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ABSTRACT 

This paper presents an approach to interpretive 
modeling of LP based control allocation in intelli- 
gent flight control. The emphasis is placed on a 
nonlinear interpretation of the LP allocation pro- 
cess as a static map to support analytical study of 
the resulting closed loop system, albeit 'in approxi- 
mate form. The approach makes use of a bi-layer 
neural network to capture the essential functioning 
of the LP allocation process. It is further shown via 
Lyapunov based analysis that- under certain rela- 
tively mild conditions the resulting closed loop 
system is stable. Some preliminary conclusions 
from a study at Ames are stated and directions for 
further research are given at the conclusion of the 
paper. 

INTRODUCTION 

The problem considered in this paper, i.e. devel- 
opment of an interpretive model and analysis of 
stability of LP based control surface allocation, 
emerges from an active research program at NASA 
Ames Research Center, on Intelligent Flight 
Control(1FC). In the past decade this program has 
been concerned with addressing two key issues in 
the design of flight control 

Relative shortcoming of existing flight control 
systems in dealing with in-flight failure of con- . 
trol surfaces/actuators as well as c.g. shifts or 
body damage 
High cost and relatively long duration of devel- 
opment and testing of flight control systems for 
each new aircraft. 

These issues have led to the development of an 
architecture for intelligent flight control, which as 
shown in Figure 1, is centered on the use of a 
dynamic inverse based control strategy and is fur- 

ther augmented with a standard Proportional Inte- 
gral (PI) controller. The architecture also makes 
provisions for adaptive neural network based con- 
trol augmentation to enhance the performance of 
the system. 

Control Allocation in IFC 

A key element of the architecture shown in Fig- 
ure 1 is the so called control allocation subsystem. 
This subsystem serves two fundamental purposes 
as follows: 

It reduces the complexity of the control design 
problem by allowing the design process to focus 
on the so called virtuaZ control inputs to the air- 
craft, .namely the triplet: aileron, elevator and 
rudder, irrespective of how the actual aircraft 
may implement these control inputs(e.g. multi- 
ple elevators or even evelons, or perhaps multi- 
ple rudders and so forth.) 

It allows for in-flight reconfiguration of the air- 
craft control surfaces to best meet the control de- 
mands. Such reconfiguration may occur contin- 
uously as the aircraft moves within its operating 
envelope. More importantly, however, reconfig- 
uration of the flight control surfaces allows the 
flight control system to overcome failure or 
damage to one or more control surfaces by using 
the remaining control surfaces to fully or partial- 
ly compensate for such failures. 

To this end, the IFC team at NASA Ames, has 
considered a number of possible control allocation 
strategies that are further discussed below. It has 
been well understood, however, that regardless of 
which specific control allocation strategy is 
deployed in the architecture of Figure 1, two key 
issues must be further explored: 

Interpretation of control allocation strategy in 

*. Member, AIAA, Department of Mechanical Engineering, Texas A&M University 
7. Associate Fellow, AIAA, Information Systems Directorate, NASA Ames Research Center 
$. Senior Member, AIAA, Information Systems Directorate, NASA Ames Research Center 

1 

American Institute of Aeronautics and Astronautics 



piy Reference 4 Dynamic Control 
Model Inverse Allocation 

Approximate 

Figure 1 Architecture for Intelligent Flight Control (from K. Krishnakumar and K. Gundy-BurleG.) 

terms that are clearly understood by pilots, flight 
researchers and others engaged in the develop- 
ment and evaluation of intelligent flight control 
systems 
Analysis of stability of the closed loop control 
system and evaluation of the impact of control 
allocation on the behavior of the flight control 
system 

The remainder of th ls  paper provides a prelimi- 
nary assessment of the above issues. With this in 
mind, we start with the problem formulation 

PROBLEM FORMULATION 

In h s  report we consider a simple model of par- 
tial aircraft dynamics as follows*: 

*. The development and notation closely follows3. 

where x is a vector representing the faster 
changing attitude rates, p , q , and r ; x1 represent 

the slower translational states; A , A , B represent 
the aerodynamic stability and control derivatives 
respectively, whch may be nonlinearly dependent 
on x and x1 but not on u ; finally, u represents the 
actuator commands. We focus for the time being on 
the behavior of x . In the above model, any residual 
effects of linearization of the dynamics nonlinear 
in the control, u ,  is not included; neither is the 
cross coupling between the fast rotational states 
and the slow translation states considered. These 
effects give rise to unmodeled dynamics that is 
generally handled through (robust) closed loop 
control. While this issue is important, the main 
focus of the current discussion is on the impact of 
control surface allocation on the behavior of the 
system (1). For this purpose it can be assumed, for 
instance, that a virtual command vector, u, , can be 
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generated based on a revised model of the aircraft 
as 

x = A x + A l x l  +B,u, (2) 

where B,  is the corresponding control derivative 
matrix. A typical approach here it to perform 
(dynamic)model inversion as follows: 

u, = B ; ' ( A , x + B m r - A x - A l x , )  (3) 

which transforms the system into one with the 

desired behavior given in terms of A ,  and B, . In 
general, (dynamic)inversion is not perfect, as it is 
well known, and the resulting system may still 
incorporate residual effects that must be addressed 
through additional control augmentation. More- 
over, note that the resulting controller can be 
viewed as a combination of state feedback control, 
with B;' ( A  -A , )  as the state feedback gain, and 

reference input feedforward, B;'B,r. This fact is 
depicted in Figure 2 and will later be utilized in the 
analysis of the system. 

e U -2 Control 2- X = A x + A l x l  +Bu 
r 

B;' 
+ Allocation 

Figure 2 The structure of the closed loop control system 

Control Allocation Problem 

The main concern in this report is with the prob- 
lem of translating the virtual control command u, 

into the actual control vector, u ,  which could be 
used in conjunction with the original aircraft model 
(1). This issue can be stated formally as the prob- 
lem of determining the optimal choice of u such 
that the objective 

Bu = B,u, (4) 

is met subject to constraints on the magnitude 
and rate of change of actuator commands, u .  An 
equivalent version of this problem can be stated as 

Bu = ad ( 5 )  

where ad is the desired acceleration vector. Either 
of the above can be solved in a number of ways as 
described in detail in4. These are recounted below: 

1. Direct allocation 
Maximize p such that Bu = pad if 

3 

American Institute of Aeronautics and Astronautics 



p I1 ; otherwise, Bu = ad;  subject to 

urnin I u I urnax. Note that actuator rates are not 
explicitly listed here but can be included in the 
solution strategy in incremental form. 

2. Error minimization 
Minimize IIBu - ad11 subject to 

Urnin I u I urn, 

3. Control minimization 
Minimize 11. -upll subject to B u  = ad 

and umi, 5 u I urnax ; up is the preferred setting 

for u .  

4. Mixed error/control minimization 
Minimize IIBu - a d / ] +  ~ l l u  - upll subject 

to U,in I u I Urnax. 

It is known that any of the above, appropriately 
transformed, can be stated as a constrained linear 
optimization problem; i.e. a linear programming 
(LP) problem and solved used using some variant 
of the Simplex Method4. 

INTERPRETATION OF LP BASED CONTROL ALLO- 

CATION 

One of the key issues raised in the introductory 
section of this report has been the problem of inter- 
pretation of the control allocation strategy. As it is 
evident from the brief discussion in the previous 
section, the variety of control allocation strategies 
discussed are generally stated in terms of optimiza- 
tion problems that produce the “best” possible 
solution given a certain cost function and subject to 
constraints on magnitudes (and rates) of actuator 
commands. However, as a rule, optimization algo- 
rithms do not provide an interpretive mechanism 
whereby one can readily assess what the solution 

means and how it is generated. This idea is 
depicted in Figure 3 in the particular cases of the 

Figure 3 Schematic of the control allocation proces - 
direct allocation and error minimization. As evi- 
dent from the figure, either of these strategies pro- 
duces a solution that either falls inside the 
“constraint box” defined by the maximum avail- 
able control authority in the given virtual direction 
or else leads to a solution that minimizes some 
error measure (directional accuracy or magnitude.) 
There is no evidence, however, from the function- 
ing of these allocation strategies that would facili- 
tate an interpretation that could aid the pilot or the 
designer determine what the significance of loss of 
control authority is and how that might vary fIom 
instant to instant. 

Neural Network based Interpretation of Control 
Allocation 

One possible means of addressing the interpret- 
ability issue is to determine a nonlinear functional 
relationship that, while remaining equivalent to the 
given control allocation strategy, can help provide 
some insight into its behavior. While in general this 
approach may not be feasible, the study reported 
here considered the question in its limited form as 
it pertains to the case of LP based allocation. In 
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particular, the approach explored in this section is 
to employ a neural network based model of LP 
allocation strategy to capture the nonlinear rela- 

tionship presumably embedded in this strategy. 
This approach in schematic form can be assumed 
to take the form shown on the left side of Figure 4. 

- U 
LP Allocation Algorithm . 

To this end, a series of “training data” represent- 
ing the range of variations of the variables 
involved, i.e. virtual control inputs, were used to 
train a bi-layered neural feedforward neural net- 
work using the so called back-propagation training 
algorithm with 10 neurons in the first and 6 neu- 
rons in the second layers. As shown in Figure 5, the 
sample response of the left aileron compares well 
with the prediction of the relatively simple neural 
network referred above. Note that the intent here 
has not been to closely match the output of the LP 
allocation strategy, which can be done using W h e r  
adaptation of the given neural network or using a 
large number of neurons at each layer. Rather, the 
intent has been to demonstrate that it is in principle 
possible to use a neural network to mimic the 
behavior of the. LP allocation strategy. There do 
remain, to be sure, issues that must be addressed 
before one can claim that a neural network based 
model of LP allocation is truly viable in this 

I m 4a 63 10 lm im 
-15- 

Figure 5 Neural network response (Left aileron 
response: Predicted versus actual) 

respect. These issues are discussed at more length 
in the conclusion section of this report. 
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IiMPACT OF CONTROL ALLOCATION ON CLOSED 

LOOP PERFORMANCE 

As discussed above, the behavior of LP can be 
represented as nonlinear mapping between the 
desired and the actuaI controls. This fact is 
exploited below to address the problem of stability 
of the resulting closed loop system. In particular, in 
what follows we assume that the given mapping 
can be stated as 

LP,,(U,) = w a  Vu,) 9 (6) 

in terms of a bi-layered neural network with a sig- 
moid type activation function in the first layer and 
a linear type activation function in the output layer. 
The weights are represented as V and W ,  respec- 
tively. With this in mind, we have 

x = A x + A l x l  +BLP(u,) (7) 

where u, is given by (3). Note that the ideal situa- 

tion is represented by LP( u,) = BiB,u,, where 

Bi is  the pseudo-inverse of B . This would yield, 
starting from (7), and substituting for u, fiom (3 )  

X = A x + A 1 x l  +BLP(u,) 

= A x  +Alxl  + BB+B,u, 
= Ax + A , x 1  + Bvuv 

= A x + A l x l  +B,B;'(A,x + B , r - A x - A I x l )  

= A,x + B,r 

(8) 

T h s  last step, however, is not perfectly realized 
due to the nonlinear behavior of L P .  Indeed it is 
the impact of this very issue that may potentially 
lead to instability in the system. To this end, we 

consider the system (7) and add and subtract the 
term, B+B,u,, and simplify to obtain 

i = AX + A  1 ~ 1  + B,u, + B(LP( uV)  - B+B,u,) 

(9) 

Now given u,  in terms of ( 3 )  and using a similar 

development as in (8) the above resolves into 

x = A,n + B,r + B(LP(u,)  - B+BVu,). (10) 

The issue that remains is whether the above system 
remains stable in presence of the residual factor: 

Z ( U , )  = B(LP(u,)  - B+B,u,) (1 1) 

A simple view of the situation here is that as 
long as 6(u,) is bounded, say by some bound A 

and that A, is Hurwitz, x remains close to 

A i ' B ,  at steady state. However, the fact that this 

residual factor is a function of u, , which itself is a 
function of the states, renders the problem some- 
what challenging. However, at least limited use can 
be made of some existing results in nonlinear sys- 
tems theory which can be used to establish at least 
the limiting conditions under which the system can 
be guaranteed to be stable. For this purpose, let 
LP be given via a neural network approximation 
as in (7). We would then have 

6(u,) = Wo( Vu,) -BfB,u,  

= WG ( VB ; ( ~ , x  + B, r - A X  - A x ) - 

(12) 

B+B,B;l(A,~ + B,r-Ax-AIxl)  

and subsequently as 
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. 

-1.053 0.469 
F ( u  J = wo ( YB,' ( A  ,x + B,  T - Ax - A 1 x ' ) ) - 

B + ( A , x + B , r - A x - A ' x ' )  A = -0.035 -0.570 0 9 [ 0 0 -107d (13) 

A ,  = diag(-1.5, -1, - 2 ) ,  (20) For sufficiently large x the above resolves into 

and p(u")ll 5 11B+ll p ,  -All 1 1 ~ 1 1  (14) 

This fact is subsequently used in conjunction with 
the following theorem to determine the stability 
condition for the closed loop system. 

Theorem 1. Consider the system 

x = A x  + g ( x ,  t )  (15) 

where A is Hurwitz and llg(x, t)ll < yllxll for 

t 2 0  and all X E  R".  Let P = PT>O be the 
unique solution of 

. PA + A T P  = -Q (16) 

where Q = QT > 0 .  Then the origin, x = 0 is 
globally asymptotically stable if 

0.0101 -0.0101 0.0179 0 
-0.0003 0.0003 -0.0231 0 
-0.003 1 -0.003 0.0009 -0.0552 

0.0243 -0.0243 
0.003 1 -0.003 1 

-0.0026 -0.0026 

This leads to 

Proof. See fidi16. 

Now given (14) the above stability condition re- 
solves into 

Now let us choose Q = 13, we thus have 

P = diag(0.33, 0.5, 0.25). Therefore the bound 

h-(Q)/2hm,(P) = 1 and so the system may 
not be shown to be stable with the values given. 
However, it must be noted that llA -Amll can be 
made arbitrarily small so as to meet the above sta- 

(18) 
h,iJQ> 

2'm,(f') 
11~+11~p < 

For the particular case of the C17 aircraft, bility condition. This is an important fact, meaning 
that the designer has in principle the choice to 
make a trade off between the performance of the 
system and the desire for stability(and robustness.) 

\ 
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CONCLUSIONS 

The study reported above was conducted in col- 
laboration with the Intelligent Flight Control (IFC) 
team at NASA Ames. It presents positive and gen- 
erally optimistic results concerning the stability 
behavior of the IFC system depicted in Figure 1 
with LP control allocation in place. In piloted sim- 
ulation studies at Ames, bounded oscillations were 
observed for severe failure conditions. These have 
been rectified by using either pseudo control hedg- 
ing or reference model adaptation techniques. In 
general, however, these studies confirmed the over- 
all conclusions of the above analysis. These results 
are, nevertheless, still preliminary in nature and 
further issues must be addressed: 

Refined Nonlinear Stability Analysis; This is to 
reduce the conservatism of the approach dis- 
cussed in this report. Various schemes might 
work, including but not limited to absolute sta- 
bility/hyperstability7 but this needs to be looked 
at more closely specially with rate limited actu- 
ators 

Variations of the operating environment (stabil- 
ity/control derivatives.) In principle a network 
of networks may be the best approach in terms 
of transparency but other options such as a sin- 
gle extended network may be possible 

Consideration of rate limits. Rate limits must be 
considered in the neural network based ap- 
proach; the most obvious choice here is recur- 
rent networks but other possibilities exist. 
Exploration of other neural network architec- 
ture. Clearly generalized basis function net- 
works, support vector machines, are all candi- 
dates that can be explored as well in place of the 
simple network used in this report. 
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