RESEARCH MEMORANDUM.

CASE FILE
 COPY

AN INVESTIGATION OF THE EFFECTS OF SWEEP ON THE
CHARACTERISTICS OF A HIGH-ASPECT-RATIO WING
IN THE LANGLEY 8-FOOT HIGH-SPEED TUNNEL

By

Richard T. Whitcomb
Langley Memorial Aeronautical Laboratory Langley Field, Va.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON
February 14, 1947

NATIONAL ADVISORY COMMITTEEE FOR AEFOMAUTICS ${ }^{\text {lassificstion Changed to }}$ UNCLASSIFIED

RESEARCH MEMOTANDUM

AN INVESTIGATION OF THE IWFECTS OF
CHARACTERISTICS OF A HIGH-ASPECT-RATIO WING

IN THE LAIGGIEY 8-FOOT HIGH-SPEED IUTNVEL

By Richard T. Whitcomb

SUMMARY

An untwisted wing, which when unswept has an NACA 65-210 section, an aspect ratio of 9.0 and a taper ratio of 2.5:1.0, has been tested with no sweep, and 30° and 45° of sweepback and sweepforward in conjunction with a typical fuselage at Mach numbers from 0.60 to 0.96 at angles of attack generally between -2° and 10° in the Langley 8 -foot high-speed tunnel. Sweep was obtained by rotating the wing semispans about a point in the plane of symmetry. The normal-force, pitching-moment, profile-draf, and loading characteristics for the wings have been obtained from pressure meastrements and wake surveys. The results indicate that the wings with $\$ 30^{\circ}$ of sweep experienced the severe changes in characteristics associated with the presence of shock at higher Mach numbers then did the wing without sweep. The differences between the Mach numbers at which the changes occurred for the wings with $\pm 30^{\circ}$ sweeg and no sweep were generally slightly less than the factor $\frac{I}{\cos \Lambda_{r}}$ times the Mach numbers at which the changes occurred for the unswept wing, Λ_{r} being the sweep angle. The wings with $\pm 45^{\circ}$ of sweep did not experience the changes in the characteristics associated with the presence of shock at an angle of attack of 2° at Mach numbers up to the highest test value. The magnitudes of chances in the normalforce and pitching-moment coefficients that occurred were less for the wing with 30° of sweep than for the unswept wing. The use of sweepforward vas superior to sweepback in delaying and roducing the changes in the normal-force coefficients, but was inferior in delaying and reducing the changes in the profile-diag coefficients. Increasing the Mach number to the highost test values had little effect on the positions of the center of loads on the various configurations for the probable design load conditions.

INTRODUCTION

The results of investigations made in this country and in Germany (references 1 and 2) have shown that the use of sweepback
or sweepforward delays the onset of the radical changes in aerodynemic characteristics associated with the presence of shock on the wing. . More recent investigations made in both countries have added considerable infomation on the characteristices of wings with sweep at supersonic as well as subsonic Mach numbers (reference 3) but little data is available for the transonic speed range. The data available, therefore, are insufficient for the proper design of aircraft with swept wings.

The NACA 65-210 wing model previously tësted in the Langley 8-foot high-speed tunnel (reference 4) has been tested in conjunction with a typical fuselage with no sweep and 30° and 45° of sweepback and sweepforward of the quarter-chord line and several aileron deflections at Mach numbers from 0.60 to 0.96 at andes of attack generally between -2° and 10° to provide information on the following factors:
(1) The effects of sweep on derodynemic characteristics of this particular wing in the Mach number rance for which general information on the effects of sweep on eerodynmaic charactoristics is now available.
(2) The eneral effects of sweep on aerodynamic characteristics in the lover part of the transonic speed range for which little data are available.
(3) The effects of compressibility on the distributions of acrodynamic loads on swept wings at subsonic Mach numbers.
(4) The changes in the aerodynamic characteristics of a fuselage in the: presence of swept wings at suibsonic Mach numbers.:

DEHINITIONS

The gymbols are defined as follows:
b spen of model
c section chord of wing, parallel to air suream
${ }^{c} A$ section chord perpendicular to quarter-chord line of unswept wing
c_{c} chord of section perpendicular to the quarter-chord line of the unswept wing passing through the critical point, the intersection with the surfeco of the fusclage of the 70or 20-percent-chord linos of the unswept wing for sweptback or sweptforward wings, respectively (see fig. 3)
c_{f} chord of section at juncture of wing and fuselage
c_{g} tip chord, parallel to air strean
c_{r} root chord, distance between intersections of extended leading and trailing edges with plane of symmetry
\bar{c}_{c}
average chord of wing extended to plane of symmetry $\left(\frac{c_{r}+c_{E}}{2}\right)$
\bar{c}_{W}
average chord of wing outboard of fuselage $\left(\frac{c_{f}+c_{g}}{2}\right)$
$c^{\prime}{ }_{w}$ mean aerodynamic chord of wing outboard of fuselage

$$
c_{w}^{\prime}=\frac{2}{3}\left(c_{f}+c_{g}-\frac{c_{i^{\prime}} c_{g}}{c_{f}+c_{g}}\right)(\text { reference 5) }
$$

c'a mean aerodynamic chord of over-all contiguration assuming wing is rectangular through fuselage with chord equal to the chord at wing-fuseloge juncture

$$
c_{a}^{\prime}=\frac{c_{f}^{2} r+c_{w}^{\prime} w_{w}}{c_{f} r+S_{w}} \text { (reference 5) }
$$

d
sweptrback semispan, distance betwes interpections of the quarter-chord line of the unswept wing with the root and tip chords, $b / 2 \cos A_{r}(s e o \operatorname{lig}$. 3)
distance from nose of fuselage to intersection of the quarterchord line of the unswept wing with the plane of symmetry (see fig. 3)

AH - loss of total pressure in wake
2 distance from leading eage of wing perpendicular to quarter chord of the unswept wing, inches

M Mach number:
$p_{0} \quad$ static pressure in undisturbed streom, pounds per square foot
local static pressure at a point on airfoil or fuselage, pounds per square foot pressure coefficient $\left(\frac{p-p_{0}}{q}\right)$; U, upper surface; I, lover surface dynamic pressure, pounds per square foot $\left(\frac{1}{2} \rho^{2}{ }^{2}\right)$
r radius of straight-sided part of fucelage at wing-fuselage juncture, 1.875 inches (see fig. 3)
X_{t} chordvise distance from leadine edge of ving-fuselage-juncture chord to leadine edge of tip chord
X_{W} distance from the lateral axis through the intersection of the quarter-chord line of the unswept wing and the plane of symetry to the lateral axis through the quarter-chord station of the mean aerodynamic chord of the ving outboerd of the fuselage

$$
X_{\mathrm{W}}=\frac{X_{\mathrm{t}}\left(c_{\hat{f}}+c_{\mathrm{e}}\right)}{3\left(c_{f}+c_{\mathrm{S}}\right)}+\frac{1}{4}\left(c_{\mathrm{W}}^{1}-c_{f}\right)+X_{f} \text { (reference 5) }
$$

distance measured along quarter-chord line of the unswept wing from plane of symmetry, inches
distance along the quarter-chord line of the unswept wing from the plane of symetry to the section through the critical point, inches
distance along the quarter-chord line of the unswept wing from the plane of syrmetry to the section perpendicular to the quarter-chord line which includes the center of load on the wing outboard of the section through the critical point, inches
area of wing outboard fuselage $\left(\bar{c}_{W}(b-2 r)\right)$ area of wine extended throngh fuselage $\left(c_{\theta} b\right)$ area of wing assuming wing rectanguler through fuselage

$$
\left(S_{W}+2 c_{f} r\right)
$$

velocity in undisturbed stream, feet per second
distance in stream direction from intersection of quarter chord of the unswept wing with plane of symmetry (downstream positive), inches
distance from the lateral axis through the intersection of the quarter-chord line of the unswept wing and the plene of symmetry to the lateral axis through the quartar-chord station of the section at the intersection of the wing and fuselage
\bar{X}_{a} distance from the lateral oxis through the intersection of the quaiter-chord line of the unswate wine and the plane of fymmetry to the lateral axis throngh the quarter-chord station of the mean aerokynamic chord of the over-all

: coníiguration assuming wing rectangular through fuselage

$$
X_{a}=\frac{X_{W}-c_{V / 4}}{c_{Y} r+S_{W}}(\text { reference 5) }
$$

y distance from plane of symmetry along horizontal axis, inches
z distance from center Iine along vertical axis, inches
z^{\prime} vertical distance from trailing edge of wing-fuselage-juncture chord, inches
$\alpha \quad$ geometric ancle of attack, degrees
p mass density in undisturbed stresm, slugs per cubic foot
Ao sweep angle between line perpendicular to the plane of symmetry and leading edge of wing, degrees (positive values for sweepback, negative values for sweepforwand)

Ar sweep angle between line perpendjculur to the plane of symmetry and the quarter-chord line of the unswept wing, the principol reierence line, degreos

The coefficients are definco as follows:
c_{n} : wing section normel-force coefficient (section perpendiculer to quarter-chord line of the unswept wing)

$$
c_{n}{ }^{t}=\frac{1}{c_{\Lambda}} \int_{0}^{c_{\Lambda}}\left(P_{I}-P_{U}\right) d Z
$$

c_{t} wing section twisting-moment coefficient about quarter-chord line of the ungwent wing (section perpendicular to this line)

$$
c_{t}=\frac{1}{\left(c_{\Lambda}\right)^{2}} \int_{0}^{c_{\Lambda}}\left(P_{U}-P_{I}\right)\left(2-\frac{c_{\Lambda}}{4}\right), 2
$$

C_{NT} wing normal-force cocfficient

$$
C_{N_{V}}=\frac{2}{S_{W}} \int_{a_{I}}^{a_{2}} c_{\Lambda} c_{n}^{2} \text { ds (see fig. 3) }
$$

UNCLEASSHine

$c_{\text {nf }} \therefore \therefore \therefore$ fuselage section normal -force coefficient (section parallel wi.til air stream)

$$
c_{n_{P}}=\frac{1}{c_{f}} \int_{6-g}^{25-g}\left(P_{I_{i}}-P_{U}\right) d x\left(\text { see } f_{i} \cdot \beta\right)
$$

$c_{m_{f}} \quad$ fuselage section pitching moment coefficient about quarter chord station of wing section at fuselage surface

$$
c_{m_{P}}=\frac{2}{c_{\underline{1}}^{2}} \int_{6-E}^{25-g}\left(P_{U}-I_{L}\right)(x) d x
$$

$\mathrm{C}_{\mathrm{N}_{\mathrm{a}}}$.
over all normal -rance coofficiont

$$
c_{\mathbb{N}_{\mathrm{a}}}=\frac{S_{W}}{S_{\mathrm{Q}}} c_{\mathrm{W}_{\mathrm{W}}}+\frac{2 c_{f} r_{\mathrm{P}}}{S_{\mathrm{a}}} c_{\mathrm{I}_{\mathrm{L}}}
$$

$\mathrm{C}_{\mathrm{m}} / 4_{a} \quad$ over-all pitching-monent coefficient about quanter-chord station of mean aerodynamic chore of over-all configuration

$$
\begin{aligned}
& C_{m_{c} / 4}=\frac{c_{a}^{\prime} S_{W}}{c_{a^{\prime}}^{S}} C_{m_{c} / / t_{W}}+\frac{S_{w}}{S_{a}}\left(\frac{X_{a}-X_{W}}{c_{a}^{\prime}}\right) C_{N_{W}} \\
& +\frac{c_{p} c_{f}}{c_{1}^{\prime} S_{a}} c_{m_{1}}+\frac{c_{f} r_{f}}{S_{a}} \frac{X_{a}-X_{w}}{c_{a}} c_{n_{f}}
\end{aligned}
$$

${ }^{C_{\mathbb{N}_{\mathrm{C}}}} \begin{gathered}\text { normal-force coefficient for wine outboard section through } \\ \text { critical point }\end{gathered}$

$$
C_{W_{C}}=\frac{2}{B_{W}} \int_{s_{c}}^{a_{2}} c \Lambda c_{n} d
$$

$\mathrm{C}_{\mathrm{B}_{\mathrm{C}}}$	bending-moment coeificient for section through critical point
	$c_{B_{c}}=\frac{2}{s_{V} d} \int_{s_{c}}^{a_{2}} c_{A} c_{n}\left(s-s_{c}\right) d s$
$s / / d$	lateral position of center of load with reference to the section through critical point
	$s^{:} / d=C_{B_{C}} / C_{N_{C}}$
	\therefore;
$\mathrm{C}_{\tau_{e}}$	twisting-moment coeficicient about quarter chord of the unsvept wing for wine outboard of critical section based on chord of section through critical point
	$C_{t_{c}}=\frac{2}{S_{\mathrm{w}} \mathrm{c}_{\mathrm{c}}} \int_{\mathrm{s}_{\mathrm{c}}}^{a_{2}} c_{A}^{2} \mathrm{c}_{\mathrm{t}} d s$
i / c_{c}	chordwise position of center of load with reference to the quarter-chord line of the unswept wing
	$\eta: / c_{C}=\frac{\mathrm{C}_{\mathrm{t}_{\mathrm{C}}}}{\mathrm{C}_{\mathrm{I}_{\mathrm{C}}}}$
c_{t}	mean section twisting-moment coefficient
	$\bar{c}_{t}=\frac{2}{s_{e} \bar{c}_{e}} \int_{s_{c}}^{a_{2}} c_{t} c_{A} \bar{d}$
c_{0}	section protile-cing coefficient from wake survey measunements
$\mathrm{C}_{\mathrm{D}_{\mathrm{O}_{\Psi T}}}$	wing profile-drag coefíicient
	$C_{D_{O_{V}}}=\frac{2}{S_{W}} \int_{r_{f}}^{\rho_{\mathrm{P}_{\mathrm{O}}}^{\infty}} \mathrm{cc}_{\mathrm{d}_{\mathrm{O}}} d y$

APPARATUS

The Langley 8-ioot high-speed tunnel, in which the tests were conducted,is of the single-retian, closed-throat type.

The ring model tested as it appeared durine previous tests is shown in figures 1 and 2 . For the unswept condition with no fuselage, It has on NACA 65-210 airfoil section, an aspect ratio of 9.0, a teper ratio of 2.5:1.0, no twist or dihedral, and a 20-percent-chord aileron that extends from the 60 -percent-semispan gtation to the end of the straight part of the trailing edge. The ordinates of the tip and the NACA 65-210 section of the unswopt wins are prosented in reference 4. Othor dimensions of the unswept wing are presentod in table I. Twenty static-pressure oriflces were placed at each of ejeht stations along the wing span in lines perpendicular to tho querter-chord line of the unswopt wing. The approximate chordwise locations of the orifices are given in reference 4 while the spanwisc locations of the stations are presented in table II. The four inboard stations vere placed on the left half of the wing and the four outbond stations were placed on the right half.

The modol was supported in the tunnel by means of the vertical steel plate show in figures 1 and 2. The plate, which is completely describod in reference 4 , has a chord of 50 inches, a thichmess of : 0.75 inch, and a modified elinpse profilo.

Swept conficurations were obtained by rotating the model with respect to the support plate about the moin fartoning serew, which is loceted at the midspan of tho model and 0.4-root-chond lengith from the leading edge of the root chord. Wall presewre measurements indicate that the flow over tile mocici on one side of the plate had very little effect on the flow on the othor side even at the highest test Mach numbers. A given test configuration ropresents, therefore, not a yawed model but half of a swept-back model and half of a swept-forvard model. Cince the thickness of the boundary layer on the plate was small, the support had negligible effect on the deta obtained.

Revised tipe were adaed for each sweep. The shapes of the revised tips wore aimilar to that of the unswept wing, the major axes of the tips were parallel to the stream direction, the minor axes were along the 40-percont-chord lincs, and the widths were 0.47 inch (see fig. 3). The dimensions of the model with 30° and 45° or sweepback and sweepforward of the quarter-chord line are prosented in teble I and figure 3. The dimenijions are based on the assumption that the surface of the plate at the root is the plane of symetry. The locations of the pressure crifice stations with reference to the intersection of the quarter-chord line of the oniginal wing and the center line for the swept configurations ore prosented in table II.

The effect of the addition of a fuselage to a complete wing was simulated by the addition of two half bodies of revolution to the test configuration at the surfaces or the support plate. The dimensions of the half bodies of revolution, the center lines of which coincided with the chord plane of the wing, are shown in figure 3. The chordwise positions of the fuselage with respect to the wing for the various sweep angles are presented in table I. Twenty-ejght pressure orifices were placed in one of the halves in two planes at 15° to the plane of symetry through the center line as show in figure 3 .

Wake surveys were made behind the wing by means of the rake described in reference 4 and shom in figure?.

METHODS AMD PROCEDURES

Test:s

Pressure measurements were made at the eight stations on the wing and on the fuselage at the Mach numbers and angles of attack listed in table IV. All pressure measurements were made with the revised tips described in the section on Apporatus. Since the prescure stations are on both sides of the wing model, pressure data for a given sweep were necessarily obiained during tests of two configirations. Wole-survey measurements wero made at the stations listed in table III at the Mach numbers and angles of attack listed in table IV. Wake-survey moasurements were mado with and without the revised tips for sweop angles of 30° and 45° at the three stations nearest the tip. All other woke surveys were made with the revised tips.

Corrections Ior Tunnel-Wall Interference

The expressions available for the calculation of the effects of tunnel-wall intererence are inadequate for the accurate determination of those effects for swept wings at high subsonic Mach numbers. No corrections for these erfects have been applied, therefore, to the results of the present tests of swept wings. To make the data presented consistent, no corrections have been applied to the data obtained for the unswept condition. Bstimations of the order of macnitude of the efiects of tunel-wall interierences, using the expressions presented in reference 4, indicete that the corrections to be applied to dynamic preseures and Mach numbers for all conditions except that of no sweep at a Mach number of 0.925 are less, and in most cases much less, then 1 percent. The corrections to be applicd to the results obtained for no sweep at a Mach number of 0.925 may be as large as 3 percent.

Limiting Test Mach Numbers

The tunnel choked at Mach numbers of approxinately 0.945, 0.975, and 0.985 for sweep ancles of $0^{\circ}, 30^{\circ}$, and 45°, respectively. The data obtained when the tunnel is choked are not applicable to the prediction of wing characteristics for Iree air (reference 6) and therefore they are not presented.

Static pressure measurements made on the tunnel wall indicate that there are perceptible tendencies toward choke at the plane of the model at a Mach number of 0.925 and 0.960 for unswept and swept conditions, respectively. The results obtained at these Mach numbers, even if coxpletely corrected for the usual effects of tunnel-wall interference, may not, therefore, indicate the exact flight characteristics. The general trends, however, are believed to be illustrated by the results obtained at these Mach numbers.

With the support strut for the wake-survey rake in place (fig. 2) the tumel choked at this strut when the uncorrected Mach number at the plane of the model was 0.882 . As explained in reference 4, choking at the survey strut simply imposes a limitation on the maximum test Mach number and does not affect the applicability of the results. The data obtained for the model with the wake-survey. strut in place can thus be assumed to be correct up to the choking Mach number of the wole-survey strut and data up to this Mach number have been presented.

Reynolds Number Range
When the Mach number was increased from 0.60 to 0.96 , the Reynolds numbers for the unswept wing based on the mean chord varied from 1.05×10^{6} to 1.25×10^{6}. The Reynolas numbers for the swept wings were greater than these values by the ratjos. of the mean chords of these wings to the mean chord of the unswept wing (table I).

REDUCTION OF DATA AND RESUITS

Aerodynamic Characteristics

Section normal-force coefficient $c_{n}{ }^{\prime}$ and section twistingmoment coefficients about the quarter-choid line of the unswept wing c_{t} have been obtained by integrating the pressuredistribution diagrams for the eight wing-orifice stations.

The wing normal-force coefficient has been obtained by integrating a curve of c_{n} ' C_{1} versus the distance along the quarter-chord line of the
whrept ving, anc Sividing tho nesulte by the area of the wing outboard of the fuselage. Variations of the resulting wine normal-force coefficients with angle of attack for the various sweep angles are prosented in figure 4 while variations of this coefficient with Mach number are presented in figure 5. Variations of the slopes of the wing normal-force-coefficient curves, $\mathrm{aC}_{\mathrm{NV}_{\mathrm{w}}} / \mathrm{d} \alpha$, with Mach number at an angle of attack of 2^{0} are prosented in figure 6.

The wing twisting-moment coefficient about the quarter-chord line: of the unswept wing has been obtained by integrating a curve of $c_{t} c^{2}$ versus distance along this line and dividing the result by the area and mean aerodynamic chord of the wing outboard of the fuselage. The wing bending-moment coefficient about a line perpendicular to the quarter-chord line of the unswept wing at its intersection with the plane of sumetry in terms of the mean aerodynmic chord of the wing was calculated from data obtained during the integretion of a curve of $c^{2} n c i$ versus the distance along this line. The wing pitching-moment coefijcient about a lateral axis through the intersection of the quarter-chord line: or the unsweft wing end the plene of symetry hes been obtained by adding the components of the wing tristing and bending-moment coeflicients about this axis. By adding to this pltching-moment coefficient the product of the ving nomal-fonce coefficient and the distance from this axis to the unarter-chora station of the mean aerodynamic chord, the pitching-moment coefficients about this station has been obtained. The variations of the wing pitching-moment coeficient about the quarter chord of the mean aerodynamic chord of the wing with wing normal-forco coefficient ior various Mach numbers are presented in igure 7. Variations of this coefticient with Mach number for wing normol-force coefficients or.0.1, 0.3, and 0.5. are presented in figure 8.

The total-pressure and static-pressure measurements made during the woke surveys have been reduced to section profile-drag coefficients by use of the expressions presented in reference 7. The totel wing profile-drag coefficient has boen obtained by intecrating a curve of $c_{d_{0}}{ }^{c}$ versus the semispan from the plene through the ving-fuselage junctures to beyond the tip and dividing the result by the area of the wing outboard or the Iuselage. The result obtained indicates the exact wing profile-drag coefficient only if the measurements made near the fuselage do not include part of the total pressure losses for the fuselage. The resulte of a preliminary investigation indicate that these measurements include onily a small part of these losses. It may be assumed for all practical purposes, therefore, that the result obtained does indicate the total. wing-drag coefficient. The total wing profile drag coefficient for the wing with 450 of sweepback was obtained from measurements made at the two chordwise positions given in table III. The results of measurements made at both of these chordwise positions but at one spanvise position

Indicate that there was very little cross flow behind the wing even at the highest test angles. It may be assumed, therefore, that the measurement made indicates the true total wing-wotile-drag coeiicients for the wing with 45° of sweep.

Variations of the wing-profile-drag coeficient with wing normalforce coeificient are mesented in figure 9 while veriations of this coefficient, with Mach number for wing nomal-force ccefficients of 0.2 and 0.5 are presented in figure 10. To indicate the effect of sweep alone on the profile-drag characteristics of the wing, the variations of wing profile-drag coefficient with Mach number for the various sweeps and an angle of attack of 2° are peosented in figure 11.

The fuselage-section normal-force coefricient and fuselage-section pitching-moment coefficicnt about the quarea-chord station of the chord at the wing-freelege juncture in terms of this chord have been obtained by integrating a pressure-distribution diagram for the fusolage orifice station. Since the pressure measurements were made along the central portion of the fuselage only, the nomal and pitching-moment coefficients obtained are not for a complete fucelage section in the presence of the wing. However, thesc coefficients do have significance. The difference of the prescures on the uper and lover surfaces of the fuselage with no wing producod by changing the anclo of attack are concentrated near the nose and tail, while difienences in the pressures on these surfaces produced by the presence of the wing are concontrated on the central portion of the fuselage (reference 8). The coefficients obtained from pressures measured along the centrel portion of the fuselage, are therefore, very nearly equal to the changes in the fuselage-section coefficients produced by the mesence of the wing. The ratios of the fuselage-section normel-ionce coerficient to the wing normal-force coefficient are presented in figure 12. Variations of the fuselage-section pitching-moment coefficient with Puselage-section normal-force coefficient are presented in figure 13.

The results of previous theoretical and exerimental work (reference 8) indicate that for an unswept wing at low Mach numbers the effect of the wing on the total fuselage coefricients are probably nearly the same as the effects of the wing on the section coefficients for the fuselage planes for which measurements veire made. To obtain approximations of the over-all effects of the wing it has been assumed that the erfects of the wing on the total luselace coefficients are the same as the effects of the wing on the section coefficjents for all the test conditions. The over-all nomal-ioco coefficient for the wing has been determined by adding the tuselage no:mal-force coefficient in terms of the over-all wing orea to the wing noimal-force coefficient in terms of the same area. The over-all wing area has been assumed to be the area of wing outbcard of the area of wing outboard of the fuselage plus the area of a rectangular portion of a wing with a chord equal to the chord of the section at the juncture of the wing and fuselage, and
a spen equol to the diameter of the fuselage. The over-all pitchingmoment coefficient for the wing has been determined by adding the pitching-moment coefficient of the fuselage about the quarter chord of the mean aerodynamic chow of the over-all wing area in terms of this chord and area to the pitching-moment coefficient outboard the fuselage of the wing about this sane point in terms of the same area and chord. Variations of the over-all pitching-moment coefficient for the wing with the over-all normal-force coefficient are presented in figure 14. Variations of the over-all pitching-moment coefficient with Mach number for over-all nomal.-force coefficients of 0.1, 0.3, and 0.5 are presented in figure 15 .

Veriations of the spanwise distribution of section normal-force and section profile-drag coefficient with anglo of attack for a Mach number of 0.600 are presented in figures 16 and 17 , respectively. The section profile-drog coefficients are based on the chord of the model. directly in front of the measurement stations.

Vertical variations of the total-pressure losses for 30° sweepback and sweepforward at stetions approkimately 2.0 wing-fuselagefuncture chords behind the trailine odge of this functure and 0.18 semispans from the planes of symmetry are presented in ligure 18.

Aerodynamic Loads

An analysis of the structure and the acrodivnemic loadings of swept wings indicates thei the maximm bending and shear loak produced by the air forces on a swepis wing will probably occur at the principal wingfuselage joint neaxest the cemer of load. For swept-back wings this joint will be near the trailing edge while for swept-forward wings it will be near the leading edge. To show the magnitude of the effects of changes in Mach number on the distribution of load with respect to these joints on wings similen to those tested, the distributions of load with respect to the critical point, the intersections of the 70- and 20-percent-chord lines of the original wing with the surface of the fuselage have been determined for the swept-back and swept-forward wings, respectively. To provide a basis of comparison the distribution of load with respect to the wing-fuselage juncture of the unswept wing have also been determined.

The distance along the swept semispan from the section through the critical point to the section including the center of load outboard the intersection in temus of the swept semispan has boen determined by integrating a curve of section load versus the distance along the swept semispan. The distence from the quarter-chord line of the unswept wing to the center of load in terms of the chord of the section through the critical point of intersection has been determined by integrating the curves of section twisting moment versus the distance elong the swept semispen. The ratios of the loads outboard the sections through critical points to the total
loads on the wings have also been determined. The load centers and ratios for ancles of attack from 2° to 10° are mesentea in figure 19.

The effects of changes in Mach number on the load distributions for a ring loading of 200 pounds per square foot at an altitude of 30,000 feet are shom in figure 20 .

To allow the determination of the efrecte of changes in Mach number on the distributions of load with roperence to other points on the wine, the spanvise distributions of load on the full wing and the distribution of twisting moment outboand the sections through the assumed critical points for various ancles and Mach numbers are prosented in figures 21 through 30. The unusual shapes of the loadine distributions near the root are tue to the fact that the section loannge in this region are not for complete sections (fic. 3).

DISCUSSION

Variables
Since the aspect ratio, wing section, triper ratio, ani Reynolds numer range changed when sveep angle vac changed, the results presentec do not indicate the exact effecta of sweep alone. However, the effects of the mesent changes in these other vartables on most of the variations of charactewistice with Wach number are mall. with respect to the effects of the corresponding sweeps (reforences 9,10 , and 11).

Wine Nomel Force Characiveristics

The wing with 0° sweep at angles of attack of $0^{\circ}, 20,4$, and T^{0} experienced reductions in the nomal-sonce coefricients when the Mach number vas increased beyond valuos of approximately 0.79; 0.77, 0.74 , and 0.73 , respectively (fig. 5). . The wing with 300 of sweepback at the seme angles of attack experienced similar reductions at Mach numbers approximately 0.10 greater, than these values. This difference is slightly less than the increment of 0.16 obtained by use of the factor, $\frac{1}{\cos \Lambda_{x}}-1$ times the Mach nmbers at which
redactions in noxmal-fore coefficients occur. The wing with 30° of sweepforvard at angles of autack $0^{\circ} 0^{\circ}, 0^{\circ}, 4^{\circ}$, and 7° experienced reductions in the wing normal-force coefficients at Mach numbers approximately $0.10,0.12,0.14$, and 0.15 greater, respectively, than for those at which reduction occured on the wing with no sweep for the same angles of attack. These differences are generally slightly greater then the Mach number increnents obtained using the factor described above.

There are no major reductions in the nomal-force coefficients for the wings with 45° of sweepback and sweeptorward at an angle of attack of 2^{0} at Mach numbers up to 0.96 , the higinest test value (fig. 5). For 7° angles of attack tinese configurations experience reductions in normal-force coefficients at Mach numbers of 0.92 and 0.94 , values which are approximately 0.17 and 0.19 greater than the Mach number at which the wing with no sweep experiences a reduction in this coefficient at this angle of attack. These differences are considerably less than the calculated Mach number increment. of approximately 0.30 for these configurations for 7° angles of attack.

The results obtained for the wings with $\pm 30^{\circ}$ of sweep indicate not only that the reductions in nomal-force coefficients occur at higher Mach numbers on swept wings than on similar unswept wings but, more importantly, that the percent reciuctions that occur are generally less, in scme cases much less, for swept wings than foir a similar unswept wing (fie. 5). Insufficient data are available to show the exact effect of progressively increasing the sweep angles beyond 30° on the magnitude of the reductions of normal-force coeflicients but the data obtained for the wing with 45° of sweep indicate that the magnitudes of these reductions are probably further reduced by increasing the sweep angle beyond 30°. The magnitudes of reductions for swept-forvard winge are considerably less than those for swept-back winge with similar sveep angles even when the sweep angles are measured to the half chord line.

As would be expected the slopes of the wing normal-ioree curves, $\mathrm{dC}_{\mathrm{N}_{\mathrm{W}}}$ /da, for the configurations with sweep aro considerably loss then tho elopes of these cunves for tho modol without sweep at the subcritical Mach numers at an angle of attack of 20 (fig. 6). These differences are due primarily to variations of the sweep angle but variations on the aspect ratio and to a lesser extend variations in the section, and Feynolds number (referencel0) produce part of the differences. The slope of nomal-force. curve for the model with no sweep starts to decrease when the Mach number is increased beyond apmoximately 0.74. It starts to increase again, however, at a Mach number of 0.83. At this Mach number the slope is approximately 85 percent of the maximum value obtained at a Mach number of 0.74 . The slopes of these curves for the models with $30^{\circ},-30^{\circ}, 45^{\circ}$, and -45° of sweop startod to decrease at Mach numbers of $0.08,0.16,0.19$, and 0.20 greater, respectively, than the value at which the slope of the curve for the model with no sweep started to decrease. The slope for the model with 30° sweepback ceases to decrease when the Mach number is increased beyond approximetely 0.90 . The percont reduction of the slope for this configuration is ereater than that for the model with no sweep,
the slope at a Mach number of 0.90 being 30 percent of the slope at 0.82. The percent reduction in slope for the model with 30° sweepforwand appears to be much less than that for the rocdel with 30° of sweerback. The slope for this configmation at the highest test Mach number, 0.96 , is approximately 5 percent less than the maximum 8.t 0.90 .

Wing Iitching-Moment Characteristics
There are large variations of the wing pitching-monent coefficients at given wing normal-force coefficients for the wing with no sweep when the Mach number is incaecsed from appoximately 0.75 to the hignest test value, 0.925 (izg. 8). Similar changes occur for the winge with sweep, but they occur at a higher Mach momber than do the corresponding changes for the wing with no sweep. The magnitudes of the changes for 30° and 45° of sweerback and. 45° of sweepforward are generally less than the coresponding cianges for the wing with no sweep, but the magnitudes of the changes for 30° of sweepforward ore greater than the corresponding changes for this wing.

Wing Profile-Drag Charactoxistics

The wing profile-drag coefficient for the ring with no sweep at an angle of attack of 0 starts to increase ranidly when the Mach number is increased beyond epproximately 0.74 (ite. 11). A similar increase occurs on the wing with 30° sweepback at a Mach number of appoximately o.0g ereater than this valuo. This increment is opproximately 75 percent of the factor $\frac{1}{\cos \Lambda_{r}}-1$ times
the Mach number at which the drag iise occurs on the wing with no sweep. The rate or increase of the wing prorilo-arag coefficient with Mach number on the wing with 30° sweepback is emproyimately the some as that for the wing with no sweep. The wine mofile-drag coefficient for the wing with 30° sweepiorwerd starts to rise very giradually at a Mach number of approximately 0.75 . When the Mach numoer is increased beyond apecoximately 0.06 the rate of increase is about the same as thet for the wing with 300 of sucepback. There is only a slicht increase in the wing profile-arag cocticiont for the wing with 45° of sweepback with 20 angle of attack whon the Mach number is increased to the highest test value.

The wake-survey measurements indicato that the increase in the profile-drag coefficient for the wing with 30° of sweepforward ai at Mach number or approximatoly 0.75 is due to separation near tho wing-fuselage juncture. It is quite probable, therefore, that separation also occurs on portions of the Iuselage at this Mach
numbe: and that the increase in the profile-drag coefficient for tine over-all configuration is greater than thet. for the wing alone.

The use of tips perpendicular to the quarter-chord line instead of the revised tip describsd in the section on Apporatus increased slightly the duag coefficients for the swept-back wings at all angles of attack and Mach numbers.

Effect of Wing on Fuselage Characteristics

The chenges in the fuselage section normal-force coefficients produced by the wing are aproximately 75 percent of the wine normalforce coefficients for the configurations with no sweep and sweopback at angles of attack of $2^{\circ}, 4^{\circ}, 7^{\circ}$, and 10° and at all Mach numbers up to the highest test values (fie, l2). For the wing with sweepforward at these same ancles or attack and at the lower Mach numbers, the ratios of these coefficients are appoximately 0.90. For 45° of sweepiorward the ratios do not change appeciably when the Mach number is increased up to the higest test values; however, for 30° of sweepforward at sone angles of atteck the ratios change raaically when the Mach nmber is increased to this value. At an angle of attack of 2° it increases by apperimately 75 percent.

Over-all Characteristics for Wing

Since the changes in the fuselage normal-force coefficients produced by the wing are approximately equal to the wing nomalforce coefficicnts for most conditions, the orer-all normal-force coefficients for the wing are nearly some as the wing normal-force coefficients. In most cases the difference between the two coefficients is less than 4 percont of the wing normsl-force coefficient.

The variations of the over-all pitching-moment coofficients with Mach number for various values of the over-all normal-iorce coefficients are approximately the some as the variations of the wing pitching-monent coefficients with Mach number for the same values oit the wing normal-force coefficients (fig. 15).

Stalling Characteristics

Since the Reynolas numbers, aimpil sections in flow direction, and aspect ratios for the various conifurations differed, the results obtained at the highest angles of attack at a Mach number of 0.60 do not indicate the offect of sweep alone on the anglo
of attack and normel-force coefficient at which stall occurs. Since the Reynolds numbers for the tests were considerably lower and the Moch numbers considerably higher than those for the usual landing conditions, the results cannot be used to estimate the stalling characteristics for the landing conditions. It is believed, however, that the results do indicate for some maneuvering conditions the locations of initial flow separation due to increasing the angle of attack to relatively high values. At a Mach number of 0.60 this initial seperation occurred first on tho inpoard sections of the winge with no sweep and sweepforward and on the outboard sections of the wings with sweepback (fies. 16 and 17).

Load Distributione

The center of load on the wing with no sweep for a wing loading of 200 pounós per squere foot an an altitude of 30,000 feet shitts inboard veryblimbly and rearward by a considerable amount when the Mach number is increasce from approximately 0.75 to the highest test value (fig. 20). The center of load on the wing with 30° of sweepback for the seme conditions does not shift along the swept-back semispon but shifts rearyaz with reference to this line approximately the same distances as the center of load on the wing with no sweep shifts chordwise. The center of load on the wing with 45° of sweeprack eifite slighty outboad clong tho swopt-back semispan and rearward with reference to this line for the particular over-all loedingselected. The centers of load on the vings with sweepforward shift slightly inboara along the swept-forward semispan but do not shift by a significant amount with reference to this line.

CONCIUDIIKG REMABKS

The results of tests of wings with no sweep and 30° and 45° of sweepback and sweepforwatd in conjunction with a typical. fuselage at Mach numbers up to 0.96 indicated the following:

1. The wings with $+30^{\circ}$ of sweep experienced the severe changes in characteristics associated vith the presence of shock at higher Mach numbers then did the wing without sweep. The differences between the Mach numbers st wich the changes occurred for the wings with $\pm 30^{\circ}$ sweop and no sweep were eenerally slightly less then the factor $\frac{1}{\cos \Lambda r}-$ times the Mach numbers at which the changes occurred for the unswept wing, $A T$ beine the streg angle.
2. The wings with $\pm 4=0$ of sweep did not experience the changes in the characteristics associated with the presence of shock at on angle of attack of 2° at Mach numiers up to the highest test values.
3. The magnitudes of changes in the normal-force coefficients that occur were less for the wing with $\pm 30^{\circ}$ of sweep than for the unswept wing.
4. The use of sweepfonverd was superior to sweepback in delaying and reaucing the changes in the nomal-fonce coeificients but was inferior in delaying and reducing the chenges in the profile-drag coefficients.
5. Increasing the Mach number to the highest test values had little efrect on the positions of the center of loaus on the various configuraions. for the probable design loal conditions.

Langley Memorial Aeronautical Laboratony
National Advisony Comnitee for Aeronautics
Langley Field, Va.

1. Matthews, Charles W., and Thompon, Jim Rogers: Comparative Drag Measurements at Transonic Speeds or Rectangular and Swept-Back INACA 651-009 Airfoils Mounted on a•Freely Falling Body. NACA ACR No. L5G30, 1945.
2. Ludwleg, H.: Versuchsergebnisse. Pfeilflicel bei hohen Geschwindigkeiten. Bericht 127 der Lilienthal-Gesellschart, 1940, pp. 44-52.
3. Ellis, Macon C., Jr., and Hasel, Lowell E.: Preliminary Tosts at Suporsonic Speeds of Triangular and Swent-Back Wings. NACA RM No. LGI.17, 1946.
4. Witcomb, Richard T.: Investigation of the Characteristics of a High-Aspect-Ratio Wing in the Langley 3 -Foot High-Speed Tunnel. NACA RM No. L6H28a, 1946.
5. Warner, Edvard P., and Johnston, Paul S.: Aviation Handbook. McGraw-Hill Book Co., Inc., 1931.
6. Byrne, Robert W.: Experimental Constriction Jefects in High-Speed Wind Tunnels. IVACA ACI Mo. L4LOTa, 1944.
7. Baals, Donald D., and Mourhess, Mary J.: Numerical Evaluation of the Wake-Survey Bquations for Subsonic Flow Including the Effect of Encrey Addition. NACA ARR TVO. $55 H 27,1945$.
8. Multhopp, H.: Aerodynamics of the Fuselage. MACA TM NO. 1036, 1942.
9. Stack, John, and Lindsey, W. F.: Characteristics of Low-Aspect-Ratio Wings at Supercritical Mach Numbers. NACA ACR No. L5JI6, 1945.
10. Abbott, Ira IH., von Doenhoff, Albert E., and Stivers, Lovis S., Jr.: Summary of Airfoil Data. NACA ACR Mo. IJCO5, 1945.
11. Ferri, Antonio: Completed Tabulation in the United States of Testa of 24 Airfoils at High Mach Numbers (Deirived from Interrupted Work at Guidonia, Italy, in the 1.31- by 1.74-Foot High-Spoed Tunnel). ITACA ACR IVo. L532l, 1945.

TABLE I
GENTERAL DTMEISIONS

Symbol	Description	Dimensions				
Λ_{r}	Sweep of 25-percent-chord ling of original wing, degroes	0	30.0	45.0	-30.0	-45.0
A_{0}	Sweep of leading eciges of actual wings, degrees	2.7	32.7	47.7	-27.3	-12.3
$\Lambda^{c / z}$	Wweep of 50-percent-chord line of actual wings, degrees	-2.7	27.6	42.8	-33.0	-48.2
b	Span, inches	37.8	34.2	28.2	33.8	27:4
d	Span alone 25 -percentchord line of orieinel wing, $b / 2 \cos A$, inches	18.9	19.7	19.9	19.5	19.4
c_{5}	Root chord, inches	6.00	6.64	7.97	7.23	9.03
c_{8}	Tip chord, inches	2.40	2.53	3.07	2.66	3.33
c_{f}	Chorà at intersection of wing and fuselage, inches	5.64	6.20	7.27	6.73	8.20
\bar{c}_{6}	Mean chord of wing extended through fuselage, inches	4.20	4.59	5.52	4.95	6.18
$\bar{c}_{\text {W }}$	Nean chord of wing outbond of fusclage, inches	4.02	4.26	5.17	4.80	5.76
$S_{\text {e }}$	Area of wing extenced through fuselage, inches ${ }^{2}$	158.6	157.0	125.6	167.4	169.2
S_{W}	Area of wing outboerd of fuselage, inches?	137.4	133.0	127.0	141.2	137.0
s_{a}	Area of wing assuming wing straight thiough fuselage, inches?	158.6	156.2	254.4	166.4	167.8
A_{θ}	Aspect ratio assuming wing extended through fusclage, $\mathrm{b}^{2} / \mathrm{s}_{\theta}$	9.0	7.4	5.1	6.8	4.4
A_{W}	Aspect ratio of wing outboarà fusolage, $(b-2 r)^{2} / s_{W}$	8.5	7.0	4.7	6.3	4.1

TABLEE I. - Concluded
GENERAL DIMENSTONS - Conciuded

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol \& Description \& \multicolumn{5}{|c|}{Dimensions}

\hline \multirow[t]{3}{*}{A^{2}} \& Aspect ratio assuming wing strajght through fuselage, b^{2} / s_{a} \& 9.0 \& 7.5 \& 5.2 \& 6.9 \& 4.5

\hline \& Taper ratio of wing outboard of fuselage, c_{f} / c_{g} \& 2.35 \& 2.45 \& 2.37 \& 2.53 \& 2.46

\hline \& Taper ratio assuming wing extended through fuselace, c_{r} / c_{g} \& 2.50 \& 2.63 \& 2.60 \& 2.72 \& 2.70

\hline c^{1} w \& Liean aerodynamic chord of wing outboard of fuselage, inches \& 4.24 \& 4.62 \& 5.45 \& 4.95 \& 6.10

\hline $c^{8} \mathrm{v}$ \& Mean aerodynmic chord of over-all configuration assuming wing rectaneular through fuselage, inches \& 4.43 \& 4.86 \& 5.77 \& 5.25 \& 6.48

\hline X_{f} \& Inches \& 0 \& .94 \& 1.65 \& -1.22 \& -2.20

\hline X_{W} \& Inches \& 0 \& 4.74 \& 6.93 \& -4.67 \& -6.67

\hline X_{a} \& Inches \& 0 \& 4.19 \& 6.00 \& -4.09 \& -5.68

\hline X_{θ} \& Inches \& 0 \& -. 14 \& -. 28 \& . 15 \& . 35

\hline \multirow[t]{2}{*}{6

c_{c}} \& Distance from nose of fuselage to intersection or quarter-chord line of original wing and plano of symmetry, inches \& 14.10 \& 13.20 \& 12.10 \& 14.75 \& 15.30

\hline \& Retio of $2 c_{f} r$ to S_{W} \& . 15 \& . 18 \& . 22 \& . 18 \& . 22

\hline \multirow[t]{4}{*}{${ }^{\text {c }}$} \& Chord at critical section, incies \& 5.64 \& 5.41 \& 5.19 \& 5.45 \& 5.24

\hline \& Position of critical chord with respect to intersection of c/4 line of origi.nal wing (percent "d") \& 10.0 \& 16 \& 22.4 \& 15.5 \& 21.1

\hline \& Ratio of thickness to chord for sections parallel to airstrean \& 10.0 \& 9.0 \& 7.5 \& 8.2 \& 6.6

\hline \& $$
\begin{aligned}
& \text { position of maximum thick-- } \\
& \text { ness, percent chord. }
\end{aligned}
$$ \& 42 \& 43 \& 43 \& 41 \& 41

\hline
\end{tabular}

NATIONAL ADVISORY COMAITITETE FOR AERONAUTICS
[Locations of pressure orifice stations with weference to the intersection of the 25 percent chord line of the original wing and the center line (percent of swept-beck semispan)

Sweep angle, A_{r}				
0°	30°	45°	-30°	-45°
11.0	12.7	14.4	7.6	5.2
20.0	21.3	22.9	16.3	14.0
30.0	30.9	32.4	26.0	23.7
43.0	43.4	4.4	38.6	36.4
55.0	55.8	57.0	51.1	49.1
64.0	63.5	64.7	58.9	56.9
80.0	78.8	79.8	74.4	72.5
95.0	93.2	94.0	88.9	87.1

NATIONAL ADVISORY
COMAITTEE FOR ABRONAUITCS

TABIE III
LOCATIOI OT BATE WOR WAS GUTEME
[Sweep ancles]

0°		30°		45°		-30°	
$\begin{gathered} x \\ (i n .) \end{gathered}$	$2 y / 0$	$\begin{gathered} \mathrm{x} \\ (\text { in. }) \end{gathered}$	$2 \mathrm{y} / \mathrm{b}$	$\begin{gathered} \mathrm{x} \\ (\operatorname{in} .) \end{gathered}$	Ey/b	x $($ in. $)$	$20 / b$
8.4	0.127	16.8	0.175	17.1	0.210	9.8	0.180
3.4	. 180	16.3	. 292	17.1	.324	9.8	. 300
8.4	. 250	16.8	. 490	17.1	. 508	9.8	. 500
8.4	. 500	16.8	. 725	17.1	. 740	9.8	. 750
8.4	. 750	26.8	. 910	25.1	. 740	9.8	. 950
8.4	.950	16.8	1.000	25.1 25.1	$\begin{array}{r} .925 \\ 1.000 \end{array}$	17.3	. 180

NATIONAL ADVISORY
COMMTMTEE POR AHFONGUICS

TABLY JV
TEST POTINS

Pressure measurements		Wake survey measurements	
$i_{r}=0^{\circ}$		$i_{1}=0^{\circ}$	
M	$\begin{gathered} \alpha \\ (\operatorname{cog}) \end{gathered}$	M	$\begin{gathered} \alpha \\ (\operatorname{dec}) \end{gathered}$
$\begin{array}{r} 0.600 \\ .750 \\ .800 \\ .850 \\ .890 \\ .925 \end{array}$	$\begin{aligned} & -2,0,2,4,7,10 \\ & -2,0,2,4,7,10 \\ & -2,0,2,4,7,10 \\ & 0,2,4,7 \\ & 0,2,4,7 \\ & 0,2,4,7 \end{aligned}$	$\begin{array}{r} 0.600 \\ .700 \\ .750 \\ .800 \\ .850 \\ .890 \end{array}$	$\begin{array}{r} 0,2,4,7 \\ -2,0,2,4,7 \\ -2,0,2,4,7 \\ -2,0,2,4,7 \\ 0,2,4 \\ 0,2,4 \end{array}$
$L_{1}=30^{\circ}$		$A_{z^{\prime \prime}}=30^{\circ}$	
M	$\begin{gathered} \mathrm{c} \\ (\mathrm{coc}) \\ \hline \end{gathered}$	M	(coc)
$\begin{array}{r} 0.800 \\ .800 \\ .850 \\ .890 \\ .965 \\ .960 \end{array}$	$\begin{gathered} -2,0,2,4,7,10 \\ -2,0,2,4,7,10 \\ -2,0,2,4,7 \\ 0,2,4,7 \\ 0,2,4,7 \\ 0,2,4,7 \end{gathered}$	$\begin{array}{r} 0.600 \\ .750 \\ .800 \\ .850 \\ .890 \end{array}$	$\begin{gathered} 0,2,5,8 \\ -2,0,2,5,8 \\ -2,0,2,5,8 \\ -2,0,2,5 \\ 0,2,5 \end{gathered}$
$i_{n}=45^{\circ}$		$i_{1}=45^{\circ}$	
M	$\begin{gathered} \mathrm{a} \\ (\mathrm{ace}) \end{gathered}$	M	(coc)
$\begin{array}{r} 0.600 \\ .800 \\ .890 \\ .955 \\ .960 \end{array}$	$\begin{aligned} & -2,2,10,13 \\ & -2,2,7,10 \\ & -2,7,10 \\ & -2,2,10 \\ & -2,7,10 \end{aligned}$	$\begin{array}{r} 0.600 \\ .800 \\ .350 \\ .890 \end{array}$	$\begin{array}{r} 0,3,6,9 \\ -2,0,3,6 \\ -2,0,6 \\ 0,3,6 \end{array}$

NATIONAL ADVISORY
COMITIEE TOR ATRONAUTICS

TABIE IV. .. Conoluded
THET POTMIS - Concludec

$\Delta_{r}=-30^{\circ}$		$\Lambda_{7}=-30^{\circ}$	
M	$\left({ }^{\alpha}{ }^{\alpha}\right.$	M	$\left({ }^{2}\right.$
0.600	$-2,0,2,4,7,10$	0.600	0,2,5,8
. 800	-2,0,2,4,7,10	. 750	$-2,0,2,5,8$
. 850	$-2,0,2,4,7$. 800	-2,0,2,5,8
. 890	$0,2,4,7$. 350	-6,0,2,5
. 925	$0,2,4,7$. 890	0,2,5
. 960	0,2,it,?		
$i_{x}=-45^{\circ}$			
M	$\begin{gathered} a \\ (\mathrm{c} . \mathrm{e}) \end{gathered}$		
0.600	-2,2,7,10,13		
. 800	$-2,2,7,10$		
. 390	$-2,2,7,10$		
. 925	-2,2,7,10		
. 960	-2,2,7,10		

NATTOIAL ADNIEORY
COMTMUEP TOR AERONAUTICS

COYYCPRESFAPED

Figure 1.- Unswept wing without fuselage on plate.
GPNFIDENTIAL

ake-survey rake.
CDNFTDENTIAL

Figure 4 .- Variation of wing Conmitrien for deforce coefficient with angle of attack.

Figure 4 .- Continued.

Figure 4.- Continued.

Figure $4 .-$ Continued.
NATIONAL ADVISORY COMARTTEE PO AEMOWAUTKCS

Figure 4 .- Concluded.

Mach number, M
Figure 5 . - Concluded.

Wing normal-force coefficient, $C_{N_{W}}$
Figure 7 - Variation of wing pitching-moment coefficient with wing normal-force coefficient. connitter for anbonautics.

Figure 9 . - Variation of wing profile-drag coefficient with wing normal-force coefficient. National advisory

Fig. 9 conc.

COMMITTEE FOR AERONAUTICS
Figure 12.- Variation of the ratio of fuselage section normal-force coefficient to wing normal-force coefficient with Mach number. GONULOSNSIFIED

0

Fuselage section normal-force coefficient, cnf
Fiqure 13.- variation of fuselage section pitching-moment coefficient with fuselage section normal-force coetficient.

Figure 14.- Variation of over-all pitching-moment coetficient with over-all normal-force coefficient. NATIONAL ADVISORY COMMITTEE FOR AEROMAUTICS

Fig. 14 conc.
NACA RM No. L6J01a

Figure 15.-Variation of over-all pitching-moment coefficient with Mach number for constant normal-force coefficients.

- V5002NO/O, U

Figure 17 .- Effect of angle of attack on spanwise variation
of section protile-drág coefficlent. $M=0.600$. of section protile-drag coefficlent. $M=0.600$.

Fig. 17 conc.

Figure 18.-Vertical variation of total pressure losses behind swept wings. $M=0.890$.

Figure 19.- Variation of load distribution with Mach number.

(c) $\Lambda_{r}=45^{\circ}$

Figure 19.-Continued.

Fiqure 19.- Concluded.

Figure 20. - Variation of load distribution with Mach number for a wing loading of 200 pounds per square foot at an altitude of 30,000 feet

Figure 21.- Variation of spanwise load distribution with Mach number. $\Lambda_{1}=0$:

HARNFRENTAL

NACA RM No. L6JOla

Figure 2l.- Concluded.

Figure 25. - Variation of spanwise load distribution with Mach number. $\Lambda_{\bar{r}}=-45$.

URNFIGENSIFTE.

Fig. 25 conc.

NACA RM No. L6J01a

Figure 25.- Concluded.

Fig. 26 conc.
NACA RM No. L6JO1a

Figure 28. - Variation of spanwise twisting-moment distribution with Mach number. $\Lambda_{r}=45^{\circ}$

Fiqure 29.- Variation of spanwise twisting-moment distribution with Mach number. $\Lambda_{r}=-30$.

Figure 30.- Variation of spanwise twisting-moment distribution with Mach number. $\Lambda_{r}=-45^{\circ}$

