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ABSTRACT 

The Robotic Systems Technology Branch is currently working on the development of an EVA 
Robotic Assistant under the sponsorship of the Surface Systems Thrust of the NASA Cross Enter- 
prise Technology Development Program (CETDP). This will be a mobile robot that can follow a 
field geologist during planetary surface exploration, carry his tools and the samples that he collects, 
and provide video coverage of his activity. 

Prior experiments have shown that for such a robot to be useful it must be able to follow the 
geologist at walking speed over any terrain of interest. Geologically interesting terrain tends to be 
rough rather than smooth. The commercial mobile robot that was recently purchased as an initial 
testbed for the EVA Robotic Assistant Project, an ATRV Jr., is capable of faster than wallring speed 
outside but it has no suspension. Its wheels with inflated rubber tires are attached to axles that are 
connected directly to the robot body. Any angular motion of the robot produced by driving over 
rough terrain will directly affect the pointing of the on-board stereo cameras. The resulting image 
motion is expected to make tracking of the geologist more difficult. This will either require the 
tracker to search a larger part of the image to find the target from frame to frame or to search 
mechanically in pan and tilt whenever the image motion is large enough to put the target outside 
of the image in the next frame. 

This project consists of the design and implementation of a Kalman filter that combines the 
output of the angular rate sensors and linear accelerometers on the robot to estimate the motion of 
the robot base. The motion of the stereo camera pair mounted on the robot that results from this 
motion as the robot drives over rough terrain is then straightforward to compute. 

The estimates may then be used, for example, to command the robot’s on-board pan-tilt unit to 
compensate for the camera motion induced by the base movement. This has been accomplished in 
two ways: first, a standalone head stabilizer has been implemented and second, the estimates have 
been used to influence the search algorithm of the stereo tracking algorithm. Studies of the image 
motion of a tracked object indicate that the image motion of objects is suppressed while the robot 
is crossing rough terrain. 

This work expands the range of speed and surface roughness over which the robot should be 
able to track and follow a field geologist and accept arm gesture commands from the geologist. 
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INTRODUCTION 

The focus of this work is to develop a high-fidelity estimate of the angular orientation and angular 
velocity of the robot base. Sensors that are utilized to arrive at this estimate include three mutually 
orthogonal gyrometers, three mutually orthogonal linear accelerometers, and a magnetic compass. 

The estimates may then be used, for example, to command the robot’s on-board pan-tilt unit to 
compensate for the camera motion induced by the base movement. This has been accomplished in 
two ways: first, a standalone head stabilizer has been implemented and second, the estimates have 
been used to influence the search algorithm of the stereo tracking algorithm. 

Rover Hardware 

The rover is a modified ATRV Jr., from RWI. The wheels have been mounted on extensions to 
provide adequate ground clearance, and a tower has been added to the top for the stereo vision 
hardware. Figure 1 shows a cartoon of the rover. 

IMU 
(Inside Base) 

0 

Figure 1: The EVA Robotic Assistant testbed 

e The rover comes equipped with a magnetic compass, an Inertial Measurement Unit (IMU), and 
two on-board computers. It has been augmented to include a pan-tilt-verge head and two cam- 
eras with framegrabbers. The relevant components are described briefly below, and mathematical 
models are given later in the report. 

sensors used 

The sensors considered in this report are three mutually orthogonal gyrometers, three mutually 
orthogonal linear accelerometers, and a magnetic compass. 
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A gyrometer measures angular velocity about a single axis. These measurements are corrupted 
by gyro biases [3]. These biases are commonly estimated for purposes of compensation (see below 
for mathematical sensor models used.) After compensation, the angular rates recovered can be 
integrated to arrive at an estimate of the rotation of a body relative to some fixed initial orientation. 

A linear accelerometer measures acceleration along a single axis. The accelerations can be 
integrated to arrive at linear velocities, and integrated again to arrive at position relative to some 
initial position. In this work, the accelerometers were not used in this fashion, but were used to 
measure the direction of the gravitational vector while the rover was at rest. See [SI for more 
discussion on inertial data. 

The linear accelerometers and gyros used in this project were packaged in a single Inertial 
Measurement Unit (IMU), the DMU-6X from Crossbow. A magnetic compass yields a bearing 
with respect to magnetic north. The magnetic compass used in this project was the TCM2 from 
Precision Navigation. 

Actuators Used 

The stereo pan-tilt-verge (PTV) heads considered in this report are the Zebra Vergence from Pyxis 
Corp (formerly Helpmate, formerly TRC) and the Biclops from Metrica. Each of these heads 
accepts movement commands via a serial port from an external computer. Each head supports two 
cameras, which are used for image acquisition. 

Kalman filtering 

This section briefly introduces Kalman filtering, the data processing algorithm used to filter the 
data in this project. Many excellent references on Kalman filtering are available, [I] and [2] are 
recommended. 

Possibly the simplest way to estimate an unknown vector x from observed vector data z (with 
a known transform from x to z) is mean-square estimation, where the estimate 12 is chosen to 
minimize the expected value of the Euclidean nom squared of the error E[(x  - k)'(x - 12)) This 
can easily be extended to estimate functions of the quantity x. The Kalman filter implements a 
recursive least squares fit to the data, given some assumptions about the system that produced the 
data. 

We consider a general linear discrete system 

(Motion Model) 
(Measurement Model) 

Both theprocess noise, wt, and measurement noise, vk ,  are assumed to be sequences of zero-mean 
Gaussian white noise such that Var(wk) = Q k l  and Var(vk) = R k  are positive definite matrices, 
and E(wkv7) = 0 for all k and 1. 

In a physical system, the state can be any set of relevant parameters. Formally, relevant param- 
eters are dehed  as those parameters needed to uniquely determine the output of a system, given 
the input to the system. For example, in a robotic arm, the state might be the configuration of 

'The variance of a vector is simply the covariance matrix of the vector with itself <Var(v) = COV(V, v)). 
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Figure 2: Plant and measurement models. 

the robot. A configuration of an object is a set of numbers that give a specification of the posi- 
tion of every point on the object. Configuration space is defined to be the space of all possible 
configurations of a object. 

This work utilizes six onedimensional Kalman filters (or equivalently, one six-dimensional 
Kalman filter with a diagonal system covariance Pk.) The six quantities estimated are the three 
drifts associated with the three gyros and the three roll-pitch-yaw angles.2 

Use of Estimates 

Estimates of angular velocity and angular position (net rotation since initialization) can be used to 
correct for ego-motion in images. Ego-motion is defined to be image motion due to the movement 
of the camera in the world. This is distinct from object motion, which is image motion caused by 
the movement of the tracked object in the world. Object motion is not addressed in this report. 

Given the base orientation and current PTV configuration (pan, tilt, and verge angles), a ho- 
mogeneous transform (see, e.g. [4]) can be created that relates an object of interest in the world 
coordinate system to that object in a camera coordinate system. In a “standalone” configuration, a 
command is sent to the PTV to send the object of interest to a fixed point in the camera coordinate 
system (for example, directly centered in front of the camera). 

If’ interaction with the stereo tracking software is desired, the ego-motion estimate described 
above can be used to influence the selection of the search area. The stereo tracking software is 
searching in each image for an object. Typically, this search begins at the last known (image) 
location of the object. If the estimates described above are used, the search begins at the predict- 

beginning of search and final location of object) in the images should be less when the rover is 
b ed (image) location of the object, accounting for ego-motion. The residuals (difference between 

8 
undergoing significant transients and stereo tracking is working in this mode. 

SENSOR MODELS 

The section describes our assumptions about the relevant sensors on the robot, and the mathemati- 
cal models used for these sensors. 

‘Orientation given by roll-pitch-yaw angles is defined by taking a base coordinate system, rotating about the z axis 
by the roll angle, rotating about the (new) y axis by the pitch angle, and finally rotating about the (new) z axis by the 
yaw angle. See [4] for more discussion. 
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Figure 3: Coordinate System Definitions 

Gyrometers 

The gyrometers (commonly known as gyroscopes, but this is a more general term which does 
not imply rotating machinexy) measure velocities about the orthogonal x, y, x axes of an inertial 
reference frame. Unfortunately, there is a reasonably constant3 drift associated with each axis. This 
drift (often referred to as a bias) needs to be estimated and this estimate used for compensation. 

Often, these angular velocities are integrated to arrive at an attitude (also called angular posi- 
tion) estimate. Defining the roll-pitch-yaw angles 4, $, 8 to be positive (according to the right hand 
rule) rotations about the z, g, z axes, as shown in Figure 3, the models we use for the gyroscopes 
are: 

where #g(t), $,(t) t$(t) are the velocities obtained from the gyroscopes, &t), $(t) and b(t)  are 
the true angular velocities, and $4(t) ,  d$(t)  and &(t) are the drift rates about the x, y, and z axes, 
respectively. 

With this measurement model, we can correct the velocity measurement with estimates for the 
3 ~ t e r  the gyro is warmed up 
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drift rates as follows 

assuming the drift rates are known. 

Accelerometers 

The three on-board accelerometers measure accelerations along orthogonal x, y, z axes of their 
local reference frame. These accelerations can be integrated to arrive at estimates for velocity. The 
velocity estimates may then be integrated to arrive at estimates for position. This portion of the 
filter has not been implemented. 

FILTER COMPUTATIONS 

In order to maximally exploit our understanding of the dynamics of planetary rover operations, we 
defined two distinct modes of operation for the filter. These are defined to be rest and maneuvering. 
During rest, we utilize the assumption that the rover is stationary (in a fixed but unknown orien- 
tation) in a vertically oriented gravitational field. During maneuvering, we make no assumptions 
about the movement of the vehicle. 

Determination of Mode 

We have designed a transient detector to distinguish between these modes of operation. This detec- 
tor utilizes hysteresis to avoid becoming confused by outliers (the data from both the gyrometers 
and accelerometers are reasonably noisy.) Each gyrometer data point is compared against a running 
average of the previous 30 samples. If it is greater than 0.5 d e g r d s  from this average, that data 
point is defined to be a transient data point. If 5 consecutive data points are labelled as transient 
data points, the state is defined to be transient. Leaving transient mode should be a more conser- 
vative transition, so 30 consecutive non-transient data points are required to leave transient mode. 
If fewer than these thresholds are reached, no mode changes are made. All of these thresholds are 
defined experimentally and are tunable. This transient detector allows robust determination of the 
motion state of the rover. 

Gyro Drift Estimates - Rest Mode 

If the robot is at rest, the measured angular velocities consist completely of drift. In this case, 
simple one-dimensional discrete Kalman Filters are used to estimate drift about each axis. The 
assumed models are 

de(k + 1) = de(k) + w(k) (Motion Model) 
(Measurement Model) e&) = e @ )  + de(k) + v(k) = de(k) + v(k) 
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leading to a filter implementation of 

where w (k) and 21 (k) are assumed to be zero-mean Gaussian white noise of covariance &( k) and 
R(k) ,  respectively. The filters for the C$ and $ rotations are analogous. 

Attitude Estimate - Rest Mode 

At rest, the attitude of the robot can be estimated based on the projection of gravity (which is 
assumed to be directed along the +z axis of the inertial frame)[5], 

$( t )  = -sin-'g,/g 
@(t) = sin-l 9 V  

9ms(lc, ( t ) )  
Instead of direct estimation, these measurements of attitude are combined with previous estimates 
of attitude in one-dimensional Kalman filters to achieve smoothing and outlier rejection. 

Gym Drift Estimates - Maneuvering Mode 

If the ERA is maneuvering, the simplifying assumptions made in the previous sections are invalid. 
Therefore, we use different models for this mode. We simply maintain a constant drift estimate and 
increase the uncertainty of the estimate with time. In essence, we are neglecting the observation 
by setting the K h a n  gain to zero. 

Angular Rate Estimates - Maneuvering Mode 

(No Estimate Update) 
(Uncertainty Update) 

To estimate the actual angular rates in this case, we subtract the gyro drift estimates from the 
gyrometer reading: 

h 

= dg(W - 4 ( k )  ["/SI 

&) = - 4 ( k )  [0/4 
e ( k )  = bg(k) - de@) ["/SI 
h 

Attitude Estimation - Maneuvering Mode 

As the vehicle acceleration is superimposed on the gravitational acceleration, the attitude estimates 
during maneuvering are derived from integration of the angular acceleration, corrected by the drift 
estimates as described above. 

11-8 



where A is the sampling period. This integration needs to be done via a numerically sound (e.g. 
rectangular, trapezoidal, Runge-Kutta) algorithm. These estimates are folded into one-dimensional 
Kalman filters to achieve smoothing and outlier rejection. 

" 

2 .  

RESULTS 

-1 

-2 

Figures 4 and 5 illustrate the performance of the filters for the gyro drifts and orientation angles. 
Figure 6 illustrates the behavior of the standalone head stabilization. 
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Figure 4: Drift Estimation I (Roll only) 

Figure 4 shows the initialization of the drift estimate d4 while the base is at rest. Initially, the 
uncertainty associated with the drift estimate is high. Therefore, the drift measurements q5dS affect 
the drift considerably. After the drift estimates become more certain, new measurements begin to 
affect the drift estimates less. The computed velocity $vel quickly approaches zero. 

11-9 



Drift estimates during Transient 
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Figure 5: Drift Estimation 11 (Roll only) 

io 

Figure 5 illustrates both sets of Kalman filters: the orientation angles and drift estimates. After 
many samples, the estimate for the drift is fairly certain. Upon entering an angular transient, there 
is a detection lag of several samples. During this time (near sample 635) the drift estimate does 
not change. As described above, once a transient is detected, updates to the drift estimates are 
suspended for the duration of the transient. In this test, the robot begins at rest, drives over an 
obstacle, then is at rest again. 

This filter also shows the difference in uncertainty between the at-rest observations of the atti- 
tude (derived from the accelerometers) and the observations derived by integrating the gyro mea- 
surements. The derived measurements are more precise, but are subject to a slow drift over time, 
while the accelerometer-derived measurements are bias-free, but have a high degree of uncertain- 
ty. Both types of measurements are used over time, yielding the behavior shown in Figure 5: a 
filter that responds quickly and accurately to measure transient behavior, but will reset the attitude 
estimates any time the base is at rest. 

Figure 6 shows the location in image coordinates (u along the horizontal direction, 21 along 
the vertical) of an object of interest. This object drifts slowly lower in the image as the rover 
moves forward toward the object (it is located slightly below the ryTV head on the rover). As can 
be seen from the figure, with fixed gaze there is a large vertical transient near samples 50-100. 
This corresponds to the front tire of the rover encountering an obstacle. The other transient (near 
samples 190-220) corresponds to the rear tire encountering the same obstacle. With stabilization 
turned on, both transients are smaller. 

There is a tradeoff for the stabilization of the image, however. As can be seen from Figure 6, 
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Figure 6: Stabilization Results 

stabilization currently induces a low-frequency vibration in image location. The object of interest 
remains roughly in the center of the center of the image, as intended, but the picture appears to 
shake. We believe that this effect is due to the point-to-point move commands currently used to 
command the PTV heads. We are working to integrate the ego-motion estimation with existing 
stereo tracking work that drives the PTV heads in a smoother fashion, which may eliminate or 
reduce this effect. 

FUTURE WORK 

The primary extension to this work will be to complete the integration of the ego-motion estimates 
generated by this filter with the existing JSC stereo tracking software and to evaluate the efficacy 
of this upgrade. Evaluation of the behavior of the angular estimates in the field may take place in 
September 2000, during the scheduled tests in Arizona. 

Less immediate extensions include the elimination of the explicit notion of mudes of operation, 
to be replaced by a continuous scale of "transientness" that can be used to smoothly transition 
between exploiting rest-mode assumptions and the general form of the filter. Feedback on actual 
camera motion could be generated by the stereo vision software and incorporated into the attitude 
estimates. 

Finally, positional estimates have not been addressed at this point. Ideally, this filter would 
also receive input from a Global Positioning System (GPS) receiver and from the wheel encoders. 
This information would be combined with measurements from the linear accelerometers to arrive 
at estimates for the position, linear velocity, and linear acceleration of the robot. This information 
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could be used, for example, to generate a three-dimensional path that the rover has followed. 

CONCLUSION 

Inertial data can be used to compensate for ego-motion in images taken from an outdoor rover. 
This compensation can be treated as a standalone behavior, to keep a specified object of interest 
centered in an image, or as an input to a more complex object tracking algorithm. Initial tests reveal 
that some low-frequency oscillation was introduced as a result of the stabilization, but that the 
amplitude of image location transients due to obstacles in the path of an outdoor rover decreased. 
This should expand the range of speed and surface roughness over which the rover should be able 
to visually track and follow a field geologist. 
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