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ABSTRACT

The need Lo identify spikes in the eoncentration of hazardous gases during countdowns to space-
shuttle launches hss led Kennedy Space Center o soquire considerable expertize in the design,
consiruckion, and cperation of special-purpase gux analyxers ol nass-speclromeler type. I sucl
devices cauldd be miniaturized s as to fit in a small airhorme package or backpack then their potential
apphecations would include integrated wahicle health menitoring i leter-generation space shuttles
and in hazardous material detestion in airparts, to name two examples. The bulkisst components
of snch devices are vacuum pumps, partieulary those thal himetion in the low waeoum range. Now
some pumps that operate in the high vasuum range (e.g. mpleculsr-drag and turbomalecular
pumps) are alrgady small and rugged. The prasent work sims to determine whether, on physical
crounds, one may or may uot adspl the molecular-drag principle to the low-vacunm range {in
which case wiscous-drag principle is the appropriste term]). The deliverable of the present effort is
the derivation and justificstion of some key formulas and r:akula,han methods lor the pe nhmmaw
design of & slnﬁ]e—gpdol spiral-channel viscous-drag pump..
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. BITROGUCTION
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Fig. 1.1 Cancept of a viscous-drag pump

The ne-sip boundsry condition of a viscous
fluid azsarts that s viseous Auid adheres oo any satid
with which it is in contact. The fluid that is in con-

et withh the roaf thus moves with the roof and

ihe Auid in contact with the floor remains station-
ary. The distribution of longitudinal fluid velae-
ity, =, with respect to the cross sectional coordi-
nate, r. is an voknown of the problem. The noslip
condition furnishes boundary conditions for this -
distribution. Il the channel is blocked at the ends
then thiers can be no net mass transport chrongh it
In this case the w-distribution must reverss sign at
some walue of r, as jllusirated in Fig. 1.2,

Fig. 1.2 Sample valoclty profile with backflow

_ One may understand principle of operation of a
riscous-flow pump by considering twosxtreme cises

in turn. In the first case there 15 no imposed pres-
sure diffarence betwesn the two ends of the chan-
nel and the velpeity distribution reduees to a simi-
ple linear intarpolaticn between the bounduy val-
ues. Following custom, [ will refer o this case as
COUETTE llow. It CQUETTE flow therae is nonzers
mass iransport in the direction of the wall motion
but neither compression oor expansion. In the sse-
ond extreme cass there is 4 nonvero impossd pres-
sure diffarence betwesn the twi ends of the chan-

12l thigher at the right end, sav) but there is no

wall motion. This latter case oarrespands o eap-
illary Aow, in which the mass transport is nonzerns
and in direction from greater to lesser prassure (e
in the negative =-cirection in this example]. In the
capillary-flow cass the fuid expands in the diraction
of its maticn.

If, now, there is an imposed differencz between
the prassures at the ends of the chamnsl and if there
is wall mokian in the direction of increasing pressure
then the COUETTE mechanism-—which favors maze
cranspert in the direction of wall motion——and the
eapillary-fow mechanism--which avors mass trans-
port i the opposite direction—are in mompatition.
Whenevar the COUETTE mechaniam is the domi-
nant of the two mechanizms (f.a. mnass transpart iz
in direction of wall notion}, the moving-wall chin-
nel acts &3 8. compressor. | will refer to such &
oNnprEsear 8% 8 tisrpundror monp A miolecular-
drag pump is, of caurse similar in consept, asmapt
that the chanmel widih, &, in the latter eass is
large enough compared oo the msen free path of the
malecules to violste the ususl oontinuum hypothesis
of fluid machanics. '

One may imagine bending the straight channgl
illustrated in Fig. 1 into the shape of a carkserew.
One may produce such s channel by cubting a. seresw
thread from the outer surface of an initially smooth
evlindrical doun, By rotalng suel & drum within &
sioath cireular eylinder one may sitnulate, appros-
irately, the conditions described in the foregoing
parsgraphs and thos generate & crude viscous-drag
puirnp, In the following, | will provide detailed for-
milag for estimating the parformsnee of & vissous-
drag pump in accarding ta such a muodsl,

Censider & definite materis] paint, P, on the
rotating drum situared st a some stalion alung the
channed. A observer lixed to J would report that
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The lubtrication-flow madsl

the muter eylinder is in motion and that the loead ve-
Ioeity af the eylinder has nonzers ecsnponents both
tanpent and perpendienlar to the serew-thraad. Tn
the frepning Jisenssion I did nat consider the ef-
fects of a nouzero component of wsll motion per-

pendicular to the screw-thread. An imeresting and |

inportant. question, which 1 will address only par-
tially in this repart, is; How does wall motion & the
directinn, perpendicular o the screw thread affect tha
Jarmulas Jor predicting af pump performaence$ Fur-
ther work to address this latter question is & fit topic
for Tllow-ot1 woak,

% METHODS EMPLOYED; CALCULATION
EXAMPLES ‘

Equatious of motion. Typical seales. The op-
aration of & visoous drag pump involves the physi-
cal affects of compressibility and visoosity, so 1 will
bewxin by writing down the geneeal foroi of Lhe squa-
tions of motion of & viscous gas. 1 will suppose a-
priavi, that the eoeflicients of shear and bulk vis-
cosity (dencted g and &, respectively) depend only
upan the aberduta temperature, T, and that the lat-
ter s uniform throwghout the llow. Lat g danste
the wase density of the gas; let p dencte the equi-
librium {or thermodynamic) pressurs as defined by
Lthe equation of state of an idesl gas, Le

»=pHT , (213

{in which R is the gas constant fw the particular
gas under egnisideration). Let v deaiote the fluid ve-
oty veetor and let g denote the local gravicationsl
fors-per-unit-mass. Then there are two sguaticas
of miotion, samely e wspation of cansarvation of
1mass, )

4Vl =0, 22)
and the squation for the mite of change of trausla-
tional momantum,

23
"'V"l 2 3 4

ﬂiﬁ 4P i = —Upb (R4 éﬂ)?(i’ vy

+aVv+ g . (23
QAN (2.3)
Eequstion {2.3) asserts that the mass (per unit vol-

urne} times the acosleration of an infinitesimal fluid
alemant equals the faree fper unit wolume) sxerted

on the slemant ty its surroundings. Term 1 is the
due 1o unsteadiness af the veloeity field (if presant},
Torm 2 is due ta acceleration of a fluid elament as
it passes through 8 region where the veloeity feld iz
nonuniform. Following custom, T will refer to terms
1 and 2 as inerliel reqcidors dup to unsbeadiness
and adeeciion, raspectively. Term 3 is the part of
the foree (par unit whime) due to unequal surface
pressures oo oppasite facss of an element. Terms 4
and 5 are the parts of to the foree {per wnit valume]
due to unecual Zisnous streases on opposite faces of
an sloment and Term 6 is che foetgie foree {per anil
volume) on the alement. _

I will apply certain ideslizations in the sequsl.
First among these is the assumption that the ve
locity field is steady in time s Tam 1 in 2.3) is
identically zerp|. Following custom, T will express
the remaining idealizations in terms of tzgpiond dé-
menmonal acodes of the prablem. To this end, let .
£ denoie a seale tepicsl of the channal lengtln lat &
denote 3 scale typical of the channel width: lel &7 de-
nate a seale typical of the fluid speed and lat g = |gf
deticite the stalar seoderation due to gravity

Then the following list Tomishes sstimatas of
the arder of magnituds of the rarious terms in [2.3%

[Term 2] ~ #26=1 , [Term A| -~ plie- B! }
[Torm &) ~ p0h™2  [Termn 6] ~ pg .
(2.4

The Inbrication-Bow moadel. 1 will use the terin
Iwbrieation model to deseribe the case whan the fol-
lowing idealizations sl hold:

R pltih & g
= a1, ce1l . . @3

New the quanticy BT fg has the dimensions of
length. Theleagth BT fg i called the soale heigitt o)
tha atmosphere. When the gas ig air end T haz the
valug 13° Celsius [the sea-level value for the US
Standard Atmpsphers) the scale height has a wilng
o the arder of 10 km. Thus, as long 85 che chanel
length, & is small somparsd to 10 km the assumnp-
tion {2.5)y will be sccuruie,

One may justify the neglect of the gravity term
in {2.3) {.e. Term 6) by forming the ratio of itz
order of magnitude 1o that of another term, say
Term 3: -

[Term 6 vﬂwwm%ﬁ 1. (2.6

[Term 8] ~ [@pl Pt
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Lubwication flow with purdy longitudinal roof moticon

in which T have made use of {21} {in ihe second
stepd and {2.3)s {in the last), By similar ressoning
(2.4} and {2.5] enahle one to derive the Following
astimales:

[Term 3§ ﬁ pUh - .
Term 3} & o 1. 27
wK fi :

[Term dl LN (2.8)

[Tern ':'i} £

At this paoint, one has reason to neglect all of the
terms in momentum equation, {2.3), excem Terms 3
anid 5. Qne concludez that these twp terms balance
aach other in the lbrication approximsation.

Lubrication flow with purely longitudinal
roof motion. Here, and eleawhare, there will s be
4 veloeity vertor, ¥, which repressnis the inction
of the roof of the channel relative to the Aoar. 1 will
apply the phrass pepdly longdudinel oof mation o
ihe case when the channal is straight and Ve is
parsllel o its long axis. Lot {2y, 2] be & st of

cartesinn cocrditates arranged so that the positive’

z-axis is in the direction of v.;. Let (3, v, @) be
the sorresponding cartesian compoments of the ve
losivy vaeror, v, Then the form of (2.2 in stosily
flow is

ey éﬁpv} &iﬂw}r -
9z @y &

or, equivalently,

Bpw)  Hpwy  8(pw) 2.9
o - gy -

Lat ¥ be ascals typical af the cross-chunne] velae-
ity components, w and v. Then under assumptions
stated sarlier we have the estimates
|flau) B}l ¥ Sgw)] U
Txr dy [

s —
Fy

Hs €
Thuz eqquation {2.9% implies chat

v
— e —

[

From this estimate and {2.5),, cne concludes that

v o
e~ 2.10
FrEs! 210

Thus, in lubrication low with purely longitudinal
rool motion tie crese-channel velpcity componants,

[, v}, of the velonity ave amadl comperad o the lon-
gitudinal component, w

Consider now the momentwin equaticn, {2.3).
TE, far reasons stated abave, ane keeps only Termns 3
and 3, and cne rescives the resulting vectar equation
into eartesian componaits one gtk

bp _ (Bu Fu FPu
riat a*Ty‘*éTf}
dp (ﬁ"v Fo | He P
Fy é—-r}-‘f' E‘PEZ-E; | . 2111
& (8216 Fao | S
= Fl\EE TEE a—)

In view of {2.11) one may argus that the right mem-
bars of the frst two of Lhese equations ars small
oompared wiikt the right member of the last. In
view of the slendsrnese assumption, (3.5),. mare-
over, the second derivative af w with respact to the
longitudinal conrdinata, x, is emall compsred o the
seeons] derivatives of w with respeet to the cthe cross-
channel coondinaies, » and y. The system (211}
thus reduces ta

on By &p FFPw ey
ér 4o Sy -0 =8 l\M" oyt ,)
(212

The system {2.12) implies that e presawe & gffec-
tively miform aver the ohannel, This cross channel
uniformity of the pressure is another feature of lu-
brication flow with pursly longitudinal roed mation.
In this contaxt pis & funcion of the single varisble,
>, which | will somietimes denote by piz). The par-

tinl derivative Hpi8 thus redures o an ardinary

derivative [which 1 will svmetimes denate by p'(z))
and the systam {2.12] reduces ro the single squation

(é’w 8‘310) |
=plo—mtmz] .

Ry

Fix)

Recall, niow, 1he sualion of stade (2,13, which ong
may write i the form
2]
Rr

In the first paragraph of §2, [ stabed the assumption
that T was uniform. In an idesl gas, sois B, One
comeludes from the above equation that o, like p
is & Munetion af e singls wriable 2 pwhich 1 will
sometimes denote by pf=}} in lbrication flow with
puraly langitudinsl roof motion.
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Plane flow: stream function

Plane How. Conzider the specisl case in which
¥ == 0 identically and there is no wrialion of the
other two velocity compoenents with respact to the
spamwise soordinats, g (de the ons perpendicular
o the plane of Fig. 1.2]. Then the fluid velority
vector is everywhere parallsl to the 2-¢ coordinate
plane. Following eostam, T will vefer to a. flow sat-
isfying this condition as plene flow. In plane flow,
then, {2.13) reduses 1o

. ¢
F=) mp%;f.

The second sntiderivative of this equstion with re-
spect to 2 is

Fizir® + sl + Golz) = pw, 214)

in which €z} and Co{x) are arbitrary functions of

z. I ong appliss the bonodary sonditions

=0 an $=U,
w=W% on 2=h

{both. of which are stabements of the ao-glip omdi-
tion) o (2.11) one may solve for & () and Cylz).
If one substitutes these resnlis back inko ¢2.14) one
gats

f NE _
__z?()é J’“Wfo'“;mcr‘; {2.15)

A trigd digression bere to intmxduce the s>
called stream function will expadite the slatement
of bourdary eonditions in the sequel.  Under che
resiriction to pluns flow equation (2.9} redures w

Slpw) _ Sipu]
8z &r
A standard repreasentation of the wdocity compo-

nentz Gr,ud which is u:\:)mpatlbln wu:h the above
Equ ation is

o= i {2.16)

fz "
in. which ¢r,2) — @iz, =} is any twics differentisbls
Furtetion of the varinbles {#, 2], Following custom, 1
will refer to such a funetian, &, as 4 Kreem funciion

fne may interpret the stream function in terms
ol rrmss current Iper unit span) acroes i ocranr in
thie pane of the flow, To this end, st i>,2) and

u,mfsﬁ-
ﬂ “‘“&x *

=+ ds,z + dr) bs the coordinates of two naigh-
horing poinis in the llow plane and lst @ be wean-
tour drawn between than. In steady flow the net
rate of transport of mass (per unit spand inko ar
out of a small trisngle with € as the hypotenuse
and {z + oz, ], suy, as the vertex is »ero. Now the
expression (putide represenis the trsnsport achos
the vartical leg aof the triangle {positive [or autiiow)
and the expression {pujd: represents the wransport
acress the horizantal lag of the wrisngle [positive for
inflear 3. The net owdfier across the wo laga is thus

(perde — (pulide
which must egqual the inflow acress €. Aooarding 15 -
[2.16), howaver, the expreszion given above for, the
net rate of cuiflow across the legs is just

& " el Enh
EI—(———)&. El’f—-i

which is the expansion of the tutal differential, gy,
of the stresin function between the two ends of &
Cns cancludes that the change ;e Ream function
betwesn twoe poinds in & plane flow equelz the nate o)
trensport of mase [per unR Span) SeIvEs GRY coTiiRe
drreeem fetween tivze e poinda.

This remuilk is handy in the ststement of bound-
ary eondivions. Thos, the oomdition that s wall is
imparmesbls to mass recduces to 1he stabament that
the strenn foaction i constant on tha wall, This
concludas the digression regarding the stream fune-
tion snd 1 now resmme 1he main discussion ad the
point whera [ digressad, nsmialy equation £2,15).

16 s solves (2,151 Gar w and substivutes the
Tesult into (2 18] one gets
& P 1 i
—_— o ] - DT —a]
Feal J [ It
The antiderivative of this muauon with respect U
xis

v=pls y{”‘ e ‘—ér’hm
in R

{217}

in which fiz}is an arbiteary functico of 2. Sinee
the oot iz impermenble, the stream funetion mst
he canstsnt on it and it is conreniant to chooss zere
for the value of the strasm himstion on che Hoar,
Orie thus arrives st the boundsry condition & = 0
on v o= 0 Jor gl x. W one applies this boundary

-
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Differential sguation for piz]

condition 1o {2.17) one concludes that f{x) = 0 and
12,17 redduces Lo

, L FE) s 7., W, o .
¢ = X) [-—Qp—(é;a' —hz§11]+T{rs&J . (218

Sinoe the maof is slss impermesble, the stream func-
tion must be constant on it as well. Let ¢4 danote
the value of the stream function on the roof. If one
avalnares [2.18) at = = A (ie. thz roof nlﬂvunonj
one mets

. ¥iz) LW
€ = gz} [ W —h%L -§)+—h--.},n .

But g = piz} = pl=)/(AT) (¢f. (2.1} and the discus-
gion following (2.131], 30 the last eguation impliss
that

o o H2[_FEI R Wh 10

Equation {2.19} is an ordinary differential equation
for the distribution of pressure down the chunnel
Twe special cases serve 8s ussful banchmarks, Que
may eharscterize the first special case by the ocondi-
tion p'(z) = O, or p = pe, in which pe is a constant,
This case—which [ referrsd o0 as COUETTE flow
in §i—vorresponds to the physisal situation when
both ends of the channal are vented to the same
ressrveir. One may chararterize the seoond spetial
case by the rondition ¥s == 0. Now v, represants
the rate of mass transport per unit span throogh
the channel 80 the condition ¢s = 0 represants a
blacked channed, e, one withi 1o net msss traos
port. 1 will refer o this case as the dexd-Send casa.

T the dead-head case the laft membar of (2.19)
is xaro by definition. In the mesn time, expreszion
outside the squars brackets in the right manber is
nonzero, One coneludes that jn the dead-head case
the expression inside the squars brackets must be
zero, 1t follows that

pFlibd  Wh
2n

.—/1— .
-

fc

v =22 (2.90)

Since the right member of [2.20} is constant in =
ane concludes that the pregsure varias linesrly aloug
the chaunel in the dead-hend case. Thus, p{z) =
PofEan, in which m is the pressure at the right end

angd £q is & length, which 1 will call the dead-head
length. If cue writes p/ 84, i place of P2z} in ¢2.20
anyd ragrranges, ong s

, PR o

| &y, = S 19.21)
If the given channel length, £, is greater than the
dead-head lengih, &4, then one may psrtiticn the
channel intg two paris, namely the part where §§ £
z < €~ by, {andd the p=: 0 identically ) and the part
wherm & - £y « & < & {and the pressure ramps u
linsarly to the valus, p,. at the right end).

Some abbireviations will be ccurreqisnt in the
saguel. Thus I will dencte by g the pressure-pofione
throughput (per unit spanj through the rhamel.
Lat § dencta the corrsspanding volumstric through-
put [per unit span). ‘Then the definition of q is
q = . Acwording teo [2.1%, howewsr, p = pRT. In
the mean timea, ¢s 5 the mass throughput per mit
span, so ¢, = pd, One concludes that

U HT = ghRT = pb =y (223

Ona should nove that g, like s, is conscamt in =
under gzsuroptions already introdussd bt 8 is not.

If cne writes ¥y, = ¢ (R ] in {2.18] oz may ar-
range the resulling equation in the equivalen: form

W 2y
a ¢phy  uW T
l;—-:-— (‘_”‘.’L) L W g , £2.93)
B (xR} pb, o :
il

in which saclh of the Fractions illustysted is nendi-
mansional. One may characterize thres regimes of
the flow as snmmarized in the fallowing table:

o favorable
b= In = ;;1:%7 : pressure gradient
n< A M wenk advorse

— W g’ pressure gradisnt

2 . R strong adverse

Tt prassnres gradisn
Teble 2.1 Regimes of the soluklons of [2.23)

I have applied the adjective feeamble {or wnfa-
zoraile) to the prassure gradient, $¥{z], if the pres-
sures on the leading and rrailing faces of = fluid &l-
ement are unecial ancd urge the elament ti move in
the aama dovetion ar or W the opposis derectson
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Salution kv piz)

Jronz) the wall motion, respectively. In Oow with &
faverabls pressure gradisnt [§{z) < 0), there js ex-
pansion rather than compression in the direction of
wall motian. The rase ¥(z) = O is therefore irrels
want b the design of & viscous-drag panp. Tu llow
with an adverse pressure gradient {p'{z] > D), there
will be compression in the direction of well mstion if
the sdverse prassure gradient is not strong enaugh
to cnuse reversed flow (v < 0, ar, equivalently,
g <« 0) Alternatively, if the pressure =radient iz
strang enoush to causs reversed flow Wisn the device
will ot 4ot us & compressor in that ease either. Cne
concludes that the weask-adverse-prassure-pradient
case in Tuble 2.1 above is the only one of ml:erest in
the design of & visrous drag pump.

Cne may rearrange {2.23] into & form suitable
for salution in the ease of & weak pressure gradient,
w2

o ¥
s iz ih] 14 - uw?
d ‘ Tn’a 2q i
(;ﬁ%) p'ﬁf pﬁ’ﬁ

which now treats =/ as the dependent tarishle
and phd (W) as the independent variatle. The an-
tiderivative wi.tb. respact o ph/ [ is

e m pj‘ Qq ")
Fimm 2 cotumme In o (2.
[T T — ﬂ““ ,l'ﬂ{ "—\‘nm‘ +0y, {(2.24)

in which 7 ik am arbitrary constane. Let the sta-
Ltions = = 0 and z = € rorrespond o the inlec and
theonitet of the chrnnel, respectively. Let p, denote
the pressure wd the cutlet. If one evaluates {2.24) at
=5, {where 2 = & and subtrasts the rasult from
{2247 one gats

24
-t P ph X W uw?
B— == —— ]
AW W Lawer ET»—“,_ — g
uW gz
{2.25)
Figure 2.1 nearby shows a fiuml}r of prassure dis-

wributions derived from {(2.25) in the special cass

g/ (a¥y = 1, 000.

Two foatures of these rasulfs merit mention at
this point, First, tha curwe with g = 0 is the desd-
head eome mentioned aboves, As statsd there, the
zlope, {2} is aonstant and the modal prediets &
perfect vaoum in the interwl 0 € = < £~ &y,
Seconel, sach curve wicth ¢ > 0 Lends toward a hori-
zomtal wsymptote in the upstiresm direction {ses the

% 1000 1o = 2/ 5 W]
P

608
A%y
09

T R R R T R
r-F

h

Flg. 2.1 Longltudinal pressure distribulloms down

a channel predicted by (2.25) in the speeial case

;n,h} mw) 1. C()J (Plana-ﬁm oBseE).

lefi marginz of the curves]. Third, sach pressure
eurve attsing a value close W its upstresm asymp-
totie value 2t a distance two or thres dead-head
lengths upstream of the cntlet. This lest obsor-
tion swggests that any portion of the chanbal wore
that two or three dead-head lengths upstream of the
outlst does litkle more than add weight o the pump
while playing little or no mle in cornpressing the gas,

That there shiould be un ssymptote on a curve
of constant q is apparent from [2.25] sinve the wioe
of the natural logrrithm tendz t negative infinity
as g ARIF ] = 29/ Onosuch an ssympdote
the prassurs is uniform snd thus corrasponids o the
COUETTE state discussed sarliar.

One may derive a zimple formula formuls
the valumetric thyoughput {per unit spanl, &, m
the upztream asymptote. This faemule will prove
uszful in the saquel, so [ will derive it now. In lm-
text abvive equation (2,22}, T pointed om thar ¥, =
(15 Ii" omie substituies Lhis msule into the mlmlmn
just belore {2.19) one pets

[LEEE W
Az = PL«){ % 8%- ‘3]'

If ene cancels the commaon factor o] in the ldt and
right member aod evaluates on the remote npstreamn
asymptote (whore (21 — Q arcd & - 8¢z}, one gets
Wh
b = . {2.26)
Ky

As an application of the esgoing formmlas Lo
an initinl pump design, cousider the following sper-

ifieations:
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Design problem: practical formuolas

1. The fluid is mir and iz temperature inzide the
pump is 1207 F;

. The wolumetric 1ate of trauspcm S, of gas into
the inlet is 7 L/min [0.247 ft /(mm)]

3. The volumetric transpart rste, S, an the re-
maote upstream asvinpiote of the prossure dis-
tribution is such that S = 1.15;

4. 'rhe gspact ratin of the channsel cross section,
A = &'k, in whidh & and » are the chanoal
span and thmhness, respectively, has the valua
A=5

. The inlet pressure, p;, and the osutlet pressurs,
P.. Bqual 10—+ Atin and 1 Avm, respectivaly;

6. The spin rate of the drum, f, i= in r.he Tange

30,000 1w 90,000 RPM; ’

. The radius of the drum. R, is in the range 1-
3 em.

[

[#1]

With these specifications, ane may caleulste
variuus paramsters of & pump such as: the chan-
nel thickness, &, the channel length, £, the altitude
of the drum, L, and the ares, A, of the drum (1o
name lour examples]. Wich the aim ol calculating
these quantities, ons must frst rewrite soms of the
squations alreacdy in hand to pmt them into a o
. canvenignt in this applicaticn.

From the foregoing delinitions, we have Sc =
d-8, or, in view of (2.9%),

i

Reeall, next, chat g = |of the equation be-
forz (2.22)]. But g is independent of position along
- the channel {¢f the text aftar (2.27}], so we may
calculate g at any eonvenient station along it, IF
ane takes the inlet {where p = @ and & = 578) as
this referance station, one gets

5= (2.97)

iS5
qg= 3‘7’— . {2.2%)

Now evaluare {2.257 at the inlet {whare p=
and z = @) Angl. multiply the result by -1:

nit 2oy
L, ph ph % pw #W*‘
R opW  opW T pw?zo | A Zg

i

* This value sorresponids to 1he rated spesd of &
serall pump [Air Sguared madd number P10H10/
K4.0 or Spivad yn-003-0DSP) now installad in & pro-
1otype pas andlyzer (AVEMS] in the Hazardous Gas
Detection Lab at KSC. .

It one eliminates ¢ by mesas of {2.2B) ooe gats

S Iy,
£ _ ph mh  UpE (;ﬁ% nﬂ”‘\

i ;4!*5’ +;&FV W el . mh S ‘
k\nﬁ p} b/

If one eliminates & by mesns of (2.27) then one
may show, after some reductions and rearTange-
ment, that

_ R
T ép it

(:é.:e'sq

- Note that the exprassion outside. the large curly

braees in the right member is equals the dead-heasd
length, &, defined by {2.21),

II' ome substitutas ¥ = A inbw {2.27), ongs gabs,
after rearrangement,

. 28 - . .
? {2,308
R 20
In the mean tirne, we know thet.§
W o= 2af . {2.31}

If coie eliminates W from (2.30) by nsuns of {2.31]
one gots
28
ARRT
If one substitutes {2.31) and {232} into (2.29)
to dimingte ¥ and B2, respectively, one ges

B~ (2.3

P So |
_P_ Sc _&lxﬁss‘mﬁs ]
3p AR Vs WSc \‘ ) -1 )

' £2.371

From the spevification thet the gas is @ir at
T = 120° F cne can look up the corrasponding
shear visoasity, g, froan a handbook o1 calculate
it from & standard empirical formula, such az the
so-called Suthavlend low {of. 05 Steaderd Atmo-
spheve 1976, [1]. The lattar gives

= L OIRAB % 10 dynes fem) 0. 6234

1 Remembear that f is in cyola: par onit time
rathiar than redians per unit time Thiz Jistine-
tion acoounts for the presence of the factor 2x in
the result asserted.
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Design problem: numerical example; Conclusions

With (2.34) and the dats in the specificalions
above, squatian £2.33] is in a frm suitable for im-
mediate substitution of numerical wlues, provided
one takes dug account of necessary unit eonversions.
As an example of the latter, one may note that

5, =1 Atm = 1.01395 x 10° dyne {em) ™

which expedites the compuiation of the ratio p./p
in {2.33). Thus, specifications 3 and 5 sbove are
sufficient te determine the momerical value of the
axpressian in curly brares sbove (It has the wilue
1.00096%. The closensss of this factor to one is warth
noting and is & consegueance of the smallness of the
fastar @i p,. ’ ’ :

Omne may nevy tabulata the channel length, £ by
substituting the foreguiug values of the parametars
inte the right. member af (2.33). Table 2.1 furnishes
rasults abtained in this way.

, £ fm)
B | f=310] f=610t | F=0a00
femy | (RPMY | (RPM) | (RPM)
1 45.12 11.28 5.1
2 11.38 38D 1.35
3 501 1.25 0657 |

Table 2.1 Dependence of chanmel length, ¢, upon
drum radius, R, and rotaticn vaka, f.

The square oot of equation (2.32) furnishes &
formula for the &, Table 2.2 furnishes ssilenlsizel

valuas of f:
B {my
R f=310¢] f=610" | F=0104
fom) | (RPM) (RPM) | (RPM)
_—_
1 1.978 0.904 0.738
B 0.004 7.530 0,522
3 NE] 0.522 0.426

Table 3.2 Dependencs of channel width, &z, upon
drum radius, 'R, and rotation rate, [.

If, as ztatec] sarlier, one comskructs a viscons
drag pump by rotating a evlindrics] drum in a sta-
tionsry evlinder thon one may sestimsts the inside
avei, A, of the eylivder by the product of the chan-
ool lengtly, ¢ with the channel span, & = X OF
crurer, the cylinder aves in g real puinp most be

larger to allew for the portion of the aren lakan
up by seals between adjacent channads {or threads).
BEven, so the the product £k (= A is interesting
since one expects that the mass of & bollow drom o
seple with this quanticy. Table 2.3 [urnishes caleu-
lated values of A:

A [c:mf
R | 5=3210* | f=610* | F=210°
aem) | (RPMY | (RPM) | (RPM]
T | 2554, A Bs0 ]
7 S .12 3270
3 185.0 3200 1187 |

Tabde 2.3 Dependence of cylinder area A, upon
drum radius, ¥, and rotation rate, [

¥ ang divides the cylinder area, A, by the cylin-
der circumfersnce, 3R, one gets the cylindsr alti-
tude, L. Tsble 2.4 furnishas caleulated valoes of L:

L (cm]
R | =210 [ f=0100 | =008
ey | (rEPMY | (RPMY | (RPM)
T | 2500 ®1.14 20,44
7 War | 7172 | 268
3 TR15 1795 TeXE |

Table 2.4 Dapendence of cylinder sltitude £, nupon
drum radius, R, and rotation rate, f.

I will conclnde the discussion of numerical re-
sultzs br nating that the pressure-volume ircugh-
put, Q, defined by Q = p; &, is a conetant of the
prablem. Thus, sinee 8 and @ are given by Spee-
ifications 2 and 5, respectively, the conesponding
valne of £ hecomes 7 x 10-* Aun L/ min or

Q= LIGT » 107 At jom)tes) .

3. CONCLUSIONS

The present sffort supparts saweral oonclusions in-
cluding ihe following:

1. The assumpticns of lnbrication theary of a gas
erighle ane o solve for the plens Oow down &
wiilarmn chanmgl (with roaf wotion parallel to
the Joug axis of the channel} in lerms of el
nertary functions;
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Unresalyed issums; future oppartunities

2. Omne may identify thres distinct regimss of the
flow, namely favorable pressure gradisnt, weak
adverse pressure gradient, and strang adverse
pressure gradient, of which only ans iz compat-
ible with flow in & compressor;

3. If one can spin the drum up 1o 9 x 10* RPA,
then one can replicste the pumping spesd
(namiely 7 L/min] of existing backing pumps
of serall- and diaphvagm-type with a oxlindri-
eal drum of surfaas- areq tess than 12 r‘cm}

4. UNRESOLVED ISSUES; FUTURE OPPOR-
TUNITIES

The kireguing canclusions give cause for optimism
thaet miniaturization of backing snd roughing pumps
of viscoms drag type may be possible. The ralative
simplicity of the coneept also sugpests that such &
device inay be ruggedized.

In the geometry cansiden=l thus far l;he velap-
iy, ¥ent, af the roof ralative to the flioor corrasponds
to the vdocity of a stationary cylinder relative to &
rotating drum inteciar to it. If the channel has the
shape of a screw-thread then there will inevitahly
be 4 companient of V., s8¥ V2, perpt.nd fewlsr ta
the thread. The afects of & nouzers vz include
a tw-dimensional 7ecireslazéing fow in the plane of
& typical eross section. The presence of such a re-
circalating Aow may influence the performune: of &
pump in a number of ways. To discuss then, how-
aver, | must first deseribe the so-called Hftap effack

To set the stage for a description of the liftop ef-
fect, note that the racirculating How will misss some
fluid particles closer o the roof aud athers clossr W
the Aoor. There will be soine tendency for such par-
ticles b retain their translationsd momentum. ¢and,
hience, ther streamwizse velocity, @) as they move
imo 2 new envirauwment. The velority distribution
given by (2.15) would chus be subject to warping.
This warping of the streamwise valooity distribution
ix the liftup effect, o phenomenan discusssd (bor ex-
ampde) by Lupwis PRANIITL in the 1920s. The
liftup offert may sifect pump pm[t:rmance in num-
ber of waye. - Thus:

1. The pump performance estimates given above
presawue thal the flow is pol turbulent. The
liftup effect typically destabilizes a nomtaurbu-
lent Aovw and makes it more apt bo beooms tur-
buleng., The question of whallier—or i[—thg
flow trips Lo a turbulent stale and, if it dpes,
how the turbulencs affects the pump perfor-

nunos, am serious questiong worthy of furchar
investigation.

2 Even if thers is no turbulence, the redistritm-
tian of streamwise momenturn in the cross see-
tian due o the likup effect may alfect the per-
formanece of the pump siguificantly. The deriva-
tion of appropriate formulss or computatioual
models 1o preddiet such changes in parformanes
is a inportant sutsject for follovw-on work.

5. The recircolating Bow in the cross saction and,
for that matter, che flow a5 a whole may be sf-
fected significantly by the leakage of fluid across
sanls that separate adjecent flow channels on
the rotating drum. The derivation of sppropri-
ate fonmulas or cxnputationsl models to pre- -
dict such sfferts of seal lenkage—and its affects
on pump perfarmanes—is & fit subject for fur-
ther investigution.,
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