
 31176000957580
 $\%$

 NATIONAL ADVISORY COMMITTEE

 NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

 FOR AERONAUTICS}

8 DEC 1947
TECHNICAL MEMORANDUM

No. 1183

TEMPERATURES AND STRESSES ON HOLLOW BLADES
FOR GAS TURBINES
By Erich Pollmann

TRANSLATION
"Temperature ind Beanspruchungen an Hohlschaufeln für Gasturbinen"
Deutsche Luftfahrtforschung, Forschungsbericht Nr. 1879

Washington
September 1947

NATIONAL ADVISORY COMMIITEE FOR AERONAUPICS

TECHNICAI MEMORANDTM NO. 1183

TEMPERATURES AND STRESSES ON HOLLOW BLADES

FOR GAS TURBINES*
By Erich Pollmann

Abstract

The present treatise reports on theoretical investigations and test-stand measurements which were carried out in the BMW Flugmotoren GabH in developing the hollow blade for exhaust gas turbines. As an introduction the temperature variation and the stress on a turbine blade for a gas temperature of 900° and circumferential velocities of 300 meters per second are discussed. The assumptions on the heat transfer coefficients at the blade profile are supported by tests on an electrically heated blade model. The tomprature distribution in the cross section of a blede is thoroughly investigated and the temperature field determined for a special case. A method for calculation of the thermal stresses in turbine blades for a given temperature distributjon is indicated. The effect of the heat radiation on the blade temperature also is dealt with. Test-stand experiments on turbine blades are evaluated, particularly with respect to temperature distribution in the cross section; maximum and minimum temperature in the cross section are ascertained. Finally, the application of the hollow blade for a stationary gas turbine is investigated. Starting from a setup for $550^{\circ} \mathrm{C}$ gas temperature the improvement of the thermal efficiency and the fuel consumption are considered as well as the increase of the useful power by use of high temperatures. The power required for blade cooling is taken into accomnt. The possibility to apply high circumferential velocitiss with good efficiency is discussed.

Outline: I. Introduction II. Temperature variation and stress along the blede with heat conduction to the rotor disc

[^0]III. Tests for determination of the heat transfer coefficlents at the blade profile
IV. Temperature distribution in the cross section of hollow turbine blades
V. Calculation of the thermal stresses
VI. Consideration of the effect of the radiation on the blade temperature
VII. Tests on blade segments and comparison with the calculstion
VIII. Error of measurement in instelling thermocouples in the air or gas flow
IX. Power requirement for cooling and prospects of the hollow-blade turbine
K. References

LIST OF SYMBOLS

Q heat conterit ($K \mathrm{cal} / \mathrm{h}$)
λ heat conductivity (K cal $/ \mathrm{m},{ }^{\circ} \mathrm{C}, \mathrm{h}$)
\& temperature, ${ }^{\circ} \mathrm{C}$
T absolute temperature, ${ }^{\mathrm{C}} \mathrm{K}$
f blade cross section, meters ${ }^{2}$
U blade circumference, meters
$\alpha \quad$ heat transfer coofficient $\left(\mathrm{K} \mathrm{cal} / \mathrm{m}^{2},{ }^{\circ} \mathrm{C}, \mathrm{h}\right)$
G_{K} weight of cooling air, kilograms per second
$G_{G} \quad$ reight of gas, kilograms per second
c_{p} epecific heat (Ic cal $/ \mathrm{kg},{ }^{\circ} \mathrm{C}$)
Re Reynolds number

Nu Nusselt number
d hydraulic diemeter, meters

* wall thickness, meters
η Viscosity ($\mathrm{kg}-\mathrm{sec} / \mathrm{m}^{2}$)
$\gamma \quad$ specilic woight, kilograms per motor ${ }^{3}$
8 gravitational acceleration, meters per second ${ }^{2}$
A mechanical heat equivalent (m $\mathrm{k}_{\mathrm{g}} / \mathrm{K}$ cal)
Ho turbine gradient (K cal/kg)
u. circumerential velocity, neters per aecond

W1 relative velocity in the turbine blade, meters per second
c_{1} nozzle velocity, meters par socond
z number of blades
σ stross, kilogrems per millimeter ${ }^{2}$
1 blade lungth, metors
D_{m} diameter of a blado partition circlo, metors
r blade radius, meters
ω angular velocity (1/soc)
$t_{s} \quad$ blade spacing, meters
Subscripts:
1 cooling duct
a blade profilo
T turbino
D turbine nozzle
s radiation

I. INTHRODUCTION

For keeping high gas temperatures of $800^{\circ} \mathrm{C}$ to $900^{\circ} \mathrm{C}$ under control, various methods of blade cocling were applied since suitable materials with sufficiont heat resistance do not exist. The cooling methods can be subdivided as follows:

1. Load cooling. - A part of tho turbine rotor circumforence is loaded with cooling air.
2. Root cooling.- The turbine disc and the rim, respectively, are cooled by special measures; thus heat is removed from the blade by conduction.
3. Internal cooling. - A hollow blade dosich is used and cooling air is made to flow throush the inturior.

The load cooling was successfully developed at the DVL. Leist $[1]^{2}$ end Knoermschild $]$ hevo made vanlous w'eports on it. This kind of cooling has only a limitod field an application. Liku every other partially loaded turbine tho load cool, durbine must be designed as a constant pressuro turbine. Actias? construction of a multistaged turbine of this type will bo difrecult.

By the root cooling the temperature in the highly stressed part of the blade can be lowered. Without connection with other types of cooling it is used only for short and wide blades and moderate gas temperatures ($750^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}$).

The intamal cooling of the blade with fir wich is either precompressed or moved by the biadse in star is the object of the present troatise. With this type of blade cooling, which is supported in its effect by the root cooling, inich ras temperatures and circumferential velocities can bo uned. Also, a multistagod turbine can be designed without special difficultion when tinis type of cooling is used.
II. THMPERATURE VARTATION AND STRESS ALOWG ITIE BLADE

WIIT HEAT CONDUCTION TO THE RUSOR DISC
Heat Transfer Coofficients at tive Blade

First, the heat transfor coefijcients must be lonown for calculation of the blade tomperatures. The heat traminer at the blade
$I_{\text {The brackets refer to the referonces. }}$
profiles of the turbine rotor may be estimated according to figure 1 on the basis of the following empiricel law.

If one selects as length of reference for the characteristic valuos Nu and Re the diameter of a circular tube of the same circumference as the blade one can calculate with the test resulta of the tube with a circular cylinder as cross section. The results for the heat-trangfer coefficient of a plate also may be considered for comparison is one substitutes instead of the length of reference 1 the diameter of a circular tube with the same circumference $d=22 / \pi$. The results for plate and cylinder plotted in figure 2 are obtained which will be used for calculation of the heat trancfer at the blade profile.

The heat transfer between cooling air and intermal blade wall can be calculatod by introducing the hydraulic radius or diameter, respectively, of the cooling auct $\alpha=4 f_{k} / U$, and using it as length of reference for the characteristic velues Inu and Re. For the connection between $\mathcal{N u}$ and $R e$ the results for the heat transfor in the cylindric tube aro assumed according to figure 3 . With the aid of the above considerations the hoat transfer coefficients may be determined.

The Magnitude of the Stagnation Temperature

The temperature of the gas ahead of the turbine nozzles is assumed to be $\imath_{\text {gas. }}$. In the nozzles the velocity θ_{1} is produced. The temperature at the exit of the nozzles emounts to $\mathcal{N}_{\mathrm{gas}}=\mathrm{H}_{\mathrm{cl}} / \mathrm{cp}$. The relative velocity of the flow with respect to the blade is $w_{1}=c_{1}-u$. It is assumed that 85 percent of the velocity head $H_{w l}=w_{I}^{2} / 2 g$ are converted into heat at the stagnation point. Onc then obtains at the stagnation point the temperature

$$
s_{\mathrm{a}}=\vartheta_{\text {gas }}-\frac{H_{c l}}{\mathrm{cp}}+0.85 \frac{H_{\mathrm{Wl}}}{\mathrm{cp}}=v_{\text {gas }}-\Delta t
$$

Fa is designated as stagnation temperature and considered decisive for the heat transfer. Therefore the relation

$$
\Delta t=\frac{A}{c_{p 2 g}} c_{1}^{2}\left[1-0.85\left(\frac{w_{1}}{c_{1}}\right)^{2}\right]
$$

Is valid for the difference between gas tomperature and atagnation temperature. By meane of the velocity triangle in 41 gure 1 the following formulas can be derived for the ratio $W_{l} /_{1}$:

$$
\frac{w_{1}}{c_{1}}=\sqrt{1-\frac{\alpha^{u}}{c_{1}} \cos \alpha_{1}+\left(\frac{u}{c_{1}}\right)^{2}}
$$

The stagnation temperature corresponds to tho temporature assumed ly an uncooled blade. The factor 0.85 is a mear value which applies to constant pressure profiles. A thorough investigation on the magnitude of the stagnation temperature in uncooled blades was carried out by F. Eckert and Weise [3]. For a circumferontial velocity of 250 moters per second the stagnation tomporaturo is about $100^{\circ} \mathrm{C}$ lower than the gas temperature.

Blade Temperature Without Consideration of the Heat
Conduction to the Blade Root
First a hollow blade is considered where no heat conduction to the rotor disc takes place. If one neglocts, moroover, the temperature differonces in tho blade wall and dosi mates the temperaturo of tho internal and external surface with t_{0} one obtains the following simple relation:

The heat contont transferred by the hot gas at the extornal blade surfacc

$$
Q_{I}=a_{a} U_{a}\left(\gamma_{a}-\vartheta_{0}\right) d x
$$

must equal the heat content transmittod to the cooling air at the intornal circumforonce

$$
Q_{2}=\alpha_{i} U_{i}\left(v_{0}-v_{i}\right) d x
$$

One thus obtains

$$
v_{0}=\frac{\alpha_{a} U_{a} v_{a}+\alpha_{1} U_{i} v_{i}}{\alpha_{a} U_{a}+\alpha_{i} U_{i}}
$$

or, referred to the stamation temperature,

$$
\frac{v_{0}}{\vartheta_{a}}=\frac{1+\frac{a_{i}}{a_{i}} \frac{U_{1}}{v_{a}} \frac{v_{i}}{v_{a}}}{1+\frac{a_{i}}{a_{a}} \frac{U_{i}}{U_{a}}}
$$

$*_{0}$ represents the mean temperature of the croses section if the temperature differences in the cross section and the heat flow along the blade are neglected.

The formula shows that for a given gas temperature the blade temporature is dependent on the three followinc values only:
(I) Ratio of the heat transfer coefficients ($a_{i} \mid a_{a}$)
(2) Ratio of the blade circumforences ($U_{i} \mid U_{a}$)
(3) Ratio cooling air/stagnation temperature ($\left.\vartheta_{i} / v_{a}\right)$

Blade Tomperature with Consideration of the Heat
Conduction to the Blade Root
The blade root and the rotor rim, reapectively, heve genaralily a lower temperature than the blade. Therefore a heat flow will take place along the blade toward the rotor disc. For the heat flow along the blado the rolation

$$
Q_{4}-Q_{3}=\frac{d}{d x}\left(\lambda f \frac{d \vartheta}{d x}\right) d x
$$

1o valid.
From the heat balance for the cross-hatched element (fig. 5) of the blade follows

$$
Q_{4}-Q_{3}-Q_{1}+Q_{2}=0
$$

From the formula above then follows the differential equation

$$
\frac{d}{d x}\left(\lambda f \frac{d \vartheta}{d x}\right)-\alpha_{a} U_{a}\left(\vartheta_{a}-\vartheta\right)+\alpha_{i} U_{i}\left(\vartheta-\vartheta_{i}\right)=0
$$

In this equation there may be at first f as well as U_{a} and U_{i} functions of x. If one considers at first the case of a cylindric hollow blade, therefore $f=$ constant, U_{a} and $U_{i}=$ constant, one obtains

$$
\lambda f \frac{\dot{a}^{2} \vartheta}{d x^{2}}-\alpha_{a} U_{a}\left(\vartheta_{a}-\vartheta\right)+\alpha_{i} U_{i}\left(\vartheta-\vartheta_{i}\right)=0
$$

One equates

$$
\begin{aligned}
& \beta_{a}^{2}=\frac{\alpha_{a} U_{a}}{\lambda f} \\
& \beta_{i}^{2}=\frac{\alpha_{i} U_{i}}{\lambda f}
\end{aligned}
$$

There results

$$
\frac{a^{2} \vartheta}{d x^{2}}-\left(\beta_{a}{ }^{2}{ }_{a}-\beta_{i}{ }^{2} \vartheta_{1}\right)+\left(\beta_{a}^{2}-\beta_{i}^{2}\right) \vartheta=0
$$

If one further equates

$$
\begin{gathered}
\beta_{0}^{2} \theta_{0}\left(\beta_{a}^{2} \vartheta_{a}+\beta_{i}^{2} v_{i}\right) \\
\beta^{2}-\left(\beta_{a}^{2}+\beta_{i}^{2}\right)
\end{gathered}
$$

One obtains a differential equation which formally agrees with the differential equation for the temperature variation on an ordinary cylindric rod without internal cooling. The differential equation reads

$$
\frac{\alpha^{2} \lambda}{d x^{2}}-\beta^{2}\left(\theta_{0}-\lambda\right)=0
$$

and its solution

$$
\mathcal{F}_{0}-\vartheta=A e^{\beta x}+B e^{-\beta x}
$$

With the boundary conditions
(1) $x=0$

$$
v=\vartheta_{1}
$$

(2) $x=2 \quad\left(\frac{d v}{d x}\right)=0$

$$
x=2
$$

The second boundary condition expresses that the heat flow at the blade tip is neglected. One obtains the folloring equations for determination of the constants A and B

$$
\begin{aligned}
v_{a}-v_{1} & =A+B \\
0 & =A c^{\beta h}-B e^{-\beta h}
\end{aligned}
$$

and the constants themselves

$$
\begin{aligned}
& A=\left(\vartheta_{0}-v_{1}\right) \frac{e^{-\beta h}}{e^{\beta h}+e^{-\beta h}} \\
& B=\left(\vartheta_{0}-v_{1}\right) \frac{e^{\beta h}}{e^{\beta h}+e^{-\beta h}}
\end{aligned}
$$

The equation for the temperature variation along the blade finally reads:

$$
\begin{aligned}
& \vartheta_{0}-\vartheta=\left(v_{0}-v_{1}\right) \frac{e^{\beta(x-h)}+e^{-\beta(x-h)}}{e^{\beta h}+e^{-\beta h}} \\
& \vartheta_{0}-\hat{\imath}=\left(\vartheta_{0}-v_{1}\right) \frac{\cot \beta(x-h)}{\cot \beta h}
\end{aligned}
$$

For large values of βx, $\&$ becomes $\vartheta=\psi_{0}$. For the blade tip $x=h$ generally the values βh become so large that the heat conduction can be neglected. Then . . . (symbol missing in the original) represents the temperatwice at the iblade tip and at the same time the highest temperature occurring. In this case one may write in sufficient approximation

$$
v_{0}-\vartheta=\left(v_{0}-v_{1}\right) e^{-\beta x}
$$

This result corresponds to the assumption that F_{0} represents the blade temperature for neglected heat conduction.

Derivation of a Formula for the Ratio of the

Heat Transfor Coefficients

Since in the formulas for the blade temperatures ψ_{0} there appears only the ratio α_{1} / α_{a}, a formula for it shall be derived. α_{i} / α_{a} represents a measure for the efficiency of the cooling.

In the region of Reynolds numbers which has to be considered for gas turbine blndes the following equations are approximately valid for the Nusselt numbers:

$$
\begin{aligned}
& N u_{i}=\frac{\alpha_{i} d_{i}}{\lambda_{i}}=C_{i} R e_{i}^{m}=0.034 R e_{i} 0.735 \\
& N u_{a}=\frac{\alpha_{a} d_{a}}{\lambda_{a}}=C_{a} R e_{a}^{m}=0.0666 R e_{a} 0.735
\end{aligned}
$$

$N u_{i}$ is assumed valid for the internal duct, $N u_{a}$ for the heat transfer at the external surface of the blade. Therefrom one obtains the following expression for the ratio

$$
\frac{c_{i}}{\alpha_{a}}=\frac{\lambda_{i}}{\lambda_{a}} \frac{a_{a}}{\alpha_{i}}\left(\frac{C_{i}}{C_{a}}\right)\left(\frac{R e_{i}}{R \theta_{a}}\right)^{m}
$$

The Reynolds number can be written $R e=w d \gamma / \eta z ;$ therewith one obtaing for the ratio

$$
\frac{R e_{1}}{R e_{a}}=\frac{w_{1} d_{i} \gamma_{1}}{\eta_{i} B} \frac{\eta_{a} g}{w_{a} d_{a} \gamma_{a}}
$$

Furthermore, the weight flow per second is $G=w / F$ or $w \gamma=\frac{G}{F}$. Thue one obtains

$$
\frac{R e_{i}}{R \theta_{a}}=\frac{G_{x^{f}}}{f_{H^{\prime}} G_{g a s}} \frac{d_{j}}{d_{a}} \frac{\eta_{a}}{\eta_{i}}
$$

If one dosignates the axial projection of the nozzle area by F,

$$
F=\pi D_{m} h \epsilon
$$

with ε talcing the nexrewing by the finite binde thicknose into conoideration.

The caess section through which the gas flows then is

$$
f_{g a s}=F \sin \beta_{I}
$$

The rollowing formulatione are used for the viscosity and the hoat conductivity:

$$
\begin{aligned}
& \eta=\eta_{0}\left(\frac{T}{T_{0}}\right)^{0.69} \\
& \lambda=\lambda_{0}\left(\frac{T}{T_{0}}\right)^{0.69}
\end{aligned}
$$

Then there becomes

$$
\begin{aligned}
& \frac{\eta_{a}}{\eta_{1}}=\left(\frac{T_{a}}{T_{i}}\right)^{0.69} \\
& \frac{\lambda_{1}}{\lambda_{a}}=\left(\frac{T_{i}}{T_{a}}\right)^{0.69}
\end{aligned}
$$

The ratio cooling air woight/gas voight is ciesignated by p.

$$
p=\frac{G_{I}}{G_{\text {gas }}}
$$

Therewitl one obtains

$$
\frac{R e_{i}}{R o_{a}}=\frac{F_{s m}^{\beta} I}{F_{K}} \frac{\alpha_{i}}{\alpha_{a}}\left(\frac{T_{a}}{T_{i}}\right)^{C .69}
$$

and finally for

$$
\begin{aligned}
& \frac{\alpha_{i}}{\alpha_{a}}=\frac{\lambda_{i}}{\lambda_{a}} \frac{d_{a}}{d_{i}} \frac{c_{i}}{C_{a}}\left(\frac{R e_{i}}{R e_{a}}\right)^{m} \\
& =\left(\frac{T_{i}}{T_{a}}\right)^{0.69} \frac{d_{a}}{d_{i}} \frac{c_{i}}{C_{a}} p^{m}\left(\frac{F_{s m}}{F_{K}}\right)^{m}\left(\frac{d_{i}}{d_{a}}\right)^{m}\left(\frac{T_{a}}{T_{i}}\right)^{0.69 m} \\
& \frac{\alpha_{1}}{\alpha_{a}}=0.514\left(\frac{F_{g m}^{\beta}}{F_{K}}\right)\left(\frac{a_{a}}{d_{I}}\right)^{0.265}\left(\frac{T_{1}}{T_{a}}\right)^{0.203} \mathrm{p}^{m}
\end{aligned}
$$

The cooling air cross section of the rotor is $\mathrm{F}_{\mathrm{K}}=\mathrm{z}-\mathrm{f}_{\mathrm{K}}$, with f_{K} designating the cross section of the cooling duct of a blade and z desimating the number of blades of the turbine rotor. The ratio gas cross section/cooling air cross section F / F_{K} can be transformed as follows:

$$
\frac{\mathbb{F}}{\mathbb{F}_{K}}=\frac{\pi D_{M} h \epsilon}{z f_{K}}=\frac{z \operatorname{tsh} \epsilon}{z f_{K}}
$$

$t_{s} h$ is the nozzle area corresponding to one rotor blade. The equation for α_{i} / α_{a}. shows clearly the separate effects of the dimensions, the termperatures, and the "referred" cooling air quantity. The term with the temperatures T_{i} / T_{a} has an exponent 0.133 . One can see that the influence of the tomporatures on a_{i} / a_{a} is not vory essential. It is noteworthy that the magnitude of the absolute pressure does not appear in the formula, wich means that the pressure does not affect the merit of the cooling. Neither is the influence of the torm with d_{a} / d_{i} very decisive. The term with F / F_{K}, on the other haid, is essential.

Favorable factors for the cooling are thorexore
(1) Wide blade spacing, that is, small number of blades
(2) Small cooling duct cross section, that is, nasrow blades
(3) Large nozzle height, that is, large blade length

For geometrically aimilar turbines no changes occur in the ratios F / F_{K} and d_{a} / d_{i}. Thus the merit of the cooling is the same for a large and a emall turbine.

The ratio a_{i} / a_{a} is therefore, for a siven blade shape, no function other than of the "referred" cooling air weicht p. Therewith α_{i} / α_{a} also is no longer dependent on anyining but p. This result simplifies the investigations by calculation very essentially.

Centrifugal Force Stress of the Mronine Blade.
The stresser caused by the centrifugal forces are first ascertained for a cylindric blade. The centriguai force of the blade of the length x, according to figure 6, is:

$$
0=\int_{0}^{x} \frac{\gamma}{B} \omega^{2} f r d x=\frac{\gamma}{E} \omega^{2} f \int_{0}^{x} r d x
$$

With $x=R-x$ the integral becomes

$$
\int_{0}^{x} r d x=\int_{0}^{x}(R-x) d x=R x-\frac{x^{2}}{2}
$$

Thus the centrifugal stress becomes

The maximum stress'at the blade root, thereione for $x=1$, becomes

$$
\sigma_{1}=\frac{\gamma_{\alpha}}{g} 2\left(R 2-\frac{z^{2}}{2}\right)=\frac{\gamma_{d}^{2}}{8} 2\left(R-\frac{2}{2}\right)
$$

and ruth $R_{m}=R-2 / 2, \sigma_{I}$ becomes

$$
\sigma_{1}=\frac{\gamma}{g} \alpha^{2} R_{\text {ma }}^{2} \frac{2}{R_{m}}=\frac{\gamma}{\delta} u_{m}^{2} \frac{2}{R_{m}}
$$

The stress $\sigma_{0}=\gamma / \operatorname{sv}_{m}^{2}$ is designated as circumferential atress. That is, the stress appearing in a thin ring rotating with u_{a}. Thus the maximum stress in a cylindric blade is

$$
\sigma_{1}=\frac{\eta}{R_{m 2}} \sigma_{0}
$$

For the stress variation along the cylindric blade the equation

$$
\sigma=\sigma_{0}\left(\frac{x}{R}-\frac{x^{2}}{2 R^{2}}\right)=\sigma_{I}\left(\frac{x}{R}\right)
$$

is valid. The function $f_{1}(x / R)$ is plotted in figure 7 .
For a tapered blade, according to figure 8, which ends in a point, the stress can be calculated as follows:

The cross section at an arbitrary location is

$$
f=\frac{f_{1}}{x_{1}} x=K x
$$

The centrifugal force of the blade of the length x is therefore

$$
C=\frac{z_{\omega}}{8} \int_{0}^{x} K x(R-x) d x=\frac{y_{d}^{2}}{3}\left(R \frac{x}{2}-\frac{x^{2}}{3}\right)
$$

The stress at the location x then results as

$$
\left.\sigma^{\prime}=\frac{c}{f}=\frac{\frac{\gamma_{d}}{E} K\left(R^{2} \frac{x^{2}}{2}-\frac{x^{3}}{3}\right)}{K x}=\frac{\gamma_{d}{ }^{2} R^{2}\left(\frac{x}{2 \pi}-\frac{x^{2}}{3 R^{2}}\right) ~}{E x}\right)
$$

and with $u^{2}=\omega^{2} R^{2}$ and $\gamma / g u^{2}=\sigma_{0}, \quad \sigma$ becomes

$$
\sigma=\sigma_{0}\left(\frac{x}{2 R}-\frac{x^{2}}{3 R^{2}}\right)=\sigma_{0} f_{2}\left(\frac{x}{R}\right)
$$

This formula for σ^{\prime} signiffes that the strese in the linearily tapered blade is indopondent of the degree of taper 15 . If one cuts off the point of the blade (fig. 8) considered before, the centrifugal force in each gection is smaller by the centrifugel force of the point. This latter is

$$
C_{2}=\sigma_{2} f_{2}=\Delta \sigma f
$$

The change in etress by the elimination or tine point amounts to

$$
\Delta 0=\sigma_{2} \frac{f_{2}}{f}
$$

With $f_{2} / f=x_{2} / x$ one obtains

$$
\Delta \sigma=\sigma_{2} \frac{x_{2}}{x}=\sigma_{0} f_{2}\left(\frac{x_{2}}{R}\right) \frac{x_{2}}{x}
$$

Thus the centrifugal stress in the trapezoidal blade with the cross sections I at the root and f_{2} at tle extexnal diameter becomes

$$
\sigma=\sigma-\Delta \sigma=\sigma_{0}\left[f_{2}\left(\frac{x}{R}\right)-\frac{x_{2}}{x_{2}}\left(\frac{x_{2}}{R}\right)\right]
$$

The function $f_{2}\left(\frac{X}{R}\right)=\left(\frac{x}{2 R}-\frac{x^{2}}{3 R^{2}}\right)$ is plotted in figure 9 and is generally valid for the calculation of the stress in a linearily tapered blade.

Calculation of the Temperature and the Stress

in Two Model Hollow Blades

Following the basic calculations given above for temperatures and stresses of two blades (fig. 10) with different shapes of the cross section the cooling duct will be determined. The blade edges of the blade H5 do not come directly into contact with the coolant. The shape of the cooling duct depends on the method of production. The blade is partitioned at the center and the duct is made by milling in each half. The two blade helves then are welded together. The disadvantages of this method, uneven temperature distribution and thermal stresses, are discussed in detail In chapter 3 and 4. The blade form H7 has everywhere equal wall thickness and correspondingly short paths of heat flow and therefore uniform temperature distribution. For the calculation example the operating data are assumed in table I. The dimensions of the blades used in the colculation examples are given in table II.

With the values indicated in tebles I and II one calculates the factors contained in the equation for α_{i} / α_{a} according to table III.

The ratio α_{i} / α_{a} for the two blades $H 5$ and $H 7$ is plotted as a function of the cooling air mass in figure 11.

The blade temperature ${ }^{5}$ o at the point of the blade results from the equation

$$
\frac{\vartheta_{0}}{v_{a}}=\frac{1+\frac{\alpha_{i}}{\alpha_{a}} \frac{U_{i}}{U_{a}} \frac{v_{i}}{v_{a}}}{1+\frac{\alpha_{i}}{\alpha_{a}} \frac{U_{i}}{U_{a}}}
$$

The values calculated from it are represented in figure 12 for a gas temperature of 900°.

One can see that for the blade $H 7$ the cooling air requirement for the same blade temperature is essenticlly smaller. For a blade temperature of 650° the requirements are

For the blade H5 - 7.6 percent cooling air
For the blade -7 - 4.0 percent cooling air

The more favorable values for the blade $E T$ can be traced back mainly to the larger ratio $\tilde{U}_{1} / \tilde{U}_{a}$. The temperature variation is obtained from the equation

$$
v_{0}-v=\left(v_{0}-v_{1}\right) e^{-\beta x}
$$

For the value β the relation

$$
\beta=\sqrt{\frac{\alpha_{a} U_{a}\left(1+\frac{\alpha_{i}}{\alpha_{a}} \frac{U_{i}}{U_{a}}\right.}{\lambda f}}
$$

is valid, with α_{a} being determined from $R e_{a}$ and $N u_{a}$. The missing values are contained in table IV.

In figures 13 and 14 the temperatures and stresses for the blade H 5 are plotted. For the termporature at the root $\geqslant_{1} 400^{\circ}$ and 500° were assumed. The stresses are plutted for a circumferential velocity of 250 meters per second.

For the blade $H 7$ the stresses are represented also for a circumferential velocity of 300 meters per second. (See figs. 15 and 16.)

The temperatures change with the circumferential velocity. The stagnation temperature decreases because a larger gradient is converted in the nozzle for equal u/c. Accordingly one obtains for $u=300$ meters per second smaller blede temperatures and thus a larger permissible stress. The fatigue strength of the material is regarded as deciejive for the permissible stress. In figures 13 to 16 the fatigue strengthe σ_{D} corresponding to the various blade tomperaturos are plotted. The material "Böhler SAS 8" with the σ_{D} - values according to figure 17 was used.

The differenco between the blado stress σ in a blede section and the permissible stross σ_{D} is called rescrve stress. The minimum reserve stress appoars in the critical cross section and amounts for instanco according to figure 16 for $u=300$ meters per second to about 7 kilograms per mililmeter ${ }^{2}$. The results of the
calculation show that.for the hollow blade H7 circumferential velocities of more than 300 meters per second are permissible which was confirmed by test stand experiments.

After the example above the blade $H 7$ is to be examined for various other circumferential velocities. Under the assumption of simjlar velocity triangles, that is, $u / c_{0}=$ constant, the gradient converted in the turbine stage is, as aiready mentioned, a function of the circumferential velocity. The stagnation temperature increases for a small circumferential velocity, because the temperature drop in the nozzle is smaller. For a gas temperature of $900^{\circ} \mathrm{C}$ one obtains for various circumferential velocities the following stagnation temperatures:

Circumferential velocity, m/sec 150200250300
Stagnation temperature, C 866840804763
One can see that for a circumferential velocity of $u=150$ meters per second the stagnation temperature is about 100 percent higher than for 300 meters per second. The centrifugal stress in the blade increases with the circumferential velocity whoreas the blade temperature decreases. The influence of the temperature is so large that the difference between fatigue strength and stress remains almost constant, independent of the circumferential velocity.

In figure 18 the reserve strength in the critical cross section, that is, the difference between fatigue etrength and stress at the blade location exbject to maximum atress is plotted versus the circumferential velocity. The reserve strength increases for the same percent cooling air mass, between 300 and 150 meters per second only from 6.1 to 7.3 kilograms per millimeter? whereas the centrifugal stress at the root of the blade decreases from 17 kilograms per millimeter ${ }^{2}$ to 4.2 kilograms per millimeter ${ }^{2}$. One can see from these numerical values that a gas turbine blade may be operated with almost the same safety with respect to break for large as for small circumferential velocity. The heat gradient used in the turbine stage is essential for the reserve strength.

TESTS FOR DEDERMIIATION OP THE HEMT TRATSHFR
COHTFICIENT NT THE BLADE PROFTIJ
Justification for the test method. - The tests carried out on blade segments for actual conditions unchanged with respect to temperature and dimensions confirmed essentially the assumptions on
the heat transfer coefficients as they were obtained from the comparison of the blede profile with the cylindric tube and the plate in a longitudinal flow. A saitistactory installation of the thermocouples on the sasil gas turbine blades of 16 to 20 millimeter widths and wall thicknesses below 1 millimeter is extremely difficult. For this reason, the heat transfer coefficients were measured on an enlarged blade model. It is knom that the heat transfer coefficient or the Nusselt number, respectively, is independent of the direction of the heat flow. It is therefore a matter of indifference whether the blade profile absorbs or gives off heat. Thus the measurements were made on an electrically heated model. A wind tunnel designed for flow investigations by the author (fig. 19) was used.

Deccription of the test arrangemont.- In an existing blade cascade with three test blades the center blade was replaced by an electricelly heated aluminum blade. The blade profile used for the measurements corresponds to the blade H3 indicated in table II. The blade width was increased from 16 millimeters on the original blade to 100 millimoters on the model blade.

A photograph of the blade cascade with the rectangular wooden nozzle is presented in figure 20. One can see the thermowires led. sideways to the switch by which the individual test points can be connectod with the indicator. The test blade with the thermowires and the connection clamps for heating is reproduced in figure 21. Ten temperature test pojnts are arronged in each of the two cross sections of the teat blade.

The installation of the thermocouples and the location of the three heating rods can be seen from figuro 22.

Bore holes were provided near the surface into which the thermocouples are introduced from the outside. The soldering joints of the thermowires were then rigidly connected with the blade by means of a small screw. In view of heat conductivity such a type of blade material was selected that a uniform temperature distribution in the cross section could be expected; the test results confirmed this expectation.

The wind tunnel (fig. 19) consists of a radial blower driven by about 10 PS (German IP) motive power which feeds into a wooden settiling chamber. A well rounded nozzle is arranged on the side opposite the air inlet. The nozzle must be adjustable because a different nozzle height corresponds to each flow incidence β_{1} of the cascade. The blower can be regulated by a butterfly valve
installed on the side of the inlet. By adjustment of the butterfly valve a certain excess pressure can be adjusted in the chamber.

Test procedure and evaluation. - The free-stream velocity of the blade cascade was ascertained from the prossures as follows. Since according to experience the pressure conversion in a well roundod nozzle takes place practically without losses, the velocity in the nozzle can be determined from the difference between the chamber preseure and the static pressure in the nozzle. Thus the velocity in the nozzle is

$$
w_{1}=\sqrt{\frac{2 g}{\gamma} \Delta p}
$$

for the pressure drop Δp one has to ineert

$$
\Delta p=p_{\text {boiler }}-p_{\text {nozzle }} \text { momS }
$$

In the following table, for instance, the measured values for a nozzle angle of $40^{\circ} 35^{\prime}$ are compiled.

Since for the aame nozzle angle a certain nozzle prossure is coordinated to each boiler pressure, the velocity can aleo be given as a function of the boiler pressuxe. In figure 23 the velocity w_{1} is plotted for three nozzle angles as a function of the chamber pressure. Then for the temperature messurements only a certain boiler pressure was adjusted and the pertaining velocity taken from the chart.

The center blade was electrically heated by three heating rode. The heating power was determined by measurement of amperage and voltage. In the tests one adjusted a certain boiler pressure, weited for the equilibrium condition of the temperatures and then read the 20 temperature test points. The power required for heating is

$$
Q=\frac{0.2386}{1000} \mathrm{UI} \mathrm{kcal} / \mathrm{sec}
$$

The heating power corresponds to the supplied heat quantity and, for equilibrium condition, must equal the heat content taken away by the air stream. Thus

$$
Q=\alpha_{a} F \Delta \Delta \frac{1}{3600} \mathrm{kcal} / \mathrm{sec}
$$

with $\Delta \vartheta$ indicating the mean difference between wall temperature and air temperature. Since the differences in well temperature are amall, the arithmetic mean of the wall temperatures was used for the calculation. This procedure Is justified because the individual test points are spaced almost evenly over the circumference of the profile. To be exact, the mean temperature should be calculated from the following expression:

If all test point distances are equal, the mean value will of course oqual the arithmetic mean value of the temporatures, thus

z is the number of the test points on the circumference of the profile. The blade surface is

Circumference \times Blade length,
therefore

$$
F_{0}=U_{a} r=272.5 \times 300=0.08175 \mathrm{~m}^{2}
$$

In calculating the dimensionless characteristic values Re and $\mathbb{N u}$ values for the temperatme of the outaide flow or of the air in the boiler, respectively, are aubstituted.

The Reynolds number is

$$
R e=\frac{W_{1} \mathrm{~d}_{\mathrm{a}}}{\gamma}
$$

The length of reference d_{a} is determined from the profile circumference as follows:

$$
a_{a}=\frac{U_{a}}{\pi}=86.8 \mathrm{~mm}
$$

For the velocity the freo-stream velocity of the blade, that is, the velocity in tho nozzle, is insorted. The IVusscit number is

$$
N u=\frac{\alpha_{a} \alpha_{a}}{\gamma}
$$

The value determined from power required for heating and tomperature difference is substituted for the heat trannfor cocfijicicnt α_{a}. The tables VI and VII show the test values for pressure and temperatures for a nozzle angle of $40^{\circ} 35^{\prime}$.

The moasured dimonsionless values $N u$ ani Re are plotted in figure 24. The Reynolds number is between 10^{5} and 2.5×10^{5}, therefore in the turbulent region. The values measured for the three nozzle angles lie very close to the strajegt line for the mean value of cylinder and plate. The deviations are less than 10 percent.

It is remarkable that a larger Reynolds number reaults for the same Nusselt numbor for a small nozzle ancle (30°). To a smaller nozzle angle corresponds a larger defloction of the flow and thus a larger lift coefficient. It is known from wing toets that the hoat transfer incrcases with growing lift coofficient. Here the
reversed influence can be seen. If one attompts to introduce in the Reynolds number the exit relocity w_{2} one obtains, it is true, the usunl Influence of the derlection or the lift coefficient, respectively, but the test values are in no better position with respect to the calculated curve of comparition for cylfnder and plate. Thus the free-stream velocity w_{1} is ised thereafter in the calculations.

For the investigated profile the velocity ohead of and behind the cascade is not very different. It is prosumed that for profilos where a large change in volocity occurs, as in excess pressure profiles, the calculation nust be made with a mean value of the velocity.

IV. THMTMRATMRE DINTRIBUTION IN THE CROSS SECTION

OF FOLLOW TURLINE BLADES

The moan tomperature of a blade crose section, where the root cooling takes effect no longer, was designated by $*_{0}$. This temperature actually appoars only when the hoat flow from tho intornal to the oxtcrnal cincumferenco takos place witinut a notoworthy drop in temperature. ϑ_{0} is therofore only a mean ralue; actuelly a temperature drop socurs in tho blade wall and the tomporature is not evenly distributed over the cross soction.

The Minimum Temperature in the Blade Cross Section
A hollov blade with a corss section according to figure 25 is considered. Tho contor part oi tho blade between C and C ' is naturally cooled moro offectively than the blade edges. Thus the minimum temperature of the crose section will appear in the coro of tho blade at A and D. One obtains the approximate minimum temperature in the cross section $\vartheta_{\text {omin }}$ if one takes the fact into conoidoration thet for a straight part of the blade wall, Internal and oxtermal circumference are equal. If one substitutes accordingly in the Pormula the value $U_{1}=U_{a}$ for s_{0}, one obtains

$$
v_{o_{\min }}=v_{a} \frac{1+\frac{\alpha_{i}}{\alpha_{a}} \frac{\vartheta_{i}}{\vartheta_{a}}}{1+\frac{\alpha_{i}}{\alpha_{a}}}
$$

Tomperature Variation in the Blade Fdges

In the blade edgeg the heat content onterjne from the outside is not directly given off to the cooling air, as in the midale part of the blade wall. The heat content ontering at B must first flow to C and can only there be transferred to the cooling air. The heat flow from B to C causes an accordingly large difference in temperaturo.

By way of calculation, the temperature variation can be determincd as follows: Ono considers first the heat flow in the blade edges between B and C in iigure 26. The change of the heat flow in the cross hatched elemont (fic. 26) must equal the heat absocbed from the outside by heat transfor. These circumstances are reprosented by the following equatione

$$
\begin{gathered}
Q_{1}-Q_{2}=2 Q_{3} \\
\frac{d}{d x}\left(\lambda z \frac{d \theta}{d x} d x\right)=\alpha_{a}\left(v_{a}-v\right) 2 d x
\end{gathered}
$$

If one dosignates i $-\hat{v}_{a}=\theta$, one obtains the differential equation

$$
2 \frac{d^{2} \theta}{d x^{2}}-\frac{d \tau}{d x} \frac{d \theta}{d x}-2 \frac{\alpha_{a}}{\lambda} \theta=0
$$

For the cross section decreasing linearlly was substituted

$$
\tau=2 \times \tan \varphi
$$

Thus there resulted finally the differential equation

$$
\frac{\mathrm{d}^{2} \theta}{\mathrm{~d} z^{2}}+\frac{1}{z} \frac{d \theta}{d z}-\frac{\theta}{z}=0
$$

in which

$$
z=\frac{\alpha_{a}}{\lambda \tan \varphi} x
$$

or

$$
z=b^{2} x
$$

This equation is a Bessel differential equation of zero order the solution of which reads:

$$
\theta=A I_{0}(25 \sqrt{z})-B N_{0}(2 i \sqrt{z})
$$

In order to have θ become real, B must equal zero.

$$
\text { For } x=x_{1}, \quad z=z_{1} \text { and } i=i_{1} \text {. Thorefrom follows }
$$

$$
A=\frac{\vartheta_{1}-\vartheta_{\theta}}{I\left(\sqrt[21]{2_{1}}\right)}
$$

The temperature variation in the blade edge is therefore represented by the equation

$$
v-v_{a}=\left(v_{1}-v_{a}\right) \frac{I_{0}(2 i \sqrt{z})}{I_{0}\left(21 \sqrt{z_{I}}\right)}
$$

Temperature Variation in the Blade Wall
The temperature variation in the blade wall can be ascertained in the following manner. The heat

$$
a_{1}=a_{a}\left(v_{a}-v^{2}\right) d x
$$

enters from the outside into the crosshatched oloment (fig. 27). Due to heat conduction, there enters from C

$$
Q_{2}=\lambda \frac{d(\eta x)}{d x} \lambda
$$

In direction towards A,

$$
Q_{3}=\lambda \frac{d\left(\lambda x^{t}+d x\right)}{d x} \Rightarrow
$$

leaves the element. The heat content which on the inside is absorbed by the air is

$$
Q_{4}=\alpha_{i}\left(v-s_{i}\right) d x
$$

The temperaturo difference perpendicular to the blade wall was neglected here.

One can transform the expression $\frac{\partial\left(\lambda x^{\prime}+d x\right)}{\partial x}$ as follows:

$$
\frac{d\left(\lambda x^{\prime}+d x\right)}{d x}=\frac{d}{d x}\left(\vartheta-\frac{d \vartheta}{d x}\right)=\frac{d \vartheta}{d x}+\frac{d^{2} \vartheta}{d x^{2}} d x
$$

The heat balance for the element is

$$
\begin{aligned}
& Q_{1}+Q_{2}-Q_{3}-Q_{4}=0 . \\
& a_{a}\left(v_{a}-\vartheta\right) d x+\lambda \frac{\partial \theta}{d x} \theta-\lambda\left(\frac{d \vartheta}{d x}-\frac{d^{2} \psi}{d x^{2}} d x\right) \vartheta-\alpha_{i}\left(\vartheta-v_{i}\right) d x
\end{aligned}
$$

therefrom follows

$$
\lambda A \frac{d^{2} v^{2}}{d x^{2}}-\vartheta\left(\alpha_{1}+\alpha_{a}\right)+\alpha_{a g_{a}}+\alpha_{\cdot} \hat{v}_{1}=0
$$

According to the formula above, $v_{o_{m i n}}$ is

$$
v_{o_{\min }}\left(\alpha_{i}+\alpha_{a}\right)=\vartheta_{1} \alpha_{i}+\hat{v}_{0} \alpha_{A}
$$

One equates $\alpha_{i}+\alpha_{a}=\alpha$ and $\frac{\alpha}{\lambda \hat{j}}=a^{2}$; then tiv differential equation assumes the following shape:

$$
\frac{d^{2} v}{\partial x^{2}}-a^{2}\left(v-v_{2 n i n}\right)=0
$$

The solution 18

$$
\vartheta=i_{0}=A e^{a x^{\prime}}+B e^{-a x^{2}}
$$

In the section C

$$
x^{\prime}=0
$$

$$
\theta=\theta_{1}
$$

At large distance from C

$$
x^{\prime}=\infty \quad \forall=\vartheta_{o_{\min }}
$$

From the second condition there follows $t=0$.
Thus the temperature variation in the part $C A$ of the blade is represented by the equation

Calculation of the Temperature at the Junction of the
Blade Edge and the Blade Wall

The temperature i_{1} at the point 0 , the junction of the blade edge and the blade wall, is still unknown in the equations for the temperature variation. This temperotwe results from the condition that the heat flow must not change at this point. Therefore

For the blade wall there was

$$
v^{-} v_{0}=\left(v_{1}-v_{0_{\min }}\right)^{-a x^{\prime}}
$$

For $x^{\prime}=0$ there becomes

$$
2 \lambda\left(\frac{d v}{d x}\right)_{x^{\prime}=0}=2 \operatorname{se}\left(v_{1}-v_{o_{\min }}\right)
$$

For the blade edge there becomes

$$
v_{1}\left(\frac{\partial v}{d x}\right)_{x=x_{1}}=v_{1}\left(v_{1}-\vartheta_{a}\right) \frac{11\left(2 i \sqrt{z_{1}}\right)}{I_{0}\left(2 i \sqrt{z_{1}}\right)} \frac{b^{2}}{\sqrt{z}}
$$

By equating the two expressions one obtains, if

$$
A=\sqrt{2 \frac{v}{\vartheta_{1}} \frac{\alpha_{a}}{\alpha}}
$$

and

$$
B=\frac{i I_{1}\left(2 i \sqrt{z_{1}}\right)}{I_{0}\left(2 i \sqrt{z_{1}}\right)}
$$

are introduced,

$$
\vartheta_{1}=\frac{A v_{o_{m i n}}+B \hat{v}_{a}}{A+B}
$$

Maximum Temperature in the Blade Cross Section
The temperature variation in the blade edce is represented by the following equation

$$
s-s_{a}=\left(s_{1}-v_{a}\right) \frac{I_{0}(21 \sqrt{z})}{I_{0}\left(2 x^{z_{1}}\right)}
$$

In this formula the temperature at the junction point C is known so that the variation of $\&$ can be determined.

The maximurn temperature at the point B is obtained if in the formula above the value z_{2} is substituted for z. Therefore,

$$
\vartheta_{\max }-v_{a}=\left(v_{1}-\vartheta_{a}\right) \frac{I_{0}\left(2 \sqrt{z_{2}}\right)}{I_{0}\left(2 i \sqrt{z_{1}}\right)}
$$

By means of the formulas given above the temperature at any point of the blade can bo colculatod if gas and coolinc air temperature and the heat transfer coefficients are know.

Temperature Drop in the Blade Wall
In the calculation of the temperature of the blade wall at A the temperature drop perpendicular to the wall was neglected and internal and external wall temperature vere assumed equal. Now the temperaturo drop in the wall is to be calculated.

An element of the length $d x$ and tho height I is considered. Tho hoat quantity ontering the olement arnounts to

$$
Q=\alpha_{a}\left(v_{a}-v_{I}\right) d x
$$

The hoat content leaving it is

$$
Q=\alpha_{i}\left(\vartheta_{I I}-\vartheta_{i}\right) d x
$$

$$
s-v_{a}=\left(v_{1}-v_{a}\right) \frac{I_{0}(21 \sqrt{z})}{I_{0}\left(21 \sqrt{z_{I}}\right)}
$$

his formula the temperature at the junction point C is known hat the variation of $\&$ can be determined.

The maximum temperature at the point B is obtained if in the una above the value z_{2} is substituted for z. Therefore,

$$
v_{\max }-v_{a}=\left(v_{1}-v_{a}\right) \frac{I_{0}\left(2 \sqrt{z_{2}}\right)}{I_{0}\left(2 i \sqrt{z_{1}}\right)}
$$

sans of the formulas given above the temperature at any point ie blade can be calculated if gas and cooling air temperature the heat transfer coefficients are know.

Temperature Drop in the Blade Wall

In the calculation of the temperature of the blade wall at A temperature drop perpendicular to the wall was neglected and anal and external wall temperature were assumed equal. Now emperaturc drop in the wall is to be calculated.

An clement of the length $d x$ and the height I is considered. boat quantity ontering the olement amounts to

$$
Q=a_{a}\left(v_{a}-v_{I}\right) d x
$$

cat content leaving it is

$$
Q=\alpha_{i}\left(v_{I I}-v_{i}\right) d x
$$

The heat flow perpendicular to the well causes a temperature eradient in the direction z, therefore

$$
Q=-\lambda \frac{\mathrm{d}}{\mathrm{~d} z} \mathrm{dx}=-\lambda \frac{\vartheta_{I}-\vartheta I I}{\vartheta} \mathrm{dx}=-\frac{\lambda}{\vartheta} \Delta \vartheta
$$

The calculation of $\Delta \forall$ is made as follows:

$$
\begin{aligned}
\alpha_{i} v_{I I}-\alpha_{i} v_{i} & =\frac{\lambda}{\vartheta} \Delta \vartheta \\
v_{I I} & =v_{I}-\Delta \vartheta=\frac{I}{\alpha_{i}}\left(\frac{\lambda}{v} \Delta \vartheta+\alpha_{i} \vartheta_{i}\right) \\
v_{I} & =\frac{I}{\alpha_{i}}\left(\frac{\lambda}{\vartheta} \Delta \vartheta+\alpha_{i} \vartheta_{i}\right)+\Delta \vartheta
\end{aligned}
$$

there is further

$$
\alpha_{a v a}-\alpha_{a} v_{I}=\frac{\lambda}{*} \Delta v
$$

If one substitutes in this equation the calculated expression for ${ }^{\prime}$, there results

$$
\begin{gathered}
\alpha_{a} \vartheta_{a}-\alpha_{a}\left[\frac{1}{\alpha_{i}}\left(\frac{\lambda}{\vartheta} \Delta \vartheta+\alpha_{i} \vartheta_{i}\right)+\Delta \vartheta\right]-\frac{\lambda}{\hat{v}} \Delta \vartheta=0 \\
\alpha_{a} \vartheta_{a_{1}}-\alpha_{a} \vartheta_{i}=\Delta \vartheta\left(\frac{\alpha_{a}}{\alpha_{i}} \frac{\lambda}{\vartheta}+\alpha_{a}+\frac{\lambda}{\vartheta}\right)
\end{gathered}
$$

therefore finally

$$
\Delta v=\frac{v_{a}-v_{1}}{1+\frac{\lambda}{v}\left(\frac{1}{a_{i}}+\frac{1}{\alpha_{a}}\right)}
$$

or, divided by ${ }_{a}$,

$$
\frac{\Delta \theta}{v_{a}}=\frac{1+\frac{i_{i}}{v_{a}}}{1+\frac{\lambda}{i}\left(\frac{1}{a_{i}}+\frac{1}{a_{a}}\right)}
$$

Graphical Supplement of the Temperature Field
Naturally the variation of the tomperatures determined by calculation represents only an approximation. To be exact, one is dealing with a temperature fleld, therefore with a two-dimensional problem. The calculated temperatures at the points A, B, and C forin as it were the scaffold for the temporature field. The temperature field must be a square net; such a net can bo completed graphically by trial and orror [4]. The heat flow per unft area is given by the equation (basic equation of heat conduction)

$$
q_{n}=-\lambda \frac{d \theta}{\partial n}=-\lambda \frac{\Delta \vartheta}{\Delta n}
$$

The heat quantity which flows through the leneth Δs (fig. 28) between the streamlines drawn in dashed. lines, amounts to

$$
\Delta Q=\lambda \frac{\Delta \vartheta}{\Delta n} \Delta \theta
$$

An equal heat content must enter at the external surface on the length $\Delta 0$. The avorage temperature at the suriace is

$$
i_{m}=\frac{1}{2}(v+\theta+\Delta \theta)=\theta+\frac{1}{2} \Delta \theta
$$

The heat tranafer coefficient is assumed to be α_{a} and the gas temporature i_{a}. Then

$$
\Delta a=a_{a}(v a-v) \Delta 0
$$

If one takes $\sin a=\frac{\Delta s}{\Delta o}$ into consideration, one obtains

$$
\sin \alpha=\frac{\Delta s}{\Delta 0}=\frac{\alpha_{a}\left(i_{a}-\vartheta_{m}\right)}{\lambda \frac{\Delta \hat{\xi}}{\Delta n}}
$$

The correctness of the temperature field that was drawn can be tested by means of the relation above.

For a hollow blade H8 the temperature field in the blade cross section was completely determined. (See fig. 30.) The operating conditions for this blade are particulariy unfavorable. The blade operates with excess pressure ahead of the nozzlos whereas for the other examples there is atmospheric pressure ahead of the nozzles and low pressure behind the nozzles. For the blade H 8 there result, due to the large gas density, especially large heat transfor coefficienta and larger temperature differences'than for the other examples mentionod. First, the temperatures i_{0}, v_{01}, $\vartheta_{\min }$, and $\vartheta_{\max }$ were determined and moreover the tomporature variation in the rib-like blade edge calculated. This "scaffold" ras then completed by construction of a square net and controlled by the surface condition.

Heat Transfer at the Stagnation Point of tho Blade
A mean heat transfer coefficient vas used at first for the calculation of tho termerature diatribution in the blade cross
section. No exact data exist on the exact variability of this coefficient along the circumference. However, an estimate for the etagnation point of the profile can be made in the following manner.

It is known that the heat transfer at the stagnation point of a streamlined body depends only on the radius of curvature at this point. Test values on the magnitude of the hoat tranafer at the stagnation point of a cylinder have been compiled [5]. A formula given by Squire reads:

$$
\mathrm{Nu}=1.01 \sqrt{\mathrm{Re}}
$$

The values calculated with this formula agree well with the test results. For Reynolds numbers of 10^{4} the heat transfer at the stagnation point is about twice as large as the average heat transfer. For $\mathrm{Re}=10^{5}$ both heat transfer coofficients aro about equal. If one considers a blade profile with $d_{a}=22$ minilimeters and a diameter of curvature at the leading edge of 2.2 millimeters, the Reynolds number for the leading edee is, for $R e_{a}=10^{5}, R e_{1}=10^{4}$ and one obtains the following Nusselt numbers:

$$
\begin{aligned}
& N u_{a}=330 \\
& N u_{1}=100
\end{aligned}
$$

Therewith $\frac{a}{a_{1}}$ becomes

$$
\frac{\alpha_{a}}{\alpha_{a_{1}}}=\frac{N u_{a} \alpha_{1}}{\alpha_{a} N u_{1}}=\frac{330 \times 2.2}{22 \times 100}=0.33
$$

Thus a heat transfer coefficient at the stagnation point on the leading edge 3.0 times as large as the mean heat transfer coefficient reaults for the case above. Due to the large heat trangfor coefficients for slight rounding of the loading odge high temperatures appear there. It is therefore useful, to round the leading odges of gas-turbine blados sufficiently.

Calculation of the Maximum, Mean, and Minimum Temperature

in the Blade Cross Section

By means of the formulas given above the maximum and minimum temperatures in the blade cross section can be determined and represented as

$i_{\text {omin }}$ $\hat{\omega}_{a}$

and

as functions of the cooling-air quantity. For the hollow blade H3 (dimensions according to tableII) the values above are plotted in figure 31. The maximum temperature difference appoaring in the blade section is found to be

$$
\Delta t_{\max }=v_{a} \frac{v_{\text {omax }}}{v_{a}}-\frac{v_{\text {omin }}}{v_{a}}
$$

For 7 percent cooling air and $\lambda_{\mathrm{a}}=804^{\circ}$ corresponding to $900^{\circ} \mathrm{gas}$ temperature one obtains the following temperaturo difference:

$$
\Delta t_{\max }=140^{\circ} \mathrm{C}
$$

Schörner 6 also measured temperature differencos of more than 100° in the cross section of a hollow blade the interior of which was provided with ribs, to improve the cooling effect.

V. CALCULATION OF THE HEAT SITRESSES

General Remarks on Thermal Stresses

Due to the temperature differences in the blade cross section, there appear thermal stresses. The effect of the thermal stresses can become so strong that heat cracks originate. The photograph (ilig. 32) showe a serise of rlades H3 in which after a test run cracks were found on the convex ${ }^{2}$ side. At first this phenomenon could not be explained satisfactorily. It could be proved by investigation of the temperature distribution and determination of the thermal stresses that the cracks are caused by the temperature differences in the cross section.

The thermal stress in a rod-shaped body the heat expansion of which is prevented by a fictitious rigid clamping of tho ends according to figuro 33 , is [7]

$$
\sigma=-\operatorname{Eg}\left(t-t_{1}\right)
$$

t and t_{1} are the temperatures distributed evenly over the cross soction. The rod is heatod from the tomperature t_{I} to the tomporature t. E is the modulus of olasticity, β the lincar heat expansion coofficient. When the heat expansion is complotcly provented, very large stresses appear. For tho austenitic steol SAS 8 E and β are for $600^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \beta=19 \times 10^{-6} \mathrm{I} / \mathrm{c}^{0} \\
& E \sim 1.5 \times 10^{6} \mathrm{~kg} / \mathrm{cm}^{2}
\end{aligned}
$$

For a heating of 10° one obtains a stross of

$$
\begin{aligned}
& 0=1.5 \times 10^{6} \times 19 \times 10^{-6} \times 10=285 \mathrm{~kg} / \mathrm{cm}^{2} \\
& \sigma=2.85 \mathrm{~kg} / \mathrm{mm}^{2}
\end{aligned}
$$

2Iiterally: "belly side"

For temperature differences of about 100 one obtains thermal stresses in the order of magnitude of the elastic limit and the fatigue strength, respectively, of the heat resistant materials.

If the clamping is not completely rigid so that the rod can expend by the amount ϵ, the thermal etress becomes

$$
\sigma=E\left[\epsilon-\beta\left(t-t_{1}\right)\right]
$$

Calculation of the Thermal Stresses in a Rod Clamped on One
Side with Arbitrary Temperature Distribution
A rod is considered which, like a turbine blade, is clamped. at one ond only; in this case the rod can expand freely and no thermal stresses appear as long as tho tomperature distribution in the cross section remains constant. If, however, the temperature distribution is not uniform, the separate fibara of the rod will interfore with each other. The cross soction of the rod is, for instance, assumed rectangular according to figure 34 and the temperatures of the outor fibres t_{1} and t_{2}. Tho upper fiber will expand more strongly then the lower one and tho rod will bend.

Thus the strossos aro partially reducod in comparison with the rigidly clampod rod which cannot bend.

In general, this problem can be reprosented as followe. Thinwallod bodies only will be discussed so that the strossos perpondicular to the wall can be neglected. For a rod-shapod body with a cross section according to figure 35, which is not subjected to external forces and is clamped on one end, the moment of the internal stresses must become zoro in overy section. Moreovor, the sum of the intornal stress itsolf must disappear. Thus, with the dosignations of figure 35, tho following equations must be valid:

$$
\begin{aligned}
P & =\int \sigma_{z} d f=0 \\
M_{x} & =\int \sigma_{z} y d f=0 \\
M_{y} & =\int \sigma_{z} x d f=0
\end{aligned}
$$

The moment of the internal forces equals zero. if it is zero for any two axes.

Further, it is assumed, as in the theory of the bending of a rod that the cross sections remain plane. Under this assumption the atatoment (equation of a plane) can be made for the elastic deformations

$$
\epsilon=\epsilon_{0}+\beta k_{1} x+\beta k_{2} y
$$

One now considers the first condition $P=0$. If one applies the formula given above for the etresses to an element of the rod, one obtains the following:

$$
P=0=\int \sigma_{z} d f=\mathbb{E} \int\left[\epsilon-\beta\left(t-t_{I}\right)\right] d f
$$

If one now introduces the linear formulation for ϵ according to the equation above, it becomes
$P=0=E \int \epsilon_{0} d f+\int \beta k_{1} x d f+\int \beta k_{2} y d f-\beta \int\left(t-t_{1}\right) d f$

The integrals are transformed as follows:

$$
\int \epsilon_{0} d f=\epsilon_{o} f
$$

The dilatation ϵ_{0} was assumed to be constant. The second integral represents the static moment of the cross section, referred to the y-axis, and can, according to the centor-of-Gravity thcorem, be equated to $f^{e_{1}} \theta_{1}$ is the distance of the conter of gravity from the y-axis. The integral $\int y$ df also can be transformed
accordingly. Then $\int t d f=$ tme with t_{m} xepresenting the mean temperature of the cross section. Thus one obtains

$$
\begin{aligned}
& \int \epsilon_{0} d f=\epsilon_{0} f \\
& \int k_{1} x d f=k_{1} \theta_{1} f \\
& \int k_{2} y d f=k_{2} \theta_{2} f \\
& \int t d f=t m f \\
& \int t_{I} d f=t_{1} f
\end{aligned}
$$

The temperature of reference t_{1} contained in the formulas is equated to the mean temperature of the cross section. The expression then becomes

$$
\beta \int\left(t-t_{1}\right) d P=0
$$

The first condition $P=0$ yields therofore the relation

$$
\varepsilon_{0}=k_{1} e_{1}+k_{2} e_{2}=0
$$

Then the condition $M x=0$ and $\mathrm{My}=0$ is considered. If the coordinate system is selected so that it goes through the center
of gravity, θ_{1} and θ_{2} equal zero. One may assume that the following derlvations will be particularly simple if one selects a system of coordinates going through the center of gravity.

$$
\begin{aligned}
& \text { The condition } M x=0 \text { yields } \\
& M_{x}==E\left[\int \epsilon_{0} y d f+\int \beta k_{1} x y d f+\int \beta k_{2} y^{2} d f-\int \beta\left(t-t_{m}\right) y d f\right]
\end{aligned}
$$

One equates

$$
\begin{aligned}
& \int x y d f=I_{x y} \\
& \int y^{2} d f=I_{x x} \\
& \int t y d f=I_{t x}
\end{aligned}
$$

For an axis through the center of gravity the integral is $\int y d f=0$. Thus one obtains:

$$
0=0+\beta k_{I} I_{x y}+\beta k_{2} I_{x x}-\beta I_{t x}
$$

For the third condition $M_{y}=0$ there resulta

$$
M_{y}=0=E\left[\int \epsilon_{0} x d f+\int k_{2} x^{2} d f+\int k_{2} x y d f+\int \beta\left(t-t_{m}\right) x d f\right]
$$

One designates

$$
\begin{aligned}
& \int x^{2} d f=I_{y y} \\
& \int t x d f=I_{t y}
\end{aligned}
$$

and takes into consideration that $\int x d f$ for the axes through the center of eravity equal.s zero. Then

$$
0=0+\beta K_{I} I_{y y}+\beta K_{2} I_{x y}-\beta I_{t y}
$$

So far it was assumed that the coordinate system goss through the center of gravity of the profile. If the coord.nate ayatem is selected so that it coincidee with the main axes of inertia, the integral also becomes

$$
I_{x y}=\int x y d f=0
$$

From the three conditions $P=O_{2} M_{x}=0, M_{y}=0$ one therefore obtains

$$
\begin{aligned}
& \epsilon_{0}=0 \\
& K_{1}=\frac{I_{t y}}{I_{y y}} \\
& K_{2}=\frac{I_{t x}}{I_{X x}}
\end{aligned}
$$

The thermal stresses are calculated as follows:

$$
\begin{aligned}
& \sigma=E\left[\epsilon-\beta\left(t-t_{m}\right)\right] \\
& \sigma=\beta E\left[K_{I} x+K_{C y}-\left(t-t_{m}\right)\right]
\end{aligned}
$$

The temperature distribution in the cross section is assumed given by the temperature field determined in the precodins section and represented by the isotherms. In the equation avove $k_{1} x$ represents a temperature and one may write

$$
t_{0}=K_{1} y+K_{2} y+t m
$$

This equation represents a temperature plane wh* ch can also be giren by the isotherms. Thus the thermal stress bscomos

$$
\sigma=\beta E\left(t_{0}-t\right)
$$

Temperature and Stress Field for the Eollow Blade 48
In the cross section of the blade E8 (flg. 36) two lnotherm fields are superimposed. One now connocts the points where the temperature difference of the two fields is vquel, for instance, the point at which the isothorm of the tompureturo variation 700° intersocts tho isotherm of the auxiliary plane 700° with tho point at wich the isothem of the temperature Picld $t=650^{\circ}$ intersects the isothorm of the auxiliary plane $t_{0}=650^{\circ}$, otc. The lines of equal tomporature difforonce that were thus obtaincd ropresent gimultancously lines of equal thormal stresses. Fifure 37 givos the struss ficld for tho hollow blade $H 8$ whicle wes doterminod in this manner.

VI. CONSIDERATION OF THE EFHECT OF THE RADIATION

ON THE DLADE THMPBRATURE
The Magnitude of the Heat Radiation

For high gas temperatures, the walls of the nozzles radiate so atrongly that the heat transfer by radiation compared with the heat transfer by conduction must no longer be neglected. The heat quantity transferred by radiation betwoen two walls is proportional to the fourth power of the temperatures according to the equation

$$
Q=\text { constant }\left(T_{Q}^{4} \cdot T^{4}\right)
$$

At first it is assumed that the temperature of the radiating surface (nozzle blades) is T_{a}. If one rofers the heat quantity transferred by radiation to the tomperature differonce of tis radiating bodies, one obtains as the heat transfer coefficient by raciation

$$
\alpha_{s}=c_{s} \frac{\left(\frac{T_{a}}{100}\right)^{4}-\left(\frac{T}{100}\right)^{4}}{T_{a}-T}=c_{a}\left(T_{a}^{3}+T_{a}{ }^{2}+T_{a} T_{o}^{2}+T_{o}^{3}\right)
$$

For oridzod surfaces for technical use, one ias to insort in this formula for $c_{s}: c_{s}=4.6$. In deriving the formula the number 100 in the denominator is omitted.

Derivation of a Relation for the Influence of the Radiation on the Mean Blade Demperaturo

In deriving the mean temperature of the cross section one introduces instead of α_{a} the valuo $\alpha_{a}+\alpha_{s}$ and obtains:

$$
\left(\alpha_{\mathrm{B}}+\alpha_{a}\right) U_{a}\left(T_{a}-T_{O S}\right)=a_{1} U_{1}\left(T_{O S}-T\right)
$$

From this equation there results

$$
\frac{T_{o s}}{T_{a}}=\frac{\alpha_{a} U_{a} v_{a}+\alpha_{s} \vartheta_{a}+\alpha_{i} U_{i} \vartheta_{1}}{\alpha_{a} U_{a}+\alpha_{s} U_{a}+\alpha_{i} U_{i}}=\frac{\alpha_{a}+\alpha_{s}+\frac{U_{i}}{U_{a}} \frac{v_{1}}{\vartheta_{a}} \alpha_{i}}{\alpha_{a}+\alpha_{a}+\frac{U_{i}}{U_{a}} \alpha_{i}}
$$

With

$$
\frac{U_{i}}{U_{a}}=m \quad \frac{\vartheta_{i}}{\vartheta_{a}}=m
$$

$\frac{T_{0 S}}{T_{a}}$ becomes

$$
\begin{aligned}
& \frac{T_{O B}}{T_{a}}=\frac{\alpha_{a}+\alpha_{B}+n n \alpha_{i}}{\alpha_{a}+\alpha_{B}+n \alpha_{i}}-\frac{a_{a}+\alpha_{B}+n \alpha_{i}+n(n-I) \alpha_{i}}{\alpha_{B}+\alpha_{B}+n \alpha_{i}} \\
& =1+\frac{n(m-1) a_{i}}{a_{a}+n a_{i}+a_{i}} \\
& \frac{T_{o s}-T_{a}}{T_{a}}=\frac{n(m-1) \alpha_{i}}{\alpha_{a}+n \alpha_{i}+c_{s}\left(T_{o s}^{3}+T_{o s} T_{a}+T_{o s} T_{a}^{2}+T_{a}^{3}\right)}
\end{aligned}
$$

If one performs the multiplication, one obtains

$$
\begin{aligned}
T_{a} n(m-I) \alpha_{i}= & T_{o s}\left[\alpha_{a}+n \alpha_{1}+c_{s}(\cdot \cdot)\right] \\
& -T_{a}\left[a_{a}+n \alpha_{i}+c_{n}(\cdot \cdot)\right]
\end{aligned}
$$

Finally,

$$
T_{a} n(m-1) \alpha_{1}=\left(T_{o s}-T_{a}\right)\left(\alpha_{a}+n \alpha_{i}\right)+c_{B}\left(T_{o s}^{4}-T_{a}^{4}\right)
$$

From the relation for the mean blade temperature without radiation effect one obtains

$$
\begin{aligned}
T_{a}\left(\alpha_{a}+n m \alpha_{1}\right) & =T_{0}\left(\alpha_{a}+n \alpha_{i}\right) \\
T_{a}\left(n m \alpha_{i}-n \alpha_{1}+\alpha_{a}+n \alpha_{1}\right) & =T_{0}\left(\alpha_{a}+n \alpha_{1}\right) \\
T_{a} n(I m-I) \alpha_{i} & =T_{0}-T T_{a}\left(\alpha_{a}+n \alpha_{1}\right)
\end{aligned}
$$

If one subtracts the equations from each other the result is

$$
0=\left(T_{o s}-T_{0}\right)\left(\alpha_{a}+n a_{1}\right)+c_{s}\left(T_{o s}^{4}-T_{a}^{4}\right)
$$

If one designates the temperature difference between the moan temperature with and without radiation effect by ΔT, one obtains for it

$$
\Delta T=\frac{c_{s}\left(T_{a}^{4}-T_{o s}^{4}\right)}{a_{a}+n \alpha_{i}}
$$

In this equation $T_{o s}$ is still unknown. One writes

$$
T_{O S}=T_{O}+\Delta t
$$

Neglecting the higher powers, one obtains

$$
T_{o s}^{4}=T_{0}^{4}-4 T_{0}^{3} \Delta t
$$

If this expression is introduced into the equation for $\Delta T, \Delta T$ becomes finally

$$
\Delta T=c_{s} \frac{\left(\frac{T_{a}}{100}\right)^{4}-\left(\frac{T_{0}}{100}\right)^{4}}{\alpha_{a}+\frac{U_{1}}{U_{a}} \alpha_{i}+0.04 c_{s}\left(\frac{T_{0}}{100}\right)^{3}}
$$

With the temperature T_{c} without radiation effect given, the influence of the radiation Δt can be calculated by means of the formula above.

Complete Calculation of an Example

The blade F 7 for 900° gas temperature according to the example In the second section is considered. For 8 percent cooling air quantity, v_{0} / v_{a} then is 0.71 . For a stagnation temperature of $840^{\circ} \mathrm{C} \psi_{0}$ becomes $573^{\circ} \mathrm{C}$. With $\alpha_{a}=258$, one obtains for the temperature rise at a location of the blade subject to radiation

$$
\Delta t=75^{\circ}
$$

Thus one can see that occasionally essential increases in temperature may occur due to radiation of the hot nozzles. It was presumed for the preceding derivation that the nozzle wall takes on the stagnation temperature ϑ_{a}. It is known, however, that the walls of nozzles do not have the temperature of the flowing gas but about the tempersture of the gas ahead of the nozzles. That would mean for this case that the nozzle walls take on the gas temperature, that is, for instance 900°, compared with a stagnation temperature of 804°. The maximum difference between gas temperature and atagnation temperature, however, appear only for the running turbine for which the flow velocity relative to the blade has the smaller value of $w_{1}=c_{1}-u_{1}$ instead of the nozzle exit velocity c_{1}. For segment teats, $w_{1}=c_{1}$. Then the atagnation approximately equals the gas temperature. In figure 38 the mean temperature i_{0}
for the hollow blade $H 7$ is represented as a function of the coolingair quantity with and without radiation effect.

Influence of the Radiation on the Nozzle Temperature
Thus the preceding derivation for the increase of the blade temperature \mathcal{F}_{0} by radiation, with the temperature of the nozzle walls equated to s_{0}, is valid exactly only for the evaluation of segment tests. The fact is neglected that the nozzle walls themselves experience a temperature drop due to the heat radiations to the turbine blade. The following derivation will take into account that the actual temperature of the nozzle wall lies between gas and stagnation temperature. For the temperature of the nozzle wall the relation

$$
2 \alpha_{a_{\text {nozzle }}}\left(T_{\text {gas }}-T_{\text {nozzle }}\right)=c_{s}\left[\left(\frac{T_{\text {nozzle }}}{100}\right)^{4}-\left(\frac{T_{0 B}}{100}\right)^{4}\right]
$$

is valid if ons takes into consideration that heat is transferred to the nozzle wall by convection on both sides whereas heat is radiated only on one side. One equates

$$
T_{\text {gas }}-T_{\text {nozzle }}=\Delta t_{\text {nozzle }}
$$

Thon there is

$$
\Delta t_{\text {nozzle }}=\frac{c \theta\left[\left(\frac{\mathrm{~T}_{\text {nozzle }}}{100}\right)^{4}-\left(\frac{\mathrm{T}_{\mathrm{OS}}}{100}\right)^{4}\right]}{2 a_{a_{\text {nozzle }}}}
$$

In this formula T_{D} and $T_{o s}$ are at first unknown. In calculating $\Delta t_{\text {nozzle }}$ one may choose the procedure to calculate first an approximate value of $\Delta t_{\text {nozzle }}=\Delta t_{\text {nozzle }}$ for various $T_{o s}$,
by equating $T_{D}=T_{g a s}$. Then one calculates a first approximation for

$$
T_{\text {nozzle }}^{\prime}=T_{\text {gas }}-\Delta t_{\text {nozzle }}
$$

With this velue one obtains a second approximation of $\Delta t_{n o z z l e}$. Thus the solution of the equation of the fourth order can be avoided. In figure 39 the drop of the nozzle temperature is piotted for 900° gas temperature and a heat tranefer coefficient $a_{a_{\text {nozzle }}}=300$. With these values the nczzle temperature becomes somewhat larger than the stagnation temperature. However, for the evaluation of the segment tests one may calculate with $\mathrm{T}_{\text {nozzle }}=\mathrm{T}_{\mathrm{a}}$.
VII. TESTS ON BLADE SEGMENTS AND COMPARISON WITH THE CALCULATION

Description of the Tests

These teats were performed on a blade sogment on the scale 1:l with 7 blades HZ (table II). The blades were boated by gas from a combustion chamber. The cocling air and combustion air were supplied by two rotary piston compressors. In the following discussion only the test points ' 7 and 8 at the center of tine blade and 17 and 18 at the blade edges (fig. 40) are considered out of about 25 test pointa distributed over different blades. These test points are in the neighborhood of the blade tips so that the heat conduction to the rotor disc is negligible. The ratios of the measured temperaturos and the gas temperstures are set up and plottod as functions of the cooling-air quantity. The teat rosults for 700° and 900° gas temperature and the velocities w_{1} botween $c 00$ and 350 meters per sccond were used.

Result of the Tests

The assumptions made for calculating the temperature $v_{\text {omin }}$ are valid for the test points 7 and 8 . In figure 41 the measured temperatures for test points 7 and 8 are plotted togethor with the calculated temperature $\vartheta_{\text {min }}$ for comparison. The calculated. temperatures are olightly higher than the measured ones. The thermowires were led to the outside through the cooling ducts. The
cooled wire removes heat from the blade wall so that the presence of the measuring wire at the test point causes a drop in temperature. In the next section the error of measurement caused by the installation of the thermowires in the gas or cooling air flow will be further investigated.

The test points 17 and 18 are close to the blade edges. The temperature can be detormined according to the indications in section IV. Figure 42 contains the meosured temperatures for the test points 17 and 18 and, for comparison, the tempereture calculated for test point 17. Here also the calculated values are higher than the test values although these test points were instelled in grooves, so that the error due to the thermowires was eliminated. Moreover, an additional husting should occur at the test point 17 due to radiation of the nozzles.

The differences between the temperatures of the blade edges, test points 17 and 1.8 , and the temperatures of the blade center, test points 7 and 8, are correctly represented by the calculation. The agreement of measured and calculated values with respect to magnitudo also is very good since the latter values aro on the average only \sim to 3 percent higher than the former ones.

VIII. ERROR OF MEASUREMENT FOR THE INSTALIATION OF THERMOWIEES

IN THF AIR AND GAS FLOW, RESFECTIVELY
Origin of the Error

For temperature measurements on gas-turbine bladas, groat difficulties of ten arise in the installati'n of the thoxmocouples. For small wall thicknesses below 1 milimeter, in particular, a reliabls installation in grooves or bore holes is no loneter possible. The thermcwires towerd the outside have to be froely guided in the gas or air flow. The conductivity of the thermowire causes here an error. On the cooling air side of the blade wall the measuring wire is located in the cold cuoling air flow and remover heat from the blade wall so that a temperature drop appoars et the test point. On the gas side the wire becomos warmer than the blade wall and additional heat flows into the wall ceusing a rise in the wall temperature at the test point. The magnitude of the error due to the presence of the wire will now be determined.

Derivation of a Formula for the Magnitude of the Error

A part of the blade wall of tho thickness δ is considered, with a thin wire of the thickness $2 r_{1}$ running into it. In the
blade wall the heat flows radially toward the measuring wire. An annular cut-out of the radius r and the thickness $d x$ is considered. The heat content Q_{3} enters this annular element of the blade wall from the gas side according to the following relation:

$$
Q_{3}=\alpha_{a} 2 \pi r d r\left(v_{a}-v\right)
$$

* being the wall temperature at the distance r from the center of the wire. On the cocling air side of the blade wall, the heat content Q_{4} is absorbed by the croling air flow.

$$
Q_{4}=\alpha_{i}=\pi d r\left(\vartheta-v_{i}\right)
$$

Here again the temperature difforences at tight angles to the blade wall have been neglected. For the heet flow in the blade wall the relation is valid.

$$
Q_{1}-Q_{2}=\lambda_{w} 2 \pi \vartheta\left(r \frac{d^{2} \vartheta}{d r^{2}}+\frac{d \vartheta}{d r}\right) d r
$$

The heat content entering the annular eloment is assumed to be poaitive, the heat content leaving it, negative. Then the equation is valid:

$$
Q_{1}-Q_{2}+Q_{3}-Q_{4}=0
$$

Therefrom one obtains the differential equation

$$
\frac{d^{2} \vartheta}{d r^{2}}+\frac{1}{r} \frac{d \vartheta}{d r}+\frac{a_{a}}{\lambda_{w} \hat{v}}\left(v_{a}-\vartheta\right)-\frac{a_{i}}{\lambda_{w^{*}}}\left(\vartheta-\lambda_{i}\right)=0
$$

SHiCA TM NO. 1183

Therefrom one obtains the differential equation

$$
\frac{\alpha_{a}}{\lambda_{W} v}+\frac{\alpha_{1}}{\lambda_{W} v}=a
$$

and

$$
\frac{\alpha}{\lambda_{W} i_{i}}+\frac{\alpha_{1}}{\lambda_{W} \vartheta_{i}}=a_{i n}
$$

one obtains the following Bessel's differential equation of zero order

$$
\frac{d^{2} v^{2}}{d r^{2}}+\frac{1}{r} \frac{d \vartheta}{d r}+a\left(v_{2}-\vartheta\right)=0
$$

or, with $-\theta=\vartheta_{2}-\vartheta$ there results

$$
\theta^{\prime \prime}+\frac{1}{r} \theta^{\prime}-\theta \theta=0
$$

The solution reads:

$$
\theta=A r_{0}(1 \sqrt{a r})+B_{1} H_{0}(1 \sqrt{a r})
$$

At ereat distance from the wire, that is, for $r=\infty, \theta=0$ or $v=\psi_{2}$. Upon insertion of these values nne obtains

$$
\theta_{c_{2}}=A I_{0}(\infty)+B_{1} H_{0}(\infty)
$$

One obtains $A=0$, because of $I_{0}(\infty)=\infty$. Thus there remains

$$
\theta=B_{1} H_{0}(1 \sqrt{a r})
$$

The constant B is determined from the magnitude of the heat content flowing in and flowing away through the wire. One considers the wire as a rod of the circumference $U=\left\{\pi r_{1}\right.$, and the cross section $f=r_{I}{ }^{2} \pi$; then the resulting heat content flowing through the $\operatorname{rod}[8]$ is

$$
Q=\frac{\alpha_{I n} U}{\beta}\left(v_{1}-\hat{v}_{1}\right) \tan (\beta h)
$$

Since the wire must be regarded as long in relation to the diameter, one may equate $\tan (\beta h)=1 . \vartheta_{1}$ is the temperature at the point $x=0$, that is, at the wall. At large distance from the wall the wire assumes the temperature of the cooling air, designated by i_{1}. The heat content Q leaving through the wire must enter the wire from the wall. If one considers a cylinder of the radius r_{1} in the blade wall, the relation

$$
Q=\lambda_{c} \pi r_{I} \quad\left(\frac{d \theta}{d r}\right)
$$

is valid for the heat flow. From this relation ono determines $\left(\frac{d \theta}{d r}\right)_{1}$; from this value the missing constant B then results as follows:

$$
\left(\frac{d \theta}{d r^{\prime}}\right)_{1}=B \sqrt{a i H_{1}}(1 \sqrt{a r} 1)
$$

The constant B becomes

$$
B=\frac{\frac{\alpha_{D r} U}{\beta}\left(\vartheta_{1}-\vartheta_{1}\right)}{\lambda_{W} 2 \pi r_{1} \vartheta \sqrt{a i H_{1}}(i \sqrt{\mathrm{Er}} 1)}
$$

For determination of this constant the assumption was made that the heat flow in the wall will be radial up to a radius r_{1}. Actually the heat flow lines will deviate before that. Thus the calculation was carried out under simplified, not wholly exact assumptions. The error θ_{1}, that is, the difference between the wall temperature without wire \mathcal{F}_{2} and the temperature at the location of the wire \mathcal{s}_{1} is determined as follows. The constant was

$$
B=\frac{\theta_{1}}{i H_{0}(i \sqrt{a r})}=\frac{\frac{a_{D r} U}{\beta}\left(v_{1}-\hat{v}_{i}\right)}{\lambda_{w} 2 \pi r_{I} v \sqrt{a 1 H_{1}}\left(i \sqrt{a r_{1}}\right)}
$$

One equates the expression

$$
\frac{a_{D r} r_{1} \lambda_{D r}}{2 \alpha_{w} \lambda_{W}} \frac{i H_{0}\left(i \sqrt{a r_{1}}\right)}{i H_{1}\left(1 \sqrt{a r_{1}}\right)}=X Y
$$

Then θ is

$$
\theta_{1}=v_{2}-v_{1}=X Y\left(v_{1}-v_{1}\right)
$$

further,

$$
\theta_{1}=\theta_{2}-\theta_{1}
$$

and therefore

$$
\theta_{1}=X Y\left(\theta_{2}-\theta_{1}-v_{1}\right)
$$

One obtains

$$
\theta_{1}=\frac{X Y\left(v_{2}-v_{1}\right)}{1+X Y}
$$

or, written in a different form,

$$
\frac{\theta_{1}}{\vartheta_{2}-\vartheta_{1}}=\frac{1}{1+X Y}
$$

The left oide represents the error referred to the difference between wall temperature and ccoling-air temperature. One may represent the error as a function of the two values

$$
\begin{aligned}
& X=\frac{H_{1}\left(i \sqrt{a r_{1}}\right)}{H_{0}\left(1 \sqrt{a r_{1}}\right)} \\
& Y=\sqrt{\frac{c_{a^{3}} A_{W}}{a_{D r} r_{1}{ }^{2} D r}}
\end{aligned}
$$

In percent of the temperature difference $v_{2} \mathcal{V}_{1}$. In order to simplify the manipulation, the error is represented if figure 44 as a function of the values

$$
\begin{aligned}
& x=\sqrt{\frac{a r_{1}^{2}}{\lambda_{W} \vartheta}} \\
& y=\sqrt{\frac{2 a_{r} \lambda_{W}}{a_{D r} r_{1} \lambda_{D r}}}
\end{aligned}
$$

Complete Calculation of an Example

The use of the chart (fig. 44) will be discussed on hand of an example. The following values are given.

Temperature of the blade wall without thermocouple, $i_{2},{ }^{\circ} \mathrm{C}$. 600
Cooling-air temperature, $\imath_{1},{ }^{\circ} \mathrm{C}$. 150
Heat transfer coefficient on the gas
side, $a_{a}, K \operatorname{cel} / m^{2},{ }^{\circ} \mathrm{C}, \mathrm{h}258$
Heat transfor coefficient on the cooling air
side, $\quad \alpha_{i}, \quad K$ cal $/ m^{2},{ }^{\circ} \mathrm{C}, \mathrm{h}$.
Heat transfer coefficient on the thermo-
wire, $\alpha_{D r}, K$ cal $/ \mathrm{m}^{2},{ }^{\circ} \mathrm{C}, \mathrm{h}$. 1180
Heat conductivity of wire and blade
wall, λ, K cal/m, ${ }^{\circ} \mathrm{C}, \mathrm{h}18$
Well thickness, o, mm . 1
Wire thickness, $\widehat{e} r_{1}, \mathrm{~mm}$. 0.5
One now determines the two characteristic values

$$
\begin{gathered}
x=\sqrt{\frac{\left(\alpha_{i}+\alpha_{a}\right) r_{1}^{2}}{\lambda_{w} 0}}=\sqrt{\frac{413 \times 0.25^{2} \times 1000}{18 \times 1000^{2} \times 1.0}}=0.0379 \\
y=\sqrt{\frac{2 \alpha^{2}}{\alpha_{D r} r_{1}}}=\sqrt{\frac{2 \times 413 \times 1}{1180 \times 0.25}}=1.67
\end{gathered}
$$

Figure 44 gives the error of measurement for these values as 7 percent. The error itself is

$$
e_{1}=0.07\left(s_{2}-s_{1}\right)=0.07 \times 450=31.5^{\circ} \mathrm{C}
$$

Thus the error can be determined in a simple manner with the aid of the characteristic values x and y.
IX. POWER REQUIREMENT FOR COOLING AND PROSPECTS

OF THE HOLLOW-BLADE TURBINE
Power Required for Cooling the Turbine Rotor

The turbine rotor with the hollow blades has the effect of a centrifugal compressor. The cooling air leaving the turbine rotor has the circumferential component $c_{u_{2}}=u_{a}$. Thus the work absorbed by 1 kilogram cooling air is

$$
H_{\text {tettal }}=\frac{1}{c}\left(u_{a} c u_{2}\right)=\frac{u_{g}^{2}}{g} m k g / k g
$$

The power absorbed by the cooling air then is

$$
N_{\operatorname{cool}}=\frac{G_{K} H_{t o t a l}}{75} \mathrm{ps}
$$

The turbine power is

$$
\mathrm{N}_{\mathrm{T}}=\frac{\mathrm{G}_{\mathrm{gas} \mathrm{H}_{0} 7_{T}}^{75}}{75}
$$

The turbine gradient H_{o} can be expressed by the ratio u / c_{0} as followe:

$$
H_{0}=\frac{c_{0}^{2}}{2 g}=\left(\frac{c_{0}}{u}\right)^{2} \frac{u^{2}}{2 g}
$$

It is customary to insert the mean circumferential velocity of the turbine rotor. The relation between mean circumferential velocity and maximum circumferential velocity u_{a} is:

$$
\frac{U_{a}}{U}=\frac{D_{\mathrm{a}}}{D_{m}}=\left(1+\frac{l}{D_{m}}\right)
$$

With 2 designating the length of the turbine blade. One now forms the ratio cooling power requirement/turbine power:

$$
\begin{aligned}
& \frac{N_{c o o l}}{N_{T}}=\frac{G_{K}}{G_{g a s}} \frac{H_{\text {total }}}{H_{0} \eta_{T}}=\frac{2 u_{a}^{2} / 2 g}{\left(c_{0} / u\right)^{2} \frac{u^{2}}{2 g} \eta_{T}} p \\
n= & \frac{N_{\text {cool }}}{N_{T}}=\frac{2}{\left(\left.c_{0}\right|^{u}\right)^{2}}\left(1+\frac{2}{D_{m a}}\right)^{2} \frac{1}{\eta_{T}} p
\end{aligned}
$$

For the examples mentioned, $H 5$ and $H 7$, the ratio is $2 / D_{m}=0.166$. The optimum efficiency of a turbine is obtained for a certain ratio u / c_{0}, a value lying between 0.4 and 0.5 . If one assumes, moreover, an efficioncy, for instance $\eta_{T}=0.75$, all values in the equation above are known and the power ratio is proportional only to the percent cooling air mase. n becomes:

$$
\begin{aligned}
& n=2\left(\frac{u}{c_{0}}\right)^{2}\left(1+\frac{2}{D_{m}}\right)^{2} \frac{1}{\eta_{I}} p \\
& n=2(0.4 \div 0.5)^{2}(1+0.166)^{2} \frac{1}{0.75} p=(0.58 \div 0.91) p
\end{aligned}
$$

The power requirement for cooling is therefore independent of the magnitude of the circumferential velocity.

Feeding Performance of the Blade Star
The static work head of the turbine rotor mey be celculated as follows. One sssumes that the circumferential component of the cooling-air velocity at every point is $c_{u}:=u=r w$, that is, that the flow goos through radial ducte. Then the static pressure increase on the way from $r=0$ to r is

$$
\begin{aligned}
\int_{0}^{r} \frac{d p}{r} & =\int_{0}^{r} \frac{1}{\theta} \frac{c_{u}^{2}}{r} d r=\int_{0}^{1} \frac{1}{\sigma} \frac{\omega^{2} r^{2}}{r} d r=\frac{\omega^{2}}{3}\left|\frac{r^{2}}{2}\right|_{0}^{r} \\
& =\frac{u^{2}}{2 g}=H_{\text {stat }}
\end{aligned}
$$

In a turbina rotor of a mean circumferential velocity of 300 meters per second, the circumferential velocity at the blade tip corresponding to $D_{a} \mid D_{m}=1.166$ is $U_{a}=350$ meters per second. The static work head becomea

$$
H_{\text {stat }}=\frac{\mathrm{u}^{2}}{2 g}=6250 \mathrm{mkg} / \mathrm{kg}
$$

A pressure ratio of about 1.8 corresponds to this work head. Flow tests for various hollow blades are roproduced in figure 45. A pressure ratio of about 1.35 is requised for a cooling air quantity of 7.5 percent. The actually present prossure ratio is 1.8. The feeding performance of the turbine rotor is therefore sufficient to prese the cooling air through the blade ducts and, moreover, to feed the cooling air againet a certain excess pressure toward the turbine rotor. For a favorable design of the blade shape, sufficient cooling can be obtained with 5 percent cooling air for 300 meters per second circumperentigl velocity and 900° gas tempers. ture. The power requirement for cooling then is 2.9 to 4.5 of the turbine power.

Power and Efficiency of a Gas-Turbine Apparatus for a
Temperature Incresas to 850°
The improvement of the thermic efficiency of the turbine arrangement by higher temperoturee corresponds to this cooling requirement. A gas turbine ingtallation with urcooled blades and a hollow blade turbine shall be considered for comparisor. The operating temperatures of the fuel gas ahoad of the turbine aro assumed to be 550° or $850^{\circ} \mathrm{C}$. In table VIII both arringements are compared. A larger compreacion ratio ia useful for higher gas temperature. The values for the internally cooled turbine are taken from a publication about teets on a turbine apparatus manufactured by BBC [9].

As show in table VIII, one obtains by increase of the temperature to 850° ahead of turbino with the Beme blower an increage of the useful power fron 5700 to 12000 PS (German HP), that is, to about twice the amount. For equal deaign requiremente the usoful power becomes, therefore, ensentially larger. In other words, the air requirement per PS useful power which is deciaive for the gize of the engine will be about half as large. The thermic efficiency increases from 18 to 20.1 percent if one inserts 5 percent of the turbine power as the power required for cooling.

For the BBC apparatus the temperature behind the blower is 203°. The temperature of the exhaust gases is given as 278°. Thus the temperature difference between air and exhaust ges which is docisive for the utilization of the exhaust heat is only 75°. A heat exchanger will, therefore, not be of erest use in this case and was, for that reason, onitted in the BBC - installation. The conditions in the apparatus with 850° ges temperature are different. There the resulting tamperature behind the turbine is 556°. The temperature difference between gas and air is here much larger and
amounts to $556^{\circ}-203^{\circ}=353^{\circ}$. The following expression is designated as factor of merit of the heat exchanger:

$$
\eta_{\text {cool. }}=\frac{t 2_{\mathrm{air}}-t l_{\mathrm{air}}}{t l_{\mathrm{gas}}-\mathrm{tl}_{\mathrm{air}}}=\frac{\Delta t_{\mathrm{air}}}{t 1_{\mathrm{gas}}-t l_{\mathrm{Air}}}
$$

A factor of merit of $0.4-0.45$ can be reached without a particularly large expenditure. For a factor of merit icool. $=0.4$ one obtains for the 850° - apparatus the following values (tabie IV), if the blower remains unchanged.

The combustion oir is preheated to $344^{\circ} \mathrm{C}$ in the heat exchanger, thus reducing the fuel quantity from $3740 \mathrm{~kg} / \mathrm{h}$ to 2950 kg . Correspondingly, the thermic efficiency of the apparatus rises from 20 to 25.4 percent and the specifjc fuel consumption decreases to $246 \mathrm{gr} / \mathrm{PS}_{\mathrm{h}}$.

For these considerations the compression ratio was tairen over unchanged from the 550° - apparatus. It is known from various computational investigations thet the mest favorable compression ratio is higher for higher temperature ahead of turine. Therefore, another examplo with a hlgher prossure behind blower of 6 ata shall be fully calculated. The blower officiency is assumed somewhat smaller, as 84 percent, the turbine efficiency as before.

In table 10 the numerical values for the larger pressure ratio are compiled. The useful power increases by 1100 PS to 13100. The fuel consumption decreases because the compressed air leaves the blower at highor temperature. The thermic efficiency improves; it increases from 20 to 23.7 percent. The same apparatus with hoat exchanger, again under assumption of a factor of morit of 0.4 , has a thermic efficiency of $: 8.6$ percent and a specific fuel requirement of : $117 \mathrm{gr} / \mathrm{PS} \mathrm{h}$ (table I^{+}). These numerical values prove that with the hollow-blade turbine for temperatures of 800° to 900° an essential increase of fuel utilization and of useful power per kilograms per second combustion air is obtainable. The values given represent by no mesns tho upper limit thet could be reached.

Influence of the Exit Loss on the Turbine Efficiency
For the examples in the first section the circumferential velocities considered were 250 and 300 meters per second. Now the
problem remains to be investigated whether large circumferential velocitiea are useful also for gas-turbine apparatus where every percent efficiency matters. For large circumferential velocity, at first the same stage efficiency can be obtained as for small circumferential velocity as long as one remains below sonic velocity and avoids short blades with considerable slot loss. The use of large circumferential velocities results in a turbine with few stages only. The exit energy from the last stage is here very noticeable and deteriorates the total efficiency. If one considers a turbine stage with the velocity triangle according to figure 46, the exit energy is

$$
h_{A}=\frac{c_{2}^{2}}{2 g}
$$

For the optimum efficiency, that is, perpendicular exit one obtains

$$
\tan \alpha_{2}=\frac{c_{m}^{2}}{u}
$$

Therewith the exit enersy becomes

$$
h_{A}=\frac{c_{m 2^{2}}}{2 g}=\frac{u^{2}}{2 g}\left(\tan \alpha_{2}\right)^{2}
$$

The gradient utilized in the turbine stage is

$$
H_{0}=c_{0}^{2} / 2 g
$$

If one sets up a ratio exit energy/stage gradient, one obtains

$$
\frac{b_{A}}{H_{0}}=\left(\frac{u^{\prime}}{c_{0}}\right)^{2}\left(\tan \alpha_{2}\right)^{2}
$$

For instance for an exit angle $\alpha_{2}=35^{\circ}$ and a characteristic value $u / c_{0}=0.5$ the exit loss will be

$$
\frac{h_{A}}{\Sigma H_{0}}=0.5^{2} \because 0.7^{2}=0.123=12.3 \text { percent }
$$

The exit loss may be reduced by smaller exit angles. For an exit angle of 25° smaller exit losses result, nemely 5.4 percent for $u f_{0}=0.5$. The loss of exit energy cen also be reduced by an exit diffuser, similar as for a water turbine where the oxit energy, particularly for specific high-speed turbines, is of decisive influence on the efficiency. If there is a greater number of turbine stages, the exit energy is of less importance for the total efficiency.

For the gas-turbine apparatus represented in table 10 a preliminary design of a turbine of 300 meters per second circumferential velocity shall bo made. One obtains a three-stage turbine, with only the two first stages cooled. The gradients and the corresponding temperatures are compiled in table XII.

The pertaining I-S diagram is shown in figure 47. The exit loss from the last stage is assumed as 12 percent. The exit loss then is, referred to the total gradient,

$$
\frac{h_{A}}{H_{0}}=12 \frac{35}{113}=3.7 \text { percent }
$$

One can see that the influence of the exit onergy can be kept small also for a small number of stages. For reason of simplicity of construction it is useful to select for high temperatures gas turbines with only a few high-spoed stages.

Translated by Mary L. Mahler
National Advisory Commttee for Aeroneutics

K. REFHRENCES

1. Leist, K.: Der Laderantrieb durch Abgasturbinen. Jahrbuch d. Dt. Luftiahreforschung 1937 p. II 137.
2. Knörnschild, E.: Die Ermittlunis der Schaufeltemperatur von Gasturbinen. Jahrb. a. Dt. Luftifahrteorschg. 1940 II p. 291.
3. Eckert, E, and Woise: Die Temperatur ungekühlter Turbinenschaufeln in einem schnellen Gasstrom. Dt. Luftfahrtforschg. FB 1387 (ZIB).
4. Lutz: Wandtemperatur beim Wärmedurcheanc durch Wände von beliebiger Form. VDI-'teitschrift 1935 p .1041.
5. Schroidt and Wonnor: Messung der Verteflung der Wärneabgabe uber den Unfang oines senkrocht zur Achse angeblasenen geheizten Eylindors. Jahrb. d. Dt. Luftfahrtiforsche. 1940 p. II 135.
6. Schörner: Untersuchungen übor die Beherrschunc hoher Gasterrooraturen bei Abgasturboaufladune durch Innenkühlung. Jahrb. a. Dt. Luit tehrtforschc. 1938 p. II 219.
7. ten Bosch: Voxlesung über Maschinenelemente. 2. suflage 1940, ibschn. 12.6 p .64.
8. ten Bosch: Die Wärueübertragunc. 3. Aưlage 1936 p. 59.
9. Stodola: Leistungaversuche an einer Verbrennungsturbine. WDI-Zeitschrift 1.940 p .17.
— - --

TABLE I

Temperature ahead of nozzle, ${ }^{\circ} \mathrm{C}$. 900	900
Circumferential velocity u, m/sec . 250	300
Nozzle angle a_{1}. $24{ }^{2}{ }^{3} 0^{\prime}$	$24^{\circ} 30^{\prime}$
Angle of flow incidence of the blade β_{1}, deg 41	41
Nozzle exit velocity, m/sec . 575	692.5
Relative velocity of the flow with respect to the blade, m/sec 365	435
Nozzle contraction coefficient E . 0.85	0.85
Cooling-a $1 r_{\text {r }}$ temperature v_{1}, C . 150	150
Stagnation temperature i_{a}, C . 805	762

Blade	H3	H5	H7	H8
Mean diameter D_{m}	277	283	283	527.5
\int length	46	47	47	87.7
width	16	19	18	26
¢ number	80	60	66	90
spacing	10.89	14.81	12.35	18.4
area	24.37	32.1	28.5	59.9
circumference	21.8	30.0	47.5	35.7
External circumference U_{a}	41.88	50	50.5	69.6
Mean blade cross section	37.23	48.6	43.0	102.1
$\text { Nozzle }\left\{\begin{array}{l} \text { height } \\ \text { angle } \end{array}\right.$	39 20	41 240^{30}	41 $24^{\circ} 30^{\prime}$. $/$.
$\mathrm{U}_{i} / \mathrm{U}_{a}$	0.521	0.60	0.937	0.513
$\mathrm{F}_{1} / \mathrm{hts}$	0.0574	0.0527	0.0563	./.
$\mathrm{a}_{a}=U_{a} / \pi$	$13 \cdot 3$	$15 \cdot 9$	16.07	22.2
$d_{i}=\frac{4 f_{k}}{U_{i}}$	4.46	5.27	2.615	6.7

Linear dimensions in mm, areas in mm^{2}.

TABLE III

Blade	H5	H7
$\left(\frac{F_{\text {gin }}^{\beta}}{F_{K}}\right)^{0.735}$	5.636	5.4
$\left(\alpha_{a} / \alpha_{1}\right)^{0.265}$	1.416	1.614
$\left(T_{1} / T_{a}\right)^{0.183}$	0.843	0.843
$\left(\alpha_{1} / \alpha_{a}\right)$	$3.465 \mathrm{p}^{\mathrm{m}}$	$3.78 \mathrm{p}^{\mathrm{m}}$

TABLE IV

Blade	H5		H7	
Cooling air mass in percent	5	7.5	5	7.5
Rea	13,600	13,600	13,720	13,720
$N u_{a}$	72	72	72	72
a_{a}	226	226	258	258
β	125.7	130.0	156	164

TABLE V

Nozzle angle $40^{\circ} 35^{\prime}$ Test of Oct. 6, 194			Barometric pressure 728 mm Hg temperature $17.5^{\circ} \mathrm{C}$	
```Boiler pressure p (mm WS)```	```Static pressure in the nozzle pnozzle (nm WS)```	Pressure difference $\Delta \mathrm{p}(\mathrm{mm} W \mathrm{~S})$	$\begin{gathered} \text { Specific welght } \\ \gamma\left(\mathrm{k}_{\mathrm{g}} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{aligned} & \text { Velocity } \\ & \mathrm{w}_{1} \\ & (\mathrm{~m} / \mathrm{sec}) \end{aligned}$
28.5	13	15	1.167	16.15
43	20	23	1.169	19.65
66	29	37	1.171	24.9
95	40	55	1.174	30.4
113.5	47	66.5	1.178	$33 \cdot 3$
165	69	96	1.183	39.92

Nozzle angle $40^{\circ} 35^{\prime}$ - Date: Sept. 23/24, 1441 - Barometric pressure 726 mm Hg

Test point no.	$\begin{aligned} & \text { Botler } \\ & \text { temperature } \\ & \left({ }^{\circ}\right) \end{aligned}$	Botler prossure (mm WS)	Intensity of current (Amp)	Voltage (volt)	Heat produced by current (k cal/ sec )	Mean temperature of the blade $\left.\vartheta_{\text {m }}{ }^{\circ}{ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { Temperature } \\ & \text { difference } \\ & \Delta \vartheta\left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} \text { Heat } \\ \text { transfer } \\ \text { coofficiont } \\ \alpha \end{gathered}$	Husselt number Hu	Velocity $\left\|\mathrm{w}_{\mathrm{l}}(\mathrm{~m} / \mathrm{s})\right\|$	$\begin{gathered} \text { Reynolds } \\ \text { number } \\ \text { Re } \end{gathered}$
1	25	41	3.33	117.5	0.0934	66	41	99.7	394	19.15	103,300
2	25.7	41	3.98	142	. 1347	85.6	59.9	98.4	388.5	19.15	103,000
3	26.3	40	4.53	164	. 1774	103.9	77.6	99.8	394	- 18.9	101,300
4	26.2	40	5.0	185	. 2208	124.1	97.9	98.75	390	18.9	101,300
5	26.2	64	3.44	122	. 1001	65.2	39	112.3	443	24.4	130,800
6	26.2	64	4.28	155	. 1584	86.3	60.1	125.8	457	24.4	130,800
7	25.6	64	4.85	180	. 2083	104.5	78.9	115.5	456	24.4	131,100
8	25.5	64	5.4	202	. 2602	124.4	98.9	115.2	454	24.4	131,100
9	13.6	105	4.28	155	. 1584	66.1	52.5	132.8	542	31.9	283,100
10	13.6	105	4.9	183	.214	85.3	71.7	131.3	536	31.9	183,100
11	14.0	105	5.6	209	. 2791	104.1	90.1	136.2	555	31.9	182,700
12	23.4	127	4.03	146	. 1404	65.5	42.1	147	584	35.4	192,700
13	23.4	$1<7$	4.81	179	. 2054	- 85.1	61.7	146.6	580	35.4	192,700
14	23.4	127	5.55	206	. 2728	103.7	80.3	149.4	593	35.4	192,700
15	24.2	154	4.13 .	151	. 1489	66	41.8	256.7	620	39	211,100
16	24.8	155	4.95	185	. 2185	85.6	60.8	157.9	626	39.15	211,150
17	C4.7	154	. 5.73	212	. 2898	103.6	78.9	161.7	639	39	210,500

## TABLE VII

Nozzle angle $40^{\circ} 35^{\prime}$ - Date: Sept. 23/24, 1941-Barometric pressure 726 mm Hg

Test point no.	Blade temperatures test point $1 \div 20$ in, ${ }^{\text {c }} \mathrm{C}$																			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	62	65	66.5	66.5	66	64	62	64.5	67.5	66	65	66.5	69	69	68.5	66	64	66	69	67
2	81	85	8	87	87	84	81	84.5	87	85	83	86	89	89	88.5	85	82	85	88.5	$\theta 7$
3	98	103	106	106	105.5	102	98	103	106	103.5	101	104	108.5	108	207.5	103	100	103	108	105
4	118.5	124	128	128	127	122	117	123	127	123.5	120.5	124	129	129	128	122.5	117	122.5	127.5	124.5
5	62	65	66.5	67	66.5	64.5	62	64.5	66.5	64.5	63.5	65	67	68	67	65	62.5	64.5	67	66
6	81	85	88	88	88	84.5	80.5	85	88	85	84	86	90	90	90	86	88.5	86	90	88
7	97	102.5	106	106	106	107	96.5	102.5	106.5	103.5	102	105	110.5	110	109	104	99	104	110	106.5
8	116	123	127	127	127	121	115	122.5	128	123	121	124.5	131	131	130	124	118	123	130	126
9	61	65	68	68	68	64	59.5	65	68	65.5	64	67	70.5	70.5	70	65.5	61	65	70	67
10	78.5	84.5	88.5	88.5	97.5	82.5	76.5	83	88	84.5	88	86	91	91	90	84	78.5	84	90	87
11	95	103	108	108	107	101	93	102.5	108	104	100.5	105	112	112	110.5	103.5	86	104	111	107
12	61	65	67	67.5	67	64	60	64	67.5	65.5	63.5	66	69	69	68.5	65	61	65	69	67
13	79	84.5	88	88	87.5	82.5	77	84	88	85	82	85	90.5	90.5	89	84	78.5	84	89.5	86.5
24	95	103	107	107.5	107	100	93	101.5	107.5	103	99.5	104	111	110.5	109	102.5	95	102.5	110	106
15	62	65.5	68	68	68	64	60	65	68	66	64	66	70	69.5	69	65	61	65	69	67
16	79	84.5	88	88.5	88	83	76.5	84	88.5	85.5	82	86	91	92	90	84.5	79	84.5	90.5	82
17	95.5	103	107.5	108	107	100	93	101.5	108	103.5	99	103	110.5	110.5	109.5	102	94.5	101.5	109	105.5


BBC combustion	Hollow-blade
turbine	turbine
apparatus	apparatus

Blower:
'Temperature ahead of blower, ${ }^{\circ} \mathrm{C}$. . . . . . . . . . . 23 ..... 23
Temperature behind blower, ..... 203 ..... 203
Pressure ahead of blower, $\mathrm{kg} / \mathrm{cm}^{2}$ ..... 0.988
Pressure behind blower, $\mathrm{kg} / \mathrm{cm}^{2}$ ..... 4.34
Air weight, $t / h$ ..... 222.8
Adiabatic gradient, $K$ cal/kg ..... 37.5
Adiabatic power, PS13,200
Thermodynamic efficiency, percent ..... 84.6
Power of the generator, PS ..... 15,60084.615,600
Turbine:
Temperature ahead of turbine, ${ }^{\circ} \mathrm{C}$. . . . . . . . . 552 ..... 850
Temperature behind turbine, ${ }^{\circ} \mathrm{C}$ ..... 566
Fressure anead of turbine, $\mathrm{kg} / \mathrm{cm}^{2}$ ..... 4.27
Fressure behind turbine, $\mathrm{kg} / \mathrm{cm}^{2}$ ..... 1.00
Gas welgint, $t / h$ ..... 226.4
Adiabatic gradient, K cal/kg . . . . . . . . . . . . 67.9 ..... 92.6
Adiabatic power, PS ..... 33,200
Thermodynamic efficiency, percent ..... 88.4Fower of the generator, PS . . . . . . . . . . . 21,30027,600
Combustion chamber:
Heat value . . . . . . . . . . . . . . . . . 10,140 ..... 10,140
Fuel quantity, ke/h ..... 3,740
Power of the eenerator, PS ..... 12,000
Thermic efficiency, percent ..... 20.1
Specific fuel consumption, gr/PS h ..... 311

## TABLE IX

Heat exchanger:
Factor of merit ..... 0.4
Alr temperature ahead of heat exchanger, ${ }^{\circ} \mathrm{C}$ ..... 203
Air temperature behind heat exchanger, ${ }^{\circ} \mathrm{C}$ ..... 314
Gas temperature ahead of heat exchanger, ${ }^{\circ} \mathrm{C}$ ..... 566
Gas temperature behind heat exchanger, ${ }^{\circ} \mathrm{C}$ ..... 436
Heating of the air, ${ }^{\circ} \mathrm{C}$ ..... 141
Air quantity, t/h ..... 222.8
Fuel quantity, $k g / h$ ..... 2950
Useful power, PS ..... 12,000
Thermic efficiency, percent ..... 25.4
Fuel consumption, gr/PS h ..... 246

## TABLE X

Blower:
Temperature ahead of blower, ${ }^{\circ} \mathrm{C}$ ..... 23
Temperature behind blower, ${ }^{\circ} \mathrm{C}$ ..... 256
Pressure ahead of blower, ata ..... 0.988
Pressure behind blower, ata ..... 6.0
Air weight, $t / h$ ..... 222.8
Adiabatic gradient, K cal/ke ..... 47.5
Adiabatic power, PS ..... 16,800
Thermoaynamic efficiency, percent20,000
Power of the generator, PS
Turbine:
Temperature ahead of turbine, ${ }^{\circ} \mathrm{C}$ ..... 850
Temperature behind turbine, ${ }^{\circ} \mathrm{C}$ ..... 509
Fressure ahead of turbine, $\mathrm{kg} / \mathrm{cm}^{2}$ ..... 5.90
Pressure behind turbine, $\mathrm{kg} / \mathrm{cm}^{2}$ ..... 1.000
Gas weight, $t / \mathrm{h}$ ..... 226.2
Adiabatic gradient, K cal/kg ..... 111
Adiabatic power, PS ..... 39,700
Thermodynamic officiency, percent ..... 33,100
Power of the generator, PS ..... 10,140
Fuel quantity, $\mathrm{kg} / \mathrm{h}$ ..... 3450
Power of, the generator (useful power), PS ..... 13,100
Thermic efficiency, percent ..... 23.7
Specific fuel consumption, gr/PS h ..... 263
Useful power per $\mathrm{kg} / \mathrm{sec}$ combustion air, PS $/ \mathrm{kg}$ ..... 212

TABLE XI

## Heat exchanger:

Factor of merit ..... 0.4
 ..... 256
Temperature of air behind heat exchanger, ${ }^{\circ}{ }_{C}$ ..... 363
Temperature of gas ahead of heat exchanger, ${ }^{\circ}{ }^{\circ}$ ..... 509
Temperature of gas behind heat exchanger
Heating of the air, ${ }^{\circ} \mathrm{C}$
107
Air quantity, $t / \mathrm{h}$. ..... 222.8
Fuel quantity, $\mathrm{kg} / \mathrm{h}$ ..... 2850
Useful power, PS ..... 13,100
Thermic efficiency, percent ..... 28.6
Specific fuel consumption, gr/PS h ..... 217

## TABLE XII

Stage $\quad 1 \quad 2 \quad 3$

Gradient, K cal/kg . . . . . . . . . . . . . . . . 453335

Temperature of gas ahead of stage, ${ }^{\circ} \mathrm{C}$. . . . . . 850704596

Stagnation temperature, ${ }^{\circ} \mathrm{C}$. . . . . . . . . . . . 747631542

Cooling air mass, percent . . . . . . . . . . 5 l. 5 --

Blade temperature, ${ }^{\circ} \mathrm{C}$. . . . . . . . . . . 580580542


Figure 1.- Cross section through the blading.


Figure 2.- Heat transfer at the blade profile.


Figure 3.- Heat transfer in the cooling duct.


Figure 4.- Cross section through a hollow blade.


Figure 5.- Temperature variation at the blade.


Figure 6.- Cylindric blade.


Figure 7.- Stress function for the cylindric blade.


Figure 8.- Blade.


Figure 9.- Stress function for the tapered blade.


Figure 10.- Cross section of two hollow blades.


Figure 11.- Ratio of the heat transfer coefficients as a function of the cooling air mass.


Figure 12.- Blade temperature as a function of the cooling air mass.


Figure 15.- Temperature variation and stress at the hollow blade H 7.

Figure 16.- Temperature variation and stress at the hollow blade H7.


Figure 17.- Heat resistance of the material "SAS 8"


Figure 18.- Reserve strength as a function of the circumferential velocity.

Figure 19.- Wind tunnel for cascade measurements.


Figure 20.- Blade cascade with nozzle.


Figure 21.- Test blade.


Figure 22.- Dimensions of the test blade.


Figure 23.- Velocity as a function of the chamber pressure.


Figure 24.- Nusselt number for the blade profile H 3.


Figure 25.- Blade cross section.


Figure 26.- Temperatures in the blade cross section.


Figure 27.- Temperatures in the blade cross section.


Figure 28.- Temperature drop in the blade wall.


Figure 29.- Temperature field.


Figure 30.- Temperature drop for the hollow blade H 8.

-ON NU VDVN
Figure 31.- Maximum, mean, and minimum temperature in the cross section of the blade H 5 .


Figure 32.- Heat cracks on a blade.


Figure 33.- Rod with rigid clamping.


Figure 34.- Rod clamped on one end.


Figure 35.- Cross section of a hollow blade.


Figure 36.- Superposition of temperature field and temperature plane for the blade H 8.


Figure 37.- Stress field for the hollow blade H 8.


Figure 38.- Mean temperature of the blade H 3 with and without radiation.


Figure 39.- Variation of the nozzle wall temperature by radiation.


Figure 40.- Location of the test points in the blade cross section.


Figure 41.- Comparison of calculation and measurement for the minimum temperature in the blade cross section H 7.



Figure 43.- Thermowire at the blade wall.


Figure 44.- Representation of the errors of measurement by thermowire.


Cooling air quantity as percentage of the gas weight
Figure 45.- Pressure ratio for the hollow blade.


Figure 46.- Velocity triangle.


Figure 47.- J - S - diagram of a three-stage turbine apparatus.


[^0]:    *'Temperaturen und. Beanspruchungen an Hohlschaufeln für Gasturbinen." Zentrale fur wissenschaftliches Berichtesesen der Luftfahrtforschung des Generalluftzeugneisters (ZWB) Berlin-Adlershof, Forschungsbericht Nr. 1879, München, July 30, 1943.

