
An Architectural Concept for Intrusion Tolerance
in Air Traffic Networks

 Jeffrey M. Maddalon Paul S. Miner
 jeffrey.m.maddalon@nasa.gov paul.s.miner@nasa.gov

NASA/Langley Research Center

Hampton, VA

Abstract

The goal of an intrusion tolerant network is to continue to provide predictable and
reliable communication in the presence of a limited number of compromised
network components. The behavior of a compromised network component ranges
from a node that no longer responds to a node that is under the control of a
malicious entity that is actively trying to cause other nodes to fail. Most current
data communication networks do not include support for tolerating unconstrained
misbehavior of components in the network. However, the fault tolerance
community has developed protocols that provide both predictable and reliable
communication in the presence of the worst possible behavior of a limited number
of nodes in the system. One may view a malicious entity in a communication
network as a node that has failed and is behaving in an arbitrary manner.
NASA/Langley Research Center has developed one such fault-tolerant computing
platform called SPIDER (Scalable Processor-Independent Design for
Electromagnetic Resilience). The protocols and interconnection mechanisms of
SPIDER may be adapted to large-scale, distributed communication networks such
as would be required for future Air Traffic Management systems. The
predictability and reliability guarantees provided by the SPIDER protocols have
been formally verified. This analysis can be readily adapted to similar network
structures.

Introduction

The security of computer networks is often based
on the idea of making a network impenetrable
from outside attack. One example is the idea of a
network “firewall.” A firewall sets a difficult
barrier for attackers coming from the Internet to a
local network. Encryption systems are also based
on the making a system impenetrable. As long as
the key remains secret, the information will be
protected. If an attacker can circumvent the
security measure—by any means—then these
systems offer almost no resistance to further
attacks on the system. For instance, a firewall
cannot stop an attacker who is already behind the
firewall (such as an employee of the company)
and an encryption system does not protect any
data once the key has been stolen.

Relatively few security systems have been
built with the requirement that the system should
continue to function even when some computers
have been compromised. The few that have,
usually assume that the nodes will be
compromised in easily detectable ways and soon
after the intrusion has been detected, some
remaining “good” part of the system will be able
to control the behavior of the compromised node.
Frequently these systems do not have the ability
to handle the situation when a compromised node
actively tries to hide its behavior and/or attempt to
corrupt good nodes in such a way that they begin
to behave incorrectly. If one node in the system
is compromised, then usually there is no
expectation that the system will behave correctly.

An alternate design for a secure computer
network is to have two goals: (1) make the system
difficult to penetrate and (2) accept that the

network may be breached. That is, the system
must be built to continue operation even when
some nodes are maliciously attempting to stop the
system from functioning. Instead of making a
system intrusion resistant, the network is
intrusion tolerant.

One may question why it is necessary to build
a system that is intrusion tolerant. Perhaps, one
would argue, the resources spent on making a
system tolerant of malicious nodes should instead
be spent on making the system more difficult to
enter in the first place. At this point one can
examine the boundary conditions. Consider a
system that is very difficult to enter, but cannot
tolerate any malfunctioning of components. A
determined attacker will examine the system and
search for the weakest link in the system. Once
this link is compromised, the system as a whole is
worthless or even dangerous. The list below
indicates some areas where an attacker could
attempt to penetrate the system; an attacker may

• introduce malicious software, for instance
viruses, Trojan horses, and Easter eggs1;

• attempt to masquerade as a legitimate
user (also known as “spoofing”) perhaps
by intercepting communication or by
stealing a password;

• directly infiltrate the system through
malicious system administrators,
controllers, pilots, or maintenance crew;

• coordinate an attack that uses several of
these techniques.

Certainly measures can be taken to reduce the
likelihood of any of these penetrations; however,
these threats are very difficult to totally eliminate.
The reason these types of attacks are so difficult
to counteract is that they are not systemically
solvable problems. They fundamentally require
the people involved in the system’s operation to
consistently take correct actions. An organization

1 An Easter egg is a software feature that was
added without the knowledge of the corporate
management. Most eggs that have been identified
are artistic or humorous; however, a malicious
corporate programmer could add dangerous
features. An archive of Easter eggs is located at
http://www.eeggs.com

can put processes in place to lower the chance of
these threats, but total elimination is difficult. For
instance, an organization can install anti-virus
software on all machines, but have any users
turned it off2? Likewise, an organization can
force users to follow a password policy, but can
the organization ensure that users never reveal
their passwords, such as by writing them down?

Once one accepts that some nodes in a
network can be compromised, we ask can a
system be built that is tolerant to these intrusions?
One approach comes from the observation that we
do not know how an attacker will modify the
behavior of a compromised node. We say that the
behavior of a compromised node is arbitrary.
The behavior of such a node could range from
obviously faulty behavior such as no longer
producing any results, or it could be faulty in a
way that is very difficult to detect such as the
compromised node is actively trying to corrupt or
confuse other nodes in the system. To have a
system continue to function properly when some
nodes do not contribute to the solution requires
some redundancy of nodes. Over the last thirty
years, the fault tolerance community has
developed methods to allow a system to operate
in the presence of a limited number of nodes that
have failed in arbitrary ways. Depending on the
architecture and the amount of redundancy in the
system, these fault tolerant protocols can handle a
coordinated attack from a limited number of
compromised nodes. The idea of using fault
tolerant concepts for solving security issues was
described by Randell and Dobson [Ran86] and
further expla ined by Rushby [Rus99].

NASA/Langley Research Center has
developed a fault-tolerant computing platform
called SPIDER (Scalable Processor-Independent
Design for Electromagnetic Resilience). The
protocols and interconnection mechanisms of
SPIDER may be adapted to large-scale,
distributed communication networks required for
a future air traffic management system. Standard
versions of fault tolerant protocols are viewed as
too expensive in time and bandwidth to be of
practical use in handling malicious attacks in a
system as complex as an air traffic management

2 Anti-virus software can interfere with some
software installations. For this reason, anti-virus
software typically has a “disable” feature.

system [Pal00]. A variant of the protocols used in
SPIDER may provide a solution to this criticism.

The proliferation of “buffer overflow”
security problems has shown that even a correct
concept with a poor implementation renders the
system vulnerable. Similarly the concept that
these protocols allow the system to continue
functioning even with some compromised nodes
requires that the protocols have a correct design
and implementation. Error in the design or
implementation is considered a common-mode
failure. Such failures would affect all nodes in
the system. Therefore if the attacker could
exploit an implementation flaw in one node, all
nodes would be vulnerable. Since we can expect
that attackers will look for such flaws, it is critical
that the system be designed and implemented
correctly. The SPIDER protocols have been
rigorously verified using formal techniques and it
is expected that any modifications to SPIDER to
support intrusion tolerance will also be formally
verified.

System Requirements

The communication system we will describe
provides integrity and availability in an
environment with a limited number of malicious
nodes. Integrity ensures that a message between
two good nodes is not modified and availability
ensures that when two good nodes want to
communicate, they will be able to [Lap95].
Another common service in communication
systems is confidentiality . This communication
network does not explicitly provide this service;
however, encrypting data would provide this
capability.

By describing the behavior of compromised
nodes as arbitrary, we make no assumption about
the behavior of bad nodes; however, we do
assume that the only way a bad node can
communicate with a good node is through the
defined communication path of the good node.
This is a requirement on good nodes, not bad
nodes. We accept that an agent (for instance,
someone with physical access to the node) can
corrupt a good node in any way.

To provide integrity and availability we must
determine the required properties of the
communication links in the system. If these
properties are chosen carefully, then an intrusion

tolerant system can be developed using these
communication channels. The properties of a
reliable communication channel are

validity – When a good node sends a
message, the message received by
all good nodes will equal the
message sent. If the sender is bad
then there is no guarantee about the
validity of the communication.
Equally, if a bad node receives the
message, there is no guarantee about
the message received.3

agreement – When a sender is bad, all

good receivers see same message.
In other words, all good nodes agree
on the all messages sent. This
property is not normally provided in
computer networks.

A reliable communication channel will maintain
these properties while malicious nodes are in the
system.

Before describing how a communication
channel with these properties can be used to build
an intrusion tolerant network, we will describe, in
general, how to provide these properties. To
build such a communication channel three
capabilities must be provided: membership,
synchronization and redundancy. Membership
provides a capability for managing failures in the
network. Synchronization provides a known time
bound between when the receivers recognize a
message. If this bound does not exist, then
messages could be lost without the receivers
being aware of it. This situation would clearly
violate the agreement property. Finally,
redundancy is also required. That is, if there is
only one connection between nodes, then an
attacker could sever that link and the validity
property would be violated.

With these three capabilities, a
communication channel can be built that provides
the properties of agreement and validity. The
description of how this is accomplished is beyond
the scope of this paper. The interested reader
should consult [MMTP02] for a treatment related

3 “Spoofing” eliminates validity in most
communication networks but not in our approach.

to the safety-critical version of the SPIDER
protocols.

Some authors have argued for a relaxed
synchronization requirement instead of the strong
synchronization described above, examples
include the Byzantine File System [Cas99] and
Rampart [Rei96]. Instead of a fixed maximum
delay between when messages are received,
relaxed synchronization only requires that all
messages will eventually be received. Under this
weaker assumption, Castro and Liskov show that
the Byzantine File System will always perform
correct actions, but there is no guarantee about
when these actions will be performed [Cas99].
Systems using the weaker synchronization
requirement require less complexity in their
protocols and provide economic benefits because
fewer communication channels are required.
However, for an air traffic network that provides
safety-critical information, timely availability is
vital to the functioning of the network. For this
reason, availability is a requirement in our
communication network. Kopetz observes that
the time-triggered technique provides predictable
availability for critical communication [Kop97].
To provide availability (along with other reasons),
the SPIDER protocols use this time-triggered
technique. Time-triggered distributed systems
require strong synchronization guarantees.

Fault Tolerance and SPIDER

In a fault tolerant system, the goal is to ensure
predictable system behavior in the presence of
some subset of faulty nodes. One distinguishing
characteristic of such architectures is the
underlying fault model. The SPIDER architecture
was designed using the hybrid fault model
introduced by Thambidurai and Park [TP88].
Faults are classified according to the severity of
their misbehavior. Nodes that fail in a manner
that is locally detectable to all good observers are
benign faulty. Nodes that are not benign faulty,
but have the same error manifestation to all good
observers are classified as symmetric faulty. All
other faults are asymmetric. The class of
asymmetric faults includes any arbitrary
misbehavior, including the classic Byzantine fault
model [LSP82]. Asymmetric faults are the most
difficult to tolerate, but they are also the least

frequent. Most failure manifestations are benign.
Similarly, most non-benign faults are symmetric.
The fault assumptions for the SPIDER
architecture are defined with respect to the
maximum number of simultaneous failures the
system can tolerate while still providing
guaranteed correct operation to the good nodes
within the architecture.

The communication between nodes in the
SPIDER architecture is provided by the Reliable
Optical Bus (ROBUS). The ROBUS provides
strong guarantees for communication between
Processing Elements (PEs) in the presence of
multiple internal ROBUS failures. Internally, the
ROBUS consists of a collection of Bus Interface
Units (BIUs) and Redundancy Management Units
(RMUs) connected with a complete bipartite
graph. This structure is illustrated in Figure 1.
The ROBUS ensures interactive consistency,
internal fault tolerant clock synchronization, and
internal group membership if enough BIUs and
RMUs are fault free. The general idea is that if
there are good nodes present, the ROBUS can
withstand an arbitrary number of benign failures
and a limited number of other failures. The
conceptual design of the ROBUS and an informal
description of the fault tolerance protocols is
presented by Miner et al. [MMTP02]. Geser and
Miner have also formally verified an improved
membership protocol for the ROBUS topology
[GM03].

PE 1

PE 2

PE 3

PE N BIU N

BIU 3

BIU 2

BIU 1

ROBUSN,M

RMU M

RMU 2

RMU 1

Figure 1: SPIDER Architecture

Figure 2: Network Concept

Adapting Fault Tolerance for Intrusion
Tolerance

The failure modes that must be addressed for
intrusion tolerance are similar to those for fault
tolerance. Most networks are designed assuming
that nodes fail silent. This corresponds to some
benign faults in the hybrid model. Nodes
behaving in an arbitrarily malicious manner
correspond to the more severe fault modes. Since
the class of asymmetric faults allows arbitrary
behavior, systems that survive a bounded number
of asymmetric faults can withstand a similar
number of arbitrarily compromised nodes. The
primary difference between fault tolerance and
intrusion tolerance is that random hardware
failures typically arrive slowly and independently.
Multiple fault scenarios are rare. Stochastic
models allow for reasonable predictions of system
reliability. When the failure modes are human
directed, multiple fault scenarios are anticipated.
It is much more difficult to predict the
survivability of the system. However, it is
prudent to take measures to make a successful
attack as difficult as possible. Furthermore,
strong membership protocols that operate
correctly even in the presence some compromised
nodes will allow for targeted disabling of suspect
nodes.

SPIDER, like many safety-critical
architectures, is time-triggered. It uses strong
synchronization guarantees to ensure correct
operation of its protocols. This strong synchrony
property also allows for predictable system
behavior as new functions are added. This
contrasts with the structure of most
communication networks. These typically use
event-based communication models. This gives
good behavior if the typical failure mode is
benign, but it renders the network susceptible to
various denial-of-service strategies. A time-
triggered approach, with known (or predictable)
communication patterns provides guaranteed
bandwidth for critical messages.

Mapping the SPIDER protocols onto an air
traffic management network requires several
decisions. The mapping presented below is but
one of many possibilities. Air traffic control
computers and aircraft can be mapped into
PE/BIU pairs. The communication towers can be
mapped into RMUs. This structure is illustrated
in Figure 2. The resulting network is much
larger than existing SPIDER prototypes, and the
graph structure is not as regular. However, we
believe that we can adapt the SPIDER protocols
to run on several overlapping bipartite graph
structures. In this manner, the protocols can scale
to a large air traffic management network.

Conclusions

Important properties of safety-critical air traffic
networks include integrity and availability.
Integrity ensures that messages are either
correctly delivered or are detected as bad.
Availability ensures that the system is able to
provide critical communication on demand. An
intrusion tolerant system is able to provide
assured integrity and availability, even when a
bounded subset of nodes is controlled by
malicious agents trying to corrupt the network.
Intrusion tolerance is intended to complement
other approaches to network security. Other
approaches seek either to prevent intrusions or to
quickly detect and isolate them when they occur.
Intrusion tolerance provides an additional layer of
protection and can protect against malicious
nodes subverting attempts to detect and isolate
corrupted nodes.

In this paper, we presented an architectural
concept that adapts techniques from fault
tolerance to provide intrusion tolerance. Fault
tolerance uses protocols that ensure correct
behavior of a system with a limited number of
nodes behaving in a completely arbitrary manner.
In an intrusion tolerant system, a node that is
misbehaving arbitrarily can be viewed as a node
that has been taken over by a malicious entity.
By adapting concepts from fault tolerance, an
intrusion tolerant network can be built to
withstand a limited number of corrupted nodes.

Modifications to the SPIDER fault tolerant
architectures may be used to provide intrusion
tolerance over a wide-area distributed network.
Since any flaws in the protocols for a intrusion
tolerant system could create an opening for an
attacker to compromise the entire system, it is
critical that users of the these protocols have an
assurance that they are correct. We accomplish
this in SPIDER by formally verifying the
protocols and we expect that modifications to
support intrusion tolerance would also be
formally verified.

References

[Cas99] Miguel Castro and Barbara Liskov.

Practical Byzantine fault tolerance. In ACM
Proceedings: Operating Systems Design and

Implementation (OSDI), pages 173−186,
February 1999.

[GM03] Alfons Geser and Paul Miner. A New
On-line Diagnosis Protocol for the SPIDER
Family of Byzantine Fault Tolerant
Architectures. NASA Technical
Memorandum. 2003. to appear.

[Kop97] Hermann Kopetz. Real-time Systems
Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers,
1997.

[Lap95] Jean-Claude Laprie. Dependability—its
attributes, impairments and means. In
Predictably Dependable Computing Systems.
pages 3−24, Springer, 1995.

[LSP82] Leslie Lamport, Robert Shoshtak, and
Marshall Pease. The Byzantine Generals
Problem. ACM Transactions on
Programming Languages and Systems.
4(3):382−401, July 1982.

[MMTP02] Paul Miner, Mahyar Malekpour, and
Wilfredo Torres. A conceptual design for a
reliable optical bus (ROBUS). In
Proceedings of the 21st Digital Avionics
Systems Conference (DASC), October 2002.

[Pal00] P. Pal P, F. Webber, R.E. Schantz, and
J.P. Loyall JP. Intrusion tolerant systems. In
Proceedings of the IEEE Information
Survivability Workshop (ISW-2000), pages
24−26, October 2000. Boston, MA.

[Ran86] B. Randell and E. Dobson. Building
reliable secure systems out of unreliable
insecure components. In Proceedings of the
IEEE Conference on Security and Privacy,
pages 187−193, April 1986. Oakland, CA.

[Rei96] Michael K. Reiter. Distributing trust with
the Rampart toolkit. Communications of the
ACM, 39(4): 71−74, 1996.

[Rus99] John Rushby. Security and fault
tolerance perspectives. DARPA Information
Technology Security Workshop, October
1999. Williamsburg, VA.
http://www.csl.sri.com/~rushby/slides/darpa-its99.ps

[TP88] Philip Thambidurai and You-Keun Park.
Interactive Consistency with multiple failure
modes. In 7th Symposium on Reliable
Distributed Systems. Pages 93−100. October
1988. IEEE Computer Society.

