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Abstract. Fission technology can enable rapid, affordable access to any point in the solar system. If fission 
propulsion systems are to be developed to their full potential; however, near-term customers must be identified and 
initial fission systems successfully developed, launched, and utilized. Successful utilization will simultaneously 
develop the infrastructure and experience necessary for developing even higher power and performance systems. To 
be successful, development programs must devise strategies for rapidly converting paper reactor concepts into actual 
flight hardware. One approach to accomplishing this is to design highly testable systems, and to structure the 
program to contain frequent, significant hardware milestones. This paper discusses ongoing efforts in Russia and 
the United States aimed at enabling near-term utilization of space fission systems. 

INTRODUCTION 

The fission process was first reported in 1939, and in 1942 the world's first man-made self-sustaining fission 
reaction was achieved. Creating a self-sustaining fission chain reaction is conceptually quite simple. All that is 
required is for the right materials to be placM in the right geometry - no extreme temperatures or pressures required 
- and the system will operate. Since 1942 fission systems have been used extensively by governments, industry and 
universities. Fission systems operate independently of solar proximity or orientation, and are thus well suited for 
deep space or planetary surface missions. In addition, at launch (prior to significant operation at power) the fuel for 
fission systems (highly enriched uranium) is essentially non-radioactive, containing 0.064 curiedkg. This compares 
quite favorably to current space nuclear systems (Pu-238 in radioisotope systems contains 17,000 curies/kg) and 
certain highly futuristic propulsion systems (tritium in D-T fusion systems would contain 10,000,000 curies/kg). An 
additional comparison is that at launch a typical space fission propulsion system would contain an order of 
magnitude less onboard radioactivity than did Mars Pathfinder's Sojourner Rover, which used radioisotopes for 
thermal control. The primary safety issue with fission systems is avoiding inadvertent system start - addressing this 
issue through proper system design is quite straightforward. The energy density of fission is seven orders of 
magnitude greater than that of the best chemical fuels, and if properly utilized is more than adequate for enabling 
rapid, affordable access to any point in the solar system. 

Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of 
these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US 
launch of the SNAP-1OA reactor. There have been no additional US applications of fission systems in space. While 



space fission systems were used extensively by the former Soviet Union, their application was limited to earth- 
orbital missions. Early space fission systems must be safely and affordably utilized if we are to reap the benefits of 
advanced space fission systems. 

Table 1 gives a partial list of major US space fission programs that have failed to result in flight of a system 
(Angelo, 1985). There are a variety of reasons why these programs failed to result in a flight. The fact that so many 
programs have failed indicates that a significantly different approach must be taken if future programs are to 
succeed. In many cases, space reactor programs were cancelled because the proposed mission was cancelled. 
However, in many of those cases mission cancellation was partially due to the fact that the reactor required by the 
mission was taking too long and costing too much to develop. 

TABLE 1. Partial list of major US space fission programs that have failed to result in flight of a system. 

*Solid-Core Nuclear Rocket *SNAP-50 / SPUR *Advanced Liquid Metal 
Cooled Reactor Program 

*Medium-Power Reactor Cooled Electric Power *Advanced Space Nuclear Power 
Experiment (MPRE) Reactor (710 Reactor) Program (SPR) 

*High-Temperature Gas- 

*Thermionic Technology 
Program (1963-1973) 

*SPAR / SP- 100 

*Flight Topaz 

*Multi-Megawatt Program 

*Thermionic Fuel Element 
*Space Nuclear Thermal Rocket Verification Program 

Air Force Bimodal Study 
*DOE 40 kWe Thermionic 
Reactor Program PrOgram 

*SP- 100 

Previous and Ongoing Russian Nuclear Thermal Rocket Research 
From 1950-1980 a prototype nuclear rocket engine (NRE) with a heterogeneous core, carbide fuel, a thrust of 36 kN, 
a specific impulse of 920 s, and an operational lifetime of 1 hour was developed and successfully ground tested in 
Russia (Demyanko et al., 2002). 

From 1970-1988 thirty-one spacecraft powered by the first Russian nuclear power plant (NPP) “Buk” (3 kWe. 
thermoelectric power conversion) were launched into near-Earth orbits (Ponomarev-Stepnoi, 2000). 

The world‘s first NPP ‘Topol” using thermionic energy conversion and providing 5 kWe of power, well-known as 
‘Topaz”, was tested in flight on two spacecraft in 1987-1988. Electricity from the Topaz system was used to power 
an electric propulsion (EP) subsystem. 

The 6 kWe thermionic NPP “Enisei” (Topaz-2) underwent the complete cycle of proto-flight tests. Experimental 
studies with the NPP Topaz-2 were performed in the early 1990’s in the USA within the framework of the Nuclear 
Electric Propulsion Space Test Program - NEPSTP. 
Methods and means were developed in Russia to assure radiation safety of spacecraft with NPP both in normal 
operation and emergency situations. 

Presently in Russia research related to the next use of fission energy in space is being conducted in accordance kith 
the Space Nuclear Energetics Progress Concept approved by the Russian Federation government in February, 1998 
(Rossiiskaya Gazeta, 1998). The Concept foresees the generation of technology advances providing the opportunity 
to develop nuclear systems at power levels up to 100 kW and lifetimes no less than 5-7 years by 2010, and solving a 
wide range of promising tasks associated with their use both in near space and interplanetary space. In the future, 
nuclear systems capable of providing 500 kWe or more must be developed. The Concept foresees large-scale 
cooperation of Russia with foreign countries in the field of space nuclear energetics. 



The current emphasis of Russian research related to the introduction of nuclear energetics in space engineering is on 
using space fission systems to provide in-space transportation (Akimov et al., 2000). In accordance with the Space 
Nuclear Energetics Progress Concept in Russia, development of transport-power modules (TPM) is the main focus 
of activities. Such TPM provide both spacecraft delivery to the operational orbit, and supply the entire power needs 
of the spacecraft both during transit and when the operational orbit is achieved. 

One direction of nuclear TPM realization is using combination of a nuclear power plant (NPP) and a sustainer 
electric propulsion system (Koroteev and Gafarov 2002). As power consumption by the SC at the operational orbit 
is usually lower than power consumption by the electric propulsion system, significant attention in Russia is being 
given to a dual power level NPP. In Table 1 some projects of such NPP with built-in two-level electric generating 
channels (EGC) are presented. These EGC are based on technology of multi-element EGC for the TOPAZ NPP. 
Presently, reactor tests of a two-level EGC are being successfully conducted. 

Variant of NPP NPP-25 NPP-50 

intermediate neutron reactor Type of reactor 

Coolant eutectic alloy "sodium-potassium'' 

Basic structural material stainless steel 

Maximum temperature of coolant, "C 600 

Useful electric power of NPP, kW 

- in nominal level 30 50 

- in forced level 65-87 100-125 

Lifetime, years 

- in nominal level 7-10 years 

- in forced level 

Mass of NPP. ka 2700-3000 3250-4000 

to 1 year 

NPP-100 NPP-150 

fast neutron reactor 

lithium 

niobium-based alloy 

700 900 

50 160 

150 400 

7- 10 YWS 

0.5 year 

5350-5600 7250 

The second variant of realization of nuclear TPM is based on additional equipping of NRE with the system of 
reactor thermal energy conversion into electric energy. Results of several studies of similar NPPS are presented in 
Table 2. 

Table 2. Characteristics of NPPS using NRE technologies 

Variant of NPP 

Thrust in NRE mode. N 

with thermionic converter with turbo-machine converter* 

98 1 4903 
~ ~ ~ _ _ _ _ ~ ~ ~  

Specific impulse, Nls 

Electric power, kW 

Lifetime, 

- in NRE mode, hours 

- in NPP mode, years 

8560 

25 25 40 I 
up to 10 

up to 10 



Mass of NPPS (without tank and hydrogen) 2435 2655 I I 

On the basis of the available scientific and technical heritage from 1960-1980 and with wide international support, 
Russian specialists developed performance specifications for a new generation NRE. The main characteristics are 
presented below: 

5145 

Thermal power of NRE reactor, MW 

Working medium hydrogen 

Temperature of propellant in nozzle 
chamber, K 

NRE trust, kN 68 

Specific impulse, s 940 

340 

2900 

Total operating time, hour -2 

Mass of reactor with block of radiation 
protection and nozzle, kg 2675 

Dry mass of NRE (without hydrogen 
tanks), kg 2890 

The project of combined propulsion-power complex on the basis 
power generation up to 25 kWe has also been developed. 

f NRE providing not only thrust but also electri 

Presently ROSAVIAKOSMOS has initiated an R&D work "Mars-XXI". The main goal is development of key 
elements of the power-propulsion system for a Manned Mars Expedition. Within this R&D work studying of several 
variants of such a system on the basis of nuclear energetics is foreseen (on the basis of NRE, NPP and their 
combinations). 

Thermal NRE or NPPS on their basis, built according to the concept proposed in Russia, must be used as the basic 
variant of the Manned Mars Expedition approved by American specialists (Borowski and Dudzinski, 1998). It 
opens the prospects for international cooperation. 
As the first step at the new stage of nuclear energetics introduction into space, development of a unified automatic 
spacecraft on the basis of nuclear electric propulsion system for Solar system exploration seems useful. The initial 
variant of such spacecraft could be based on one-level NPP with electric power of some ten kilowatts and lifetime of 
up to 10 years. Startup of a spacecraft from a sufficiently high near-Earth orbit allows nbt only increased 
effectiveness of nuclear energetics usage, but would also help establish safety assurance policies. 
Organization of international programs permitting one to use the greatest achievements of the countries / participants 
in the projects must become an effective way of making space nuclear energetics progress. Russia can make a 
significant contribution to realization of such programs by using technical decisions and technologies partially tested 
in space flight conditions. 

Ongoing Research at NASA Marshall Space Flight Center's Early Flight Fission Test Facility (EFF-TF) 

The focus of research being conducted at NASA Marshall Space Flight Center's Early Flight Fission Test Facility 
(EFF-TF) is on enabling the near-term development and utilization of space fission systems. Near-term space 
fission systems must capitalize on experience gained from previous fission programs. The development of new 
nuclear technology has historically been costly and time consuming. Nuclear technology developed by previous 
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programs should thus be utilized, and requirements for new nuclear technology minimized. In-core components 
should operate within demonstrated fuel burnup capability and demonstrated neutron damage limits for the given 
reactor environment (temperature, chemistry, power density, etc.). The construction of new nuclear facilities or the 
extensive modification of existing facilities has historically been costly and time consuming. Near-term fission 
systems should thus require only existing nuclear facilities for their development. Flight qualification of any space 
system requires an extensive test program; thus near-term fission system flight units must be highly testable. 
Because of the expense and difficulty associated with performing realistic full-power ground nuclear tests, previous 
programs have considered the option of foregoing full-power ground nuclear testing in favor of a flight test. For 
example, in Josloff (1993) (referring to the SP-100 program) it is stated that ‘There has been recent interest among 
government agencies in establishing an early flight mission that would provide the catalyst needed to enable 
confident planning for subsequent operational missions. This first flight would validate the total system 
performance, obviate the need for costly ground nuclear testing, demonstrate safety features and facilitate safety 
approval through the INSRP process for the subsequent operational missions.” Full power nuclear ground test 
facility requirements may also dictate that the unit tested on the ground be significantly different than the actual 
flight unit. Any differences between what is tested and what is flown will limit the benefit from full-power ground 
nuclear tests. It should also be noted that for NASA missions no safety-related data is obtained from a full-power 
ground nuclear test, and that the only potential benefit from that test is data related to system reliability. The cost 
effectiveness of a potential full-power ground nuclear test must thus be compared with other less expensive and time 
consuming methods for improving overall mission reliability. Highly testable systems that utilize established 
nuclear technology incur the least technical risk if full power ground nuclear testing is not performed. If full power 
ground nuclear testing is performed, highly testable systems will enable a high test effectiveness and a high 
confidence in nuclear testing success. The ability to quickly and affordably establish the safety and reliability of any 
proposed space fission system will be critical to its programmatic success. 

Additional innovative approaches will have to be used to ensure that the next space fission system development 
program results in system utilization. Safety must be the primary focus of the program, but cost and schedule must 
also be significant drivers. System performance must be adequate, but the desire to make performance more than 
adequate should not be allowed to drive system cost and schedule. Near-term space fission systems must be safe, 
simple, and as inexpensive to develop and utilize as possible. 

One method for ensuring that a space fission system development program is “on track” is to require frequent, 
relevant hardware-based milestones. When possible, these milestones should include subsystem or system-level 
testing. Successful development of individual components is obviously necessary, but in no way ensures that an 
integrated system can be developed and flight qualified. Highly realistic testing of integrated subsystems and 
systems is the best way to demonstrate that a proposed approach is viable. 

The difficulty, schedule, and expense associated with performing realistic, full power ground nuclear testing of an 
integrated space fission system will eliminate such testing as a potential early milestone. Development and flight 
qualification testing will thus rely heavily on realistic, non-nuclear testing. Full-power acceptance testing will rely 
entirely on realistic non-nuclear testing, because nuclear heated tests cannot be performed on the actual flight unit. 
This in hum will require development of an adequate facility and thermal simulators capable of matching axial and 
radial power profiles, as well as fuel pin thermal conductivity. A viable space fission system development program 
must include development of highly realistic non-nuclear test capability. 

POTENTIAL NEAR-TERM SPACE FISSION SYSTEMS 

At least three potential near-term space fission systems have been proposed: a fast-spectrum, highly enriched 
uranium fueled reactor cooled by a noble gas mixture (GCR), a fast-spectrum, highly enriched uranium fueled 
reactor cooled by pumped NaK (NaK-LMFt), and a fast-spectrum, highly enriched uranium fueled reactor cooled by 
heat pipes. In addition to similarities in fuel and operating neutron spectrum, these three potential near-term space 



fission systems have numerous other commonalities. All use ex-core control (e.g. drums or sliding reflectors), 
beryllium or beryllium oxide neutron reflectors, lithium hydride neutron shielding, and are designed for highly- 
autonomous operation. Although many of the technologies used by the three systems are quite similar, differences 
related to the method of primary heat transport can result in differences associated with development and flight 
qualification. 

Hardware-Based Technology Assessment of Gas Cooled Reactors 

Engineers at Sandia National Laboratories have devised a “testable” gas cooled reactor cooled by a noble gas 
mixture of helium and xenon (Wright and Lipinski, 2003). Additionally, the gas flow path is designed to cool the 
pressure vessel to the extent that stainless steel or superalloys can be used for the pressure boundary even if the 
reactor is providing turbine inlet temperatures in excess of 1150 K. The Sandia approach eliminates all single-point 
failure refractory metal vessels, eliminates the need for a high temperature, primary heat exchanger, and eliminates 
the need for hermetic refractory metal to superalloy (or stainless steel) transition joints. 

A potential three-step program for hardware-based technology assessment of the gas cooled reactor concept would 
involve singlechannel hot flow testing followed by core segment testing and then by full-core testing. The single- 
channel flow test would utilize an accurate scale model of one flow channel in the GCR design and would be used to 
benchmark flow predictions. Pressure drop would be measured under a variety of flow and temperature conditions. 

A 37-channel test could then be performed to verify performance predictions related to a significant segment of the 
core. A realistic flow configuration could be tested, including pressure, flow rate, and core temperature increase. 
Specific tasks would include the following: 

1. Benchmark thermal-hydraulic correlations that are used in the design of the gas cooled reactor. 

2. Investigate the effects of radially dependent power loads and the viability of flow control via flow orifices at the 

3. Measure the gas exit temperature at several different channel locations to determine the flow rate through the 

4. Perform a variety of power transients and measure the time dependence of gas temperature. Use data to 

5.’ Vary the local heating rate (in one or two rows) to determine the stability of the flow field. 
6. Search for evidence of flow vibration in the pins (such as wear, sonic noise, etc) and quantify if possible. 
7. Develop and demonstrate techniques for low-cost electrically heated testing, and for acceptance testing of flight 

8. Identify any potential showstoppers early in the program. 

exit end. 

channel and validate the flow resistance correlations. Repeat for a variety of mass flow rates. 

benchmark GCR correlations. Repeat for various mass flow rates. 

hardware, for gascooled reactor systems. 

The final task in the three step program would be to fabricate and test a pre-prototypic, full core gas cooled reactor 
operating at the desired thermal power for an early flight system. For this task it would be highly desirable to 
accurately match noble gas inlet and exit conditions. Prior to performing this test, it would also be highly desirable 
to fully quantify the effects of impurities in the noble gas on refractory metal fuel cladding and other components in 
the gas loop. 

A series of single-channel flow tests have been completed at NASA MSFC, and used to verify predicted flow 
characteristics. A representative 37-pin core segment is being fabricated, and testing is scheduled to begin in 
August, 2003. In addition to the eight specific tasks previously mentioned, testing of the 37-pin core segment will 
help assess the potential “test effectiveness” of realistic non-nuclear testing performed on the GCR. Test 



effectiveness is a measure of how closely the tested system resembles the flight-ready system, both functionally and 
physically, and also on how closely the tests simulate the flight conditions. Instrumentation techniques optimized 
for GCR testing will also be developed and implemented. A drawing of the 37-pin Test article is shown in Figure 1, 

’ and the experimental setup used for singlechannel flow testing is.shown in Figure 2. 

u 

FIGURE 1. 37-Pin Gas Cooled Reactor Test Article. FIGURE 2. Single-Channel Flow Experiment. 

Hardware-Based Technology Assessment of Heat Pipe Cooled Reactors 

Engineers at Los Alamos National Laboratory have devised numerous heat pipe cooled reactor concepts, ranging in  
power level from 15 kWt to > 800 kWt. Heat pipe systems do not require that a hermetic vessel surround the core. . 
This allows ready access to one end of the core, providing a very high level of testability. Other potential 
advantages of heat pipe cooled systems are discussed in Poston, 2003a and Poston, 2003b. 

Because of their high level of testability and other attributes, heat pipe cooled systems were the first of the three 
potential systems considered in this paper to undergo hardware-based technology assessment. Fabrication and test 
of a molybdenum heat pipe module was completed in 1996 via $75K funding provided by NASA’s Marshall Space 
Flight Program. The module was fabricated by Los Alamos National Laboratory and tested at the New Mexico 
Engineering Research Institute using equipment originally purchased from the Former Soviet Union for use by the 
Thermionic Systems Evaluation Test (TSET) program. The test demonstrated operation at full rated power, restart 
capability, and the soundness of the modular approach (Houts, 1997). A “bimodal” module was fabricated in 1998 
and tested in 1999. Module testing demonstrated very high temperature operation, fast start capability, and the 
potential for generating modest amounts of thrust by directly heating a propellant gas. Data from the test was also 
used to benchmark thermal predictions. Details concerning this particular test series are given in Van Dyke, 2000. 
The next step in the hardware-based technology assessment of heat pipe cooled systems was the fabrication and test 
of a fullcore, 30 kWt system. Initial testing provided information concerning the operation of a full reactor core. A 
Stirling engine was then procured and coupled to the 30 kWt core, and both steady state and transient testing 
performed. Upon completion of the coupled core / Stirling engine tests, the coupled system was sent to the Jet 
Propulsion Laboratory, where it was integrated with an ion thruster. Steady state and transient testing of the 
integrated system was then performed. Details of the SAFE-30 test series and experimental results are given in Van 
Dyke, 2002 and Hrbud, 2003. 
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Experience gained from the SAFE-30 test series was used to design a 100 kWt stainless steel heat pipe cooled 
reactor core, and higher power refractory metal cores. Proposed improvements were made to both module geometry 
and thermal bonding techniques. Heat exchangers have been designed to enable heat to be transferred from the heat 
pipes to the noble gas coolant of a Brayton power conversion subsystem. 

Future heat pipe cooled reactor research could include fabrication and test of the 100 kWt core and heat exchanger, 
or a significant portion thereof. Thermal bonding techniques for refractory metal heat pipe modules could be 
demonstrated, as well as integration of those modules with a representative heat exchanger. An extremely 
significant milestone for heat pipe cooled reactor development would be the successful fabrication and test of a pre- 
prototypic reactor core coupled to a pre-prototypic heat exchanger, operating at the thermal power and temperature 
required by a flight unit. Figure 3 is a picture of a coupled SAFE-30 /Stirling engine test. Figure 4 is a picture of a 
SAFE-100 thermal simulator test. 

FIGURE 3. Coupled SAFE-30 / Stirling Engine Test. FIGURE 4. SAFE-100 Thermal Simulator Test. 

Hardware-Based Technology Assessment of Pumped NaK Cooled Reactors 

All space reactors flown to date (US and Former Soviet Union) have been cooled by pumped NaK, and operated at 
peak NaK temperatures that allow non-refractory vessels and piping. Pumped NaK cooled systems operating at 
NaK temperatures below lo00 K are significantly different from lithium cooled systems operating at higher 
temperatures, and would be much easier to develop and utilize. The primary drawback of pumped NaK cooled 
systems is that their relatively low outlet temperature would likely result in a higher system specific mass relative to 
systems operating at higher temperatures. 

A core concept with fuel pins in annular coolant channels and two-pass coolant flow has been proposed by industry 
and DOE national laboratories as one option for a testable pumped-NaK system. Figure 5 illustrates the general 
layout of the core assembly with NaK coolant loops and plenums. The coolant enters the core through an annular 
inlet plenum (positioned at the top) that directs it into a circumferential flow passage formed between the outer shell 
and core block. The flow follows this perimeter passage traversing the length of the core and exiting into the lower 
manifold. This manifold distributes the coolant for a return trip to the top of the core via annular gaps formed 
between the fuel pin clad and core block. At the top of the core an outlet plenum collects the heated NaK. Figure 6 
shows an end view of this same core design layout, illustrating both the perimeter and annular fuel pin flow paths. 

The NaK would flow through an appropriate heat exchanger, most likely either a liquid metal to gas heat exchanger 
(Brayton power conversion) or directly to a Stirling engine heater head. Test instrumentation would consist 
primarily of temperature and pressure sensors at various locations within the core and heat exchanger. Test 
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objectives would include demonstrating the feasibility of a testable pumped NaK system, benchmarking thermal 
hydraulic codes used in the design of pumped liquid metal systems, verifying the performance of the flow geometry, 
and demonstrating the potential for uniform NaK channel outlet temperature. 

CONCLUSION 

Fission technology can enable rapid, affordable access to any point in the solar system. Fission systems can also 
enable power-rich environments for planetary surface exploration. If fission propulsion systems are to be developed 
to their full potential; however, near-term customers must be identified and initial fission systems successfully 
developed, launched, and utilized. Successful utilization will simultaneously develop the infrastructure and 
experience necessary for developing even higher power and performance systems. To be successful, development 
programs must devise strategies for rapidly converting paper reactor concepts into actual flight hardware. One 
approach to accomplishing this is to design highly testable systems, and to structure the program to contain frequent, 
significant hardware milestones. 

AnnU1.r Inlet Outlet Plenum 

FIGURE 5. General Core NaK Flow Loop. Figure 6. Core End View Showing Flow Passages. 
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