-order control vector, Fext is an 

T i s  the 
first-order momentum vector and 
external disturbing force vector, such as due to gusts, p(') = [ p v f  pur pu f  T puw T . . . pqe] 

are zero-order and first-order extended mass matrices. Note that Fext is regarded as a disturbing 
force of a transient nature whose effects will be eventually suppressed by the controls. 

Equation (63) represents a set of linear equations, and the objective is to find a control vector 
u(l)(t) that drives the state vector x(') to zero. To this end, we consider a linear regulator whereby 
the control vector is a linear function of the state vector. In particular, we consider a linear quadratic 
regulator (LQR) in which the objective is to determine an optimal control vector minimizing the 
quadratic performance measure4' 

J = $ ~ ( ' ) ~ ( t f ) H x ( ' ) ( t f )  + s l t , "~" '~ ( t )Q( t )~ ( ' ) ( t )  + ~( ' )~( t )R(t)u( ' ) ( t )]dt  (66) 

where H and Q are real symmetric positive semidefinite matrices R is a real symmetric positive 
definite matrix, t o  is the initial time (commonly assumed to be zero) and t f  is the final time. It is 
shown in Ref. 40 that the optimal feedback control vector is given by 

u(l)(t) = -R-l( t )BT(t)K(t)xcl)( t )  = -G(t)x(')(t) (67 1 

where 

G(t)  = R-'(t)BT(t)K(t)  (68) 

is a control gain matrix, in which K ( t )  is a real symmetric matrix satisfying the transient matrix 
Riccati equation 

(69) 

a nonlinear equation which must be integrated backward in time from t f  to to. Rather than inte- 
grating a nonlinear matrix equation, it is advisable to transform the problem into a linear one. To 
this end, we consider the transformation 

I? = -Q - ATK - K A  + KBR-'BTK, K ( t j )  = H ( t f )  = H 

K ( t )  = E(t )F- ' ( t )  (70) 

where E( t )  and F ( t )  can be obtained by solving the linear equation 

which again must be integrated backward in time. Inserting Eq. (67) into Eq. (63), we obtain the 
closed-loop equation 

X ( ' ) ( t )  = [A(t)  - B ( t ) G ( t ) ] ~ ( ' ) ( t )  + [O IITFext(t) (72) 
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which can be integrated to simulate the system response. 
The problem is considerably simpler when the zero-order solution is constant, such as in steady 

level flight, as in this case the coefficient matrix A is constant. Then, if the system is controllable, 
H = 0 and Q and R are constant, the Riccati matrix K approaches a constant value as t f  increases 
without bounds. In this case, Eq. (69) reduces to the steady-state matrix Riccati equation 

(73) -Q - ATK - K A  + KBR-'BTK = 0 

a nonlinear algebraic matrix equation, which can be solved by means of Potter's algorithm?' and 
the gain matrix G becomes constant. The closed-loop equation reduces to one with constant coef- 
ficients, or 

(74) X(')(t) = ( A  - BG)x(')(t) + [0 1ITFex+,(t) 

which can be used for response simulation. For a stability analysis, we solve the associated eigen- 
value problem 

(75) ( A  - BG - M)x = 0 

The closed-loop system is stable if all the eigenvalues are pure imaginary and/or complex with 
negative real part. 

is optimal in the sense that it minimizes the performance index J ,  but the 
physical merit of this optimality is debatable. In fact, it is often necessary to adjust the otherwise 
arbitrary weighting matrices Q and R to achieve a desirable system performance. The real value 
of the LQR algorithm is that it guarantees a stable closed-loop system. 

The control vector 
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7. Optimal State Observer 

In Sec. 6, we carried out the control design in two stages. In the first stage, we postulated a 
desired aircraft maneuver x(O) and used an inverse approach to determine the control vector u(O) 
permitting realization of the maneuver. In the second stage, we designed a feedback control vector 
u(') ensuring stability of the maneuver, which amounts to driving the perturbation vector x(') to 
zero. The control vector is given by Eq. (67), in which G is the control gain matrix. 

Implementation of the control law, Eq. (67), requires knowledge of the state vector ~ ( ' 1 ,  which 
can be obtained through measurement. This creates somewhat of a problem, as measurements 
represent real quantities and our state vector consists of abstract generalized coordinates rather 
than real coordinates. Moreover, we feed back only perturbations from the maneuver variables. In 
the absence of external forces, the state equations describing the extended aeroelasticity problem 
have the vector form 

(76) X("(t) = Ax(')(t) + Bu(')(t) 

where the coefficient matrices A and B were defined in Sec. 6.  Moreover, denoting the measure- 
ment vector by y ( t ) ,  we can write 

y ( t )  = y(O)(t) + Y ( ' ) ( t )  (77) 

where y(')(t) is the contribution from the maneuver variables and y(')(t)  is the contribution from 
the perturbations in the maneuver variables. We express the latter in the form 

y y t )  = Cx(l)(t)  (78) 

and refer to y( ' ) ( t )  as the output vector. The assumption is made here that the system is observ- 
able:' which implies that the initial state x(')(O) can be deduced from the outputs within a finite 
time period. Observability can be established by checking the rank of a so-called observability 
matrix,40 a matrix involving the matrices A and C. For large-order systems, working with the ob- 
servability matrix may not be feasible, and in practice the choice of sensors ensuring observability 
must be made on physical grounds. In particular, the choice must be such that the sensors signals 
permit reconstruction of the state at all times. The task of determining the matrix C relating the 
output vector to the state vector is discussed later in this section. 

In reality, the state vector cannot be determined exactly from the output vector and must be 
estimated. A device permitting an estimate of the state vector is known as an observe#' and can 
be expressed in the form 

where KO is an observer gain matrix. Subtracting Eq. (79) from Eq. (76), we obtain 

e ( t )  = [A - KoC]e(t) 

in which 

represents the observer error vector. The objective is to find a matrix KO such that the vector e( t )  
approaches zero as t increases. In this case, x(t) + x(t )  with time. For a time-invariant system, 
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this amounts to determining KO so that all the eigenvalues of the matrix A - KoC, known as the 
observer poles, lie in the left half of the complex plane. In implementing feedback controls, we 
must use the estimated state X(')(t), because the actual state x( l ) ( t )  is not available. Hence, Eq. 
(67) must be replaced by 

u(')(t) = -GX(')(t) (82) 

One question of interest is how the choice of observer poles affect the choice of controller poles. 

(83) 

To answer this question, we use Eqs. (81) and (82) and rewrite Eq. (76) in the form 

X ( ' ) ( t )  = [A - BG]x(')(t) + BGe(t) 

Equations (80) and (83) can be combined into 

Because the coefficient matrix in Eq. (84) is block-triangular, the poles of the combined system 
consist of the sum of the poles of A - BG and the poles of A - KoC, so that the observer poles 
can be chosen independently of the controller poles. 

An optimal observer gain matrix can be obtained by adopting a stochastic approach, leading to 
the so-called Kalman-Bucy filter, in contrast to a deterministic observer known as a Luenberger 
observer. To this end, we rewrite Eqs. (76) and (78) in the form 

(85 )  X ( l ) ( t )  = Ax(')(t)  + Bu(l)(t) + ~ ( t )  

y ( l ) ( t )  = Cx(')(t)  + w(t) 

and 

(86) 

where v(t)  is known as the state excitation noise and w(t) as the observation noise, or sensor noise. 
It is customary to assume that v(t) and w(t)  are white noise processes, with intensities V(t) and 
W(t ) ,  respectively, so that the correlation matrices have the form 

(87) E{V(tl)VT(t2)} = V(tl)W2 - h) ,  E{W(t1)WT(t2)) = w(tl)W, - tl) 

E{v(tl)WT(t2)) = E(W(tl)VT(t2)} = 0 

and that they are uncorrelated, so that 

(88) 

The stochastic observer has the same form as that given by Eq. (79) in which the optimal gain 
in which E{ e} denotes the expected value. 

matrix is determined by minimizing the performance measure 

Jo = E{eT(t)U(t)e(t)} (89) 

where U ( t )  is a symmetric positive definite weighting matrix. From Ref. 40, the optimal observer 
gain matrix is given by 

K,*(t) = Q(t)CTW-'(t) (90) 

where Q(t)  is the variance matrix of e( t )  satisfying the transient matrix Riccati equation 

Q(t) AQ(t) + Q(t)AT + v(t) - Q(t)cTw-l(t)cQ(t>, Q(0) = Qo (91) 
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In the time-invariant case, Eq. (91) reduces to an algebraic matrix Riccati equation yielding a 
steady-state optimal observer gain matrix. The main problem in implementing a Kalman-Bucy 
filter lies in the selection of the noise intensities V ( t )  and W(t) .  

At this point, we turn our attention to the determination of the matrix C defined by Eq. (78). 
To this end, we must first specify the measurement vector y(’)(t), which in turn depends on the 
sensors used. In inertial navigation41, which represents the process of determining the position 
and attitude of a moving vehicle from self-contained inertial measurements made on board of the 
vehicle, the system consists of a platform containing accelerometers sensing translational motions, 
gyroscopes sensing angular motions and a computer capable of integrating the sensors signals 
to generate the state. Inertial navigation is widely used for aircraft, in which case there are two 
accelerometers aligned with the North and East directions and three rate gyroscopes with the spin 
axes aligned with the North, East and zenith directions. To ensure that gravity does not contaminate 
the accelerometers signals, the platform is made to rotate continuously so as to remain normal to 
the local vertical. The vertical position of the aircraft is measured by means of an altimeter. In 
view of this, we can assume that the system measures the vectors Rf and 8, giving the position 
and attitude relative to axes XYZ. In this regard, it should be mentioned that we referred to axes 
XYZ as inertial, but in reality they represent earth-fixed axes. If the current formulation is used to 
describe relatively long flights, then proper allowance must be made for the rotation of the earth. 
Because the same process can be used to determine the zero-order position vectors R(O) and do), 
we can assume that the measurement system is capable of yielding RY) and 0:). 

The above process can be used to measure the perturbations in the rigid-body motions of the 
aircraft and the question remains as to how to measure the balance of the variables, namely, the 
elastic variables. To this end, we assume that there are Ni (i = f, w, e) sensors measuring veloci- 
ties at the points Pk ( k  = 1 ,2 ,  . . . , Ni) of the aircraft components and express the output vector in 
the form 

where 

(93) 

in which Vl”(Pk, t) are vectors of velocity measurements. From Eqs. (12) and (53), we can write 

(llT = [Vj l )T(~l ,  t )  Vj1’T(~2, t )  . . . vi - (1)T ( P N ~ ,  t)lT, i = f, w, e Yi 

- - 

where 

(94) 
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s ; ~  Also from Eqs. (12) and (53), we can write 

In a similar fashion, we can write 

where - 
block-diag Cek = [0 0 Cei;tF)@,fe 0 Ce~;)@ue(Pk)  0 0 0 

Equations (94), (96) and (98) are in terms of d(') and V(l). They can be transformed into 
expressions in terms of the state x(l) = [d(l)Tp(l)T]T by considering Eq. (64). To this end, we 
observe that = M(')(q,f, q,,, que), so that we can write 

M(l)V(O) = Mvd(l) (loo) 

where MV is a matrix depending on V(O). Hence, using Eq. (64), we obtain 

V(l) = (M(0))-l(p(l) - Mvd(l)) (101) 

so that 
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I 
Finally, using Eqs. (92), (93), (94), (96), (98) and (102), we conclude that 

C =  

I 0 0 . . .  0 
0 I 0 . . .  0 

block-diag Cf1 
block-diag Cf2 

block-diag Cf Nf 

block-diag CU,l 
block-diag Cu?2 

block-diag C w ~ ,  
block-diag C,l 
block-diag Ce2 

block-diag C e ~ ,  

. . . . . . . . . . . . . .  

. . . . . . . . . . . . . .  

. . . . . . . . . . . . . .  
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8. Numerical Example 

The flight of a flexible aircraft is fully described by Eqs. (43), (49), (50) and (59). A solution of 
these equations requires the aircraft geometry, the mass and stiffness distributions and the aerody- 
namic coefficients. Information pertaining to an actual aircraft was made available by an aircraft 
manufacturer and is listed in the Appendix. 

The solution of the flight dynamics equations, Eqs. (43) and (49), requires the matrices Cy’, 
E?’, the total aircraft mass m, the matrix S ( O )  of the first moments of inertia of the undeformed 
aircraft and the inertia matrix J(O) of the undeformed aircraft. The matrices Cy’ and E?’ can 
be obtained from Cj and E f ,  Eqs. (2), by simply replacing $, 8 and 4 by $ ( O ) ,  t9(’) and @(’), 

respectively. The aerodynamic forces are given by Eqs. (45) and the required coefficients are given 
in the Appendix. Other data required is as follows: engines locations, rEl = [-108.62 37.0 
-13.96IT in, r~~ = [-108.62 - 37.0 - 13.96IT in; total aircraft mass, m = 33.5896 lb - s2/in; 
matrix of first moments of inertia and inertia matrix 

0 lb * s 2  

81.1583 lb - in - s2 
7042 18.5794 1 

1 -134.6827 0 
0 
0 0 

183183.4257 4.7745 -37624.9453 
566328.8970 

Some of the above quantities involve the matrices of direction cosines between the various com- 
ponents body axes and the fuselage body axes. These matrices are listed in the Appendix. The 
flight dynamics problem essentially consists of setting the control surfaces and the engine thrust 
for a given aircraft maneuver, of which the steady cruise is a special case. It essentially amounts 
to the problem of “trimming” the aircraft. As far as this paper is concerned, it provides the input 

The solution of the extended aeroelasticity 
equations, Eqs. (50) and (59), requires an explicit 
choice of the structural model for the aircraft of 

F Fig. 1. As a first approximation, the fuselage, 
wing, and both the horizontal and vertical sta- 
bilizers in the empennage are modeled as beams 
clamped at the origin of the respective body axes 
and undergoing bending and torsion. The fuse- 
lage undergoes the bending displacements ufv  
and u f z  and the torsional displacement $fz, as 
shown in Fig. 2, so that uf = [0 ufv ufzIT and 
+f = [$fz 0 O]*. On the other hand, the wing 
and the stabilizers undergo only one bending and 

Figure 2. Aircraft Components Undergoing one torsional displacement each. Note that, as 
Bending and Torsion customary, displacements are measured relative 

to the elastic axis (Fig. 2). Each clamped beam 
is assumed to be discretized by the Galerkin method in conjunction with two shape functions per 
displacement component. For bending, the shape functions are chosen as the eigenfunctions of a 

Vy’, uf (0) , pvf (0) and pUf (0) to the extended aeroelasticity problem. 

IC 
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I 
~ uniform cantilever beam 

and for torsion, the eigenfunctions of a uniform clampe-free shaft 

4Qir = sin(2r - 1)7rxi/'2Li, r = 1,2;  i = f, w, e ( 106) 

where Li is the length of the cantilever beam. In this regard, we note from Fig. 2 that the fuselage 
is modeled as two cantilever beams clamped at O f ,  one pointing to the aircraft nose and the other 
to the tail. New quantities entering into the first-order equation are Cy) and E y ) ,  which can 
be obtained from Cf and E, by using Of = O y )  + 6:) and letting the components of 0:) be 
small, F(l), M(l), Qui and Q Q ~  (i = f ,  w, e), which are given by Eqs. (54), and Qui and 
which contain +uir and 4Qir as given above. Moreover, the stiffness matrices are obtained from the 
potential energy as follows: 

= JDf  (d2ufy/ax;)2 + E'fy ( d 2 u f Z / a x 2 f ) 2  + G J f Z  (a$fZ/axf)2] d D f  

+ J D 7L' [ E I w  ( ~ ~ w z / a x ~ ) ~  + G J w  ( a @ w z / a ~ , ) ~ ]  d D w  + S,, [EIe ( a ' . e z / a x ; ) '  

+ G J e  ( ~ e z / a x e ) ~ ]  dDe = ixi(qTiKutqui + qgiK+iq@i) (107) 

where 

are the desired stiffness matrices, in which primes denote differentiations with respect to xi. 

in the case of certain aircraft maneuvers, the systems is time-varying. 

neuver. 

Equations (63) for the model in question are of order 76, but the equations are linear. However, 

To demonstrate the ideas, we consider two cases, steady level flight and steady level turn ma- 

i. Steady level flight 

For steady level flight, the zero-order velocities are defined by 

v:' = C?)[V(O) o 0 1 ~  = constant, wy' = o (109) 

where V(O) is the aircraft forward velocity. From Eqs. (49), we conclude that the zero-order mo- 

(1 10) 

l menta are 

(O) = S(O)V~'  = constant pvf (0) = r n ~ y )  = constant, pWf 

I Hence, from the second line of Eqs. (43), we have 
I 

F(O) = 0, M(O) = 0 (1 11) 
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The implication of Eqs. (1 1 1) is that, for steady level flight, the forces and moments due to the 
engine thrust, aerodynamic forces, gravitational forces and control forces balance out to zero. The 
angle of attack can be expressed as 

(1 12) cy$ = tan-l(vf, (0) = cy0 = constant 

For level flight, we have + ( O )  = q5(O)  = 0, so that the pitch angle is equal to the angle of attack, or 

(1 13) 0) - (0) 

Moreover, because Vj:) = 0, the sideslip angle is zero, 

0( -af 

pf (0) - - tan-'(v/;'/v/:') = o (1 14) 

In view of this, and due to the symmetry of the gravitational and aerodynamic forces, the side 
force FJ0) and the roll and yaw moments, Mio) and Ad:'), are automatically zero. We assume 
that V(O) = 5000 in/s and consider a flight at a 25000 ft altitude, so that the speed of sound is 
1016.1 ft/s and, hence, the Mach number is 5000/(1016.1 x 12) = 0.41. From Eq. (109), we have 
Vy' = 5000[cos O(O) 0 sin @ ' ) I T .  Then, using Eqs. (44) in conjunction with Eqs. (45)-(48), Eqs. 
( 1  11) yield 

Fie) = 2FE) - 695.3237 cos2 t9(') - 12973 sin O(O) + 2149.5358~5:') cos do) sin 

F,(') = - 2149.53586p) cos2 O(') + cos do)( 12973 - 202450.4921 sin e(')) 
+ sin2 @ O ) (  164224.6592 + 2149.53586p) tan + 164919.9829 tan2 e(')) = 0 

+ sin2 0(0)(-2149.5358C5L0) - 239285.6777 tan@') - 36835.1856 tan3 O(O)) = 0 
(1 15) 

M r )  = - 27.92Ff) + (-16069.8929 - 553904.5798dp)) cos2 do) 
-52019.1354 sin@') + (-2.0058 x lo6- 116986.55036p)) cos 
+ sin2 19(~)(3.0203 x lo6 - 553904.57986p) + (-1.6634 x lo6 
- 116986.55036p)) tan O(') + 3.0364 x lo6 tan2 

sin O(') 

+ 342353.8625 tan3 @ O ) )  = 0 

which can be solved for the pitch angle O('), the engine thrust F') and the elevator angle Si'). Solv- 
ing the nonlinear equations (115), we obtain = 0.0667 rad, FE) = 431.6465 lb and @) = 
-0.2703 rad, so that the zero-order control vector is given by do) = [ F f )  0 6;') OlT = 
[431.6465 0 - 0.2703 OIT. Hence, the control force vector can be written in the matrix form 

0 
0 
0 
0 
0 
0 
2 
0 
0 
0 

-27.92 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

803506.9168 
0 

53637.0429 

0 
0 
0 
0 
0 
0 

143.4894 
0 

-2149.5358 
0 

-561713.8624 
0 

0 
0 
0 
0 
0 
0 
0 

- 1905.7803 
0 

- 153855.5426 
0 

529190.6764 

431.6465 
0 

-0.2703 
0 

= [0 0 0 0 0 0 824.5038 0 581.0801 0 139795.5057 0IT 
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In the case of steady level flight, the aircraft experiences static deformations due to zero-order 
forces. Because static deformations are constant and deformations are first-order quantities, we 
denote all quantities involved by a subscript c and a superscript (1).  Consistent with the zero-order 
results and using the first of Eqs. (50),  we write 

where V(l) is the first-order forward velocity. Then, from Eqs. (59), the corresponding momenta 
are 

and, from Eqs. (50), we conclude that 

FP) = 0, MP) = 0 

- K u i q u i c  + Qui= = 0, -K$iqdric + Q ~ i c  = 0, i = f, ( 1  19) 
e 

which represent algebraic equations to be solved for the first-order pitch angle, the first-order 
elevator incident angle, the first-order engine thrust and the static generalized displacements s i c  

and qli,ic. We note that FL') = [Fi;) 0 F,, (l)  ] T , Mi1) = [0 Mi;) OIT,  Q u i c  and Q Q i c  are all 
functions of quic and qqic (i = f, w, e) .  

The stiffness matrices are as follows: 
8687.0713 -3181.9271 0 0 

-3181.9271 293633.2239 0 0 
0 0 12883.4627 -4643.2903 
0 0 -4643.2903 419984.1291 

( 120) 

8891.2109 -28248.0864 0 0 
-28248.0864 231517.6212 0 0 

0 0 13097.4380 -36822.7531 
0 0 -36822.7531 363078.6024 [ 1.0781 1.9339 ] 

581.3939 -1488.0598 2.2974 3.6438 ] 
los [ 1.5462 1.0134 ] 

'Os' K$f = 1.9339 6.7838 K$f = 1.0134 9.0414 

] ' K ~ w = K &  = [ 3.6438 13.5871 Kuw-  uw [ -1488.0598 13050.3375 

K,", = K,", = 

K,", = [ -4303.4586 52929.3173 ] ' KGe - 5.3834 31.9145 

R - K L  = 

1.5455 1.4924 
106 1 406.2228 -696.8287 R - K L  = [ -696.8287 10685.4900 ' K G e -  qe 1 

5.0679 5.3834 
106 1 2126.9677 -4303.4586 

- [ 
where the superscripts F, A,  R, L and V denote the fore part, aft part, right half, left half and verti- 
cal (stabilizer), respectively. Assuming that V(l) = -5 in/s, so that Vk) = V(l) [cos O(O) 0 sin 

can solve Eqs. ( I  19) and obtain 
+V(o)[-O(l)sO(o) 0 I ~ ( ~ ) c O ( O ) ] ~  = [-4.6953 - 333.0272O(l) 0 - 4.7316 + 4988.89700(l)IT, we 

O ( l )  = - 0.00088 rad, F,!$) = -3.1169 lb, 6:') = -0.0047 rad 
S u f c  - - [0 0 0.1206 - 0.0015ITin, q;fc = [0 OIT rad 

S u f c  A - - [0 0 0.0585 0.0038IT in, qif, = [0 OIT rad 
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q,,, R -  - qtwc = [-3.4537 - 0.2918IT in, q&, = q$wc = [0.0021 - 0.0002IT rad 

que, R -  - qiec = [-0.0279 0.0006IT in, qGeC = q$,, - - [0.0024 - 0.0002]T rad 

q:ec = [0 OlT in, q:ec = [0 OIT rad 

Assuming that the first-order state x(l) is measured from the static elastic displacements posi- 
tion, the first-order state equations for steady level flight can be written in the customary form, Eq. 
(63),  where A and B are constant coefficient matrices. This requires the mass matrices, defined by 
Eqs. (15). They can be computed as follows: 

Mll = mI, 
131.1002 0 0 0 -4,2385 

0 0  
0 4.2385 0 0 

4u f z l  + * - I F  0 4.2385 0 

-3.2026 0 0 0 0 0  

0 
- 131.1002 0 

0 
M12 = S T  = 

+ [ 8 8 3'20026 ] qcfyz + [ -4.2385 0 

0 -0.0807 -0.0128 0 0 -0.1252 
0 0  

0.0128 0 0 0.1252 0 0 

0 0 0.0219 

-0.0219 0 0 

0 0 

0 4.2385 -3.2026 
8 1 ,  . . . ,  

I +  182862.0586 4.7745 -37732.0967 
4.7745 566132.2704 81.1583 

-37732.0967 81.1583 704093.8389 
M22 = J = 

0 -863.2814 0 
-863.2814 0 -21.0393 

0 -21.0393 0 

F 
Quf Yl 

qufzl+. . . (122) I F  7.3021 0 ] [ I C 1 4  0 0 

1 ' -  
367.2116 0 0 -863.2814 

0 7.3021 qUfy2+ 42.0786 0 

6.9600 3.2162 -20.30651 0 35.9911 0 

-20.3065 -1.2425 -0.5828 0 12.8989 0 [ 3.2162 7.5428 -1.2425 QUez + 35.9911 0 12-8989 QUel 

4.0183 qL2, 

0 0 2.4862 -0.7090 

0 0 0  0 0 

1 0 -4.0598 0 

4.0183 0 
+ [ - 4 . y  0 

-21.0393 7.3021 0 

863.2814 -367.2116 0 
0 M& = 

+ [ 0.7: -2.3655 0 0 

0 0 0  

2.2363 -1.5318 0 
-1.5318 8.4942 0 

0 . . .  ) M; = 

0 
0 -1.5310 7.9257 

M A  = 

68.4129 72.7595 
0 0 

-344.8056 -402.1912 
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1 17.3669 10.8317 M\J - 34.1002 32.0129 
Mk3 = [ 10.8317 32.5338 ’ 88 - [ 32.0129 65.4667 1 

Before we can compute A and B, we must still generate the damping matrices Cui and Cqi (i = 
f, w, e ) .  To this end, we assume that the damping functions G~ and clLi (i = f , w, e) are all 
constant, so that the damping matrices, Eqs. (19), reduce to 

(123) Cui = cuiKui, Cqi = cwiK*i, i = f, w, e 

Equations (123) state that the damping matrices are proportional to the stiffness matrices, which 
permits us to write the relations37 

( 124) cui = 2c/A;{’, cVi = 2</AQi 112 , i = f, W ,  e 

where 5 is a structural damping factor and gi2 and Ai? (i = f , w , e )  are the lowest natural 
frequencies of the respective components. We assume that < = 0.03. Moreover, we obtain the 
component natural frequencies by solving the eigenvalue problems 

det[Kcf - AffM&] = 0, det[K,’lf - AtfMi] = 0, det[K,R, - AfwMz] = 0 
det[K,L, - A$~kf&] = 0, . . . , det[K:e - AteM&] = 0, det[K:e - AzeM&] = 0 

(1 25) 

with the results 

& = 59.1046 rad/s, & = 54.1788 rad/s, a = a = 36.2911 rad/s 

a = a = 72.1276 rad/s, a = 131.9557 rad/s, 

& = 221.8479 rad/s, & = 61.9940 rad/s, @ = & = 253.9293 rad/s 

,/Age = ,/ASe = 294.1938 rad/s,/A:e = 384.8014 rad/s 

Hence, using Eqs. (120), (123), (124) and (126), the damping matrices are 

8.8187 -3.2301 0 

c;f = [ -3.i301 298.0817 0 
0 13.0786 -4.7136 

0 0 -4.7136 426.3467 

9.8465 -31.2832 0 0 
-31.2832 256.3929 0 0 

( 127) 

1 5428.3762 8609.7859 

418 18.3661 27408.58 14 104342.4068 187172.4172 [ 187172.4172 656562.6583 

uw [ -2.4602 21.5761 ’ iW 8609.7859 32104.4936 

0 14.5047 -40.7792 
0 0 -40.7792 402.0894 

‘$f = [ 27408.5814 244530.1083 1’ ‘$f 
0.9612 -2.4602 C~ = 

315.1931 304.3728 
304.3728 2056.9682 

1 
] CR =c;e= [ 

C R  =c= = 

C R  = c= = 

cv = 

uw 

0.3379 -0.5797 
ue ue [ -0.5797 8.8888 ’ *e 

ue [ -1.9568 24.06691’ @e [ 839.4058 4976.2592 
0.9671 -1.9568 CV = 790.2110 839.4058 ] 
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Then. the coefficient matrices in Eq. (63) can be shown to be 

0 0 1 0  0 0 0 ... 0 
0 0 0 1 0  0 0 ... 0 
0 0 0 0 1 0  0 . . .  0 
0 0 0 0 0 1 0  ... 0 
0 0 0 0 0 0 0  ... 0 

A =  

B =  

1; 5x;08 : : (130) 108 0 
0 0 108 

R =  

0 0 0  0 0 0 ... 0 0 
0 0 0 -333.0272 0 5000 ... -0.0014 -0.0001 
0 0 0  0 -5000 0 . . .  0 0 
0 0 0  0 0 0 ... 0 0 

0 0 0 36.3883 19.0770 0 ... -0.0212 -0.0020 
0 0 0 40.8390 41.4025 0 ... 0.1414 0.0257 
0 0 0 455.5429 0 0 . .. -31.2223 -9.6060 
0 0 0 538.2891 0 0 ... 63.7274 -136.8998 

0 0  0 0 
0 0  0 0 

0 0  0 0 
2 0 143.4894 0 
0 0  0 - 1905.7803 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . .  
0 0  0 -3097.7273 

Moreover, the feedback control vector is 

in which it is assumed that the right and the left ailerons rotate by angles of the same magnitude 6?) 
but of opposite sense and that the right and left elevators rotate by angles of the same magnitude 
and sense. 

Choosing the weighting matrices Q and R in the performance index, Eq. (66), as follows 

0 1 0 0 0 0 0  . . .  O l  0 
1 0  0 0 0 0 0 ... 

Q =  

......................... 
1 0  0 0 0 0 0 0 I . .  O J  

solving the steady-state Riccati equation, Eq. (73), and using Eq. (68), we obtain the gain matrix 

G =  

0.2994 0 0 0 
0 0 0 0 

-0.1016 0 0.0001 0 
0.0003 0.5222 0 0.1024 

-1112.0150 0 -1.8943 0 
-0.0187 1.9350 0 0.5103 

-0.0006 0 0 0 
0.0001 0 0 0 

0 0 0 0 
0 0 0 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

T 
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Then, solving the closed-loop eigenvalue problem, Eq. ( 7 3 ,  we obtain the closed-loop eigenvalues 

A1,2 = -0.1038 f 0.0868 i ,  A3,4 = -0.1174 f 0.2033 i ,  As = -0.2349, 

x71,72 = -40.7342 f 604.4685 i, X73,74 = -79.0030 f 791.6011i, 
x6,; = -0.2918 f 0.3064 i ,  . . . , &9,70 = -40.5617 f 599.4532 i ,  

(132) 

A75.76 = -211.4842 f 1063.7436 i 

Clearly, all the eigenvalues are real and negative or complex with negative real part, so that the 
closed-loop first-order system is asymptotically stable. The implication is that any disturbances 
from the steady level flight are driven to zero. This is in contrast with the open-loop eigenvalues, 
the eigenvalues of A, the first four of which are zero and the fifth is real and positive. 

Finally we consider the response of a closed-loop system to a gust acting on the wing and 
having the linearly distributed form 

R R  

(1 33) 
f ,  (zw, t )  = [0 0 - 0.5(3 + z : / L , )  sinxih(1 - t)]’, 0 < x: < L ,  
f,(z,,t) L L  = [0 0 - 0.5(3 - zf;,/L,) sinrTTt((1 - t)]’, 0 < xf;, < L ,  

i where sin T&( 1 - t )  represents a half-sine pulse, in which M (  1 - t )  is a rectangular function 
of unit amplitude and unit length. Inserting Eq. (133) into Eqs. (54), we obtain the generalized 
force components of the disturbance vector Fext entering into E$ (74), which can be integrated 
to obtain the system response. Figures 3-5 show the response for the rigid body variables and a 
selected number of elastic variables, and Fig. 6 shows the control inputs. 
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Figure 3. Rigid Body Displacements 
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15 20 25 

PI : 1 1 ~ ~ 1  

Velocities 
Pz 1 2 , y 2  

Velocities 
P 3  : 1 3 . ~ 3  

Velocities 
P 4  : 1 4 ~ ~ 4  

Velocities 

G!)[rad] 
0.0125 

0.0 1 
0.0075 
0.005 

0.0025 
0 -’ 

Right Left 
Fore Aft Right Left Horizontal Horizontal Vertical 

Stabilizer Fuselage Fuselage Wing Wing Stabilizer Stabilizer 
111.21,36.25 111.92.35.0 120.35.58.23 120.35, -58.23 50.54.32.0 50.54. -32.0 50.0.42.0 
vj:) and vji) vjt) and vji) v g  VA;’ v;: ) vi; ) v;: ) 

VU) vi;) v w z  - ( 1 )  vg ) vi;) v;; 
vj:) and vji) vjt) and vjtl vwz  - ( 1 )  v w z  - ( 1 )  v;: v:; vd,‘ ) 

f z  f z  v;: ) vi; ) v;; ) 

111.21, -36.25 111.92, -35.0 120.35, -28.0 120.35, 28.0 46.6, -20.0 46.6.20.0 41.0, -28.0 

fz fz 
271.21.24.0 279.79.25.0 327.66,25.07 327.66, -25.07 127.0, 19.0 127.0. -19.0 112.0. 27.0 

277.21, -24.0 279.79, -25.0 327.66, -10.0 327.66. 10.0 127.0. -12.0 127.0, 12.0 113.0, -16.0 
- ( 1 )  
VWZ 

- (11 
v w z  

VU) V ( ’ )  

To compute the matrix C, Eiq. (103), relating the output vector to the state vector, we use Eq. (100) 
and write 

Mv = 

0 ... 0 0 0 0 
0 ... 0 0 0 0 
0 ... 0 0 0 0 
0 ... 0 1411.5402 -1066.5377 0 
0 ... 0 0 0 21145.5039 
0 ... 0 -21145.5039 15977.2118 0 
0 . . .  0 0 0 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 0  ... 0 0 0 0 
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... 

... 

. . . . .  

. . .  

0 
0 
0 

4.2544 
-402.3892 

0 

0 

-63.7322 - 

. . . . . . . . . . . .  

0 0 
0 0 
0 0 

41.7049 -7.3013 
0 0 

-624.7574 109.3773 
0 0 

0 0 
. . . . . . . . . . . . . . . . . .  

Then, inserting Eq. (134) into Eq. (103), we obtain 

- 1 0 0 0 0 0  0 

C =  

........................... 
0 0 0 0 0 1  0 
0 0 0 0 0 0 0.6890 
0 0 0 0 0 0 -1.8548 
0 0 0 0 0 0 1.8590 

0 0 0 0 0 0 1.5244 

0 0 0 0 0 0 1.8189 

........................... 

0 0 0 0 0 0 -2.4135 

0 

0 
-0.5206 
1.4015 

. . . . . . . . . 

-1.4046 
. . . . . . . . . 
-1.1518 
1.8236 
- 1.3970 

0 

0 
-0.00003 

0.0008 
0.0011 

-0.0015 
0.0002 
0.0009 

. . . . . . . . . 

. . . . . . . . . 

0 

0 
0.0123 
0.0320 

. . . . . . . . . 

-0.0373 
, . . . . . . . . 

0.0871 
-0.0260 
-0.0385 

0 . . .  0 
0 ... 0 
0 ... 0 
0 ... 0 
0 ... 0 
0 ... 0 
0 ... 0 

0 ... 0 
f . . . . . . . . .  

0 ... 

0 0 
0.0026 0.0019 
4.1411 -3.1290 
4.1328 -3.1227 

. . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . .  
-0.0066 0.0050 
-0.1611 0.1217 
0.1101 -0.0832 

... 0 0 

... 0 0 

... -0.0002 0 

... -0.o004 0 

. . . 0.0004 0 

... -0.4412 -0.6612 

... 2.1761 -1.4006 

. . . -1.4522 0.9932 

..................... 

..................... 

We assume that the excitation noise v(t) and observation noise w(t) represent white noise pro- 
cesses with intensities V and W, respectively, and choose 

V = diag[100000 100000 100000 100000 100000 100000 lo-’ lo-’ 
10-9 10-9 10-9 10-9 10 -~10-~  10 -~  10 -~  10-~ 10-~  10 -~  

1 0 - ~  10 -~  1 0 - ~  1 0 - ~  1 0 - ~  10-~10-~  10 -~  10 -~  10-~  o . . . 01 
(136) 

and 

so that, from Eq. (91), the steady-state Riccati equation 

AQ + QAT + V - QCTW-lCQ = 0 

yields 

Q = diag [ 0.0003 0.0003 0.0003 0.3162 0.3162 0.3162 . . .  0 0 ] (1 39) 
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Hence, from Eq. (90), the optimal observer gain matrix is 

- - 

- 3.1623 x lo8 
0 
0 
0 
0 
0 

0.0018 
-0.0013 
3.4719 

0.0016 
-2.6233 

0 
3.1623 x lo8 

0 
-332.6945 

0 
4995.0050 
-0.6163 
0.4656 
0.0042 

-0.0032 
-0.5422 

0 
0 

3.1623 x lo8 
0 

-4995.005 1 
0 

0.0023 
-0.0018 
4.5563 

-3.4428 
0.0021 

0 
-0.0003 

0 
316227.7660 

0 
0 

-0.0471 
0.0348 
0.0001 

-0.o001 
-0.0414 

0 0 ... 
0 0.0050 . .. 

-0.0050 0 ... 
0 0 ... 

316227.7661 0 . . .  
0 316227.7661 . . . 

-0.0003 0.1358 . . . 
0.0002 -0.1029 ... 

-0.5724 0.0003 ... 
0.4346 -0.0002 . .. 
- 0.0003 0.1193 ... 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
-0.0014 0 0 0 0 ... 0 
-0.0001 0 0 0 0 ... 0 .  

( 140) 

Finally, solving the eigenvalue problem for A - KoC, we obtain the observer eigenvalues 

A1 = -0.0103, A2,3 = -0.7807 f 1.66182, X4,5 = -0.1874 f 2.21662, 

x11,12 = -4.6367 f 62.63482, x13,14 = -4.2692 f 68.79292, . . . , 
= -5.7278, x7,8 = -5.7237 f 36.97982, xg,lo = -3.7696 f 45.60802, 

(141) 
&3,64 = -40.5621 
x67,68 = -79.0066 f 791.58212, &9,70 = -211.4807 f 1063.74322, 

599.44942', &5,66 = -40.7343 f 604.46872, 

A71,72,73 = -316228, A74,75,76 = -3.1623 X 10' 

The performance of the observer design can be demonstrated by simulating the response of the 
combined system, defined by Eq. (84), to an initial state and initial observer error. To this end, we 
choose the values 

x(l)(O) = [5 5 5 0.005 0.005 0.005 0.2 0.1 0.2 0.1 0.2 0.1 -0 .2 -0.1 -0 .2  
- 0.1 - 0.2 - 0.1 - 0.2 - 0.1 -0 .2 - 0.1 -0.2 - 0.1 0.05 0.01 - 0.05 

( 142) 
- 0.01 0.05 0.01 - 0.05 -0.01 0.05 0.01 - 0.05 - 0.01 0.05 0.01 O . . .  OlT 

e(0)  = - 0.15d1)(0) 

Figures 7-9 show the response for a selected number of rigid body and elastic variables and their 
observer estimates. Figure 10 shows the control inputs as given by Eq. (82). 
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ii. Level steady turn maneuver 

We consider the case in which in the zero-order problem the aircraft flies at a constant velocity 
around a circular path of radius R in the horizontal X, Y-plane. In this case, it is convenient to 
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refer the rigid body motions to a set of axes zlylzl obtained through a rotation $(O)  about 2, where 
$O)  = R = constant. It is not difficult to see that axes zl, y1 and z1 represent a set of cylindrical 

axes t ,  n and 2, where t is tangent to the circle and n is normal to it. Denoting by R, the velocity 
of Of in terms of cylindrical components, the kinematical relation corresponding to the first of 
Eqs. (43) can be written as 

(0) 

where 

= 

is the matrix of direction cosines between tnZ and the fuselage body axes zf yf z f ,  obtained from 
C f ,  the first of Eqs. (2), by letting $ = 0 and replacing O and 4 by and $('I, respectively. 
Similarly, the second of Eqs. (43) can be written as 

6,  ( O )  = [4 '(0) $0) p'] = [O 0 Q]T = ( E p ) ) - q )  (145) 

where Ep' can be obtained from E f ,  the second of Eqs. (2), by replacing O and 4 by O(O) and $ ( O ) ,  

respectively. Equations (143) and (145) yield 

Vf (0) - - [ ~ ( 0 )  f. ~ ( 0 )  fy ~ ( 0 )  f z  I T - - C(o)R(o) f f  = RR[cO(') S O ( ~ ) S C $ ( ~ )  S O ( ~ ) C ~ ( ~ ) ] ~  = constant (146) 
and 

uy) = [w:) wfy (0) w,,] (0) T - - Ef  (0) 6 ,  * ( O )  = R[-sO(') cd0)s4(O) C O ( ~ ) S ~ ( ~ ) ] ~  = constant (147) 

so that, from Eqs. (49), we have 

P V f  ( O )  - - mv?) + S ( 0 ) T W y )  = constant, p:; = S(o)v(O) f + J ( O ) W ~ )  = constant (148) 
It follows that the equations of motion, the last two of Eqs. (43), reduce to 

? ( 1  49) 

To determine the parameters defining the steady level turn maneuver, we choose the turn radius 
and control 

S, ] . Hence, assuming the values R = 1.5mi = 95037in and 

-(o) (0) + F(0) = 0 -V(O) pvf ( O )  - Wf (0) pWf (0) +M(O) = 0 
-Wf P V f  

which are independent of time. 

R and angular velocity R and solve Eqs. (149) for the bank angle qh(O), pitch angle 
vector do) = [Fe 
R = 0.0526 rad/s, so that RR = 5000 in/s, and using Eqs. (146) and (147), we have 

(0) ~ ( 0 )  a(0) (0) T 
a e 

(1 50) 

We consider a flight at a 25000 ft altitude, so that the speed of sound is 1016.1 ft/s and, hence, the 
Mach number for the flight is 5000/(1016.1 x 12) = 0.41. Inserting Eqs. (150) into Eqs. (149) in 
conjunction with Eqs. (148) and solving the resulting transcendental equations, we obtain 

O(O) = 0.0986 rad, 4 ( O )  = 0.6160 rad 

Ff) = 468.7429 lb, SF) = -0.0028 rad, Sp) = -0.3233 rad, a?) = -0.3445 rad 
(151) 
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Then, the zero-order control force vector can be written as 

0 
0 
0 
0 
0 
0 
2 
0 
0 
0 

-27.92 
0 

0 
0 
0 
0 
0 
0 

1.0370 
0 

-13.7394 
1.0746 x lo6 

65027.5713 
- 164.5690 

0 
0 
0 
0 
0 
0 

178.261 1 
0 

-2875.1495 
1.4415 

11.7592 
- 750586.5476 

0 
0 
0 
0 
0 
0 

77.3023 
-1916.1116 

0 
- 154689.6019 
-6240.6944 
532059.4480 

0 
0 
0 
0 
0 
0 

844.5606 
654.9960 
692.9931 

50641.1455 
171482.9784 

-182061.4664 

As in the case of steady level flight, the aircraft experiences static deformations in the steady 
level turn maneuver as well. Denoting the corresponding constant quantities by the superscript 
(1) and subscript c, using the first of Eqs. (50) and letting V(') be the cylindrical coordinates 

L ( 1 )  
counterpart of Rf , we can write 

(1) - c(0) v(1) - pya)] = = 0 
(153) Vfc - f [ f 

sUic = 0, sqic = 0, i = f, w, e 

The momenta are all constant and can be expressed in'terms of the zero-order and first-order 
velocities and the static deformations using Eqs. (59). 

A constant solution of the first-order equations, Eqs. (50), can be obtained by letting the left 
sides be equal to zero and solving for &), e:'), ub." = [F$; 6:) 6::' 6si)]T and the static 
deformations quic and qQic (i = f, w, e). Assuming that V(') = [-5 0 OIT in/s and using the first 
of Eqs. (153), we obtain 

(1 54) 1 -4.9754 - 492.1217eP 
vk) = -0.2843 + 2874.81219L1) + 486.4652&' [ -0.4017 + 4061.1909&) - 344.35624;'' 

so that Eqs. (50) yield 

q$p) = - 0.0011 rad, 0:') = -0.0013 rad 

UP) = [-4.0727 - 0.0002 - 0.0063 O.OOOIIT 
Sufc  - - [-0.0005 0.0001 0.1458 - 0.00191T, qcfc = [-0.0001 OIT 
Sufc A - - [-0.0408 - 0.0008 0.0827 0.00391T, q$fc = [0.0003 - O.OOOIIT 

- [-4.1523 - 0.35111T, qgwc = [0.0025 - 0.00031T quwc  - 

quwc  - - [-4.1765 - 0.35261T, qGWc = [-0.0025 0.0003]T 

que, = [-0.0473 O.OOO1]T, q$ec = [0.0029 - 0.0002]T 

que, - - [-0.0489 0.000081T, qGeC = [-0.0029 0.00021T 

qYec = [0.0032 0.00141T, qTec = [0.0017 - O.OOO1]T 

(155) 
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The mass matrices, Eqs. (19, for the steady turn case are as follows: 

0 0 -4.2385 
0 0  4,s Yl 

0 4.2385 0 0 O I F  kf12  = sT = [ -130.4114 0 

+ [ x x QffY2 + [ 0 

+ [ 0 8 O'Oilg] qL2, MA = [ 4.20385 -3.2026 0 x 1 ,  . . .  , 
-18.6695 566091.8052 74.4042 ] + [ -86%2814 

O I v  

130.4114 0.1477 

0 4.2385 0 

0 

-0.1477 0 

-3.2026 0 0 -4.2385 0 0 

0.1095 0.0173 0 0 -0.1252 
0 0  

0.1252 0 0 
0 

0 

0 0 0 

-0.0219 0 0 0 0 4.2385 -3.2026 

182795.8456 - 18.6695 -37747.5473 -0.0025 -863.2814 
-21.1022 quful 

O I F  0 
-37747.5473 74.4042 704068.0911 -21.1022 -0.0025 

I F  ( 156) 

0.0010 367.2116 0 42.2044 0 -863.2814 
0 42.2044 0.0012 qufzl + . . . 

7.3208 0.0010 -863.2814 0.0012 0 

12.8965 quel 
6.9557 3.2162 -20.3065 ] 
3.2162 7.5394 -1.2456 35.9911 0 

-0.0075 35.9911 

[ que2 + 
-20.3065 -1.2456 -0.5837 0 12.8965 -0.0075 

0 0 2.4362 -0.7090 

0.0022 -4.0598 0 

+ [ - 4 . y  0 

+ [  x 0 0 0  

4.0187 0.0022 

0 

68.3900 72.7325 
0 

-21.1022 7.3208 -0.0012 
0 0 

863.2814 -367.2116 

-344.8056 -402.1912 

0.7090 -2.3655 0 0 
0 

2.4862 -0.7090 0 
-0.7090 2.3655 0 

0 
0 -0.7090 2.3655 

1 34.1002 32.0129 Mk= [ 10.8317 32.5338 17ML=[  32.0129 65.4667 
17.3669 10.8317 

Next, we consider the time-varying part of the first-order problem, Eqs. (50) with all quantities 
measured from the constant static solution. To this end, we use Eq. (63) in which the coefficient 
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A =  

0 0 
-596.0114 0 

0 -5000 
0 0.0529 

-0.0524 0 

174.902 1 42.3914 
, . . . . . . . . . . . . . . . . . .  

- 
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  

0 0 0  
. . . . . . . .  . 

B =  

0 ... 0.0004 -0.0001 
5000 ... -0.0008 -0.0012 

0 ... 0.0010 -0.0008 
0 ... 0 0 
0 . . .  0 0 

0 . .. -76.1004 0.1415 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 
- 0 .ooo 1 

0 
0 
0 

0.0257 
. . . . . . . 

0 0 0 370.8328 -25.9627 0 . . .  0.0604 
0 0 0 438.1920 -30.6787 0 . . .  0.1026 

0 0 0 r o  . . . . . . . 
0 
2 
0 
0 
0 

-27.92 
0 

. . . . . . . . . . . . . . . . . . . . . . . . . .  
0 0 

1.0326 176.1982 
0 0 

-10.2357 -2143.1016 
8009 10.394 1 1.8988 

64654.3829 11.7819 
- 116.9527 -561836.0209 

. . . . . . . . . .  
0 

104.3594 
- 1901.4388 

0 
-153505.0524 
- 8425.04 11 
527985.1550 

-31.2428 -9.6184 ' (157) 
63.7171 -136.9109 

........................................... 
0 0 0 -7461.0801 
0 0 0 -3090.6705 

and in which the feedback control vector has the form u(l) = [F;) 6:) 6;') 6?)IT. In the case 
in which u(') = 0 and F,, = 0, the state equations admit an exponential solution yielding an 
eigenvalue problem. Solving the eigenvalue problem, we conclude that the system is unstable, 
with four eigenvalues being equal to zero and one being real and positive. Using a linear quadratic 
regulator in conjunction with the weighting matrices 

& =  

1 0 0 0 0 0  ... 0 
0 1 0 0 0 0  ... 0 
0 0 1 0 0 0  ... 0 
0 0 0 1 0 0  ... 0 
0 0 0 0 1 0  ... 0 
0 0 0 0 0 1  ... 0 

[ 8 1 
108 0 

0 0 108 

, R =  

......................... 
0 0 0 0 0 0  ... 0 

solving the corresponding steady-state Riccati equation, Eq. (73), and using Eq. (68), we obtain 
the gain matrix 

G =  

0.2974 0 0 0 
-0.0163 0 -0.0001 0 
-0.1062 0 0.0001 0 
12.4530 0.5355 0.0531 0.1015 

-1022.6944 -1.0086 -1.2660 -0.2651 
-71.9234 1.3797 -1.4307 0.3965 

-0.0006 0 0 0 
0.0001 0 0 0 

0 0 0 0 
0 0 0 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

T 

(159) 
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I 
Then, solving the closed-loop eigenvalue problem, Eq. (75), we obtain the closed-loop eigenvalues 

X1,2 = -0.1031 f 0.08702, A3 = -0.2342, X4,5 = -0.1194 f 0.21722, 
X6,7 = -0.2998 f 0.30892, Xs,g = -0.7842 f 1.62262, . . . , 
X69,70 = -40.5623 f 599.45582, X71,72 = -40.7352 f 604.47132 
A73,74 = -79.0053 f 791.6059i, X75,76 = -211.4850 f 1063.74652 

( 160) 
~ 

Clearly, all the closed-loop eigenvalues are either real and negative or complex with negative real 
part, so that the closed-loop first-order system is asymptotically stable. Hence, any disturbances 
from the steady level turn maneuver will be driven to zero. 

Finally, we compute the response of the closed-loop system to the gust given by Eqs. (133). 
Figures 11-13 show a selected number of rigid body and elastic variables, and Fig. 14 shows the 
control inputs. 
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Next, we turn our attention to the observer. To this end, we must compute the matrix C, Eq. 
(103), relating the output vector to the state vector. First, we use Eq. (100) and write 

Mr. = 

[ ::: -0.1811 0.1369 0.1282 ... 
0 0 0.0219 ... 

0 ... 0 -0.0219 0.0166 0 ... 
0 . . . 0 1676.3711 -1275.2629 -1242.2537 . . . 
0 ... 0 3.5685 -1.5887 21090.9413 . . . 
0 ... 0 -21090.3030 15935.2420 0 ... 

, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1 0  ... 0 0 0 0 ... 

-0.0030 -0.0054 0.0009 0 ... 0 
- 0.0004 0 0 0 ... 0 
-0.OOO1 -0.0006 0.0001 0 ... 0 
27.2581 51.3897 -8.9291 0 ... 0 

-401.1684 0.3647 0.1928 0 ... 0 
-63.5214 -622.7178 109.2101 0 ... 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 0 0 0 ... 0 1 
Then, inserting Eq. (161) into Eq. (103), we obtain 

C =  

‘ 1 0 0 0 0 0  

0 0 0 0 0 1  
0 0 0 0 0 0  
0 0 0 0 0 0  

‘ 0 0 0 0 0 0  

0 0 0 0 0 0  
0 0 0 0 0 0  

. . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . .  

~ 0 0 0 0 0 0  

0 

0 
0.6400 

-2.2285 
2.2323 

1.4370 

1.8150 

. . . . . . . . . 

. . . . . . . . . 
-2.3298 

0 

0 
-0.4820 
1.6958 

. . . . . . . . 

- 1.6989 
. . . . . . . . 
-1.0831 
1.7578 
- 1.3705 

0 ... 

0 0 
0.2213 -0.1651 
5.8787 -4.4245 
2.3810 -1.8161 

. . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . .  
0.3731 -0.2782 

-0.5259 0.3938 
0.2414 -0.1811 

0 ... 0 0 

0 0 ... 0 
0 ... 0 0 
0 ... 0 0.0010 
0 ... 0 0.0011 

0 ... 0 -0.0015 
0 . . . 0 0.0002 
0 ... 0 0.0009 

. . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . .  
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0 ... 0 

0 ... 0 
0.0122 . . .  -0.0002 
0.0374 . . . -0.0004 

....................... 

-0.0372 ... 0.0004 
....................... 
0.0871 . . . -0.4412 

-0.0259 ... 2.1761 
-0.0384 ... -1.4522 

0 

0 
0 
0 
0 

-0.6612 
- 1.4006 

. . . . .  

I . . . . . . . 

0.9932 

We assume that the excitation noise v(t) and observation noise w(t) represent white noise pro- 
cesses with intensities V and W ,  respectively, and choose 

V=diag[lOOOOO 1OOOOO 1OoooO 1OOOOO 1OOOOO 1OOOOO lo-’ lo-’ lo-’ lo-’ lo-’ lo-’ lo-’ 
io-’ io-’ 
io-’ 1 0 - ~  io-’ io-’ io-’ lo-’ lo-’ lo-’ lo-’ o ... 01 

lo-’ lo-’ lo-’ lo-’ 1 0 - ~  lo-’ lo-’ lo-’ lo-’ lo-’ lo-’ lo-’ (163) 

and 

so that, from Eq. (91), the steady-state Riccati equation 

AQ + QAT + V - QCTW-lCQ = 0 

yields 

& =  

0.00032 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 

0 
0 

. . . . . . . . 

. . . . . . . . 

0 
0.00032 

0 
0 
0 
0 
0 
0 

0 
0 
0 

0 
0 

. . . . . . . . 

. . . . . . . . 

0 0 
0 0 

0.00032 0 
0 0.3162 
0 0 
0 0 
0 0 
0 0 

0 0 
0 0 
0 0 

0 0 
0 0 

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

0 0 ... 
0 0 ... 
0 0 ... 
0 0 ... 

0.3162 0 . .. 
0 0.3162 ... 
0 0 ... 
0 0 ... 

0 
0 
0 
0 
0 
0 

0.0001 
-0.0001 

............................. 
0 0 ... 0 
0 0 ... 0.0705 
0 0 ... 0.0288 

0 0 ... 0 
0 0 ... 0 

............................. 

0 
0 
0 
0 
0 
0 
0 

-0.0001 

0 
0.0288 
0.0133 

0 
0 

. . . . . .  

. . . . . . . . 

... 0 

... 0 

... 0 

... 0 

... 0 

... 0 

... 0 

... 0 

... 0 

... 0 

... 0 

... 0 

... 0 

. . . . . . . 

. . . . . . . 
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Hence, from Eq. (90), the optimal observer gain matrix is 

KO = QCTW-' 
3.1623 x 10' 

0 
0 
0 
0 
0 

-0.0427 
0.0326 
3.5739 

-2.6997 

0 
3.1623 x 10' 

0 
-595.4161 

0.0001 
4995.0050 
-0.7057 
0.5398 

1.3723 
-1.8039 

0 
0 

3.1623 x lo8 
0 

-4995.0050 
0 

-0.4951 
0.3786 
4.2355 

-3.1937 

0 
-0.0006 

0 
3 16227.7660 

0.0003 
0 

-0.0554 
0.0414 
0.0150 

-0.0107 

0 
0 

0.0050 
0.0003 

316227.7661 
0.0026 

0.0594 

0.3542 

-0.0783 

-0.4665 

0 ... 0 
0.0050 ... 0 

0 ... 0 
0 1 . .  0 

0.0026 ... 0 
316227.7661 ... 0 

0.1107 ... 0 
-0.0839 ... 0 
-0.3316 ... 0 
0.2518 ... 0 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
0.0003 -0.0009 0.0010 0 0 0 ... 0 
0.0004 -0.0008 0.0010 0 0 0 ... 0 

-0 .ooo 1 -0.0012 -0.0008 0 0 0 ... 0 
0 -0.0001 0 0 0 0 ... 0 - 

( 1  

Finally, solving the eigenvalue problem for A - K,C, we obtain the observer eigenvalues 

A1 = -0.0111, A2,3 = -0.7858 f 1.62912, A4,5 -0.1935 f 2.22312, 
A6 = -5.7234, A7,8 = -5.7294 f 36.97852, Ag,lo = -3.7702 f 45.60962, 
A11,12 = -4.6312 f 62.62802,. . . , &3,64 = -40.5646 f 599.45142, 
&5,66 = -40.7353 f 604.47192, &7,68 = -79.0086 f 791.58922, 
&9,70 = -211.4819 f 1063.74632, A71,72 = -316227.8058 f 0.03462, 
A73 = -316227.8459, A74,75,76 = -3.1623 X I O s  

To check the performance of the observer just designed, we simulate the response of the com- 
bined system, Eq. (84) to the initial conditions 

~ ( ~ ' ( 0 )  = [5 5 5 0.02 0.005 0.001 0.2 0.1 0.2 0.1 0.2 0.1 -0.2 -0.1 
-0.2 - 0.1 - 0.2 - 0.1 -0.2 -0.1 -0.2 - 0.1 -0.2 
- 0.1 0.05 0.01 - 0.05 - 0.01 0.05 0.01 - 0.05 - 0.01 (169) 

0.05 0.01 -0.05 -0.01 0.05 0.01 0 . . .  01 
e(0) = 0.15d1)(0) 

Figures 15-17 show a selected number of rigid body and elastic variables and Fig. 18 shows the 
control inputs as given by Eq. (82). 
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9. Conclusions 

A problem of increasing interest in aeronautics is the simulation of the flight of flexible aircraft 
on a computer. Note that on-line computer simulations can help expedite the design process, and 
possibly reduce the time devoted to flight testing. Moreover, the new class of autonomous aerial ve- 
hicles requires autopilots, which in turn requires real-time simulations. This points to the need for a 
new paradigm in the treatment of flying flexible aircraft, one using the system concept to produce 
a rigorous formulation of the dynamics and control problem and one using potent methodology 
permitting an efficient solution of the problem. This work develops such a paradigm in the form of 
an on-line formulation integrating pertinent material from the disciplines of analytical dynamics, 
structural dynamics, aerodynamics and controls. Moreover, the formulation is cast in a certain 
matrix form ideally suited for computer processing. A perturbation approach permits division of 
the problem into a nonlinear flight dynamics problem for maneuvering quasi-rigid aircraft and a 
linear “extended aeroservoelasticity” problem for the elastic deformations and small perturbations 
in the rigid body translations and rotations, where the solution of the first problem enters as an 
input into the second problem. As a result, there is a different extended aeroservoelasticity prob- 
lem corresponding to each aircraft maneuver. The controls for the flight dynamics problem are 
obtained by an inverse process, which amounts to prescribing a given maneuver and determining 
the controls permitting realization of the given maneuver. On the other hand, the elastic deforma- 
tions and perturbations in the rigid body motions characterizing the extended aeroservoelasticity 
problem are driven to zero by means of feedback controls designed using linear quadratic theory 
in conjunction with a stochastic observer, thus ensuring the stability of the aircraft maneuver. A 
numerical example presents a variety of time simulations of rigid body perturbations and elastic 
deformations about 1) a steady level flight and 2) a level steady turn maneuver. 

The integration of the aerodynamics into the unified process is particularly challenging, and 
requires elaboration. For seamless integration, the aerodynamic forces must be referred to the same 
generally noninertial reference frame as that used for all other forces and they must be expressed in 
terms of variables compatible with the variables used throughout the entire formulation. Moreover, 
because the simulation of the system response on a computer is carried out in discrete time, the 
size of the time step is of vital importance. Indeed, on line and real time simulations require that 
the time step be quite small, the time step for the latter being of the order of a minute fraction of 
a second. The implication is that, to be ready to compute the state at the next sampling time, it 
is necessary to be able to compute the aerodynamic forces within the time step; the computation 
of the other forces within the same time step presents no problem. These two requirements are 
quite difficult to satisfy as most aerodynamic theories have been developed for purposes other 
than time response simulations, and the computation of the aerodynamic forces are notorious for 
consuming a great deal of time. In view of this, the development of a new aerodynamic method 
seems highly desirable. Such a method need not be unduly accurate, as robust feedback controls 
should be able to tolerate small errors in the aerodynamic forces. An aerodynamic theory satisfying 
the two requirements outlined above is strip theory. Even though strip theory may not be entirely 
satisfactory for describing the aerodynamic forces acting on whole aircraft, the method is often 
used in aircraft design. In fact it is being used by the same company that provided the data for the 
Numerical Example. The development of an aerodynamic technique suitable for on line, or real 
time response simulations is likely to require a great deal of time and effort. Although the use of a 
more suitable aerodynamic theory is desirable, it is not really necessary at this time. Indeed, at this 
time it is more important to demonstrate how the unified formulation works and how an eventual 
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aerodynamic theory is to be integrated into the overall process. Certainly, such a demonstration can 
provide valuable guidance in the development of an appropriate aerodynamic method to be used 
in conjunction with aircraft time response simulations, thus helping reduce the time and effort 
required for the development in question. 

Finally, it should be pointed out that, with appropriate modifications, the present formulation is 
eminently suited for UAVs, and in particular for autonomous UAVs. The fact that it was applied 
here to an executive jet is due entirely to the ready availability of data from an actual flying aircraft. 
It should also be pointed out that all the time response simulations presented here were carried out 
on a 1 GHz PC using MATHEMATICA. This is particularly important for autonomous UAVs, 
which must be controlled by autopilots, as the required onboard computer is likely to be much 
closer to a PC than to a multiprocessor supercomputer. 
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Appendix - Numerical Values of the Aircraft Parameters 

Component 
Body Axes 

The values of the pertinent aircraft parameters were provided by an aircraft manufacturer in lumped 
form, and the current formulation assumes distributed parameters. This presents no problem, how- 
ever, as lumped parameters can always be treated as distributed by means of spatial Dirac delta 
functions.37 

In the first place, we consider the aircraft geometry. To this end, we regard the fuselage as 
consisting of two cantilever beams, a fore part and an aft part, with the origin of both sets of body 
axes at point 0, and with axes x? and x;' collinear (Fig. 2), where superscripts denote the fore 
part and aft part. The wing is also divided into two parts, the right half-wing and the left half- 
wing, both with the origin of the respective body axes at 0; and 0; and with the longitudinal axes 
coinciding with the respective elastic axes. Moreover, the empenage consists of the horizontal 
stabilizer, divided into a right half and a left half, both with the origin of the respective body axes 
at 0: and O:, and a vertical stabilizer with the origin of the body axes at 0:. The radius vectors 
from 0, to the corresponding origins are 

Rotations 
71 I Y2 I Y3 

rfw R = rFw = [-5.04 0 38.33]* in 
(AI )  

r7e = rFe = [-244.75 0 - 43.13IT in, rye = [-238.97 0 - 24.01]* in 

Righi half-wing 

Left half-wing 
L L L  

~WYUJZW 

Xe Ye ze 
R R R  

The formulation calls for matrices of direction cosines between the various component body axes 
and the fuselage body axes, and in particular the body axes of the fore part of the fuselage denoted 
by xfyfzf. The component body axes can be obtained from x:fyfzf through a sequence of rota- 
tions. For example, axes xEyEzf for the right half-wing can be obtained through a rotation 31 

in the case of the wing y2 is known as the dihedral angle. Table 2 gives the rotation angles for the 
individual components. 

Table 2 - Rotation Angles for Component Body Axes 

about xfyfzf to an intermediate set of axes xLyk,zL and a rotation 7 2  about yL to xwyu,zu,, R R R  where 

900 40 0 

-goo 4 O  0 

Righi half-wing 

Left half-wing 

. . .  

- 

- - -  

I f Yf Z f  I I I I xA A A 

900 40 0 

-goo 4 O  0 

Vertical Stabilizer 118.74 -900 

Using analogies with the first of Eqs. (2), the various matrices of direction cosines are as follows: 
0 0.9976 -0.0698 

0 0.0698 0.9976 

0 0  

0 -0.9976 -0.0698 -0.0750 0.9849 -0.1560 
-0.0741 0.0117 

0 -0.0698 0.9976 0.1564 0.9877 
-0.0750 -0.9849 -0.1560 -0.4808 0 -0.8768 

0 -0.1564 0.9877 0 
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The inertia properties of the aircraft model are given in lumped form. To this end, the flexible 
components are divided into certain numbers of bays and the mass corresponding to each bay is 
lumped at the mass center of the bay. Moreover, the manner in which the mass is distributed over 
the associated cross-sectional area is represented by mass moments and mass products of inertia 
about axes with the origin at the mass center and parallel to the body axes of the respective com- 
ponent. Table 3 lists the coordinates of the mass centers, the mass values and the mass moments 
and mass products of inertia, in which the symmetry of the inertia matrices is implied. The masses 
have units lb - s2/in and the mass moments and mass products of inertia have units lb s2 - in. 
The cantilever beams lengths are LF = 295.86 in, L;? = 279.79 in, LE = L i  = 328.83 in, 
LF = L t  = 127.46 in, Ly = 113.48 in. 

Table 3 - Inertia Properties 
Fore Part of the Fuselage - 

No. 
I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

- 

- 
- 
No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
I O  
11 
12 
13 
14 
15 
16 
17 
18 

- 

- 

z; yfF 2; 

7.41 0 5.20 
24.74 
38.95 
48.49 
55.08 
69.88 
84.47 

101.30 
11 1.10 
129.67 
160.23 
189.38 
204.35 
223.81 
237.7 1 
251.30 
266.50 
28 1.47 
292.08 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1.98 

3.25 
8.60 
7.88 
7.32 
5.29 
5.40 
1.62 
6.60 

1.98 
1.16 
6.55 
6.57 

14.02 
17.71 
17.66 

- 1.54 

-0.30 

X;' y j  zj 
1.67 0 0.81 

10.66 
22.18 
40.41 
46.82 
66.1 1 
83.74 
98.2 1 

117.50 
142.62 
156.28 
173.22 
189.26 
203.4 1 
218.31 
238.30 
253.16 
278.12 

0 17.72 
0 19.00 
0 2.00 
0 8.04 
0 9.5 1 
0 8.39 
0 3.87 
0 -8.33 
0 -6.45 
0 -10.77 
0 -11.04 
0 -12.24 
0 -6.82 
0 -19.66 
0 -10.17 
0 -14.94 
0 -17.35 

A 
0.7237 
0.2095 
0.3014 
0.7558 
0.3555 
0.5562 
0.3167 
0.7053 
0.1546 
1.0289 
1.2664 
1.0170 
1.0789 
1.0497 
0.2496 
0.7234 
0.4702 
0.0979 
0.0640 

m;3 
0.1434 
0.6 147 
1.4282 
0.1 183 
0.5808 
0.2506 
0.7843 
0.5821 
0.5870 
0.6048 
0.4945 
0.1 165 
0.2131 
0.1220 
0.0880 
0.0585 
0.0580 
0.0098 

JL f Jry JLf J:y f JA f JLf 
5 14.6542 230.8500 313.3728 -0.1010 -7.9229 0 
206.4986 
333.7084 
354.9372 
35 1 S220 
559.965 I 
298.6947 
501.1153 
137.191 1 
934.8339 
919.97 19 
673.8353 
623.35 12 
394.733 1 
86.3807 

135.01 87 
65.4238 
14.8309 
3.0164 

115.1881 
182.4735 
129.905 1 
18 I .4974 
274.9544 
182.3 156 
418.5278 

84.7780 
556.8193 
477.2896 
340.958 1 
354.2640 
245.32 10 
41.6213 
96.6805 
49.4018 

8.2310 
2.1283 

97.2035 -0.3495 
160.9599 0.1424 
25 1.8536 1.2350 
177.6291 1.3775 
306.9516 -2.2111 
124.5506 -0.3573 
480.2490 0.1657 

54.2436 -0.1605 
535.0830 -10.4733 
595.6675 3.1044 
437.3046 2.3821 
386.3648 -0.4686 
192.5843 -0.8907 
48.6587 -0.5308 
69.4034 0.9425 
57.8918 1.1289 
10.2739 -0.0104 
2.1801 -0.0673 

1.4603 0 
-1.9160 0 
-0.6913 0 

3.0682 0 
2.9413 0 

-2.2086 0 
5.3648 0 
0.3754 0 
1.2842 0 

17.3295 0 
-20.5815 0 
-1.1859 0 

9.7354 0 
0.0829 0 

-9.6525 0 
7.6562 0 

-0.0647 0 
o nio4 0 

Aft Part of the Fuselage 
J,", f J,", J,", f Jlc", f J,", f J k  

160.7476 76.2673 84.8272 -0.0052 0.1320 0 
2 1 14.0956 
3571.1313 

133.0820 
354.6912 
259.3829 
900.7860 
317.6683 
634.89 13 
3 17.3757 
168.9475 
62.1588 
49.4821 
36.0701 
40.5364 
14.7040 
6.649 I 
0.4143 

253.7152 
848.8 1 3 1 
72.5725 

22 1.2985 
186.0932 
470.6690 
222.4144 
217.1299 
146.8824 
127.7664 
48.9953 
37.8 178 
28.0876 
37.9395 
11 SO64 
6.2555 
0.9580 

1887.3572 
2879.2026 

60.7063 
163.5387 
84.9230 

478.1 052 
138.4934 
530.1 143 
2 12.2078 
71.1511 
21.8166 
19.5795 
15.0225 
1 1.4727 
5.9785 
3.7440 
0.8415 

0.7172 
7.9514 
0.0233 

-0.1709 
0.4246 
8.3087 

-3,6275 
-0.3728 

0.5593 
3.7414 
0.4609 
0.5644 

-0.1605 
-0.0129 

0.0078 
0.1036 

-0.0052 

8.8913 

0.0777 
-4.8263 

-102.4285 

-0.7664 
-14.4348 

2.4908 
I 1 S375 

-4.3913 
-6.0380 

1.1496 
1.3852 

3.5368 
-3.7207 

-0.8596 
-0.4220 
-0.1087 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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Table 3 - Continued 
Wing 

10 I 116.1657 2.4489 0 

No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 

- 

- 

0.0523 4.5419 I .0689 5.5228 1.0377 0 0 

g 10 

R R 
X C  YUP 2.w 

17.34 -5.67 -0.41 
41.44 
55.80 
68.45 
80.75 
95.1 1 

109.2 1 
123.58 
141.58 
159.69 
180.67 
199.99 
223.12 
242.88 
260.53 
278.05 
295.21 
31 1.97 

-0.36 
7.21 
0.92 
4.29 
2.34 
5.70 

10.93 
6.17 
5.62 
2.46 
5.62 
3.28 
1.87 

-0.02 
1.04 

-0.06 
-3.95 

0.64 
0.72 

-1.55 
-0.63 
-0.89 
-0.49 
-0.20 
-0.36 
-0.59 
-0.60 
-0.49 
-0.46 
-0.49 
-0.71 
-0.46 
-0.38 
-0.38 

328.86 0.04 -0.40 

R 
X e  
3.4154 

14.6498 
32.5615 
50.7350 
66.0100 
76.5595 
88.2275 

105.1312 
121.3090 
128.5213 

R 
Y e  

-2.0199 
4.1648 
6.2772 
3.5463 
3.8814 
2.0048 
2.79 18 
2.4328 
3.3819 

-2.0644 

R 
z e  

4.8360 
-0.0644 
-0.0954 
-0.1694 
-0.0389 

0.0296 
-0.1213 
-0.0898 
-0.0468 
-0.0276 

V 
X e  

-3.0130 
17.3464 
32.7117 
48.0499 
49.3577 
90.2614 

10 I .949 1 
103.63 12 
114.7248 

V 
Y e  

-4.0388 
-5.0753 
-3.0312 
-0.6415 
25.8074 

19.9499 
-3.2365 

-3.8959 
- 10.6405 

R mW 
0.7932 
0.3380 
0.548 1 
0.2900 
0.3517 
0.1960 
0.1405 
0.2014 
0.1441 
0.1550 
0.1481 
0.1504 
0.1 146 
0.0825 
0.0700 
0.0628 
0.047 1 
0.0334 
0.0287 

1 

m,R 
0.1298 
0.06 18 
0.0625 
0.0574 
0.0273 
0.0173 
0.0348 
0.0259 
0.0199 
0.01 35 

J,"r 'u' 
R 

J,",w J E W  Jll", w J x z w  
R 

J X X W  

592.7715 135.2155 675.5300 -11.4074 -20.6970 23.8870 
259.1733 
203.2508 
145.9962 
109.3290 
87.6687 
68.3377 
98.035 1 
62.7718 
58.9409 
57.806 1 
44.7968 
26.24 12 
16.9014 
1 1.9896 
9.2044 
6.9537 
4.6844 
2.3874 

13.6761 
22.5351 
10.7568 
19.5652 
7.3973 
5.1512 
8.6246 
6.3306 
7.3054 
6.8510 
8.9780 
4.9868 
4.1 168 
2.0960 
1.9160 
1.6338 
0.6266 
0.7263 

253.5778 
202.0929 
144.9995 
117.3550 
86.707 1 
67.9640 

100.8629 
64.6489 
62.3486 
61.632 1 
5 1.3853 
29.6906 
19.9998 
13.3314 
10.6262 
8.2733 
5.1908 
3.0305 

2.9790 

1.1106 
0.4698 

0.3682 

-2.4412 

-3.5075 

- 5.1787 
-0.3631 
-2.4040 
-1.7038 
-4.0862 

0.2463 

0.1592 
0.1316 
0.2092 
0. I694 

-0.0109 

-0.2915 

0.1402 14.4486 

0.4620 4.8288 
-0.1781 16.5185 

-1.1316 4.4349 
-0.1369 3.391 1 
-0.0707 3.2896 
-0.2981 4.7601 
-0.0224 2.5948 
-0.0168 1.5852 

0.0205 1.76 13 

0.0071 0.5415 

0.068 1 0.32 13 
0.0019 0.0663 

-0.1240 1.2184 

-0.0464 0.3456 

-0.0066 -0.0035 
-0.0063 -0.0284 
-0.0045 -0.0293 

Horizontal Stabilizer 
R 

J x x e  
152.7019 
13.3528 
12.1552 
8.3296 
3.6287 
2.3491 
3.6527 
2.271 1 
1.6192 

JyRye 
24.5226 
2.0288 
1.9324 
2.7220 
0.3475 
0.2014 
0.9998 
0.6068 
0.4246 

J E e  
24.9826 
14.9172 
13.7307 
10.7676 
3.8652 
2.4673 
4.5598 
2.8 183 
2.0069 

JEy e 
9.4614 
I .0676 
0.2775 
0.5878 
0.2049 
0.1894 
0.3189 

0.1574 
-0.0003 

R 
J x z e  

-20.3966 
- 0.0060 

0.01 12 
0.06 I2 

- 0.0006 
0.0006 
0.0 164 

-0.0048 
-0.0007 

R 
J y z e  
0.6193 
0.0244 
0.0409 

-0.0078 
0.0 143 
0.0055 
0.0305 
0.01 87 
0.0040 

0.3576 0.01 14 0.3586 0.0197 -0.0001 -0.0010 
Vertical Stahilizer .~.~...~ - 

I my I J x z e  JyVye J L e  
V V 

Ze  
0 1 0.0867 I 26.0215 26.8758 50.3184 1 0.0419 

0.0347 
0.0298 
0.074 1 
0.0176 
0.0062 
0.0150 
0.0065 

8.2448 
6.6885 
7.0021 
5.0234 
1.7168 
0.21 11 
1.3610 
0.3567 

2.9690 10.2273 
2.6766 8.6842 
2.2154 8.7929 

42.2968 46.9395 
1.1 158 2.6177 
0.1462 0.3470 
0.8632 2.1464 
0.2077 0.5619 

J Z e  
18.1691 
3.9298 
3.2180 
3.2766 

1.0828 
0.0991 
0.8286 
0.2227 

-2.2970 

J,c; e 
v 

J x z e  
0.1131 0.1417 
0.0052 0.0149 
0.0097 0.0124 
0.0395 0.0935 

-0.0025 -0.0045 
-0.1246 -0.1088 

0 0 
-0.0010 0.0035 

0 0 

2 1  108.62 -37.00 -13.96 I 0.2647 1 35.2545 137.1807 162.3658 7.4957 11.3756 5.7131 

The stiffness properties consist of the flexural rigidity and torsional rigidity of the cross-sectional 
area at certain locations of the elastic components. Both have units lb - in2. Table 4 gives the loca- 
tions of the cross-sectional areas and the values of the corresponding rigidities. 
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Table 4 - Stiffness ProDerties 

Fore Part 
Fuselage 

Aft Part 

3.87 x lo1' ~ 

3.14 x 10" 
1.71 x 10" ~ 

2.98 x lo9 1 
2.19 x lo9 
1.27 x lo9 
6.43 x 10' 

8.67 x io9 1 

7.72 x io7 

No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

- 

:: 
14 

16 
17 
18 
19 

15 

No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

- 

3.56 x 10' 
2.53 x 10' 
1.71 x 10' 

6.50 x lo6 
8.55 x io7 

L 
0.00 

10.21 
25.21 
38.2 1 
47.2 1 
55.2 1 
70.2 I 
84.7 1 
99.7 1 

111.21 
129.21 
144.21 
160.21 
185.7 1 
205.71 
224.7 1 
238.1 1 
251.11 
267.06 
282.06 
295.86 

4 
5 
6 

8 
9 
10 

7 

R 
2, 

0.00 
17.10 
34.19 
40.95 
54.45 
67.85 
81.11 
94.45 

107.95 
122.95 
140.45 
159.45 
179.45 
200.70 
22 1.95 
24 1.70 
259.95 
276.70 
293.95 
31 1.10 
327.01 

E Ir', EIfF, 
1.10 x 10" 7.40 x 10'" 
1.10 x 10" 
1.10 x 10" 
1.10 x 10" 
1.10 x 10" 
1.10 x 10" 
1.10 x 10" 

7.44 x 1 o ' O  

7.47 x 10'0 
7.47 x 1 o ' O  
7.47 x 10'0 
7.47 x 10'0 
7.45 x 1 o ' O  

1.10 x 10" 
1.10 x 10" 
1.10 x 10" 
1.08 x 10" 
1.02 x 10" 
9.06 x 10" 
6.5 x 10" 

4.37 x 10" 
2.68 x 10" 
1.76 x 10'' 
1.11 x 10'' 

7.36 x 10" 
7.20 x 10" 
7.03 x lolo 
6.80 x 10" 
6.54 x 10" 
6.14 x 10'' 
5.25 x 10" 
4.23 x 10" 
3.97 x 10" 
2.04 x 10" 
1.28 x lolo 

6.01 x io9 
3.13 x io9 

6.42 x io9 
2.87 x io9 

1.16 x lo9 6.15 x 10' 
Wing 
EIE 

1.09 x 10'" 
9.70 x io9 
8.65 x io9 
8.10 x io9 
6.95 x io9 
5.70 x io9 
4.84 x io9 
4.28 x io9 
3.49 x io9 
2.81 x io9 
2.18 x io9 
1.68 x io9 
1.35 x io9 
1.02 x io9 
7.35 x 10' 
5.65 x 10' 
4.28 x 10' 

2.82 x 108 

1.27 x 10' 

3.54 x 10' 

2.02 x 10' 

I 1  

1 ;  

GJ: 
1.07 x 10'" 
1.07 x 10" 
1.04 x lolo 
9.95 x io9 
8.80 x io9 
7.60 x io9 
6.40 x io9 
5.30 x io9 
4.50 x io9 
3.92 x io9 
3.19 x io9 
2.43 x io9 

- 
No. 

1 
2 
3 
4 
5 

- 

c. 

22- 
1.29 
5.04 
8.79 

26.29 
40.29 
49.79 
65.79 
82.79 
01.29 
20.29 
38.79 

156.29 
172.79 
188.79 
204.79 
220.79 
237.29 
256.29 
279.79 

R 
2, 
0.00 
2.41 

13.84 
3 1.89 
49.94 
L A  11 

EIfAy 
1.1 x 10" 

1.09 x loll 

9.44 x 1 o 1 O  
1.04 x 10" 

7.98 x 10" 
6.72 x 10'' 
6.72 x 10'' 
6.45 x 10" 
5.15 x 10" 
4.07 x 10" 
2.30 x 10" 

1.63 x 10'' 

1.38 x 10'' 

1.09 x 10'0 

2.10 x 10'0 

7.48 x io9 
4.67 x io9 
3.02 x io9 
1.30 x io9 

E l f z  ," 
7.44 x 10 
7.40 x 10" 

6.87 x 10'' 
6.17 x 10" 
5.32 x 10" 
4.15 x 10" 
3.21 x 10" 
2.43 x 10" 
1.94 x 10'' 
1.37 x 10'' 

7.37 x 1 o ' O  

9.68 x io9 
6.62 x io9 
4.39 x io9 
2.80 x 109 
1.70 x io9 
9.22 x 10' 
4.88 x 10' 
2.40 x 10' 

Horizontal Stabilizer 
EIF 

3.92 x 10' 
3.78 x 10' 
3.16 x 10' 
2.32 x 10' 
1.66 x 10' 
i 3'2 i n 8  
l . & U  h I" 

9.70 x io7 
7.10 x io7 

103.98 4.82 x io7 
3.27 x io7 
2.74 x io7 

Vertical Stabilizer 
V 

X e  
0.00 
7.40 

21.15 
34.90 
49.73 
63.98 
77.63 
91.31 

105.82 
1 13.48 

EIY 
1.56 x 10' 

9.66 x 10' 
6.86 x 10' 
4.61 x 10' 
3.06 x 10' 

1.26 x 10' 
6.88 x lo7 

1.33 x io9 

2.01 x 10' 

4.25 x io7 

G J ~  + 
4.07 x 10" 
4.04 x lo1' 
3.67 x lolo 
3.23 x 10" 
2.87 x 10" 
2.27 x 10" 
1.72 x lolo 
1.37 x 10" 
1.12 x lo1' 
8.39 x io9 
5.79 x io9 
3.92 x io9 
2.58 x io9 
1.63 x io9 
9.67 x 10' 
5.46 x 10' 
3.08 x 10' 
1.17 x 10' 

GJ: 
2.43 x 10' 
2.36 x 10' 
2.09 x 10' 
1.73 x 10' 
1.35 x 10' 
1.03 x 10' 
8.05 x io7 
5.85 x io7 
4.14 x io7 
2.98 x io7 
2.19 x io7 

GJ: 

5.57 x 10' 
4.45 x 10' 
3.55 x 10' 

7.30 x 10' 
6.70 x 10' 

2.41 x 10' 
1.38 x 10' 
8.69 x io7 
3.56 x io7 
8.51 x lo6 

The aerodynamic forces involve the slope C L ~ ~  of the lift curve, the drag coefficient CDio, 
the slope Csai of the lateral force curve and the control effectiveness coefficients CLba, Csbe and 
CshT. To determine the aerodynamic forces, the aircraft components are divided into a given num- 
ber of sections and the coefficients are given for each of the sections. A typical section has a 
trapezoidal shape defined by two points ZiaYiaZia  and XibYibZib and by respective chords qa and 
G b ,  where the chords are parallel to the longitudinal axis xf of the fuselage (Fig. A). For all 
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Figure A. Aerodynamic Sections for the Model 
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sections, CDfo = C D ~ , O  = 0.016 and k f  = k ,  = 0.04. The lines of the aerodynamic centers are 
also shown in Fig. A; they are located at one quarter of the chord of the wing and horizontal and 
vertical stabilizers. The line of aerodynamic centers for the fuselage are located at one half of the 
chord of each aerodynamic section, as shown in Fig. A. The aerodynamic forces for the fore and 
aft parts of the fuselage are acting at the line of the aerodynamic centers. The control forces, on 
the other hand, are acting at 0.55 of the chord. The aerodynamic coefficients corresponding to 
the sections just mentioned are listed in Table 5. The slope of the lift coefficients and the control 
effectiveness for the aileron and the elevator listed in Table 5 are given for a single Mach number 
of 0.75. They must be corrected for different Mach numbers by the compressibility factor given in 
Fig. A. Note that there are only seven sections for the wing with control effectiveness coefficients; 
they correspond to the aileron. 

Table 5 
Fore Part of the Fuselage - Horizontal Lifting Surface 

-36.25 0.17 
-36.25 0.17 
-36.25 0.17 
-36.25 0.17 

151.21 
191.21 
231.21 
277.21 

40.00 151.21 36.25 0.17 40.00 
40.00 191.21 36.25 0.17 40.00 
40.00 231.21 36.25 0.17 40.00 
46.00 277.21 36.25 0.17 46.00 

X T a  
13.21 
69.2 1 

126.23 
182.21 
248.21 

0.065 
0.20 
0.50 
0.50 

f 

0.142 
0.142 
0.142 
0.242 
0.305 

d a  Z a  
0 -62.49 0 

34.00 
58.36 
80.7 1 

101.07 
120.35 
138.62 
155.90 
172.17 
187.43 
203.59 
2 19.20 
234.30 
248.91 
263.01 
276.62 
289.72 
30 1.25 
31 1.27 
320.29 
327.66 

-62.49 
-52.40 
-43.15 
-34.72 
-33.06 
-31.49 
-30.00 
-28.60 
-27.29 
-25.89 
-24.55 
-23.25 
-21.99 
-20.78 
-19.61 
- 18.48 
-17.49 
- 16.62 
- 15.85 
-15.21 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

129.49 
129.49 
115.51 
102.68 
90.99 
86.25 
81.75 
77.50 
73.50 
69.75 
65.77 
6 1.93 
58.21 
54.62 
51.15 
47.80 
44.58 
41.74 
39.28 
37.06 
35.25 

Wing - 
n R 

.wb ?db zwb 
34.00 -62.49 0 
58.36 
80.7 I 

101.07 
120.35 
138.62 
155.90 
172.17 
187.43 
203.59 
219.20 
234.30 
248.91 
263.01 
276.62 
289.72 
30 1.25 
311.27 
320.29 
327.66 

-52.40 
-43.15 
-34.72 
-33.06 
-31.49 
-30.00 
-28.60 
-27.29 
-25.89 
-24.55 
-23.25 
-21.99 
-20.78 
-19.61 
-18.48 
-17.49 
-16.62 
- 15.85 
- 15.21 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

335.02 -14.58 0 

Cwb 
129.49 
115.51 
102.68 
90.99 
86.25 
81.75 
77.50 
73.50 
69.75 
65.77 
6 1.93 
58.21 
54.62 
51.15 
47.80 
44.58 
41.74 
39.28 
37.06 
35.25 
33.43 

C L a w  
4.9675 
6.1879 
6.5604 
6.7609 
6.9328 
7.1620 
7.4485 
7.7349 
7.9641 
8.1647 
8.2792 
8.3365 
8.3365 
8.2506 
8.0214 
7.7063 
7.2766 
6.6463 
5.7869 
4.5837 
2.5783 

2.4494 
2.4838 
2.5010 
2.5010 
2.4752 
2.4064 
2.31 19 
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able 5 (Continued) 
~~ 

R R R 
X e a  Y e a  z e a  

0 -25.40 0 
10.98 
23.37 
35.24 
46.60 
57.44 
67.88 
77.9 1 
87.53 
96.74 

105.54 
1 13.93 
121.91 

-24.06 
-22.77 
-21.54 
-20.36 
- 19.23 
-18.14 
-17.10 
-16.10 
-15.15 
- 14.23 
-13.36 
-12.53 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

v V V 
X e a  Y e a  z e a  

-31.15 -39.58 0 
-20.81 -37.96 0 
-4.81 -35.44 0 

3.05 -34.20 0 
8.92 -33.28 0 

25.14 -30.73 0 
41.37 -28.18 0 
56.34 -25.82 0 
71.32 -23.47 0 
86.30 -21.11 0 

103.37 -18.43 0 

$a 
A 

xC;a Y f a  
50.79 0.00 -5.13 
50.79 20.00 -11.83 
50.79 33.00 -16.16 
42.79 47.00 -20.83 
42.79 56.00 -23.84 
42.79 65.00 -26.85 
42.79 74.00 -29.86 

R 
Cea 

65.3 1 
61.92 
58.67 
55.55 
52.57 
49.72 
46.98 
44.34 
41.82 
39.40 
37.09 
34.88 
32.79 

V 
Cea 

102.00 
97.85 
9 I .43 
88.28 
85.92 
79.42 
72.91 
66.90 
60.89 
54.88 
48.03 

cC;a 

126.00 
126.00 
117.33 
1 16.00 
1 16.00 
1 16.00 
116.00 

~~~~~~ 

orizontal Stabilizer 
R R R 

xeb Y e b  zeb 

10.98 -24.06 0 
23.37 -22.77 0 
35.24 -21.54 0 
46.60 -20.36 0 
57.44 -19.23 0 
67.88 -18.14 0 
77.91 -17.10 0 
87.53 -16.10 0 
96.74 -15.15 0 

105.54 -14.23 0 
113.93 -13.36 0 
121.91 -12.53 0 
129.08 -11.79 0 

iertical Stabilizer 
\' 1' 1' 

xeb Y e  b zeb 

-20.81 -37.96 0 
-4.81 -35.44 

3.05 -34.20 
8.92 -33.28 

25.14 -30.73 
41.37 -28.18 
56.34 -25.82 
71.32 -23.47 
86.30 -21.11 

103.37 -18.43 
113.44 -16.84 
Engine Pylon 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Ceb 

61.62 
58.67 
55.55 
52.57 
49.72 
46.98 
44.34 
41.82 
39.40 
37.09 
34.88 
32.79 
30.90 

V 
ceb 

97.85 
91.43 
88.28 
85.92 
79.42 
72.91 
66.90 
60.89 
54.88 
48.03 
43.99 

- 
.fb Yfb zfb I 
50.79 20.00 -11.83 I 126.00 
50.79 33.00 -16.16 
50.79 47.00 -20.83 
42.79 56.00 -23.84 
42.79 65.00 -26.85 
42.79 74.00 -29.86 
42.79 82.00 -32.53 

117.33 
108 .00 
116.00 
116.00 
116.00 
116.00 

C L a e  

1 S783 
1.6844 
1.8104 
1.9828 
2.2282 
2.5398 
2.89 13 
3.1632 
3.3025 
3.2958 
3.1300 
2.7454 
1.9828 

C G e  

0.9482 
1.4740 
1.7290 
2.6550 
2.8540 
3.1030 
3.3020 
3.4280 
3.4350 
3.2020 
2.3430 

c16e 
0.7891 
0.8422 
0.9052 
0.9414 
1.1 141 
1.2699 
1 .4457 
1.5816 
1.6512 
1.6479 
1 S650 
1.3727 
0.9914 

cSv6?. 
0.4267 
0.6633 
0.778 1 
1.1948 
1.2843 
I .3964 
1.4859 
1 S426 
1 S458 
1.4409 
1 .os44 

CL", f 
1.2376 
1.2892 
1.2900 
1.1250 
I .os00 
0.8500 
0.5500 
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