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Abstract 
 

The goal of an intrusion tolerant network is to continue to provide predictable and 
reliable communication in the presence of a limited number of compromised 
network components.  The behavior of a compromised network component ranges 
from a node that no longer responds to a node that is under the control of a 
malicious entity that is actively trying to cause other nodes to fail.  Most current 
data communication networks do not include support for tolerating unconstrained 
misbehavior of components in the network.  However, the fault tolerance 
community has developed protocols that provide both predictable and reliable 
communication in the presence of the worst possible behavior of a limited number 
of nodes in the system.  One may view a malicious entity in a communication 
network as a node that has failed and is behaving in an arbitrary manner.  
NASA/Langley Research Center has developed one such fault-tolerant computing 
platform called SPIDER (Scalable Processor-Independent Design for 
Electromagnetic Resilience).  The protocols and interconnection mechanisms of 
SPIDER may be adapted to large-scale, distributed communication networks such 
as would be required for future Air Traffic Management systems.  The 
predictability and reliability guarantees provided by the SPIDER protocols have 
been formally verified.  This analysis can be readily adapted to similar network 
structures. 

 
Introduction 
 
The security of computer networks is often based 
on the idea of making a network impenetrable 
from outside attack.  One example is the idea of a 
network “firewall.” A firewall sets a difficult 
barrier for attackers coming from the Internet to a 
local network. Encryption systems are also based 
on the making a system impenetrable. As long as 
the key remains secret, the information will be 
protected. If an attacker can circumvent the 
security measure—by any means—then these 
systems offer almost no resistance to further 
attacks on the system.  For instance, a firewall 
cannot stop an attacker who is already behind the 
firewall (such as an employee of the company) 
and an encryption system does not protect any 
data once the key has been stolen.   

Relatively few security systems have been 
built with the requirement that the system should 
continue to function even when some computers 
have been compromised.  The few that have, 
usually assume that the nodes will be 
compromised in easily detectable ways and soon 
after the intrusion has been detected, some 
remaining “good” part of the system will be able 
to control the behavior of the compromised node.  
Frequently these systems do not have the ability 
to handle the situation when a compromised node 
actively tries to hide its behavior and/or attempt to 
corrupt good nodes in such a way that they begin 
to behave incorrectly.  If one node in the system 
is compromised, then usually there is no 
expectation that the system will behave correctly. 

An alternate design for a secure computer 
network is to have two goals: (1) make the system 
difficult to penetrate and (2) accept that the 



network may be breached.  That is, the system 
must be built to continue operation even when 
some nodes are maliciously attempting to stop the 
system from functioning.  Instead of making a 
system intrusion resistant, the network is 
intrusion tolerant.   

One may question why it is necessary to build 
a system that is intrusion tolerant.  Perhaps, one 
would argue, the resources spent on making a 
system tolerant of malicious nodes should instead 
be spent on making the system more difficult to 
enter in the first place.  At this point one can 
examine the boundary conditions.  Consider a 
system that is very difficult to enter, but cannot 
tolerate any malfunctioning of components.  A 
determined attacker will examine the system and 
search for the weakest link in the system.  Once 
this link is compromised, the system as a whole  is 
worthless or even dangerous.  The list below 
indicates some areas where an attacker could 
attempt to penetrate the system; an attacker may 
 

• introduce malicious software, for instance 
viruses, Trojan horses, and Easter eggs1; 

• attempt to masquerade as a legitimate 
user (also known as “spoofing”) perhaps 
by intercepting communication or by 
stealing a password; 

• directly infiltrate the system through 
malicious system administrators, 
controllers, pilots, or maintenance crew; 

• coordinate an attack that uses several of 
these techniques. 

 
Certainly measures can be taken to reduce the 
likelihood of any of these penetrations; however, 
these threats are very difficult to totally eliminate.  
The reason these types of attacks are so difficult 
to counteract is that they are not systemically 
solvable problems.  They fundamentally require 
the people involved in the system’s operation to 
consistently take correct actions.  An organization 

                                                 
1 An Easter egg is a software feature that was 
added without the knowledge of the corporate 
management.  Most eggs that have been identified 
are artistic or humorous; however, a malicious 
corporate programmer could add dangerous 
features.  An archive of Easter eggs is located at 
http://www.eeggs.com 

can put processes in place to lower the chance of 
these threats, but total elimination is difficult.  For 
instance, an organization can install anti-virus 
software on all machines, but have any users 
turned it off2?  Likewise, an organization can 
force users to follow a password policy, but can 
the organization ensure that users never reveal 
their passwords, such as by writing them down? 

Once one accepts that some nodes in a 
network can be compromised, we ask can a 
system be built that is tolerant to these intrusions?  
One approach comes from the observation that we 
do not know how an attacker will modify the 
behavior of a compromised node. We say that the 
behavior of a compromised node is arbitrary.  
The behavior of such a node could range from 
obviously faulty behavior such as no longer 
producing any results, or it could be faulty in a 
way that is very difficult to detect such as the 
compromised node is actively trying to corrupt or 
confuse other nodes in the system.  To have a 
system continue to function properly when some 
nodes do not contribute to the solution requires 
some redundancy of nodes.  Over the last thirty 
years, the fault tolerance community has 
developed methods to allow a system to operate 
in the presence of a limited number of nodes that 
have failed in arbitrary ways.  Depending on the 
architecture and the amount of redundancy in the 
system, these fault tolerant protocols can handle a 
coordinated attack from a limited number of 
compromised nodes.  The idea of using fault 
tolerant concepts for solving security issues was 
described by Randell and Dobson [Ran86] and 
further expla ined by Rushby [Rus99]. 

NASA/Langley Research Center has 
developed a fault-tolerant computing platform 
called SPIDER (Scalable Processor-Independent 
Design for Electromagnetic Resilience).  The 
protocols and interconnection mechanisms of 
SPIDER may be adapted to large-scale, 
distributed communication networks required for 
a future air traffic management system.  Standard 
versions of fault tolerant protocols are viewed as 
too expensive in time and bandwidth to be of 
practical use in handling malicious attacks in a 
system as complex as an air traffic management 
                                                 
2 Anti-virus software can interfere with some 
software installations.  For this reason, anti-virus 
software typically has a “disable” feature. 



system [Pal00].  A variant of the protocols used in 
SPIDER may provide a solution to this criticism. 

The proliferation of “buffer overflow” 
security problems has shown that even a correct 
concept with a poor implementation renders the 
system vulnerable. Similarly the concept that 
these protocols allow the system to continue 
functioning even with some compromised nodes 
requires that the protocols have a correct design 
and implementation.  Error in the design or 
implementation is considered a common-mode 
failure.  Such failures would affect all nodes in 
the system.  Therefore if the attacker could 
exploit an implementation flaw in one node, all 
nodes would be vulnerable.  Since we can expect 
that attackers will look for such flaws, it is critical 
that the system be designed and implemented 
correctly.  The SPIDER protocols have been 
rigorously verified using formal techniques and it 
is expected that any modifications to SPIDER to 
support intrusion tolerance will also be formally 
verified. 
 
System Requirements 
 
The communication system we will describe 
provides integrity and availability in an 
environment with a limited number of malicious 
nodes. Integrity ensures that a message between 
two good nodes is not modified and availability 
ensures that when two good nodes want to 
communicate, they will be able to [Lap95].  
Another common service in communication 
systems is confidentiality .  This communication 
network does not explicitly provide this service; 
however, encrypting data would provide this 
capability.   

By describing the behavior of compromised 
nodes as arbitrary, we make no assumption about 
the behavior of bad nodes; however, we do 
assume that the only way a bad node can 
communicate with a good node is through the 
defined communication path of the good node.  
This is a requirement on good nodes, not bad 
nodes. We accept that an agent (for instance, 
someone with physical access to the node) can 
corrupt a good node in any way.  

To provide integrity and availability we must 
determine the required properties of the 
communication links in the system.  If these 
properties are chosen carefully, then an intrusion 

tolerant system can be developed using these 
communication channels.  The properties of a 
reliable communication channel are 
 

validity – When a good node sends a 
message, the message received by 
all good nodes will equal the 
message sent. If the sender is bad 
then there is no guarantee about the 
validity of the communication. 
Equally, if a bad node receives the 
message, there is no guarantee about 
the message received.3   

 
agreement – When a sender is bad, all 

good receivers see same message.  
In other words, all good nodes agree 
on the all messages sent. This 
property is not normally provided in 
computer networks. 

 
A reliable communication channel will maintain 
these properties while malicious nodes are in the 
system. 

Before describing how a communication 
channel with these properties can be used to build 
an intrusion tolerant network, we will describe, in 
general, how to provide these properties.  To 
build such a communication channel three 
capabilities must be provided: membership, 
synchronization and redundancy.  Membership 
provides a capability for managing failures in the 
network.  Synchronization provides a known time 
bound between when the receivers recognize a 
message.  If this bound does not exist, then 
messages could be lost without the receivers 
being aware of it. This situation would clearly 
violate the agreement property.  Finally, 
redundancy is also required.  That is, if there is 
only one connection between nodes, then an 
attacker could sever that link and the validity 
property would be violated.  

With these three capabilities, a 
communication channel can be built that provides 
the properties of agreement and validity.  The 
description of how this is accomplished is beyond 
the scope of this paper.  The interested reader 
should consult [MMTP02] for a treatment related 
                                                 
3 “Spoofing” eliminates validity in most 
communication networks but not in our approach. 



to the safety-critical version of the SPIDER 
protocols. 

Some authors have argued for a relaxed 
synchronization requirement instead of the strong 
synchronization described above, examples 
include the Byzantine File System [Cas99] and 
Rampart [Rei96].  Instead of a fixed maximum 
delay between when messages are received, 
relaxed synchronization only requires that all 
messages will eventually be received. Under this 
weaker assumption, Castro and Liskov show that 
the Byzantine File System will always perform 
correct actions, but there is no guarantee about 
when these actions will be performed [Cas99].  
Systems using the weaker synchronization 
requirement require less complexity in their 
protocols and provide economic benefits because 
fewer communication channels are required.  
However, for an air traffic network that provides 
safety-critical information, timely availability is 
vital to the functioning of the network.  For this 
reason, availability is a requirement in our 
communication network.  Kopetz observes that 
the time-triggered technique provides predictable 
availability for critical communication [Kop97].  
To provide availability (along with other reasons), 
the SPIDER protocols use this time-triggered 
technique.  Time-triggered distributed systems 
require strong synchronization guarantees.   

 
Fault Tolerance and SPIDER  
 
In a fault tolerant system, the goal is to ensure 
predictable system behavior in the presence of 
some subset of faulty nodes.  One distinguishing 
characteristic of such architectures is the 
underlying fault model.  The SPIDER architecture 
was designed using the hybrid fault model 
introduced by Thambidurai and Park [TP88].  
Faults are classified according to the severity of 
their misbehavior.  Nodes that fail in a manner 
that is locally detectable to all good observers are 
benign faulty.  Nodes that are not benign faulty, 
but have the same error manifestation to all good 
observers are classified as symmetric faulty.  All 
other faults are asymmetric.  The class of 
asymmetric faults includes any arbitrary 
misbehavior, including the classic Byzantine fault 
model [LSP82].  Asymmetric faults are the most 
difficult to tolerate, but they are also the least 

frequent.  Most failure manifestations are benign.  
Similarly, most non-benign faults are symmetric.   
The fault assumptions for the SPIDER 
architecture are defined with respect to the 
maximum number of simultaneous failures the 
system can tolerate while still providing 
guaranteed correct operation to the good nodes 
within the architecture.   

The communication between nodes in the 
SPIDER architecture is provided by the Reliable 
Optical Bus (ROBUS).  The ROBUS provides 
strong guarantees for communication between 
Processing Elements (PEs) in the presence of 
multiple internal ROBUS failures. Internally, the 
ROBUS consists of a collection of Bus Interface 
Units (BIUs) and Redundancy Management Units 
(RMUs) connected with a complete bipartite 
graph.  This structure is illustrated in Figure 1.   
The ROBUS ensures interactive consistency, 
internal fault tolerant clock synchronization, and 
internal group membership if enough BIUs and 
RMUs are fault free. The general idea is that if 
there are good nodes present, the ROBUS can 
withstand an arbitrary number of benign failures 
and a limited number of other failures.  The 
conceptual design of the ROBUS and an informal 
description of the fault tolerance protocols is 
presented by Miner et al. [MMTP02].   Geser and 
Miner have also formally verified an improved 
membership protocol for the ROBUS topology 
[GM03].  
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Figure 1: SPIDER Architecture  

 



 
 

Figure 2: Network Concept 
 

Adapting Fault Tolerance for Intrusion 
Tolerance 
 
The failure modes that must be addressed for 
intrusion tolerance are similar to those for fault 
tolerance.  Most networks are designed assuming 
that nodes fail silent.  This corresponds to some 
benign faults in the hybrid model.  Nodes 
behaving in an arbitrarily malicious manner 
correspond to the more severe fault modes.  Since 
the class of asymmetric faults allows arbitrary 
behavior, systems that survive a bounded number 
of asymmetric faults can withstand a similar 
number of arbitrarily compromised nodes.  The 
primary difference between fault tolerance and 
intrusion tolerance is that random hardware 
failures typically arrive slowly and independently.  
Multiple fault scenarios are rare.  Stochastic 
models allow for reasonable predictions of system 
reliability.  When the failure modes are human 
directed, multiple fault scenarios are anticipated.  
It is much more difficult to predict the 
survivability of the system.  However, it is 
prudent to take measures to make a successful 
attack as difficult as possible.  Furthermore, 
strong membership protocols that operate 
correctly even in the presence some compromised 
nodes will allow for targeted disabling of suspect 
nodes. 

SPIDER, like many safety-critical 
architectures, is time-triggered.  It uses strong 
synchronization guarantees to ensure correct 
operation of its protocols.  This strong synchrony 
property also allows for predictable system 
behavior as new functions are added.  This 
contrasts with the structure of most 
communication networks.  These typically use 
event-based communication models.  This gives 
good behavior if the typical failure mode is 
benign, but it renders the network susceptible to 
various denial-of-service strategies.  A time-
triggered approach, with known (or predictable) 
communication patterns provides guaranteed 
bandwidth for critical messages.  

Mapping the SPIDER protocols onto an air 
traffic management network requires several 
decisions.  The mapping presented below is but 
one of many possibilities.  Air traffic control 
computers and aircraft can be mapped into 
PE/BIU pairs.  The communication towers can be 
mapped into RMUs.   This structure is illustrated 
in Figure 2.   The resulting network is much 
larger than existing SPIDER prototypes, and the 
graph structure is not as regular.  However, we 
believe that we can adapt the SPIDER protocols 
to run on several overlapping bipartite graph 
structures.  In this manner, the protocols can scale 
to a large air traffic management network. 



Conclusions  
 
Important properties of safety-critical air traffic 
networks include integrity and availability.  
Integrity ensures that messages are either 
correctly delivered or are detected as bad.  
Availability ensures that the system is able to 
provide critical communication on demand.  An 
intrusion tolerant system is able to provide 
assured integrity and availability, even when a 
bounded subset of nodes is controlled by 
malicious agents trying to corrupt the network.  
Intrusion tolerance is intended to complement 
other approaches to network security.  Other 
approaches seek either to prevent intrusions or to 
quickly detect and isolate them when they occur.  
Intrusion tolerance provides an additional layer of 
protection and can protect against malicious 
nodes subverting attempts to detect and isolate 
corrupted nodes. 

In this paper, we presented an architectural 
concept that adapts techniques from fault 
tolerance to provide intrusion tolerance.  Fault 
tolerance uses protocols that ensure correct 
behavior of a system with a limited number of 
nodes behaving in a completely arbitrary manner.  
In an intrusion tolerant system, a node that is 
misbehaving arbitrarily can be viewed as a node 
that has been taken over by a malicious entity.  
By adapting concepts from fault tolerance, an 
intrusion tolerant network can be built to 
withstand a limited number of corrupted nodes. 

Modifications to the SPIDER fault tolerant 
architectures may be used to provide intrusion 
tolerance over a wide-area distributed network. 
Since any flaws in the protocols for a intrusion 
tolerant system could create an opening for an 
attacker to compromise the entire system, it is 
critical that users of the these protocols have an 
assurance that they are correct.  We accomplish 
this in SPIDER by formally verifying the 
protocols and we expect that modifications to 
support intrusion tolerance would also be 
formally verified. 
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