
Coq Tacticals and PVS Strategies:
I

A Small Step Semantics *

Florent Kirchner

Ecole Normale SupCrieure de Cachan, France
florent.kirchnerBinria.fr ; fkirchneBnianet.org

Abstract. The need for a small step semantics and more generally for a thorough documentation and
understanding of Coq’s tacticals and PVS’s strategies arise with their growing use and the progressive
uncovering of their subtleties. The purpose of the following study is to provide a simple and clear formal
framework to describe their detailed semantics, and highlight their differences and similarities.

! 1 Introduction
I Procedural proof languages are used to prove propositions with the assistance of a proof engine: the user

wields the language to give the theorem prover instructions or tactics on the way to proceed throughout the
proof. The instruction set roughly corresponds to the elementary steps of the formal logic inherent to the
prover; a proof script is a collection of such instructions. The need for a way to express the proof scripts in
a more sophisticated and factorized way emerges as soon as proofs get more complicated, resulting in very
large proof scripts of elementary steps. This makes any proof reading or maintenance operation tedious if not
impossible. Both Coq [l] and PVS [ll], derived from the LCF theorem prover, introduce proof combinators

1
l

I in their proof language to powerfully compose elementary proof tactics: t a c t i d s in Coq, strategies in PVS’ .
Though other provers such as Isabelle and NuPrl also implement tacticals, they have not been included in I

this work but a similar reasonning could probably apply. The following sections expose the semantics of the
tacticals of Coq and PVS, using a small steps semantics and some appropriate structures and notations. ~

1 2 Conventions and Structures
,

Coq and PVS, as most procedural theorem provers, usually implement a goal oriented proof style. That is,
given a proof goal and an elementary logical rule, the prover applies the logical rule backwards to the goal,
yielding a set of potentially simpler subgoals. For example, given the proof goal r I- 0 5 X A X 5 1, the Coq
instruction h t r o ((split) in PVS) generates the subgoals r t- 0 5 X and r I- X 5 1. This corresponds to
the application of the logical rule:

I
- - I

A-intro . A t - B A t - C
A t - B A C

In turn, some new rules are applied to the new subgoals, and the process stops when all the subgoals are

which is called here the proof context. Goals, i.e., sets of formulas of the form A I , . . . , A , !- B1,. . . , B,, are
commonly named sequents.

, refined enough to be trivially proven true. This repetition creates an arborescent structure of subgoals,
1
I

I
I 2.1 The Proof Context
,

The proof context is considered here as a collection of sequents organized in a tree of sequents, its leaves
representing the sequents that are currently to be proven. A leaf, when modified by some command, becomes
the parent of the sequents created by this command: the nodes of the tree of sequents are the “old” sequents.

* This work was supported by INRIA FUTURS and the National Institute of Aerospace (under NASA Cooperative
I , Agreement NCC-1-02043).

Henceforth, when refering to the combinators in general, the name tactical will be used.

70 Florent Kirchner

Thus, the tree of sequents keeps track of the proof progression. Incidentally, one has to consider the number
of features that are related to the proof context (state of the proof, proven branches, goal numbering, etc.).
Hence the semantics is made much clearer by blending a simplified object-oriented structure with the tree
representation. This way, the proof context, the sequents, and the formulas are considered as non mutable
objects including attributes, which correspond to their features, and functions or methods that read or modify
these attributes and eventually return a new object. For instance, one of the attributes of the proof context
object is the tree of sequent objects. Furthermore, a sequent object has a set of formula objects as attribute.

Let us now define some notations. A sequent is represented as r I- A, where F is the antecedent and A
is the consequent, each being a list of formulas2. Latin letters A , B , etc. represent individual formulas. We
write O.m(3) for the invocation of the method m of object 0 with the list of parameters 5. The objects
here are non mutable, meaning that methods modifying an object return a new object. Thus, a method call
0. m(3) is a synonym for the function call m(?,O), and the objects could also be seen as records. The letter
T denotes a proof context object; we distinguish a few particular proof contexts:

- T is a proof context that is completely proven.
- 1, stands for a failed proof context. The integer n codes for an “error level”, i.e., an indicator of the

propagation range of the error. Errors are raised by tacticals and tactics, when they are called in an
inappropriate situation (i.e., when none of the reduction rules of our semantics apply3).

- And 0 is the empty proof context, i.e., a proof context object hosting an empty tree.

The equality test between a context and an empty, proven or failed context is the only equality test between
contexts we authorize in our semantics.

The description of the attributes and methods of T is as follows.

- Attributes:
0 T. seq-tree: the tree of sequents.
0 T. active: pointer to the active subtree of sequents, i.e., the subtree on which the next command will

take effect. In case it is a leaf, then T . active represents a sequent r k A , and we will write: T . r t- A
to refer to such a proof context.

0 T. progress: this is a flag raised when the tree of sequents has gone through changes. Basically, when
a tactic successfully applies, it raises the progress flag ; it is reseted by a specific, “Break”, command.

0 T. addLeaves(r1 t- A I , . . . , r, t- An): this method applies when the active attribute points to a leaf
it adds n leaves to the tree. In the new tree, the new sequents G k Ai, i E (1 , . . . , n} , will be leaves,
and the former active leaf of the old tree will become their common parent node.

0 ~.lowerPointer(i): moves the active pointer down (towards the root) in the tree, i 2 0 being the
depth of the move.

0 T . raisePointerToLeaf(): moves the pointer up to the first (i.e., innermost leftmost) unproven leaf of
the tree.

0 ~.pointNextSibling(): moves the pointer to the closest unproven leaf, sibling of the active sequent.
If there is no such sibling, the pointer is set to a default empty value, which is represented by the
method returning the empty proof context 0.

0 T . setProgress(b): sets the corresponding flag to b.
0 T . hasProgressed(): returns the value of the progress flag.
0 T . setLeafProven0: the active leaves, that is, the leaves of the active subtree, are labeled as proven.

0 ~.isActiveTFeeProven(): returns true if all the leaves in the active subtree are labeled as proven,

- Methods:

If there are no unproven sequents left, the proof is finished (i.e., T . setLeafProven() = T).

false otherwise.

The semantics presented in this paper does not distinguish between sequents with permuted formulas. This limi-
tation is not problematic since we focus on tacticals, which do not require formula-level knowledge. But it should
be addressed if a detailed semantics of the tactics, in addition to the semantics of tacticals, was to be considered.
The error system is a bit more complicated than this, especially in Coq. But this simplification is a valid, under-
standable approximation of the provers’ behaviour.

Coq Tactic 1s and PVS Strategies: A Small Step Sem ntics 71

, The sequent and formula objects are illustrated in Fig. 1, which also provides some type information. The
figure uses the UML formalism where a class notation is a rectangle divided into three parts: class name,
attributes, and methods. The diamond end arrow represents an aggregation, that is, a relation “is part of”.
The types presented here are basic and purely informative.

Sequents Tree
seqfree: tree of Sequent
progress: bool
active: tree of Sequent
addLeaves(z1 , .. . , zn : Sequent): Sequents Tree
lowerPointer(i : int): Sequents Tree
raisePointerToLeaf0: Sequents Tree
pointNextSibling(): Sequents Tree
setProgress(boo1): Sequents Tree
hasProgressed(): bool
setLeafProven(): Sequents Tree
isActiveTreeProven0: bool

I

Seauent 1
r: set of Formula
A: set of Formula
proven: bool

Formula

Fig. 1. Proof context objects

2.2 The Proof Script

Given a set of tactics and of tacticals, a proof script is built by combining tactics with tacticals. For instance,
in Coq, with the Intro and Assumption tactics, and the tactical “F, one can build the proof script Intro ;

denote proof scripts.
The distinction between tactics and tacticals within the proof language is somewhat fuzzy, as they both

modify the proof context object. Here we consider that the tactics are the elements of the proof language
that attempt to modify the tree of sequents, by adding leaves to it. For example, in PVS, the (s p l i t) tactic
applied to the sequent A I- B A C behaves as the A-intro logical rule, adding two leaves A I- B and A I- C
to the sequent tree. Thus the sequent tree

A I - B A C

I Assumption. Such a proof script applies to a proof context r. We use p ,p ‘ to designate tactics and e, e’ to

is transformed into the sequent tree
A I - B A t - C

A I - B A C

The tacticals represent the proof language’s control structures. In our semantics, they do not modify
the tree of sequents directly but rather reduce into simpler proof scripts, and possibly modify some other

I

72 Florent Kirchner

attributes of the proof context. For instance in PVS, assuming a non-failed non-proven context r , the proof
script (i f nil (f a i l) (s p l i t)) , formed of the tactical i f and the two tactics (s p l i t) and (f a i l) , evalu-
ates in the (s p l i t) tactic:

(i f nil (f a i l) (s p l i t)) / r i (s p l i t) / T .

The actual modification of the proof context is performed by (s p l i t) .
In these examples the difference between tactics and tacticals appears quite clear, but we also note that

the definition of a tactical implies the manipulation of tactics. Because of this dependency, the presentation
of the semantics of the tacticals needs to be parameterized by the computation rule for tactics.

3 The Semantic Framework

The notion of small step or reduction semantics was introduced by Plotkin [9] in 1981. It consists in a set of
rewriting rules specifying the elementary steps of the computation, within a context. The idea behind the
present formalism is to use the reduction semantics of the imperative part of Objective ML, popularized by
Wright and Felleisen [12], as an inspiration to deal with the interactions between the proof language and the
proof context.

As exposed in the previous section, the reduction rules for the tacticals are dependent on the way tactics
are applied to proof contexts. The semantics of the tacticals is parametrized by that of the tactics. Hence
a formal definition of a tactic application is needed before any semantic rules are given. Since tactics, when
evaluated, modify the tree of sequents, we consider them as expressions which modify the proof context. A
tactic p applied to a proof context T returns another proof context r’:

p % r = r ’ .

The exact instanciations of this functional definition are of course system specific, and will be exposed in
sections 4 and 5.
Tacticals are combinators, therefore their evaluation within a proof script should return either a simpler
proof script or a tactic. We denote this returned expression by e‘. The reduction of tacticals can also modify
the proof context r , thus a reduction rule in our semantics will look like:

e / r i e ’ / r ’ ,

where denotes a head reduction (i.e., reduction of the head redex). These rules are conditionnal rewriting
rules, with the tactics’ computation function as a possible parameter. For example, the Coq tactical ‘‘?
applies its first argument to the current goal and then its second argument to all the subgoals generated.
If the first argument proves the current goal or fails, applying another proof script to that failed or proven
proof context does not make any sense, and the second argument is neglected :

111 ; e2 / r i e2 / (~ 1 % 0 7) if Vn (v%r) # I,
and -(w,%r). isActiveTreeProven() ,

111 ; e2 / r i 01 / r if 3n (v l%r) = I,
or (vI%r) . isActiveTreeProven() .

The context rule

allows processing a proof script on which no head reduction applies. The definitions of the detailed reduction
rules as well as that of the grammar of the context E depend highly on the language, and will be presented
in the later prover-specific sections.

Finally, the values of our semantics consist, for each language, in the set of its components we do not
wish to reduce. Thus they will be defined as the subset of each languages that are tactics, augmented, in the
case of Coq, by the recursively defined functional and recursive operations (see section 4.2).

Coq Tacticals and PVS Strategies: A Small Step Semantics 73

Note that this definition of the reduction semantics of the tacticals produces, when all tacticals have
been reduced, something like 0 / T as a final result. This is unsatisfying since we would like to see this final
tactic v applied to T (as in 0%~). Hence the use, for each langage, of a “Break” command that does this
final evaluation.

4 coq

In Coq the tactical commands are defined as an independent language, called Ctac4. Delahaye [4] gives the
definition of this language and an informal big step semantics5.

4.1 Syntax

Let us define the syntax of a Coq proof script:

e ::=

And

expr ::=

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

expr. all expressions must end with “.” .

X identifiers
P tactic
k integer (Cta,-specific)
t Coq term
Fun x -D e
Rec 2 1 2 2 -D e
(el e2)
Let x1 = el And . . .And x , = e, In e
Match t With ([t i] -D ei)?==,
Match Context With ([hpi k p i] -D ei)?!=,
el Orelse e2
Do k e
Repeat e

Progress e
First [el I . . . le,]
Solve [el I . . . le,]
Tactic Definition x e
Meta Definition x e
Recursive Tactic Definition 5 e
Recursive Meta Definition z e

e

el ; e2
eo ; [e l l . . . le,] .

4.2 Semantics

The values of the semantics are defined as:

2, ::= p
I Fun x --(re
I Rec X I 2 2 +. e .

Ctac also includes some commands that correspond to our definition of tactics, which we will see later; and some
miscellaneous features that will not be presented in this paper.
Whereas a small step semantics is defined by a set of reduction rules that apply within a reduction context, a big
step semantics directly links an expression with its normal form.

74 Florent Kirchner

The reduction rules for the tacticals follow.

Applications These simply correspond to the @-reduction rules of the A-calculus.

(Fun z 4 e)(w) / T -% e[z tl w] / T .
(Rec f z 4 e)(w) / T 4 e[z w v][f H (Rec f z 4 e)] / T .

Local variable binding The xi are bound to the values vi in the expression e. The bindings are not
mutually dependent.

Let 21 = v1 And . . .And z, = w, In e / T e[zl t l v 1 , . . . ,x, H v,] / T .
Term matching This tactical matches a Coq term with a series of patterns, and return the appropriate

expression, properly instanciated.
Let @ be the binary operator defined as:

ale1 @ 02e2 / T + 2rl / T

-+ v2 1 T

+ Idtac / T otherwise.

if the substitution 0 1 is defined
and ulel / T evaluates in vl;

else, if 0 2 is defined
and 02e2 / T evaluates in v2;

For all i E {l , . . . , n) , (T ~ , + + ~ is the substitution resulting from the matching of t by pi (undefined if pi
does not match t ; matching by - always succeds and yields the empty substitution).
The reduction rule then is:

Match t With ([pi] 4 ei)r=l / T f f p i + + t ei / .
Context matching This tactical matches the current goal with a series of patterns, and returns the ap-

propriate expression, properly instanciated. The order of the patterns is not significant ; since Coq uses
constructive logic, the consequent A is limited to a single formula B.
The original Coq rule allows for multiple antecedent patterns, which is a simple nesting of the presented
form:

Match Context With ([hpi I- pi] --(r ei)y==l / T . (. . . Aj . . . I- B) &
f f h p i t i A j f f ; , + . , ~ ez / 7 .

If this does not succeed then the context progression rule is used instead:

Match Context With ([hpi I- pi] 4 ei)Y==, / T. (. . . Aj . . . I- B) &
Match Context With ([hpi I- pi] 4 ei)r=l / T. (. . . A,-1 . . . I- B) .

Break The break command ‘.’ triggers the evaluation of the tactics and then resets some parameters in the
proof context before the application of the next proof script:

v. / T 4 (v%T). raisePointerToLeaf0. setProgress(fa1se) .
Sequence The sequential application of two tactics: v2 is applied to all the subgoals generated by vl. This

is the basic example of the use of conditional rules in conjunction with the % relation.

vl ; e2 / T 4 e2 / (w~%T) iftln 2 o (01%~) # I,
and ~ (v 1 %T). isActiveTreeProven() ,

v1 ; e2 / T i v1 / T if 3n 2 o (wl%T) = I,
or (w1 %T). isActiveTreeProven() .

Coq Tacticals and PVS Strategies: A Small Step Semantics 75

N-ary sequence First applies vo and then each of the vi to one of the subgoals generated. The definition
of this command uses an additional operator, 7, to allow potential backtracking.

00; [el 1 . . . le,] / T F e l , . . . , e, / (0 0 % ~) . raisePointerToLeaf0
if Vn 2 0 (0 0 % ~) # I,
and ~ (v o % T) . isActiveTreeProven()

0 0 ; [e l l . . . le,] / T i 00 / T

if 3n 2 0 (0 0 % ~) = I,
or (00%~). isActiveTreeProven() ,

and

-
;Tu1, e2 . . . , e, / T ,

; T W , e2 . . . , e, / 7’

7 e 2 , . . . , e, / (01 %T’). pointNextSibling0

(Fail 0) / T

7 0 , / 7’ i (Fail 0) / T

70, / 7’ i Idtac / (w,%T’). lowerPointer(1)

if Vn 2 0 (01%~’) # I, ,
if 3n 2 0 (wl %T’) = I, ,
if T’= 0

-

or (v,%T’). pointNextSibling() # 0 ,

and (v,%T’). pointNextSibling() = 0 .
if 7’2 0

Branching This tactical tests whether the application of 0 1 fails or does not progress, in which case it
applies 02.

01 Orelse e2 / T i e2 / T

01 Orelse e2 / T i 01 / T

if (0 1 % ~) = I,
or ~ (0 1 % ~) . hasProgressed() ,
if (0 1 % ~) =# I,
and (01 %T). hasProgressed() .

Progression The progression test. Fails if its argument does not make any change to the current proof
context.

Progress v / T i
Progress 0 / T

/ T if (0%~). hasProgressed() ,
if ~ (I I % T) . hasProgressed() . (Fail 0) / T

Iteration Here k is a primitive integer, only used in This tactical repeats v, lc times, along all the
branches of the sequent subtree. Here again we introduce an additional operator E.

D o k e / T a (K k e) / T ,

with
-
Do 0 e / T

(Do, k v) / T

Idtac / T

(E (k - 1) e) / (0%~)
if Vn 2 0 (0%~) # I,
and ~ (o % T) . isActiveTreeProven0

i f3n 2 0 (0%~) = I,
or (0%~). isActiveTreeProven() .

(Do, k 0) / T i w / T

76 Florent Kirchner

Indefinite iteration This is the indefinite version of the previous iteration. It stops when all the applica-
tions of v fail. As for the previous finite iteration, notice the additional operator R.epeat,.

Repeat e / r Repeat, e / r ,

with

Repeat, v / r

Repeat, v / r 4 v / r
Repeat, v / 7 4 Repeat, e / (v%r)

Idtac / r if 3n 2 0 (v%r) = I,

if (2 1 % ~) . isActiveTreeProven()

if Vn 2 0 (v%r) # I,
and i (v % r) . isActiveTreeProven() ,

Catch The Try tactical catches errors of level 0, and decreases the level of other errors by 1.

Try v / r & Idtac / r

Try v / r & [Fail (n - l)] / r

Try v / r

if (v%r) = LO

if 3n > 0 (v%r) = l o

if Vn 2 0 (v%r) # l o . v / r

First tactic to succeed Applies the first tactic that does not fail. It fails if all of its arguments fail.

First [] / T 4 (Fail 0) / r
First [vlleal.. . IVn] / 7 i w1 / T
First [wllezl.. . le,] / T 4 First [e21 . . . le,] / T

if V n 2 0 (2 1 1 % ~) # I,
if 3n 2 0 (v,%r) = I, .

First tactic to solve Applies the first tactic that solves the current goal. It fails if none of its arguments
qualify.

Solve [I / r 4 Fail 0 / T

Solve [vllezl . . . le,] / r

Solve [v1 le21 . . . Iv,] / r i Solve [e21 . . . le,] / r
v1 / r if (v l%r) . isActiveTreeProven()

if ~ (v 1 %r). isActiveTreeProven() .

4.3 Toplevel Definitions

The semantics of the user-defined tactics and tacticals requires an extension of the meta-notation. Let M be
a memory state object with its two trivial methods newTactical(name, description) and getTactical(name).

M . newTactical(z, e) -+ M { z tl e} ,
if z e Dom(M).

M . getTactical(z) + M (z) .

The declaration of new commands simply writes:

(Recursive) Tactic Definition z := v / r 4 M. newTactical(z, v) / r ,
(Recursive) Meta Definition z := t / r M. newTactical(z, t) / r ,

where the “Recursive” tag is optional.

will be tried:
Thus when evaluating an expression on which none of the previous reduction rules apply, the following

/ r --% M. getTactical(z) / r .

Coq Tacticals and PVS Strategies: A Small Step Semantics 77

4.4 Context

The evaluation context is defined as:

E ::= []
I E.
E e l v E
Let z = E In e
E Orelse e I v Orelse E
E ; e I v ; E
FE I ;7E,e2,. . . ,en
Do, n E

I Repeat, E

I Progress E
I Match E With (pi --+ ei)y==l
1 First[Ele21.. . le,]
1 Solve[Ele21.. . le,]
1 Tactic Definition z := E I Meta Definition z := E
I Recursive Tactic Definition z := E
I Recursive Meta Definition z := E .

-

I Try E

4.5 Tactics

The goal of this section is not to give the semantics for all the tactics but rather to demonstrate on a few
specific examples how the application of simple tactics to a proof context can be expressed.
In general tactics apply to a sequent tree, but will be exposed here only the case where T . active designates
a leaf. When the pointer designates a subtree, the tactic is simultaneously applied to all the unproven leaves
of this subtree.
The following equations define partial functions, they are extended to complete functions by taking the failed
proof context IO as a return value for any undefined point.

Intro%T. r I- (x : A) B = T . addLeafs (r, (5 : A) I- B) . setProgess(true) .

Clear 2 % ~ . T, (z : A) I- B = T . addLeafs (T I- B) . setProgess(true) ,
with V(xi : Ai) E r . z Ai.

Assumption%T. r, (z : A) I- A' = T . setLeafF'roven(). setProgess(true) ,
with A and A' unifiable.

Cut A%T. r I- B = T. addLeafs (r I- (z : A) . B , r I- A) . setProgess(true) .

The identity was introduced in [4] as a tactical, but it behaves as a tactic:

Idtac%.r = 7 ,

The same holds for the error command:
(Fail n) % ~ = I, .

78 Florent Kirchner

5 PVS

PVS tactics and strategies are thoroughly described in [8] and [6], but as far as we know, there is no published
small-step semantics of the strategy language.

5.1 Syntax

Here is the syntax of the subset of PVS’s tactics that will be considered: not all of PVS’s strategies are
exposed here; those that appear are believed to be the most significant ones, the others being either special
cases or slight variants of the aforementionned.

Contrary to Coq, there is no symbol in PVS to mark the end of the proof command. This problem is
dealt with by using a special symbol (8):

e ::= expr I all expressions must end with “7”

And

expr::= x identifier
I P tactic
I t Lisp term
I (if t el ez>
I (let ((2 1 t l) . . . (2, t ,)) e)
I (try el e2 e31
I (repeat e>
I (repeat* e>
I (spread eo (e l . . .e ,)>
I (branch eo (e l . . .e,>>
I (try-branch eo (e l . . .e,> e,+l)

5.2 Semantics

There are no abstraction strategies in PVS therefore the values are defined as the tactics:

v ::= p .

The reduction rules for the tacticals follow.

Break triggers the evaluation of the tactics and does the final proof context parameter reset:

8 / T (‘u%T). raisePointerToLeaf(). setProgress(fa1se) .

Lisp conditional A lisp argument t is evaluated to determine whether the first or the second tactic argu-
ment is applied.

(if t el e z) / ~ 4 e 2 / T

(if t el ez> / ~ 4 e l / T

i f t = n i l

i f t # n i l .

Lisp variable binding The local variable binding strategy. The symbols xi are bound to the lisp expres-
sions ti in the latter bindings and in e.

Coq Tacticals and PVS Strategies: A Small Step Semantics 79

Backtracking This strategy combines a branching facility triggered by the progress condition, with an error
catching functionnality. It applies v1 to the current goal, it this shows a progress then it applies v2, else
it applies v3. Moreover, if 02 fails then this strategy returns (skip) . This final backtracking feature calls
for the use of an additional operator try,.
Remark that the sequencial tactical then is simply defined as (then v1 v2) = (t r y v1 w2 v2).

(t r y v1 e2 e3) / T (try, e2) / (w1%?-) if (VI%?-) . hasProgressed()
and Vn 2 0 (VI%?-) # I,

and l (v 1 %?-). isActiveTreeProven()

if 3n 2 0 (211%~) = I,
if ~ (v 1 %?-). hasProgressed()

(t r y v1 e2 e3) / ?- i (fa i l) / T
(t r y 0 1 e2 e3) / ?-

(t r y 211 e2 e3) / ?-

e3 / ?-

/ ?- if (V I %T) . isActiveTreeProven(),

with

I (try, W) / 7’ --% ‘U / 7’

(try, v) / ?-’ i (skip) / ?-

if Vn 2 0 (‘u%?-’) # I,
if 3n 2 o (v%?-’) = I,

I Indefinite iteration The tactic argument is applied to the current goal, if it generates any subgoals then
it is recursively applied to the first of these subgoals. The repetition stops when an application of the
tactic has no effect.

(repeat e) / T i repeat, e / T ,
with

repeat, w / ?-

repeat, v / ?- i v / ?-

repeat, w / ?- A repeat, e / (&I-). raisePointerToLeaf0

Idtac / ?- if 3n 2 0 (2 1 % ~) = I,
if (2 1 % ~) . isActiveTreeProven()

if V n 2 0 (v%?-) # I,
and l(v%?-) . isActiveTreeProven() ,

Like repea t , repea t* repeats v, but on all the previously generated subgoals.

~

(repeat* e) / T i repeat*, e / ?- ,
with

repeat*, w / ?-

repeat*, v / ?- i v / T
repeat*, v / ?- i repeat*, e / (u%?-)

(skip) / ?- if 3n 2 0 (v%T) = I,

if (w%?-). isActiveTreeProven()

if Vn 2 0 (w%?-) # I,
and l (w % ? -) . isActiveTreeProven() ,

I
I N-ary sequence The N-ary sequence in PVS is similar to that of Coq, but here the number of generated

I subgoals need not be exactly n.

(spread wo (e l . . . e ,)) / ?- 4
spready,e~ ,...,en e l , . . . , e , / (2 1 0 % ~) . raisePointerToLeaf() ,

and, with 1 representing the list vo, e l , . . . ,e,:

1 spread,vl, e2 . . . , e, 1 T’ i
spreadTe2,. 1 . . , e , / (v~%T’). pointNextSibling()

if Vn 2 0 (VI%?-’) # I, ,

80 Florent Kirchner

and

and

spread,vl, 1 e2.. . ,e, / 7’ (f a i l) / T if 3n 2 0 (VI%,’) = I, ,

and

spreadkv, / 7’ -% (skip) / (Y,%T’). lowerPointer(1)
if T’# 0

and (v,,%~’). pointNextSibling() = 0 ,

and

v, / 7’ i ,el ,...,en

spread~3e~, . . . ,en, (8 k ’ P) v ~ , 2 e l , . . . ,e,, (sk ip) / T
if (w,%T’). pointNextSibling() # 0 ,

The (branch . . .) method behaves likewise, but repeats the last element of the list on all the remaining
siblings when necessary:

(branch vo (e l . . .e,)) / T --%
branchy ,el ,...,en el , . . . , e , / (wo%T) . raisePointerToLeaf0 .

The reduction rules are the same for branch?Ie’ as for spread?’e’’“‘’en , but for the last rule:

branchy ,el ,...,en Y, / r’ i
branch? , e l ,...,en ,en v ~ , e l , . . . ,e,, e, / 7

if (v,%~’). pointNextSibling() # 0 ,

N-ary backtracking A combination of the t r y and the branch strategies, t ry-branch applies v1 to the
current goal, and in case it generated subgoals it applies each of the v: to one of the subgoals. Else it
applies 212. As for t r y , this strategy catches any failure that would arise from the application of any of
the v:.

(try-branch vo (el . . .e,) e’) / T 4
(try-branch?7e’ el . . .e,) / (VO%T)

if (vo%T). hasProgressed()
and Vn 2 0 (VO%T) # I, .

(try-branch wo (el . . .e,) e’) / T
(try-branch vo (el . . .e,) e’) / T --% e’ / T

(f a i l) / T if 3n _> 0 (W O % T) = I,
if i(v0%07). hasProgressed0,

with

1 (try-branch, v1e2 . . . e,) / 7’

(try-branch: e2 . . . e,) / (w ~ % T ’) . pointNextSibling()
if Vn _> 0 (vl%07’) # I, ,

~~ ~

Coq Tacticals and PVS Strategies: A Small Step Semantics 81

and

(try-branch, 1 w1e2.. .en) / 7’ (skip) / T
if 3n 2 0 (v1%07’) = 1, ,

and

if I-’= 0

or (vn%.r’). pointNextSibling() # 0 ,

and

try-branchkv, / 7’ --% (skip) / (v,%r’). lowerPointer(1)
if r’# 0

and (v,%T’). pointNextSibling() = 0 ,

and

5.3 User-defined strategies

As for Coq, the meta-notation needs to be enriched to cope with the user definitions. Let M be a memory state
object storing the new strategies, and its methods setStrategy(name, description) and getStrategy(name).
Unlike Coq though, PVS uses a specific file, pvs-strategies, to load user definitions, and does not allow
for toplevel declarations. Moreover, these definitions split into two categories, rules i.e. atomic commands or
blackbox, and strategies i.e. non-atomic commands or glassbox.
PVS calls the setstrategy at launch to initialize the memory state, and only allows readings during runtime:

M. getStrategy(x) + M (x) ,

where M (x) = (Box e), Box is one of the two tags Glass or Black, and e is a proof script. The tags are not
part of the real PVS syntax: they are introduced here to describe a phenomenon that is actually hidden in
the implementation.
When evaluating a tactic on which none of the previous reduction rules apply, the following will be tried:

x / T M . getStrategy(x) / T

Finally this calls for a definition of the semantics of the Glass and Black commands:

(Black u) / T
(Black v) / T 4

(skip) / T if 3n 2 0 (v%T) = I,

if V n 2 0 (2 1 % ~) # I, , / 7-

(Glass v) / T + ~ / T .

82 Florent Kirchner

5.4 Context

5.5 Tactics

The same conventions will be used as for Coq's tactics. Note that PVS does not use the error level: l o is the
only error possible.

(f l a t t en)%T. I' I- A 3 B = T. addLeaves (I', A I- B) . setProgess(true) .

(f l a t t en)%T. r I- A V B = T. addLeaves (I' I- A , B) . setProgess(true) .

(f l a t ten)%T. I', A A B I- C =
T. addLeaves (I', A, B I- C). setProgess(true) .

(propax)%-. I', A I- B = T. leaproven(). setProgess(true)
if A and B are syntaxically
equal.

(beta)%'o.r. I' t (Xz : t) (u) = T. addLeaves (I' t [z tc u]) . setProgess(true) .

(s k i p) % T = r .

(skolem * (' 'a ' '))%IT. I', (32 : A) I- B =
T. addLeaves (I', A[z +I u] I- B) . setProgess(true) .

(skolem * ("a"))%T. I ' I - (V z : A) =
T. addLeaves (I' t A[. +I u]) . setProgess(true) .

Coq Tacticals and PVS Strategies: A Small Step Semantics 83

6 Conclusion and Future Work

We have presented a small step semantics for the core of both Coq and PVS’s tacticals, as well as for some
simple tactics. This semantics seems correct with respect to the formal definition of both languages, provided
for Coq by Delahaye’s definition of Ltac [4], and for PVS by the Prover Guide [ll]. A proof of correctness of
our semantics in regard with these definitions is currently under way. Future work will also try to incorporate
more advanced tactics to the system, although this will certainly prove more difficult, entailing the use of
global proof environments and variables, a-equivalence classes, and most likely the integration of PVS-like
automatic conversion methods. It might also be interesting to express tacticals from other languages (such
as Isabelle or NuPrl) in this framework, and the idea of a correlation between proof tacticals and rewriting
strategies might be worth studying. Nevertheless the formal basis of the semantics is easily and conservably
extendable, and should allow for an efficient and - hopefully - not too complicated continuation.

Finally, beyond its informative features, this work sets the very basis for an unified representation of PVS’s
strategies and Coq’s tacticals, which would allow for proof portability, double-checking, prover-relevancy
modularization, i.e., an overall improved flexibility and interoperability.

References

I [l] B. Barras, S. Boutin, C. Cornes, J. Courant, J.C. Filliatre, E. GimCnez, H. Herbelin, G. Huet, C. Muiioz,
C. Murthy, C. Parent, C. Paulin, A. Saibi, and B. Werner. The Coq Proof Assistant Reference Manual - Version
7.4. http://coq.inria.fr/doc/main.html, 2003.

[2] David Carlisle, Scott Pakin, and Alexander Holt. The Great, Bzg Lzst of B w Symbols, February 2001.
[3] H. Cirstea, C. Kirchner, and L. Liquori. Rewrite Strategies in the Rewriting Calculus. In W R L A ’02, volume 71

[4] David Delahaye. Conceptzon de langages pour de‘crare les preuves et les automatasatzons dans les outrls d’azde a

[5] Catherine Dubois. Proving ML Type Soundness Within Coq. In Mark Aagaard and John Harrison, editors,

[6] CCsar Muiioz. Strategies in PVS. Lecture notes, 2002. National Institute of Aerospace.
[7] Tobias Oetiker. The Not So Short Introduction to BT&Y2e, January 1999.
[8] Sam Owre and Natarajan Shankar. The formal semantics of PVS. Technical Report CR-1999-209321, Computer

of Electronzc Notes an Theoretzcal Computer Science. Elsevier Science B.V., 2003.

la preuve. Thhse de doctorat, UniversitC Paris 6, 2001.

TPHOLs, volume 1869 of Lecture Notes an Computer Scaence, pages 126-144. Springer, 2000.

Science Laboratory, SRI International, Menlo Park, CA, May 1999.

University, 1981.
I [9] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19, Aarhus

[lo] Franqois Pottier. Typage et Programmation. Lecture notes, 2002. DEA PSPL.
[l l] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Prover Guide. Computer Science

Laboratory, SRI International, Menlo Park, CA, September 1999.
[12] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Informatzon and Compu-

I
I tatzon, 115(1):38-94, 15 November 1994.

