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As long as the velocitles of airplanes were relatively small
aerodynemics was a science of steady motion in an ilncompressible
fluid. It was found that neglecting the compressibility of the alr
and considering only steady motion led to results which, for small
veloclties of the alrplanes, could be applled in practice. The
considerable increase, particularly in recent times, of the speeds
of alrplanes has forced attention on unsteady motion 1n incompress-
Ible and compressible fluids,

The moat Important effect on the development of nonatationary
eerodynamics was that exerted by the phenomenon of flutter which
appears in certain cases at large flight speeds. Failure of the
alrplane structure due to flutter have occurred 1n all countries.
Survivors of flutter catastrophies and casual observers have
reported that on increasing the speed of t:ie alrplans a vibration -
of the wing or tail surfaces bogan efter wihich the wing or tall
broke suddenly, the speed and force of the rupture being similar to
those of an explosion. The phenomenon of flutter may be readily
observed also in a windl tunnel in which 1s placed a thin wooden
flat strip. If through a window in the wall of the tunnel this
atrip is moved crosswise to the tunnel on Iincreasing the veloclty
of the flow, the strip at first begins to flutter and then at a
certaln flow velocity lts amplitude of vibration increases so
rapidly that the lnexperlienced or nonalert experimenter rarely
succeeds in saving the strip from failure by removing it from the
flow in time, The phenomenon of flutter 1s more energetic than that
of resonance. To obtain flutter there is not required any outside
vibratory motions for the wing or tall surfacea. The cause of the
flutter of the wing or tall surfaces is evidently a purely aero-
dynamic one but to understand this phenomenon qualitatively may be
possible even from a conslderation of the motion along a strelght
line of a material point. ILet us assume that the material point
with mass m moves along the axis .0y under the action of forces
the projJection X of which on the Oy axis is equal to

x:--mkzx-mZu%—E
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Then the equation of motion of the materilial point will be

2
i"x

The integral of this equation, if pu i1s emall, is of the form
x = ao Mt gin (VK2 - p2t + ¢)

where a and € are arbltrary constants. We see that if the
quantity p 1s positive the material point will be in harmonloc
vibratory motion with damping. We shall now assume that u 1itself
depends on a certain parameter w so that p = u(w), where for
WaWer p=0 and for w>w,. p 18 negative, that is, equal

to = A (vhere A>0). Then for w = wgp the above equation assumes
the form

x =8 8ln (kt +¢)

that 18, we shall have the usual harmonioc wvibration of a point, but
for w>wg, we obtain

x = ae™ sin (Vi@ - A%t + ¢)

that 1s, the amplitude of the vibration begins to increase exponen-
tlally. Thus, whereas in the case of resonance the amplitude of
vibration has, as i%k:nown, the form at, 1I1n the case of flutter
1t has the form ae‘™, Table I shows the lncrease of the amplitude
with time in resonance and in flutter for differeut values of the
quantity A.

at aeoslt an,St a.et'

0 a a a

a|l,105a | 1,649a 2,Tfa
2a | l,22la | 2,718a 7,389
3a{1,351a | 4,482a | 20,086a
4a}1,492a | 7,3589a | 54,598a
5a 1 1,649 112,183a | 148,413a

NP UWNDPFP O]

Ve note that whatever the value of the positive number A the
ratio oM/t approaches infinity with increasing +t. For the air-
plene the paremeter w 1s the velocity of flight where the velocity
W = Wop, the value at which the coefficient u becomes zero, is

called the critical flutter veloclity.
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It 18 not diffiocult to understand the physical cause of the
phenomenon of flutter. Yet us assume the wing of the airplane fcr
any reason whether, for exauple, a gust of air, acquires a vesr
small vibration. The elastlic forces evidently a:e always damping
forcea which tend to extlnquish the vibrations of the wing or tail.
The aerodynamioc forces however can be both damping forces for certain
types of vibrations end forces which assist the vibrations. As long
ag the veloclity of the alrplane is small the elastic damplng forces
are predominant over the aerodynami¢ forces. With increase in the
flight speed the elastlc forces remalin unchanged in magnitude but
the aercdynamic forces increase, a3 1s known proportlionally to the
square of the veloclty of fiight. There must therefore be an
instant at which the aerodynamic forces, which assist the vibratlons,
becume predominsnt over the elastlc forces and thls 1s the Instant
at which flutter begins. The problem of the designer is to construct
the wling such that the critical velecolty of the flutter 1s higher
than the veloocltles at which the airplane wlll fly and which is
eufficlently strong to withstand the vibratory action of the aero-
dynemlc forces., From tkis it la clear that even before constructing
the alrplane 1t 1s nocessary to be able to determine theoretically
the ciritical veloclty of flutto- of the a' ~lane or’y from its

design eaud by changing the de:.;n to c?aes tho critical flutter
veloclity.

It is not difficult with the aid of simple examples to show
that the asrodynamic forces due to the deformations of the wing or
tall surfaces depend on the magnitude of these deformations and the
rate of change of these dofoirmations and thle explains the necesslty
for the presence of texms in x and dx/dt in the differential
equation of the motion of the materiel point, which wag taken above
a8 an example to lllustrate the phenomenon of flutter. Let ua ccsume
firat that the wing of the airplane recelved only e twlst deforma-
tion so that the angle of ‘attack of the wing increased scmewhat.
Since the aerodynamic force supporting the wlng increases with
increase (up to a certain limit) of the angle of attack, as also the
torgional aerodynamic moment, we conclude that the additional aero-
dynamic force obtolned on twisting the wing depends on the magnitude
of this wing deformation and lncreases together with this magnltude.
We assume next that the wing of the alrplane recolved only a bending
deformation ocowrring at velocity v (fig. 1). As long as there was
no bending deformation the angle of attack of the wing was a« = /MAB
vhere w = AB 4s the flight speed of the slrplane. With the flight
veloclty w = AB and the veloclty of bending deformation v = AC
we shall have a totel veloolty equal to AD and the angle of attack
becomes equal to ZMAD = @ - Ao where tan Aa = v/w or on account
of the emallness of Aa approximately Aa = v/w. To the decrease
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of the angle of attack o by the amount Aa = v/w corresponds a
decrease in the aerodynamic forces depending as, we have seen, on
the veloclty v of the deformation and not on the magnitude of )
this deformation. TFor downward bending of the wing with veloclty v
the angle of attack a changes into the angle a + v/& as & result
of which the aerodynamic forces lncresse. From what has been said
it follows that the aercdynamic forces obtained in the derormation
of the wing depend on the velocity v of tlhls deformation and are
demping forces so that they oppose the development of the deforma-
tion.

In computing the critical flutter velocity it 1s necessary to
deal both wlth the elastlc propertles of the wilng or tall surfaces
and with the magnitudes tending to produce flutter. As regaxrds the
elastlic forces, experlence shows that np to 60 percent of the
breaking loads the deformation of the wing 1s proportional to the
force, that is, the wing behaves like a beam. For thls roason the
matter 1s simple as regards the elastlc forces of the wing ané the
results of the theory of elastic beams can be applied.

AB regards the aerodynamics of the fluttering wing the matter
is not however so simple. There is as yet no definlte clearness
in this fleld of investlgation. It 1s evident that the aerodynamios
of nonsteady flow by the essentlal nature of the phenomeps must in
addition to flutter havo application In the theory of flight acro-
batics, in studylng the effects of gusts of alr, in the theory of
flapping wings and in the flight of birds, in which Leonardo da Vinci
had alreedy been lnterested, etc. As a result of this 1t can be
understood why the great lnterest which at the present time appears
throughout the world in the study of the aerodynemics of nonsteedy
flow. In Germany, for example, about 10 years ago a special dlvlsion
of the Prandtl Instltute was set apart to devots itself entlrely to
nonstationary serodynamics, the institute being headed by Kiissner.
This institute has aelready 1ssued a serlies of important investigation
resulta. The American Glen-Martin company applles nonstetionary
asrodynamics to compute the alrfoll flutter. In the closing romerks
of one of its publications the company polnts out how lmportant 1t
is at the present time to direct all efforts toward the development
of the asrodynamics of nonsteady flow.

The aerodynamics of steady flow was first applied to the non-
steady motions as for example, to wing flutter, that 1s, it was
assumed that at each instant at every positlon of the wing the flow
about the latter was such as though the wing were 1n this position
an infinitely long time, As 1t turned out, the application of the
asrodynamics of steady flow to nonsteady conditions of motion gives
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in a number of cases results that are useful for application, and
this has pormitted the use.of the aerodynamiocs of steady flow up to
the present time, With further investigations, however, it became
clear that in a number of other cases the applicatlon of the aero-
dynmalcs of steady flow to nonsteady motione glves wrong results.

The alr forces acting on various types of wing profiles under
steady flow oconditions were studied by Joukovsky, EKntta, Prandtl,
Chaplygin and others in investigatlons many of which even now are of
fundamental importance. The etudy of the forces arting on wings
under nonsteady flow conditiont presents i'or the goueral case of the
nonsteady motion as oxprossci by Prondtl, "a problem of transcendental
diffioculty”. But it 1s procisely these particular cases of nonsteady
flow which present the greatest interest for asronautlcs that have
all been found amenable to investigation.

Thus was explained that the motion of an airplane in a circle
with constent angular veloclty, as aprroximately occurs in acrobatic
fllghts on entoring a dive, pruceceds with constant circulation as
a result of which there may not be a vortex wa'.e behin. the %l ug.
The firat one to study thls type of motion was S. A, Cha,lygin in
1926 and after him independently Glauert in 1929, cuompieting his
investigrntions with the addition of a vortex wake behind the wing.
On the other hand in the case of the phenomenon of flutter of the
wings and tall surfaces of an alrplane 1t was found sufficlient to
investligate the phenvnemon only for small vibrations and this enables
the Investigatlon cf problems with variable ocirculation.

The flrst investigator who laid the foundation for the present
day study of the aerodynamic forces acting on a vibrating wing was
Birnbaum (1924), a student of Prandtl. He introduced the importent
concepts of free and bound vortices and vortex wake, Xussner developed
the 1nitial ldeas of Birnmbaum and thus advanced the problem of the
airfoll in nonsteady motion. Beglmning in 1935 there appeared a
number of Russian paejers the authors of which were mainly Keldish,
Sedov, and .Lavrentyev who indicated ways in which we can apply the
theory of the functions of a complex variable to the problems of
the nonstetionary dynamics of an alrfoil. In 1941 N. E. EKochin gave
a strict solution of the proble.r of the v’s:ations of a wing of
circular plan form, making only the easul.ption of linearlty of the
equations. The oharacter of the solutlon in closed form as glven
by Kochin appears the only one at present for a wing of finite span.
In 1938 Karman and Sears in the Unlted States concerned themselves
with problems of nonsteady flow and gave & new method of approach to
the problem, thereby founding the American school of investigators.
In following this school we study as 1t were the Instantaneous photo-
graph of the asrodynamic phenomena as they occur. The methods of the
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Gexrman school on the contrary deal as it were with the kinemato-
graphic picture of the phenomena since they deal with the development
of the phenomena in time, In 1938 Cicala 1n Italy made the first
attempt to extend the theory of the 1lifting vortex of Prandtl to the
case of a wing of finlte span in a nensteady flow., Recently Kussner,
starting from the method of acceleratlon potertial introduced by
Prandtl returned to the problem of Clcala., In the same year there
appeared in ITtaly the work of Possio who attempted to solve the
problem of the nonsteady serodynamics of a profile for the case of

a compressible fluld. In his investigatlons Possio makes use of the
acceleration potential of Prandtl. Thus at the present time there
are three independent echools occuryling themselves with the problems
of the aerodynamics of unsteady flow: the American, Russian, and
Gorman.

As in the usual aerodynemice of steady motion the problem of
the nonsteady motion of the infinite apan alrfoll is most advanced
while there hardly exists any complete theory of the unsteady motion
of a wing of finlte span of arbltrary plan form even for the
Incompresslble fluld although for a wing of circular plan form there
oexlsts the completed solution of Kochin.

By the nonsteady motion of e wing there 1s understood in all
these theories the followlng., It 1a assumed that the wing has a
certain finlte velocity w constant ln magnitude and directlon; in
eddition to the veloclty w +the wing possesses, as an absolutely
rigld body, arbitrary infinitely small deviations from this velocity.
Finally, the wing need not be absolutely rigld but may have infinitely
small deformatione varylng with time.

In order to render the problems under consideratlion linear 1t
is essumed that the wings are infinitely thin, the profile in the
absence of deformations coinciding with a linear segment. The
angles of attack of the wlng are assumed infin’tesimal, in the
fundemental equations or in the boundary conditiona there being kept
only the terms of first order mmallness. Only with these restric-
tions imposed does the problem of the unsteady motlon of a wing
beccme solvable at the present time 1n general form. What 1is
required to find 1n the-solution of these problems 1s the magnitude
of the forces and moments which act on the wing In its unstesdy
motion,

It was found by Joukovaky that the exlstence of a 1ift force
on a profile ls explalned by the presence around the proflle of
.olrculation on the magnitude of which the lifting force depends. If
this profile moves with constant veloclity the circulation ls constant
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but as & result of the nonuniformity of the motion of the profile
the clrculation around the profile must be variable since the 1ift °
force for nonuniform motlon of the profile varies. - Since-the total
cilrculation by the laws of hydrodynamics cannot change there must
appear behind the profile In nonunliform motion a vortex wake
consisting of the continuously shed vortices. As has been sald,
Birnbaum was the flrst to turn-attention to the exlstence of the
vortex wake. The vortices forming the wake are not displaced behind
the moving profile but remaln motlonless in the fluld at rest, 1f we
neglect thelr small displacement at right angles to the direction of
the veloclty of the alrfoll.

In all these theorles there are considered principally perilodic
motions since 1t can be shown that an aperlodlc phenomenon may be
represented as the sum of an Infinite number of infinitely small
periodic phenomena with different frequencles. Let ® be the
engular frequency of vibration of the alrfoil, c¢ half the profille
chord eand w the forward veloclty of motion of the alrfoll. The
nondimensional number k =wc/w 1is called the Stroubal number which
1s constantly applied in these theories.

It 18 first of all necessary to solve the problem to what
extent the rectillneer vortex wake can be consldered astable since
all theories assume its rectllinearity. The investigation of this
problem 1s rather a delicate one but in any case 1t may be carrled
out for a single particular case where the profile 1s not absolutely
rigid. In this case 1t 1s founl that 1f the vertl.al velocity on
the profile is emall the ampli.udes of the vibrations of the vortex
wake about 1ta rectilinear form will likewlse be small, the value of
the velocity of the wake perpendicular to its length belng propagated
as a wave along the wake with the velocity w = wc/k and on the
vortex wake there will be waves with these velocitles and
frequency .

According to the views of the American echool there exlasts at
each instant on the profile a quasi-statlonary vortex intemsity 7,
which 1s the vortex intenslty on the proflle if at a given instant
all the vortex wake were rolled into a point at infinity. Since for
each Instant of time there wlll be a value of this intensity although
in all cases we lmaglne the vortex wake rolled up lnto a point at
Infinlty the lntensity is called a quasil-stationary vortex Intensity
in contrast to the statlionary vortex lntenslity which ooccurs 1ln the
absence of a vortex wake and whose magnitude 1s constant 1n time.
Since the vortex wake at all times exlists directly behind the
tralling edge of the moving ailrfoil up to infinity, the total vortex
intensity on the alrfoll 1s equal to 79 + 71 where 71 18 due to
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the vortex wake. Karman showed that knowing the functions 75 and
71 ‘there may be found the vortex intensity in the weke. From this
it 1s possible to find the momentum and angulaer momentum of a fluid
due to the entire system of vortices on the profiile and in the
vortex wake., Enowling the momentum and angular momentum of the fluld
surrounding the profile it is possible to find by the theory of
Euler the pressure force L and the moment M of the pressure
forces on the alrfoll., Karmen:showed that the force 1 and the
moment M .may be revresented as the sum of threo componenta:

L=Iop+1) +1Iz, M=aMy + M1 + M2

The force Lo 1s the quasi-stationary force of Joukoveky to
vhich corresponds the maoment Mp. The magnitudes 1g and Mgy may
exlgt alone only in the limiting case when the airfoll moves with-
out acceleration and there 1s no vortex wake behind the airfoll.

The force L; and momeAt M) are due to the associated mass of the
profile. To obtaln them it ls necessary to assume that the profile
moves nonuniformly but without tho presence of clrculation about it
so that there 1s no vortex wake behind the profile. Finally, the
force Lz and the moment M, are due to the vortex wake, where
knowlng the expressions for these it is not difflcult to prove the
following theorem due to Glauert: The resultant of the pressure
forces on an infinitely thin straight profile that 1s due to the
vortex wake 1s applied at the forward focus of the proflle, that is,
at one -quarter chord from the leading edge.

In the theory of Karman and in the other theorles there 1s used
the function C(k) of the Strouhal mmber k Iintroduced by the
American investigator Thoodorsen. The function C(k) of Theodorsen
i1s of the form

31(2) (k)

C(k) = P(x) + 1G(k) =
g () (x) + 185(2) (x)

where the functions Ho(2) (k) and ®,(2) (x) are the Hankel func-
tions satisfylng the equation of Bessel and ha- ing the form

) o~ -1kT
30(2) (k) = f ekt d.,, El(Z) (k) = - %ﬁ ;:___




NACA ™ Fo. 1154 - 9

A table of functions of Theodorsen for the real values of the
Strouhal number k has been set up.whore C(0) = 1. Although there
- have-been objections .againet. dividiog.the force...L. and moment M
in which it was pointed out that this splitting up was artificlal
these objections do not appear to us as well founded since such a
splitting up appears also poseible in the work of the 'German and )
Russlan school and has moreover an oentirely concrete physlical basis.

Proceeding to the consideration of the Rnsslan school on the
theory of the alrfoll.in a nonsteedy flow it 1s first of all necessary
to dwell on the introduction of funotions of a complex variable into .
this thoory. As is known, tho description of steady motion of an
incompressible flnld by functlions -of a complox varlable is entirely
natural and has boen produotive of important results. Joukovsky and
Chaplygin conducted their woric on eirfoll theory in a steady flow
using the theory of functions of a complex variable. Thus the work
of the Russlan schcol on alrfoil theory in nonsteady flow may bde
consldered as tho natural contimmation and extension of the work of
Joukovsky and Chajlygin. In thig field however we have considerable
difficulties slnce the functions descridbing the unsteady phencmena
depend not only on the complox variable z = x + iy bdut also on a
roal varlgble, namely, the time +. It was possible to overcomo
these rather Important difflculties and obtain an extension of the
theorem of Joukoveiky and Chaplygin on the lift force and the moment
of thc pressure forcos for an arbltrarily deformed airfoll in a non-
incompressiblo fluld for the casecs of both fixed and moving
coordinate axes. .Expanding the dorivative the complex potential in
powers of the complex variable 2z 1n the most general form, assuming
that the coefficlents of thls expension depend on the time + and
introducing a cortain auxiliary function g(z) it was possible
wlth the ald of the extended theorems of Joukovsky and Chaplygin to
obtaln expressions for the forces and moments acting on the airfoil
in unstoeady motion. The obtained expressions for the force L and
moment M as in tho theory of tho American school wers cobtalned by
following the samo principle, that is, - splitting uwp into three
components :

Lelg+1) +1p, M=My +M +M

The exproseions for the quantities L, and Mz obtained by
the Russian schonl wore found to be ldentical with the expressions
obtained for the aralogous quantitiec by the Amorican school. As
rogards the quantitios Iy, L; and Mg, M; obtained by the
Russian and Amorican schools thore is howuver cn essontlal difference.
In tho formulas of the American school those gquantities are expressed



10 ’ NACA ™ No. 1154

in terms of the quasi-statlonary intensity 9o whereas in the
formulas of the Russian school these components are expressed in
terms of the component vy(z, t) of the velocity of the fluid near
the airfoil permendicular to the forward velooity w of the air-
Toll. The transformation of the formulas of one school lnto those
of the other has as yot not been effected.

The work of N. E. Kochin on the aerodynamics of & vibrating
wing of colrcular plan form could not of course be carried out in
terms of functions of a complex variable since 1t 1s not a two~
dimensional but a three-dimensional problem, This work appeared as
a result of an earlier work by Kochlin on the steady motion of such
a wing., It 1s to be noted in these works by Kochin among others
that Kochin was able to conatruct a functlon possessing definite
properties and singularities by which 1t was possible to express
the solution in closed form without making use of series. The
form of the circle was taken for the reason that only for it,has
it as yet been possible to f£ind the above mentlioned special funo-
tlon. All restrictions and assumptions which Kochin introduced in
hls investigations reduce to those by which the problems are made
llnear. For thls reason the solutions of Kochln both for the steady
and nonsteady flow are the most accurate of the exlisting solutionsa.
A comparison of the resulis obtalned Tor concrete problems on steady
flow by the theory of Koohln and according to general approximate
theories shows that the difference may amount to several tens per-
ocent of the magnitude to be determined. From tuis it 1s clear how
important i1t 1ls to heve exact solutlions of the type of the solutlon
of Kochin. It 18 desirable therefore that by the same method it be
poeslible to solve the problem of the elliptic wing which resembles
more nearly an actual wing than does the circular wing but at the
same time 1t 1s impossible to close ovr eyes to the faot that such
a solution presents extremely great difficultles and requires great
mathematical aptitude.

Although behind the profile in unsteady motion there should
as a general rule exlst a vortex wake it may be proven that even
for perliodic motion of a profile there may be particular cases of
i1ts motion where there will exlast no vortex weke behind the profile.
Thls willl be the case for example when the projection of the velocity
at the profile at its rear focus, that 1s, at one quarter chord fram
1te traillng edge 1n a direction at right angles to forward veloclity w
of the profile 1s equal to zero, and also in the case where the
abeolutely rigid airfoll movee over a circle with constent angular
velocity. In the first case the circulatlion about the profile must
be equal to zero and in the second case 1t must in general be constant,
In 1926 Chaplygin consldered a number of profiles with constant
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circulation about them in circular motion as ebsolutely rigid bodles.
In 1935 the work of Chaplygin was continued by Sedov by the extension

___of, the, range .of, profiles and by-&.detailed- analysis-of -the analytic

structure- of the expressions for the assoclated mass and assoclated
moment of inertla. As has already.been said above, in 1929 Glauert
arrived at the same results independently of the work of Chaplygin
but then Glauert supplemented his work by considering elliptic
profiles with vortex wakes behind them making uses of the results
already availeble at that time to take account of the effect of the
vortex wake.

For studying the cases of motion of an alrfoll with constant
circulation about it both Chaplygin and Glauert make use of a moving
syastem of coordinate axes rigldly fixed to the alrfoll and obtaln
the equations of hydrodynamlcs with the integral of Lagrange
determining the pressure of the fluid at any point. From thls, after
rather complicated computations, it is found possible to find the
pxpresaslons for the proJjectlions on the axes of coordinates of the
resultant pressure and the resultant moment of the pressure forces
exerted by the fluid on the airfoll. In particular, Chaplygin
applied the results obtained by him to the ellliptic alrfoll and to
the rectangular airfoll moving over a clrcle with constant angular
velocity. This problem is an example of unsteady motion differing
essentially from rectlilinear and not differing only by infinltely
small deviations from the latter. Thus, assuming the circulation
oconstent 1t 1s found possible to reject the condition of Infinitely
amall disturbances from a uniform rectilinear motion.

We now proceed with the presentation of the resulis of the
German school of 1nvestigators. If, around a sufficiently thin
rectangular airfoil ( -c, +c¢) there exists a constant circula-
tion, the vortex intensity 1 on the airfoll 1s constant, that
1s, independent of time, and by the usual formulas of Helmholtz 1t
is possible to compute the veloclty at any point of the fluid due
to the vortex intenslty dilstributlion on the alrfoil. The case will
be otherwlse however if this intensity n depends on the time +
since in the first place there will exlst behind the alrfoll a vortex
wake which wlll have an effect on the value of the required veloclty
and 1n the second place the free vortices forming the vortex wake
behind the airfoll will exist on the airfoll itself so that to the
intensity n of the vortices on the alrfoll must be added the
intensity € of the free vortices at the profile. The formation
of the free vortices at the airfoll is explained by the fact that

.- the.lnorease .Ay during each infinitesimal “element of time of the

intensity 7 on the alrfoil must be accompanied by the formation
during the same time intervel of free vortices with the inten-
slty - An. The free vortices forming about each polnt of the
alrfoll, which remaln fixed 1n space at the polnt at which they
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are formed, will continuously maintain their intensity until the
alrfoll passes by them. When the airfoil in 1ts -displacement will
coincide with them the latter, remaining stetionarily, will continue
the vortex wake behind the alrfoil. Thus also for unsteady motion
the projections of the veloclity at any point of the fluld can be
computed by the formulas of Helmholtz but their expressions will
consist of three comporents depending respectively on the vortex
Intensity 7 in the walke,- the vortex intensity ¢ of the free
vortices at the airfoll and the vortex lntensity e' of the free
vortices in the vortex wake. It 1s not difficult to £ind the
anelytical expressions that connect the functicns ¢ and ¢ with
the function 1n. Hence the projection v, of the velocity of a
£luld on a direction perpendicular to the vector w can be expressed
in terms of the function 1, the expression consisting of three
camponents ocontaining the function 17 under the integral sign. Suoch
expression for the projection vy .of the veloclty of the fluld was
first obtalned by Birnbaum. Assuming that the motion of the ainfoil
and of the fluld are periodic with frequency ®, that is, introducing
for the functlons depending on the time the exponential factor oIt
we can divide all the obtained expreasions for the projectlion Vy by
the quantity elWY, It is evident that this expression for the
proJection Yy oan be applied to the fluld particles in the Immedlate
neighborhood of the alrfoll. Since the projection vy for the
particles at the alrfoll can also be determined from the kinematlo
congiderations while the vortex intensity 1 on the airfoil is an
unknown function, the obtained equation may be locked upon as an
integral equation for the function 1. The latter ls called the
integral equation of Birnbaum. The solution of this equation is
required since the lifting force, that 1s, the resultant force L of
the pressures on the alrfoll and the resultant moment M of the
pressure foroes exerted by the fluld on the airfoll are expressed in
torms of the function 1. The solution of the integral equation of
Birnbaum is obtained 1n two forms. In the firat place there are
found the relations by which the coefficlents of the series for the
required function 1 are expressed in terms of the coefficients of
the seriles of the given function Ty In the second place there la
obtained a solution of the equatlon of Birmbaum in closed form, that
is, a formula is found expressing the function 7 1n terms of the
function Vye

In order to give an 1dea of the analytical complexities which
are here encountered we present both the equation of Birnbaum and its
solution in closed form, We assume that the alrfoll (-o, +) 1is
placed along the Ox axlis with its center at the point 0. We set

X=0co8 8 or X=o0008p; N =F(6) el vy = w(0e) elwt
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The integral equation of Birnbaum is of the form

2ew(y) = f(e) gin 646 e-1k c08 O 4in adp
Cos u - cos 9 cos p - cos @

. ' ® -1k chA
fﬂ' f(@) eu cos @ sin cpd¢ +j e gh AdA
0 0 cos p - ch A

0

where k 1s the Strouhal number, k ='mc/w. The solution of this
equation In closed form is

g8in 6

+Elz£sinelg[———-——-g-]"c"-’s g—"le’]}w(e:) de +2

1L ~-coa (e~ 6) %

r(e) =%/;ﬁ {[- cose + C(k) (1 + cosc)]l—'-'.—w-g—2+

f ['H'(e) - W(C)] sin ede

-COBE

where C(k) is the function of Theodorsen.

Iaving tho expressions for the force I and the moment M in
terms of the functlon 1n and meking use of the solutlon of the
equation of Blrmbamm 1t was found possible to obtaln the expresslons
for the force I and the moment M 1n teims of the coefficlents
of the series of the function vy. The magnltudes I and M can
be decomposed lnto three components followlng the 1deas of the
American school. It may be noted that the 1lift force L =19 + Ig +Lp
depends only on the three firet coefficlents and the moment
M=M +M + M depends on the coefflclents Ag, Ay, Az, A3z, A4,
A5 ... of the expansion of the function Vy ina trigonometric
series. In particular, for an absolutely rigid rectangnlar airfolil
in an unsteady motlion 1t was found that the lift force of the fluld
is reduced to three definite forces applied at the forward focal
point, at the center and at the rear focal point of the alrfoll and
to a palr of forces with definite moment. .
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If the alrfoll 1s a rectangular ebsolutely rigld segment the
mathematical analysis in determining the resistance can be brought
to completion. It is found that the resistance force is due in this
case not only to the formation of the Karman vortex street behind
the alrfoill but to the formation behind the alrfoll of a vortex
wake, Whereas the vortex street of Karman always leads to a
resistance, the force due to the formation of & vortex wake may be
positive as well as negative, that 1s, a thrust or a drag. In the
case of a thrust it is Important of course to ¥now the efficlency.
The efficlency fy, for the translational motion alone end the
efficlency 71, for the rotational motion alone can in any case be
determined. In these camputations 1t 1s necessary to take into
account the suction force obtelned as a result of the pressure of
groeat reduction in uressure at the leading edge of the rectangular
wing. In figure 2 are shown the values of these coefficlents n¢p
(the top curve) and 17, (the lower curve) as functions of the
Strouhal number k.

We see that the coefficient fp which is important for small
velues of the Strouhal number k drops to half its value on
increasing the number k; the coefflcient 14, 1s always positive
for all values of X, that is, for only tramslational fluctuations
the airfoll always possesses a thrust force. The coefficlent 1,
however increases with inorease in the Strouhal number. At k = 0.954
approximately the coefficlent 7y becomes zero. Thus, for k < 0.954
the rotating wving has only & resistance fcrce but for k > 0.954 1t
has a thrust force, that 1s, tho latter is obtained only for rapid
rotational motlon of the airfoll. Although these concluslons were
cbtained for an alrfoil of infinite span it 1s useful to compare
them wlth the flight data of birds whose wings perform predominantly
translational fluctuations in flight (table 2).

S L, c, 1! v

e | M| om || e
stork | 0,500 |2,03]0,123] 12,6 | 11 |o0,134
Pigeon | 0,075 {0,67 [0,045| 31,4 | 25 [o0,056
Rook | 0,130 | 0,95 | 0,068| 19,0 | 12 0,108

Seagull | 0,126 | 0,96 | 0,066, 13,9 | 12 | 0,076

k

In the above table 8 1is the area of the wings, I thelr
span, ¢ +the mean half chord equal to S/2L, ® the angular
frequency, v the flight speed, k +the Strouhal number. We see
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that birds fly at emall Strouhal mumbers for which their motion

has a conslderable efficlency. Recently V. Golubev has worked out

& method of computing the thrust force of an.airfoil in translational
osoillatory motion on the basis of the existence of two vortex
streets whose origin is at the extreme positions of the trenslational
fluctuations of the airfoll and extending behind the alrfoll. The
direction of rotation of the vortices in these vortex streets i1s
opposite to the rotatlion of the Karman vortlces. Thus the vortices
of Golubev push the fluld behind the alrfoll and thereby move the
alrfoll forward. In this cese infinlitely emall osclllations of the
airfoll are not required.

The methods developed by the German school may also be applied
to a composite alrfoll conslsting of an absolutely rigid airfoil,
alleron and trimmer. It 1s then necessary to compute a large
number of magnitudes. Theae computations were carried out twice by
two different methods by Kilssner in Germeny and Theordorsen in
America., From the agreenant between the obtained results it follows
that these results can be reliably used.

The results obtained for periodic phenomena may, on applying
-the Fourler Integral, be extended to phencmens which are not
periodlic in time. The mathematical analysis is here rather compliocated,
a fundamental part being played by the function k;(0) given by

n io
kl(c) = 2—3"-1-.- C(Z) 8
vy

where the path of integration conslsts of the entire real axis with
the origin bypassed below over an infinlitely emall semlcircle. In
order to glve an examrle of how rapldly these aperindlc phenocmena
are developed we assume that the veloclity Vy at the airfoll at

the Instant t = O has recelved a certaln Instantanesous increase.
Then the force I and the moment M 1likewlise change their values
discontinuously but only by bhalf their final value. If the chord

of the airfoll 1s 4 metersand the velocity w = 100 meters per second
then at the end of 2 seconds the force I 18 99 percent of i1ts final
increment. The total lncrease of the force I and the moment M
will ocour after an infinitely long time, that is, to attaln the
remaining 1 percent An infinite time ls required.

In the same as the phenomena which are aperiodic with respect
to time we can consider the phencmena which are aperiodic wilth
respeot to space. It is possible for ‘exhmplé to’ consider the cese
where the alrfoil during its motlon enters a rising current of air.
We can obtain the solution by considering the system of infinltely
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many solutions with different Strouhal numbers. In this theory the
function

xz(o) = ﬁv_'[-ro(z) - 151(2)] o(z) &2

vhere Jg(z) and Jy(z) are Bessel functions and C(z) the
Theodorsen function, plays an important part. In order to obtain
an ldea as to how rapildly the alrfoll reacts to the effect of the
rieing alr current we may point out that after the airfoll has
moved & distance equal to Pifty times 1ts chord in the rising
current the increase in the 1lift force attalns 99 percent of 1ts
total wvalue,

dz

It has been pointed out above that the extension of the problem
of the unsteady motion of an alrfoll to the case of an incompressible
fluld was made by the Italian Posslo. In addlition to general
restrictions by which the problems are rendered linear Possio
introduced into the problem a further restriction namely that the
veloclity of sound a 1in the gas is alwaye a constant quantity whereas
for adlabatic processes the velocity of sound depends on the square of
the velocity of the gas and a constant value for it 1s only approximate.
To solve the problem Possio makes use of the potentlal acceleration
of Prandtl, the partial derivatives with reaspect to the coordinates of
which are equal to the corresponding projJections of the accelerations.
It may be shown that for the assumed restrictions the accelsration
potential satlisfles the same second order partial differential
equation aa the velocity potential. At infinlty the acceleratlon
potential must be equal to zero and on the alrfnil have a certain
dlscontinuity. From this 1t follows that the acceleration potentlal
may be represented as a potential of dipoles distributed along the
airfoil with axes perpendicular to the latter. We may observe that
this dlpole does not in 1ts dimensions correspond to an actual dipole
gince the word 1s here used to denote & particular solution of the
equation for the acceleration potential. The analytical expression
for the latter will contain under the integral sign the intensity
of these dipoles. From this analytical expresslon 1t 1s posselble to
find the accelerations by simple differentliation and then the
velocitles of the compressible fluid, the transition from accelera-
tlons to velocities, under the assumptions and restrictions made,
being effected through the integration of the linear equations. We
can then find the projection of the veloolty of the gas on the normal
to the vector w 1in the immediate neighborhood of the airfoil and
the expression for thils projection wlll contain under the integral-
8lgn the unlmown intenslity of the dipoles. On the other hand this
projection may be determined directly on the basis of kinematioc
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considerations. Equating the two expressions we obtaln an integral
equation for determining the unknown dipole intensity. Since the
lifting force. I, and total moment M are expressed in terms of
this intensity the solutlon of thils integral equation furnlshes the
solution of the problem. Posslo succeeded in obtalning this
integral equation but nelither he nor anyone else has succeedpd as
yet in solving this equation. The eguation has the following form

) . —F1
vy(x) = - @f“ a(x’) e-P(x'-X) uﬁ'x ol-1Z 5
L1 +] .

[-—- 31(2) EP.UL ELH.L] QIZL

1-p2 / 1442 1

where p 1s the Mach number equal to w/a, p = w/w, the

function El( ) is a Hankel function and the symbol |1n{ represents
the absolute value of 1. Fram thls equation it 1s required to
determine the intemsity q(x') of the dipoles on the airfoil for
given value of v.,(x) of the projections of the velocity on the
alrfoil. From the mere appearance of the equation it is clear how
difficult this problem must be,

The theory of the wing of finite span in an unstea.dy flow was
treated by two different methods, the method of Kussner, using the
acceleration potential and the method of Clcala Introducing a speclal
system of vortices consisting of one infinite rectilinear lifting
vortex apd three systems of infinltely many rectilinear and
rectangular vortices, After compllicated explenations, Cloala, for
determining the circulation I'(y;) at any perpendicular section yj
of the wing, arrives at the followlng integro-differential equation

v(ry) = BELIGL) [ & sl - nh 25

210

S(c) = -c‘/v i dth o

28 being the span of the wing, 2¢ 1ts chord, = wo/fw, the
Strouhal number and vz(yl) the component of the veloclty of the
fluld normal to the wing at the section y;, the component by

where
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assumption being constant along the entire section y;. Kissner,
applylng the acceleration potentlal of Prandtl also arrived at an
integral equation which resembles that of Cloala, "If p equals O,
that 1s, p(k) =1, S(ply - y11) =1 and both the eguatious of
Ciocala dnd Kussner become the equation of Prandtl which holds foir
the case of the steady mo1lsl:lon of the wing. No solutlions of the
equations of Cicala and Kusener have as yot been found although to
obtaln these forms of the equatlions the authors introduced into the
analysis many slmplifying assumptions without which the equaticns
would have been still more complicated. In Russia & paper on the
theory of the wing of finite span in an unsteedy flow has been
published by M. Keldish but the latter's paper contalns the results
of several stages of hils work rather than a detalled presentation
of his analysis.

We see that notwithstanding the rather large number of papers
devoted to the theory of the unsteady motion of an ailrfoll 1t must
be confessed that in this domair the phenomena are stlll not
completely lnvestigated. In addition to comtinuing purely
theoretical investigatlions, strictly scientific experiments are
required bcth 1n order to explaln the physical slde of the phenomensa
end for the continned comparilson of the results of theory and
experiment. At the present time it ‘a3 stlll far from evident that
the physical plcture which ls assumed as the bosls of the theory
of the phenomena describes the latter completely. In particular,
for example, 1t ls entirely not clear how this physicel plcture
must be changed for oscillatlons with finite amplitudes. Scientific
experiments should aid 1n dealing wlth these problems. It is
deslrable also to carry out a comparison of as many as possible
different applications of statlonary and nonstationary aerodynamlcs
to the same phenomena. The theory of the unsteady motion of an
alrfqll is a fleld in which many mclentiflc congquests yet remain to
be madg.

Translation by S. Relss,
Bational Advisory Committee
for Aeronautics.
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2 2a 2.718a 7.38%a
3 3a 4.482a 20.086a
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