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By Francols N. Frenkiel
INTRODUCTION

In reading the publicetions on turbulence of different authors, one
often runs the risk of confusing the varilous correlation coefficlients and
turbulence spectra. We have made a point of defining, by appropriste con-
cepts, the differences which exist between these functions. Besides, we
introduce in the symbols a few new characteristics of turbulence. In the
filrst chapter, we study some relations between the correlstion coefficients
and the different turbulence spectra. Certain relations are given by means
of demonstrations which could be called intuitive rather than mathematical.
In this way we demonstrate that the correlation coefficients between the
simultaneous turbulent velocities at two points are identical, whether
studied in lagrange's or in Huler's system. We then consider new spectra
of turbulence, obtained by study of the simultaneous velocities along a
straight line of given direction. We determine some relations between
these spectra and the correlation coefficients. Examining the relastion
between the spectrum of the turbulence measured at a fixed point and the
longitudinal-correlation curve given by G. I. Taylor, we find that this
equatlion is exact only when the coefficient

Ly [3R;(0)
N S 2

is very small.

We f£ind that, in & flow of homogeneous and isotropic turbulence, the
transverse correlation length is equal to half the longitudinal correla-
tion length, and we obtaln several useful relations with the other chear-
acteristies of turbulence. WNext, we introduce nondimensional parameters
which greatly simplify the calculations. In the second chapter we view
a few experimental results and study the method of representing them by
empirical equations. :

*nfitude statistique de la turbulence. Fonctions spectrales et
coefficients de corrélation." Office Nationsl D'ltudes et de Recherches
Aéronautiques (O.N.E.R.A.), Rapport Technique No. 3%, 1948. (The publica-
tion of this report, completed in 1942, was delayed by circumstances
related to the war.)
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The following chapters, which form the main part of this study,
provide all the possible representation of correlation and of spectrum
curves; we compare with them the few measuréments already made and intend
to compare with them the new measurements which we hope to perform in the
future. We consider therefore this part as a preface to a later report.
The large number of curves willl facilitate the choice of equations which
will best represent the experlmental points_once the test results will be __
available. ' o o

For the representation of a correlation curve by a function, one
might consider the general interpolation methods which permit, for
instance, glving an approximate representation of-the experimental curve
by a geometrical or trigonometrical polynomial. Nevertheless, this crude
method is not favorable because it disregards the typilcal appearance (bell-
'shaped curve) of the measured correlation coefficients. Several experimen-
ters have insisted on the importance of the function R(r) = exp(-Kr) for
representation of the experimental values. We have learned lately that
there exist certaln theoretical reasons for admitting this particular form.
In fact, Professor J. Kampé de Fériet notified us at his return from his
recent voyage to the United States that J. L. Doob (ref. 1) has demon-
strated, with the assumption that the velocity of a particle is a func-
tion satlsfying the following properties, that:

1. The stochastic process 1s homogeneous in time _
2. This process 1s & Markoffl process

3, The law of probebility of u(tl),u(tz) is a Gauss law with
two variables.

If all these conditions are realized, the correlstion coefficient
between the two velocities of the same particle at the instants +
and t + h is of the form R(h) = exp(-K|nl).

This form of the correlstion curve which had already been proposed
by H. L. Dryden also represents relatively satisfactorily the experimental
points of the tests made recently by A. A. Kalinske (ref. 2). Thus we
shall begin our representation with the study of this function. But since
these conditions are not rigorously realized, it—is of- interest to use the
functions exp(-Klhl)p(h) where o(h) 1is a geometrical or trigonometrical
polynomial.

Nevertheless, slnce the bell-shaped curve brings to mind the classi-
cal function of Gauss, we shall study this function, too. The more so,

Ithat 1s s if one considers the instants t3< ta< t,.3< t, for the
given values of wu(t), u(tz), u(t, 1), the distribution of u(tn)
depends only on u(tn_l); . -

]
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as one sees - when one represents the second-order moment of the experi-
mental correlation curve as & function of the first-order moment - that
(fig. 6) the experimental points are dispersed between the points cor=
responding to the functions of the form exp(-Klr|) and exp(—Kr )e We
studied the functions exp(-Kr?) with 1< n g 2, but after having made
& few tests with these curves we stopped using them because they proved
to be rather imprectical. A fifth chapter 1s devoted to several applica-
tions of a serles of Hermite polynomials for representing the correlation
law or the spectrum according to the proposition of J. Khmpe de Fériet.

We represented in numerous figures the correlatlon curves and the
turbulence spectra which correspond to the selected functions. Several
applications are made with use of the results of turbulence measurements
in water and in air.

Thus one will note the good representation of a transverse correla-
tion curve measured et the National Bureau of Standards (fig. 19) by the
equation of the form

Ry(y) = exp (-Ky¥) cos (Kuy)

Two other curves measured in this same laboratory (figs. 23 and 2h), and
also a longitudinal correlation curve of A. A. Hall (fig. 25) are very

well represented by the equation R(r) = EA. + (1 - A)cos (Kar)] exp (—Kllrl) .
Other results (figs. 32 and 33) are represented by the func-

tion R(r) = El + A;Jexp( Kllrl) or (figs. 37 to Lk2) by

R{r) = l} + Alr + Aer_]exp(-Kllrl). Interesting results are given by

the function R(r) = A exp(—KlIr!) + (1 - A)exp(—Kélrl).

The functions derived from Gauss'! function do not give as interesting
results; still, we have been able to represent a few measurements (figs. Th
to T8) quite satisfactorily by the functions of the form

R(r) = A exp —Kire) + (1 - A)exp(-Kére), and a correlation curve of
E. G. Richardson (fig. 60) is rather well represented by a Gauss curve.

Once the correlation curve is represented by a function, it 1s easy
to calculate the different statistical characteristics of turbulence by
making use of thls function. One can thus determine, for a flow of
homogeneous and isotropic turbulence, the transverse correlation curve
from the longitudinal correlation curve or vice versa. If the two curves
have been measured in one and the same flow, it will be easy to verify
whether an isotropy of turbulence exists in it. We made several comparisons
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of this type. One will note particularly the rather remarkable resulits
given in figures 33 and 57 where the experimentsl points are perfectly
represented by the correlation functions calculated for a flow of
isotropic turbulence.

Finally, we represented the spectrum of turbulence measured at the
National Physical Laboratory (fig. 93) by a curve corresponding to a
correlation function of the form Ry(h) = A exp(-KihE) + (1 - A)exp(-Kéha)

which represents the experimental points better than the curve
R.(h) = exp (-Kllhl) used by H. L. Dryden.

The poesibllity of a rapld calculation of the spectral function, once-
the form of the correlation curve has been determined, is highly important
since a graphical calculation based on the experimental correlation curve
is extremely troublesome., i

Since the work for this report has been done in 1941 and the report
has been edited in 1942, we could not take intov account the results found
by various investigators with which we heve only recently become acgueinted.

SYMBOLS

1. Genéral Symbols for Homogeneous Turbulence

Oxyz reference axes fixed in space. If there exists a
mean velocity, the axis Ox is parallel to this
velocity (system of Euler).

Oxyz reference axes fixed with respect to the center of
a particle. If there exists a mean velocity, the
axis Ox 1is parallel to this velocity (system of

lagrange).
t time = =
h time interval
o cyclic frequency (equal to frequency times 2x)

v(x,y,z,t) velue of a scalar quantity at an instant t and at
a point x,y,z _

¥(x,y,z,t) mean component of the quantity ¥ taken-with respect
to the time, independently of-the physical proce-
dure employed
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Y (X,¥5,2,%5) turbulent component of the quantity ¥
V(x,y,2,t) = ¥(x,y,2,t) + V' (x,¥,2,t)
——— 1 +T -
¥(x,y,2,t) = lim_,Ef ¥(x,y,2,8)ds
T—3x T

¥t (X:Y:Z:t) =0

+T
lim -ZJ-Tf \V(X:Y:Z,S)ds = (P(X:YJZ)
T30 ~T

If o(x,y,z) = constant, the turbulence is homo-
geneous. One may assume equality between the time
space averages.

1 +X
lim _2;_/:;{ v(s,y,z,t)ds

+T
lim i’/‘ V(x,y,2,8)ds
2T ~T X—>™

P

+y
1im %f v(x,s,z,t)ds
y—r -y

I

1 +Zz
lim 5z f V(x,y,s,t)ds
72—y 2 Jog

2
[‘4" (X,y,z,t)] mean square

2
\/E{lr' (x,y,z,t):l standard deviation
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V' {xy,¥1,27,t Yt Yos,2n0,t
( oL l) ,___fgi_gi_gi_gl__ correlation coefficient

8

RKz(s)ds

)

(@) = £ ()

\/m ‘/Eyv (x2’y2:22;t2)] 2

(in the Euler system) between two fluctuation com-
ponents of a scalar Quantity w’(xl,yl,zl,tl)

and W'(xe,yé,ze,te). The subScript k depends on

the relation which exists between these two guan-
tities. For instance

W'(O,y,z,t) \If'(x,y,z,t)

ﬁy' (O,y,z,t)] 2 /Ef' (x,¥, Z:tﬂ y

Ry(X) = RE(X) =

correlation length in Buler's system -

spectrum of turbulence in Buler's system. Represents

the contribution of the oscillations of cyclic fre-
quency o to the mean sguare

EV.'”(_X:Y:Z:JG)_]_Q

This spectrum may be obtalned by harmonic analysis

of the curve which gives V¥'(x,y,z,t) as a function
of one of the coordinates. The subseript k depends
on the curve from which the spectrum derives.

(--]
\'j
f (s)ds =1
A

"(X,,Y,2q,t ' Ysr,25,t
¥ ( 1211547 1) E (XQ’_E’_z’_Q):_ in the lLagrange system

[?'(Xl:Yl’Zl:tli]E [ '(X2’Y2:Z2:t2)]2

between two fluctuation components of a scelar
quentity W'(Xl,Yl,Zl,tl) and W'(XQ,YQ,ZE,tz).
The subscript k depends on the relation exlsting
between these two quantities.
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¥ R
LKL =‘jp RKL(s)ds correlation length in Lagrange's system
o]

f;;(w) spectrum of turbulence in Iagrange's system. Repre-
sents the contribution of the oscillations of
cyclic frequency w +to the mean square

b (7,260

This spectrum may be obtalined by harmonic anaslysis
of the curve which gives V'(X,Y,Z,t) as a func-
tion of one of the coordinates. The subseript k
depends on the curve from which the spectrum

® v
derives. JF £ (s)ds = 1
0 KL

2. Symbols for the Study of the Statistical Relations

Between the Parallel Velocitiles

v instantaneous velocity

u,v,w components of the instantaneous wvelocity
1a=U

v=0 mean velocity of the flow

w=0

v turbulent velocity

ut! =u - u

v =v components of the turbulent velocity

w' =W

A directlon of a streight line

r measured distance in the direction A
V'L components of the turbulent velocity parallel and

T perpendicular to the direction A
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R correlation coefficient (see table I)

fw) spectrum of turbulence (see table I)

To

coordinate at which the correlation coefficients
between the simultaneous velocities RA(r), R, (x)

or Ry(y) become zero for the first time (fig. 2)

%0

Yo

-

1, (28) - fo’”" Ba(s)ds

"apparent" correlation length represented by the
(ap) X0 area bounded by the positive part of the cor-
Ly = R, (s)ds
0

\ g

relation curve measured up to the first point
for which R = 0 (fig. 2(a))

(ap) _ Yo (o
Ly fo Fy(e)ds

-
a
X LA( p)
A Ia
ratio of "apparent" correlation length and true
)(.x = E&% > correlation length -
(ap)
A

-

—— 2o}
[w2] = f szfx(s)ds
X 0
[a)z]y = f 8 fy(S)dS? dispersion of a turbulence spectrum
0

[c-;é]t =j:° szft(s)ds

o




NACA TM 1436
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B,
i ]

e

stendard deviation of a spectrum of turbulence

length representing the size of the smallest eddies
responsible for the energy dissipation, in the
study of the slimultaneous turbulent wvelocities,
in Euler's system

time corresponding to the dimension of the smallest
eddies responsible for the energy dissipation in
the study of the turbulent velocity at a fixed
point as a function of the time in Euler's system

Nondimensional symbols

oL,0 0,07
E,8Y

1,0

v .V
T,Tm,TL,T ,Tm,TL

1) - e

-

v

-’

dimensionless variables obtained by dividing r, ¥,
z, or h by the corresponding correletion length
(see table I)

correlation coefficlent given as a function of a
dimensionless variable (see table I)

quantity representing the cyclic frequency in dimen-
sionless symbols (see table I)

turbulence spectrum in dimensionless symbols (see
table I)

coordinate for which the correlation coefficients
Ba(r), Byx(x), or By(y) bvecome zero (fig. 2(b))
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olep) - _r
Hﬁzap)
g(ap) - < . length r, x, or y referred to the apparent
Lx(aP) correlstion length kﬁ(ap), Lx(ap)’ Ly(aP)
(fig. 2)
(ap) Y
'q =
Ly(aP)
J
\
(ap) ro
p =
LA(aP)
coordinate for which the correlation coefficients Ras
¢ (ap) __%o . By, oOr By glven as functions of p(aP), §(aP),
0 (a
Ly 2P) n(&P) become zero for the first time
. (ep) _ _¥o
Y Lyzap)
o
B minimum velue of the correlstion coefficient Ra(p)
A min A
mein value of p +to which the minimum correlation coef-
ficilent corresponds when the cotrelation curve
represents B as a function of p
[;(aPZIBmin value of p(ap) to which the minimum correlstion
coefficient corresponds when the correlation curve
represents R as a function of p(aP)
@kg meximum value of the spectral fungtion ?AG%S)
EQJ¢’mBX value of @, for which the spectral function QA(%Q)

is maximum )
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—— o«
[921] = f sacpz(s)ds dispersion of the spectrum @, (ﬂl). The sub-
2 0 script "1" corresponds to that of Qp es

a function of which the spectrum is repre-
sented, and "2" to the subscript of @o

[ee]
LA(K) = f sER (s)ds moment of order K of the area bounded by the
A
J 0 correlastion curve I_ZA(p)
®(ep) __1_ [P0 x
L’A = K——-f = BA(s)ds moment of order K of the area
XA + 190 bounded by the "apparent" corre-

lation curve (up to the first
value I_{A(p) = 0)

=<}
EA(K) = f chp(s)ds moment of order K of the area bounded by the
o} spectral curve cpA(QA)
_)\ =
1., = 2.
¥ Iy
A coefficlent representing the dimension of the
7'y = S smallest eddies responsible for the energy
LY dissipation by turbulent viscosity
1, = A
8L
-
3. Miscellaneous Symbols
K coefficient of viscosity of a fluid
energy dissipated by turbulent viscosity per
unit volume
K constant integer
n variable integer

s integration variable



12 B NACA TM 1436

c)

m

A coefficients used for representing the equations of

S the correlation curves

B

o)

B

o

e base of the Neplierian logarithms

log(a) logarithm with the base e _

exp(a) = e symbol used for simplifying writing the equations
o 8. ) — =

erf(a) = = f exp(-s2)ds numerical function the value of which is to
it JO be found in the tables-

1t

n t - -
Hyp,(2) L2 -(—En—)——[l -2 -£, a2 4+ 22 E(——E——]-'-)— et - .. ] Hermite
on n. 2. bt : polynomials
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CHAPTER T
THEORETICAL CONSIDERATIONS

1. Correlation Coefficients

The study of the turbulent motion in a fluid flow requires knowledge
of the amount of displacement velocities of the macroscopic particles by
groups of molecules the velocity fluctuations of which present a similer
appearance. One of the most.important characteristics of a turbulent
motion is the correlation coefficient which allows numerical definition of
the similarity of the fluctuations in velocity and better visualization of
the size of the macroscopic particles,

The mathematical definition of a correlation coceffilcient between two
scalar functions -of time W'l and W'z is given by the expression

Vi(€) ¥t + B) (1)

l/[;l(t)] : / [vr ot +‘h)] °

in which h 1is & time interval which may be equal to zero when the cor-
relation between two simultaneous functions V¥*';(t), ¥'o(t) 1s being
studied. The bars represent time averages obtained from measurements made
at different instants; all other conditions are egqual, though. Thus

+T

vio(t) = lim ¥t (s)ds
1 T 0 2T p T
and
1 +T
¥ ()t +n) = 1im = ¥'1(s)¥' (s + h)as

T 2T J _p
In this memorandum we study only the homogeneous turbulence for which
+T
1

1lim el ¥(x,y,2z,s)ds = o(x,y,2)
T -T

- cte

In order to simplify the study still more, we assume that the time
averages are equal to the space averages, whether these latter are taken
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in the entire flow domain or only along an infinite stralght line of
arbitrary direction. One will have for the axes Ox and Oy, in parti-
cular, the relation

- +T
\V'(X:YJZJt) 1lim ij'ff ‘l"'(x)y,vzys)ds
- .

T—>w

+X
1lim Lf V' (s,y,2z,t)ds
x—>m X Jox B

+y
lim - ¥t (x,s,z,t)ds (2)
y—e ¥ Joy '

Thus the averages which occur in the definition of the correlation

coefficient may be taken in still another manner: by repeating the meas-
urement of V' ¥'s, at different points of the flow, &ll other conditions, -

though, being equal. . _

The turbulence is considered from the point of view of Euler if one

studles the veloclties at the flow polnts without concerning oneself about

the particles which are situated at these points at the instant of the
measurement. The turbulence is studied from the view point of Lagrange
if one follows the particles in their motions and notes their velocitiles
without concern for the location where they are placed.

(a) System of Euler.- Assume two particles A and B (fig. 3) the cen-

ters of gravity of which are, at the instant t, at the points P and Q,

placed on a straight line of direction A, st a distance r. The mean
velocity of the flow is U = U, and the turbulent velocities of these
particles V'A(t) and V'B(t) are equal to what we call abbreviatedly

velocities at the points P and Q: V'p(t) and Vig(t). After a time
interval tj - t the particles will have left the points P and Q,

after having described trajectories which depend on The Joint effect of
the mean velocity and of the turbulent veldcities of the two particles.
At the instant t; two other particles C and D a&¥e to be found at

the points P and Q. The velocities of the particles A and B are
V'A(tl) and V'B(tl) and are different from the veloclities &t the

points P and Q: V'p(ty) = V'g(ty) and V'g(ty) =V'p(ty). At the
instant to, the particles C &and D, in turn, will also have left the
points P and Q, and will be replaced by two other particles: E and
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In order to obtain in Euler's system a correlation coefficient between
two simultaneous turbulent velocities, one studies the velocities at the
points P and Q without considering the particles situated then at these
points. This coefficient 1s given by the expression

Vip(6) V' g(t)

[ et

In order to obtain the averages which occur in this expression, one
recommences the measurements at different instents. In the average

V'P(t)V'Q(t) one will thus take into account the products V'P(t)V'Q(t),
Vip(t1)V'q(t1), V'p(t2)V'q(t2)s ete-

Since the time averages are supposed to be equal to the space aver-
ages, one can obtain this correlation coefficlent by another method. One
mekes all measurements at the same instant t and calculetes the products
of the turbulent velocities at numerous pairs of points placed on straight
lines parsllel-to A, at distances r, such as V'P(t)V'Q(t), Vir(t)vig(t),

etc. These products will serve to determine the average V'P(t)V‘Q(t).

One may consider the velocities of the points situated on the same straight
line as the points P and Q, or on an entirely different straight line.

L L P
Assume VYA.P and V'A‘Q 10 be the components of simultaneous tur-
2 2
bulent velocities in the direction of A and VWA?P’ VWA?Q the compo-
2 H

nents perpendiculer to A, located in the same plane. One will have two
correlation coefficients in this Euler system (fig. 1(a)).
L T T T
V! A v! vt
L
R (r) = 2,8 4,9 R (r) = 2,Q ° A0 (3)

R O A XN XN

The correlation coefficients between the parallel and the perpendi-
cular turbulent-velocity components at the points P and Q (fig. 1(b))
are given by

Vl 1
RA(r) Rv(r) = AP Va9

ey R CONEEN e
/(0,2 l/ (2'a,0)"

R (r)
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We call RA(r) abbreviatedly: the correlation coefficient in the
direction A. -

If A <coincides, in the relations (3), with the x axis, parallel
to the direction of the mean velocity (fig. 1(c)), one will write

R(r) = By(x) = Re(x)  end Ri(r) = Ri(x) (3')

Rx(x) is the coefficient of longitudinal correlation between the
longitudinal turbulent velocities, and we shall call it abbreviatedly:

longitudinal-correlastion coefficient. _Bz(x) is the longitudinal-
correlation coefficient between the transverse turbulent velocities.

When A coincides with the y-axis perpendicular to the direction of
the mean velocity, one has

T _ QU _ - _aV " -
R (x) = Ro(y) = Ry(y) and R (r) =R (y) (3"
where Ry(y) is the transverse-correlation coefficlent between the longi-
tudinal turbulent velocitlies - we shall call it transverse-correlation

coefficient - and R;(y) represents the co&fflcient of transverse cor-

relation between the transverse velocities,

One may define, in Euler's system, a correlation coefficient between
the turbulent velocities at the same point but at two instants
and t + h. This coefficlent 1s given by the expression

Vip(t)V'p(t + h)

| el (Frete - 02

One obtains the averages by varylng the lnitial instant t. In the
averege V'p(t)V'p(t + h) one will thus take into account the products

Vip(t)Vip(t + h), V'P(tl)v'P(tl + h). Applying equation (2), one may

form the means by measuring the velocitles at two instants t and t + h
only, but taking the measurements for an infinite numker of points. In
this cese the products V'p(t)V'p(t + h), V! (t)V' (t + h), etc. would

occur in the caleculation of V'p(t)V'p(t + h).
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Studying the correlation between the components of the turbulent
veloclities parallel to the directicn of the mean velocity, we shall have

u' (X:Y:Z;t) u! (X:YJZ:t + h)

JEJ-' (X:Y:Z:t)] EJEJ} (X:Y:Z:t + h)J2

which we shall call abbreviatedly: correlation coefficient at a fixed
point. For the components perpendicular to the direction of the mean

velocity, one will have the coefficient Rz(h).

()

Ry(h) =

The correlation coefficient (4) has been studied by taking a point
fixed with respect to space. One may also determine a correlation coef-
ficient for a point being displaced with the mean velocity of the flow,
and one will have

u'(x,y,z,t)u'(x + Uh,y,z,t + h (5)

J—vl—ll' (x;y’z;t)_—_l 2JE1' (x + Uh,y,z,t + h)] 2

This coefficient, as also the correlation coefficient RZ(h) between
the transverse components, appertains to a pseudo-Eulerian system.

Ry(n) =

(b) System of lagrange.- Let us now study the correlation coefficients
of Lagrange's system. Assume OAIA2A3 to be the coordinate axes the

origin of which is constantly located at the center of grevity of the
particle A and which are situated so that the axis 0A; 1is always

parallel to the direction A. The correlation coefficient of the lagrange
system between the simultaneous turbulent velocities of two particles
placed on a straight line in the direction A, at a distance r, will be

V'A(O: 0,0,t)V' (or.r,Br, 71‘,13)

—

J EI'A(O: O:O:t)] ° J Ef' (CI.I‘, Br:'fr:t)] °

where o, B, 7y are the direction cosines of the straight line A.

In the average V'A(0,0,0,%)V!(ar,pr,yr,t) products like V‘A(t)V’B(t),
Vi (t1)V g (b)), V'a(t)V'm(t1), ete. will occur. With the assumption

that the averages with respect to time are equal to the averages one would
obtain if one msde an infinite number of measurements at the same instent t,
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which amounts to supposing the existence of an ergodlic principle, one mey

obtain V',(0,0,0,t)V'(ar,Br,yr,t) in another menner: one takes the

averages of: the products of turbulent velocities of palrs of particles
placed, at the instant t, on straight lines of direction A and at dis-
tances r so that, for instance, V'p(t)V'g(t), V'g(t)V'y(t), ete. One
now has the equalities V', (t)V'g(t) = V'P(t)V'Q(t) and

Vig(t)vip(t) = V'g(t)V'g(t). Consequently; the correlation coefficient
between the simultaneous turbulent velocitlies of the perticles placed on
a stralght line in the direction A sand st distances r is obtained in
the same manner as the correlation coefficient between the simultaneous
turbulent velocities at the points placed on a straight line of the same
direction and situated at the same distance. When the turbulence is
homogeneous, the correlation coefficients between the simultaneous turbu-
lent velccities for a glven direction and distence are the same, whether
the study is made in Euler's or in Lagrange's system.

3& E(r) = L(r) N (6)

The correlation cocefficient between the turbulent velocitlies of the
same partlcle 1s given by the expression

Via(t)Vip(t + h)

V[V'A(t)] 2\[Er'A(t + b)) 2

where the average is taken by varying the initial instant t. Therefore,
the products V'p(t)Vip(t + h), V'y t3 v'A(t-l + h), among others, will

occur in V'A(t)V'A(t + h). This correlation coefficlent may be obtained
also by studying the turbulent velocities of an infinite number of parti-

cles at two Instants t and t + h only. The average V'A(t)V'A(t + h)

will then be calculated with the products V'p(t)V'a(t + h),
V'g(t)V'g(t + h), etec. Thus, if one has thé equality

Via(e)Via(t + h) = V'p(t)V'p(t + h), one will, on the other hand, have
in general the inequality V'p(t)V'p(t + h) ¢ V'Q(t)V'Q(t +-h). Conse-
quently, the correlatlon coefficient between the turbulent velocitles
at & fixed point (system of Euler) and the .correlation coefficient between
the turbulent veloclties of the same perticle (system of lagrange) for the

same time interval are not necessarily equal when the turbulence is
homogeneous.
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The correlation coefficient between the components (parallel to the
direction of the mean velocity) of the turbulent velocities of the same
particle A, at two instants t and t + h, will be equal to

u'A(t)u'A(t + h)

Vl:u'A(t):la‘/El'A(t + h)]2

and we shall cell it abbreviatedly correletion coefficient in the Iagrange
system. The analogous correlation coefficlent between the components per-
pendicular to the direction of the mean velocity will be designated by

Ryp,(n).

(c) Homogeneous and isotropic turbulence.- In the preceding section
we have assumed that the turbulence is homogeneous, that is, that a trans-
lation of the axes does not produce a chenge in the value of the averages.
If one assumes furthermore that the turbulence is isotroplc, a rotation
of the axes will not have any effect, either, on the value of the averages.
Hence there result the equalities

R,.(h) = Ru(h) = (7

tL

\'a

Ry=Ry Ry =Ry 2

2. BSpectra of Turbulence

The turbulent energy of & fluid medium may be considered as the sum
of the energy of simple harmonic vibrations of different frequencies. The
character of the turbulence will be completely defined 1f one knows the
total turbulent energy and the proportion of energy corresponding to every
frequency, that is to say, the spectrum of turbulence. If, in the study
of a flow, the observer displaces himself with the mean velocity of the
flow, it is easier to study the spectrum a&s the energy dlstribution as a
function of the wave length. Every turbulent medium may have spectrae
peculiar to it which will not be similar to the spectra of another medium
except for the particular cases where for Iinstance the causes which pro-
duce the turbulence are similar.

One can see an analogy between the spectrum of turbulence and the
spectrum of light. It must however be noted that, in the case of turbu-
lence, the spectrum may be subject to & transformetion which does.not
directly depend on externsl causes but which is due to the production of
the small eddies initiated by the large ones. The spontaneocus decrease
in intensity of the longitudinal turbulence downstream of a grid is one
of the consequences of this phenomenon.
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In order to explein what the different spectra which we shall intro-
duce in this study are representing, we shall sssume availability of a
measuring epparstus capable of recording the components of the turbulent
velocity at every instant and simultaneously for several particles. Iet
one recording represent the values of the longitudinel components of the
instantaneous velocities of the particles which are at a given instant
situated on a straight line parallel to the direction of the mean velocity.
The longitudinal spectrum of turbulence may be determined by making a
harmonlc anslysis of such & recording. Instead of studying the distribu-
tion of the simultaneous velocitles along an infinite straight line, one
can take several recordings for straight lines of a length which is suf-
ficient to make the correlation corresponding to this length negligible.
For each recording, one makes a harmonic analysis and then determines the
mean distribution of the longitudinal turbulent energy (proportional to

u'2) which corresponde to this spectrum. Thus, the longltudinal spectrum
of turbulence fx(m) will be obtained. By recording the longitudinal com-

ponents along the straight lines located in a plane perpendicular to the
direction of the mean velocity, one cbtaina the transverse spectrum of
turbulence fyﬁn).

If one mskes the harmonic analysls of a recording which represents
the longitudinal component of the turbulent veloclty at a fixed point as
a function of the time, one obtains the spectrum of G. I. Taylor ft(w).

These three spectra correspond to BEuler's viewpoint.

The recording which gilves the longitudinal component of the turbulent
veloclty at a polnt which is displaced with the mean velocity of the flow,
leads to a spectrum of a pseudo-Eulerian system which we call "spectrum
following the meen motion £ (w)."

Flnally, one obtains a spectrum in the ILagrange Bystem by taking as
a8 basis a recording which gives the fluctuations of the longitudinal com-
ponent of the turbulent veloclty of & particle. Thils spectrum will be
celled spectrum of J. Kempé de Fériet ftL(w).

In an analogous manner, one may obtaln spectra which gi#e the dis-

tribution of the transverse turbulent energy (proportional to v'2)'by
starting from the recordings which represent the fluctuations of the

transverse component of the turbulent velocities. Thus, one will haeve
the spectra which will be designated by - -

v v v v v
fx(w) fy(w) ft(m) ) fm(w) ftL

To our knowledge, the only direct measurements of spectra made so
far are measurements of spectra of G, I. Taylor.
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If the turbulence is homogeneous and isotropic, there correspond to
the equations (8) the relations

@) =2 @) fy(0) = £(w) (9)

3. Relations Between the Spectra of PTurbulence and
the Correlation Coefficilents

In reference 5, G. I. Taylor studies the relation existing between
the spectrum of turbulence measured at a fixed point and the correlation
between the simultaneous longitudinal velocitles at two polnts situated
on a straight line parallel to the direction of the mean velocity (longi-
tudinael correlation).

Assuming that the turbulent velocity 1s very small relative to the
mean velocity (ref. 7 - equation (7)), he finds that the spectrum and the
correlation are determined from one another by Fourler transform, according
to the equations

oo

Ty (w) = ;E%L/; cos(%é)Rx(s)ds (10)

R, (x) =j:° cos(%—x)ft(s)ds (11)

Teylor's calculation mey be applied for determining the relation
between the longitudinal spectrum and the longitudinel correlstion, but
in this case 1t 1s not necessary to maske a hypothesls concerning the
magnitude of the turbulent velocity. We obtain thus equations analogous
to those of Taylor

[+ -]

£y (w) =£ . cos(%g-)Rx(s)ds (12)
R, (x) =/;°° cos(%f)fx(s)ds (13)
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Likewise, one may write for the transverse spectrum and the transverse
correlation the equations

fy(w) = %Aw cos(%)Ry(s)ds (14)
Ry(y) = fo i cos(F )£, (s)as (15)

Study of the turbulent velocities at & fixed point in space will lead
to the equations -; _

i () = %L/;m cos{ws )Rt (s)ds (16) )

Re(h) =L/;°° cos(sh)ft(s)dg ; (17) .

which give the relation between the spectrum of @. I. Taylor and the cor-
relation at the fixed point. - -

Comparing the experimentsl spectrum ft(w) with the one obtained by
application of equation (10) to the correlation curve Ry (x) (ref. 7 -
fig. 1), and inversely, making the comparison between the correlation curve
and the one given by equation (ll) starting from the spectrum (ref. T -
fig. 2), Taylor has found that the points calculated by Fourier transform
are very satisfactorily located with respect to the curves. Applying (10)
and (12), we find = :

fr(0) = fx(w) - (18)

and (11) and (17) give

Rg (h)

This comparison does not verify in general the exactness of the equa-
tions (10) and (11) as one might be tempted to believe, but only the fact
that in this particular case the spectrum measured at a fixed point and
the longitudinal spectrum are identical.

Ry (hU) (19)
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A. A. Kalinske and E. R. van Driest have made measurements of cor-
relation coefficlents between the trensverse turbulent velocitles in
water (ref. 14). Comparing the correlation curve between the simultaneous

velocities R;(hu) with the curve for a point fixed in space R:(h), they

find that the two curves diverge more and more when h (or x) increases
(fig. 4).

This is easily understendeble. Thus we consider a turbulent flow of
the mean velocity U. Assume two polnts P and Q located on & straight
line parallel to the mean motion, separated by a distance x, with Q
downstream of P. The correlation coefficlent between the parallel com-
ponents of simultaneous turbulent velocities at these two points is Ry(x).

We assume now that P 1is displaced with the mean flow. After a time
interval h =%, the point P will be at Q. ILet Rm(h) be the correla-

tion coefficient between the parallel components of the turbulent wvelocity
at a point which is displaced with the mean velocity. The correlation at
a point fixed in space (here the point Q) depends on these two correla-
tions. If Rp(h) = 1, the two coefficients Ry (h) and R,(hU) are equal.

Since the correlstion Rm(h) diminishes in general when h 1increases,
the coefficients Ry(h) and R, (hU) will differ the more, the larger h
will be.

The correlastion curve Ry(h) obtained by E. G. Richerdson (ref. 16)

following the mean flow of the water does not correspond, elther, to the
curve Ry(x) (fig. 5). Although for this experiment no correlation curve

at a fixed point is available, one may say with certainty that - like in
the tests of Kalinske and van Driest - an Important difference will exist
between Ry(h) and Ry(hU) because Ry(h) decreases apprecisbly even

for small values of h.

For these two series of experiments made in water (refs. 15 and 16),
one will thus have the inequalities

R (w0) # Ro(n) R () # R, (n)

unless h 1is very smell.

Consequently, the equations (18) and (19) which are verified for
the tests studied by G. I. Taylor (ref. T) will not be verified for these
two test series. The equations (10) and (11) are therefore not exact in
these cases.
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One mey assume that the two curves Ry(hU) and Rt(h) are identi-
cal when the correlation following the mean flow Rm(h) remains very

large to values of h =X +to which corresponds a negliglble correla-
up

U
tion between the simultaneous velocities. This emounts to imposing three

conditions:

(a) Ryp(h) must decrease very slowly, that is, the radius of curva-
ture at the peak of the curve representing this coefficlent must be very

d 0]
large, and the second derivative at the origin _EEEé;l must have & small
dh
ebsolute value.

(b) When x increases, R,(x) must become rapidly negligible so
x

that to small values of this coefficlent still correspond coefficients
Rm(h) of the order of unity. For the correlation curves, the negative

part of which 1s negligible, this may be expressed by requiring that the

[~]
correlation length L, =L/h Ry(8)ds be very small.
0

(c) Finally, it 1s necessary that small values of h correspond
to large values of x or, in other words, thaet the mean velocity is

high. -
Thus one will have the general condition that the coefficient

2

mist be. very small. The value of this coefficient could serve as =
criterion of whether the equations (10) and (11) may be legitimately
employed. ' a

In the case of the tests studlied in the references 5 and 12, no
curves Ry(h) are at disposal, and the value of (20) cannot be calcu-

lated. In contrast, it is possible to compare the values of the ratio T

which in the tests studlied by Taylor varies between 0.022 and 0.005 second
and is in Kalinske's and van Driest's experiments equal to 0.118 second.

Because the number of tests made is insufficient, one can only say,
in an entirely arbitrary manner, that Teylor's equations may be considered

exact when the ratio %% is of the order of 0.005 second, and one must

expect that they will not be verified if this ratio is much larger.
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Studying the turbulence from lagrange's viewpoint, J. Kampe de Fériet
has obtained (ref. 3) the relations

fiplw) = 1%/; cos(ws)R_tL(s)ds (21)

o©

Ry1,(h) =L cos(sh)ftL(s)ds (22)

which determine the correlation between the longitudinal turbulent veloc-
ities of the same particle et two instants t and t + h, with the inltisl
instant t being varisble.

4, Equations Capable of Representing the Iaws of Correlation
and the Spectral Functions

It 1s not possible to determine a general law for the spectral func-
tion. However, it is convenlent to represent the spectral function in
the form of a simple equation which evidently can be only an empirical
expression., Instead of representing the spectrum by an equation, one
mey represent the correlation curve which can be more easily determined
experimentally than the spectrum.

For representing the correlation law, the National Bureau of Standsrds
has suggested (ref. 11) use of the relation '

Ry (y) = xp( I‘—;’—‘) (23)

Je Ka.mpe/ de Fériet studies (ref. 3) a certain number of spectral functions
which lead, for the correlation law emong others, to the law of Gauss

2
Ry, (h) = exp (— E ﬁ-) (2k)

and to a law similsr to the one given in the reference 1l.

Ryp(h) = exjp(- JL%IF) . (25)
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These laws are such thet the correlation céefficlent remsins con-~
stantly positive. However, several experimenters obtalned negative coef-
ficlents by measuring the correletion between the turbulent velocities
at two points relatively far apsrt. This form of the correlation law is
an indication of important changes in the general chearacter of the
phenomens, due to turbulence, and more particularly in the turbulent 4if-
fusion. Therefore it will be useful to dispose of the correlation curves
which yield negative correlation coefficients.

The correlation function Ry(h) and the sPectral function ft(w)
are connected by the equation

R (h) =k/; cos(sh)fy(s)ds (17

But there exists a very important difference between these two functions.
Actually, it is necessary and sufficlient that a funection, in order to be
capeble of representing a spectrum, satisfies the conditions

fy(w) > 0 (26)

fw £4(s)ds = 1 (27)
0

In contrast, it is difficult to recognize whether Ry(h) 1s a cor-

relation function, that ls to say, whether it is the Fourier transform
of a positive function. These functions form the class of "positive
definite" functions which have been the object of numerous studies, in
particular of the fundsmental report of S. Bochner (ref. 12). Since the
criterion formed by the necessary and sufficlent conditions which

S. Bochner presents 1ls not easily menageable, we are, in general, con-
tent with an examination whether the functions we intend to select
satisfy the following four conditions which are necessary but not

sufficient

-1g R(h) g + 1 (28)
fm Ry(s)ds > 0 (29)
o . -
lim Ry(h) =1 : (30)

h—0
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lim Ry(h) = 0 (31)
he—yx

One may, moreover, require that the first derivetive of the correla=
tion function be zero for h = 0 wvhich - with equation (30) taken into
account - will give

2r(0
df&(la—k 0 (32)

This inequelity is not verified for the functions studied in
chapter ITI.

After having assumed a function for representing the law of correla-~
tion, one can calculate the spectral function by meking a Fourier transform.

In order to determine directly the equation which cen represent the
spectral function, one will, beside the equations (26) and (27), also set
up the conditions

w]i)mo £ (o) = :%j(; Ry(s)ds (33)
lim fi(w) =0 (3%)
w—30

For each of the functions suggested for representing a correlstion
curve or a spectral curve, the coefficilents will be limited in such =a
manner that these conditions will be wverified.

All conditions given for the correlation law Rt(h) and for the
spectrum ft(w) can be applied also to the other spectra and correlation
laws. In this case, one must replace, in the equations (26) to (34), the

expressions h, Rg(h), f£i(w) by %, Re(x), Uf (w) or by %, Ry(y),
Uf,(w) if the correlation between the simultaneous longitudinasl turbu-
leht velocities is studied, by h, Rp(h), f,(w) if the turbulence

along the meen flow is studied, and by h, Rig, ftL(w) if the turbu-

lence is examined from the viewpoint of Lagrange, by studying the fluc-
tuations of velocity followlng the particles.
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5. Theoretical Equations in a Flow of Homogeneous
and Isotropic Turbulence

Th. Kérmén has demonstrated (ref. 10) that one has in a flow of
homogeneous and isotropic turbulence

T L 1 _ dRN(r)
Ry(r) = R(r) + 5 r —o— (35)
Applying the equations (3') and (5"), one finds
Ry(y) = Ry(y) + & ¥ Eﬁgézl (36)

where Ry(y) represents the correlation law Ry(x) in which the x

has been replaced by y. This equation gives the relation between the
longitudinal and the transverse correlation for the longitudinal turbu-
lent velocities.

Application of the equations (3') and (3") yields for the correla-
tions between the transverse turbulent velocitiles the relstion

\'2
R;(x) = R;(x) + % X Eﬁgéfl (36')

Integrating the differentlal equation with the second member (36)
and calculating the integration constant-by means of- the condition (31),
one finds the longitudinal correlation as a function of the transverse
correlation LT - ' -

X
Re(x) = x%/; sR,(s)ds __ (37)

The tensor equation of Kérmén (ref. 10, equation (1)) permits cal-
culation of the correlation Ra between the longitudinael turbulent

velocities at two poimts placed on a straight line of arbitrary direc-
tion A, as functions of the correlations Ry and R&. One obtains

Ra (52 + 52) - xe—xf—yz R, (52 + ¥2) + —xg%_?"fiy (2 +2) 8

One may represent- R, as a function of the longitudinal correlation

or ?f the transverse correlation alone, by applying the equations (36)
or (37).
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Equation (13) gives

[=¢]

xRy (x) =f0°° cos(%)fx(s)d(sx) =fo cos(ls—l-)fx@-)ds

and, teking the condition (30) into account, one obtains
lim xR (x) =0

XD

As a result, one finds by integra,ting the two members of equation (36)
the very Ilmportant reletion?

In a flow of homogeneous and isotropic turbulence the length of the
transverse correlation equals half the length of the longitudinal
correlation.

In the same manner one obtains by integrating the equation (361)

'V'__l_-V '
Lx—aLy (39')

Replacing Ry(s) in equaetion (14) by its value given in (36), and
taking (12) into account, one finds the equation

fy(w) = -%- felw) - % ® dficT(w) (ko)

which gives the transverse spectrum as a function of the longitudinal
spectrum for the longitudinal turbulent velocities, and applying now the
equations (9), one obtains the relation between the spectra which give
the distribution of the transverse turbulent energy

-
f:r{(a)) = -Jé'- f;(a)) - %—m Ei%- (kot)

2‘I‘h:i.s report was ready for publication when we learned from the
memorandum of K. Wieghardt in the Luftfashrtforschung of February 28, 1941,
that this relation had already been demonstrated.
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Integrating the differential equation with the second member (40)
and determining the constant by the equation (53), one finds the longi-
tudinal spectrum of turbulence, the expression

£ (@) = aufw fyés) ds (41)
w 8 "

As G. I. Teylor has shown (ref. 6), the mean energy dissipated by
turbulent viscosity in the unit volume of a flow of hamogeneous and
isotrople turbulence is equal to

—_— 12
o =15 B2
K2

where A 1is a length representing the dimension of the smallest eddles
responsible for the dissipation. This length is linked to Ry(y) by

the relstion
1 1 - Ry(y)
=5 = lm |Z— 3"
N y—s0 [ y

When a parabole which passes through 1ts peak 1s superimposed on
the transverse~correlation curve, A 1s the abscissa of the polnt of
intersection of the parabola with the y-axis.

One may alsc write (ref. 10) the relastion —-

1 _ @Re(0) _ 1 aBRy(0)

A2 al 27 g2

which shows that A 1s equal to the radius of curvature at the peask of
the longitudinal-correlation curve. In order to obtain a finite dissi-
pated energy, the second derivative must be zero at the peak of the cor-
relation curve.

(k2)

We call the "dispersion of & curve with respect to an axis" the
quotient of the second-order moment of the area bounded by that curve
and the aresa itself. The standard deviation 1s equal to the square root
of the dispersion. ©Since the area bounded by the spectral curve is equal
to unity, one will have for the disPersion of the longitudinal turbulence
spectrum the expression X . . _

Rﬂgl u/‘ 8 fx(s)ds
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and since, on the other hand (ref. 3, p. 172)

«
.% safx(s)ds = - d—x(O)_
U= Jo ax?

one finds, applying equation (42), that the dimension A is equal to
the ratio of the mean velocity and the standerd deviation of the longl-
tudinal spectrum

e (43)

The dimension of the smallest eddies responsible for the dissipation,
referred to the longitudinel-correlation length, msy be given as a func-
tion of the spectrum alone by the relation

= (431)

[:;5] lim f(w)
X w—0

A

LS
Ly

Making the same calculetion for the transverse spectrum, one finds
the dimension A as a function of the standard deviation of that spectrum

A=z J—ﬁy (k)

The equations (43) and (44) give the relation

2] - 2], (15)

The dispersion of the transverse spectrum is twlce the dispersion
of the longitudinal spectrum when the turbulence is homogeneous and
isotropic.

When one studles the correlation between the longitudinel velocities
at a fixed polnt, one can define a guantity which is analogous to the
dimension A and is given by

12 - dER‘t;O) (46)
g dh




32 NACA TM 1436

The time Ay 1s equal to the inverse standard deviation of the
spectrum of G. I. Taylor -

M = = ] (47)

a?l ]

and referring this time to the correlation time Ly, one finds

% = £ L (47')
\/[w_«?:lt 1m £, (@)
w—>0

6. Nondimensional Notations

In order to slmplify the calculetions and the notétions, we employ,
in what follows, dimensionless coefficients. We put in Euler's systenm

= L == =X = B
p_IA g fo n I’y T E

and

The correlation coefficients between the simultaneous turbulent
velocities are

BA(D) = RA(I‘) Bx(g) = R_{((x) By('ﬂ) = Ry(y) Et(T) R-b(h)

and the spectral functions

(%) = . P (o) = Uyle) (%) = Uty () ‘Pt(ﬂt) _ Ty (w)

In L Ly i
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The dimension of the smallest eddies responsible for the dissipation
cen be referred to the longitudinel-correlation length or to the
transverse~-correlation length

A A A M
Ian = — 1, = = 1y = e 1, =
A7 In * Ly YLy Ly
In Iaegrange's system one puts
h =
T, = —— and Q1 = aly,

Ly,

The correlstion coefficient between the turbulent velocities of the
seme particle at two instents t and t +h 1is

Byp(™) = Ryp(h)
and the spectruym of J. Khmpé de Feériet

£ip, (@)
LtL

The conditions which must be imposed so that the function represents
a correlation law, are written with these notations

Pr (@) =

-1 < Balp) g+ 1 (48)
/: Ba(s)ds = 1 (49)
lim Ba(p) =1 (50)
p—30
lim B\(p) =0 (51)

CPA(QA) =0 (52)
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To obtaln & finlte dissipated energy, it 1s necéésary that

Efgéégl <0 (53)
dp '

We study, however, 1n chapter III, correlation laws which do not
verify this last inequality as is also the case for the law given by the
equation (23). We assume in these cases that the curve is approached in
the region where the values of p are very small, that is, at the vertex
of the correlation curve and that it must be rounded off there to make
the first derivative zero.

In order to determine directly a function suitable for representing
the spectrum, one will pose, aside from (52), the conditions

RGN (54)
lim a(%) = 2 (55)

Q—70
=0 (56)

lim  @A(8)
Q—>0
The equations (12) to (15) which determine the relation between the
spectrum and the correlstlion law wlll be written with the new notations

o

cpA(QA) = %j; cos (QAS) BA(s)ds - (57)

Rale) = [ conap)on(s)as (58)

For a study of the longitudinal spectrum and correlation it suffilces
to replace p and A 1in the equations (48) to (58) by & and x; for
study of spectrum and transverse correlation, these expressions are
replaced by 71 &and Y.

In the study of the homogeneous and isotropile turbulence of a flow,
one may spply the equation (39) which gives

n =2t (59)
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The law of transverse correlation is given as a function of the law
of longitudinal correlation by the relation corresponding to (36) which

is written

By(n) =Bye(Fn) + 5 dng ") (60)

and to the equation (57) there corresponds

6
B () = 5 fo 5B, (s)ds (61)

The equation (42) gives

2 2
_];_ - a Bx(o) end 1 = _; d By(O) (62)
22 ag? 2 2 e

When the turbulence is isoctropic, one has ﬂy l/2ﬂx; consequently,

the equations (40) and (41) become
a 2
% (%) = o (%) - 9 ﬂ;yi) (63)

| o

cpx(QX) =32 52

T gyle) 6L
xfl/a Q. % (&)

and represent the relation between the longitudinal spectrum and the
transverse spectrum.

The equation (45) which gives the relation between the dispersions
of the two spectra, will become

[, - 4], ©
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Thus, representing the spectra in dimensionless coordinates, one
finds that in a flow of homogeneous and isotropic turbulence the dis-
persion of the transverse spectrum equals half the dispersion of the
longitudinel spectrum. Equetion (65) represents the relation between
the dispersions of the two spectra when the longitudinal spectrum is
represented as a function of .Qy, and the transverse spectrum as a func-

tion of Qy. If one represents the two spectra as functions of the same

varisble, of Q,, for instance, one will have the relation

(8] - =[], - (65")

Y

To the equation (43) there corresponds the very simple relation

ly = —1 (66)

92
Xlx

which shows that the dimension of the smallest eddies referred to the
longitudinal-correlation length 1s equal to the inverse standard deviation
of the longitudinal spectrum.

If one studies the turbulence by following the particles in their
motion, one determines the conditions which must be satisfied by the
equations capable of representing the correlation law and the spectral
function by replecing in the equations (48) to (56) p and A by Ty

and tL. The equations (21) and (22) of J. Ksmpe de Feriet will be
written

<]

Per, (1) = %fo cos (1 8) Byp,(s)ds (67)

EtL(TL) =j; COS(STL)q).tL(S)dS _ (68)

and will have the same form as the equations (57) and (58).
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CHAPTER IT

METHODS USED FOR REPRESENTING THE EXPERIMENTAL CORREIATION

CURVES OR SPECTRA BY ONE EQUATION

7. Usefulness of the Representation of the Correlation
Curve and of the Spectrum by One Equation

Representatlion of the correlatlion curve by one simple equetion may
be very useful. Thus it 1s easy - when the law of longitudinal correla-
tion between the components of simultaneous velocities 1s known - to
calculate the law of transverse correletion for a flow of homogeneous
and isotropic turbulence with the equation (60). Inversely, if the law
of transverse correlstion 1s given, one finds, with equation (61), the
longitudinal correlation. The dimension A (or 1) of the emallest
eddies responsible for the dissipation of energy by turbulent viscosity
can be determinied by (62) for all functions which have a second deriva-
tive at the origin. The greatest service the correlation equation
renders is in permitting the calculation of the spectral function with
the equation (57) without graphical integrations which are very time-
consuming and have little accuracy.

One mey use the equations representing the correlation curve for
study of the diffusion phenomens and for calculation of the measurement
correction with & hot wire of nonnegligible length as well as for the
correction of measurements with uncompensated hot wires. Moreover, it
ig desirable to be able to represent the turbulence spectra or the corre-
lation curves by equations of the seme general form the coefficients of
vhich permit a comparison between different turbulent flows.

If the spectrum is represented by an equation, the correlation law
can be calculsted with the equation (58). This correlation law may then
be employed for other calculations.

8. Apparent Correlstion Length

When one has a certain number of experimental points at disposal
and wants to determine the correlstion law most convenient for repre-
gentation of the test results, one will if possible begin with the cal-
culation of the correlation length by planimetric measurement of the area
bounded by the curve which best represents these points. When the corre-
lation curve is such that negative correlation coefficients exist, that
is to say, when 1t intersects the r-axis, or when this form is considered
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possible, it will then be necessary to measure the coefficlents BA(r)
up to values of r sufficiently large to allow determination of L,

with sufficlent accuracy. It will frequently be useful to employ, for
the study of such correlation laws, what is called the "apparent" cor-

relation length
(ep) *o
LA =J; RA(s)ds

where r, represents the smallest value of r for which the correlation
curve intersects the axis of r (fig. 2).

Using the dimensionless coefficients, one will have
(ep) 5
A 0
XA = —I'Z- ’=f B_A(S)ds (69)

where pg represents the smallest value of p for which R (p) becomes
zero. Putting

Je2) __x (EP) _ _x NGO
(%) (%) 2]
A X y
one will have
o(ap) 1 ¢ (ap) 1 N2 1 (70)
p XA € Xx ] Xy

For all correlation laws which do not glve negative correlation
coefficlents, one will have

L(ap)

A =LA and 'X.A=l

9. Representation of the Experimental Results by One Equation

(a) In the following chapters we give a large number of curves which
represent correlation laws of different forms. For determining the most
convenient one, one will begin by constructing the experimental curve
representing B as a function-of §&, 1%, or T, according to the case;

we will draw it to the same scale as the curves given in the present report.

Superimposing on these curves the experimental curve (drawn on tracing
paper), one will see quickly which one is the equation which may best
represent the experimental results.
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After having chosen the form of the equation, one can employ three
methods for calculating i1ts coefficients.

(¢) By interpolstion or by trial and error

(B) By taking as & basis the area bounded by the experimental curve,
and the moments of different order of this ares

(7) When the correlation curve is represented by a polynomial, one
can determine the coefficlents by fixing beforehand the number of points
of the experimental curve through which one will have the calculated curve
pass. One will then determine the coefficilents by calculating the coef-
ficients of the polynomial.

In order to epply the method* (b), one has to calculate a certain
number of moments of the area bounded by the correlastion curve. Assume

(K) o
A Kr(s)a 1
fo_ s¥R(s)ds (1)

A

to be the moment of the order k. One will have, in particular for the
area bounded by the curve

() p*° _
._l_'._.A -J; BA(s)ds =1

the moment of the first order will be

l [y -]
L( ) = / sR,(s)as
= A o
and the moment of the second order
(2) *
L = f saR_A(s)ds
A 0
After having selected the law which represents RA(p), one finds
by integration the equations which give LA. On the other hand, one

determines graphically or with a planimeter> moments for the experimental

3certain plenimeters (for instance, the apparatus of Koradi) meagure in
a single operation the area, the static moment, and the moment of inertia.

(O), L(l), and L(a).

Using such a device, one finds simultaneously L L
A A A
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curve. Thus one obtains (K + 1) equations which permit calculation of
the coefficients of the correlation law. Since the number of moments
used is never infinite and since the correlation curve resulting from
this calculation can frequently be different from the experimental curve,

both giving the same values of Ez, it is always necessary to verify the

result.

Wheni the correlation curve intersects the axis and one does not have
at disposal measuring results up to sufficlently large values of p, it
mey be useful to employ moments of the "apparent" surface of the correla-
tion curve

(ap)
(x) =t ®o sKR s)ds
[E ] fo R, (s)d (72)

A &+l

one will have, in particular - . — —

[L-(z)] (aP) ] LA

(b) Measurement of the spectrum furnishes an experimental curve £ (w)
as & function of w. If the correlation length is known, the function o(Q)
is easily determined. In the opposite case one can calculate it 1f one
assumes the form of the correlation law. For this purpose one traces £(w)
as a function of ® using logarithmlic coordinates, and one superimposes
this curve on the curves corresponding to the selected correlation law,
with consideration of the relstion af(w) = Qp(Q). Thus, one finds the
relation between w and & and hence the correlation length, and one
obtains at the same time the coefficients of the correlstion law, and con~
sequently also the equation of the spectral curve.

The methods employed for representing the correlation curve by an
equation may serve for finding directly the equation which can represent
the spectrum. In this case one will have for the moment of the order K
the expression ’ - -

" =f s"p(s)ds (73)
0
and in particular . —

(0) =k/;m.¢(s)ds ='1“ E(E) =L/;°° szm(s)ds = 55

1=
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10. Experimentsl Results

In table IIT we give a list of the experimental results on measure-
ment of the correlation coefficients and of the turbulence spectra which
will serve us in what follows for comparison with the correlation laws and
with the spectral functions. Every experimental curve has a name (several
letters followed by a number), and we shall indicate it in the future
simply by this name. The largest number of experiments furnishes the
longitudingl-correlation coefficients Rx and transverse-correlation
coefficients Ry. The curves KD.la, KD.Ib give the correlation coef-

ficients R§ and R§ between the components of the turbulent velocities
perpendicular to the direction of the mean velocity. The experiment NPL.2

-
gives the correlation curve RtL taken from Lagrange's viewpoint, that is,

considering the transverse turbulent velocities of the same particle at
two different instants. This correlstion curve has not been obtained by
direct measurements but by performing a calculation starting from the
turbulent-diffusion tests (ref. 6, ps 473). The experiment EGR.lc fur-
nishes the correlation Ry, between the longitudinal turbulent velocities

et a point which is displaced with the mean velocity of the flow. KD.le

gives the correlation Bz between the transverse turbulent velocities at

e point fixed in space (with respect to the hydrodynsmic center).

The spectra have been determined by making experiments at a polint
fixed in space, and concern the energy distribution of the longitudinal
turbulence. Thus, one does not have at disposal either a longitudinal
turbulence spectrum fy(w) or a spectrum fi;(w) of J. Kempé de Fetriet.

In table IV we gilve the values of the apparent correlation length

L(ap) and of the true correlstlon length IL. The latter is given only
for the experiments where the correlation curve intersects the abscissa
axis. For the experiments NBS.2 to NBS.6, for which measurements have
been made with positive and negative dlstances Yy, we calculated the
correlation length by taking the average of the lengths measured for the
two parts of the curve. In the same table we present also the moments
of the first and of the second order of the "apparent" surface of the
correlation curve. We did not calculete these moments for the experi-
ments H.la, 2a, 3a, ka for which their determination with sufficient
accuracy would be difficult.

(ap) (ep)
Figure 6 represents [;(2{} as s function of L(l)] for
the correlation curves Ry and Ry. On this figure only the experimen-

tal points related to the wind-tunnel tests are given. It is found that
these points can be represented rather satisfactorily by a straight line.
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The points which correspond to the laws of the form 3A(p) = exp(~|p|)
and 13A(p) = exp (- % p2) are placed rather close to that straight line.

It is useful to remember that in a2ll tests made in the wind tunnels the
turbulence is measured downstream of the grid.

Assuming for the experiments for which one does not find a value of

the apparent correlation length L(ap) = L, one is able to glive the ratio

of the longitudinal correlation length and the transverse correlation -

length and to verify the equation (39). These ratios are given in table V.
v

For the experiments KD.la, 1b we glve ;% the experimental value of which

X
may be compared to the one glven by equation (39').

In a flow of homogeneous and lsotropic turbulence the values of these
retios must be equal to 2. When one studles the experimental results
obtained downstream of a grid and demonstrates by the relation existing
between longltudinal end transverse correlation that—the turbulence 1is
homogeneous and isotropic, one has to understand that this property is
approximate and concerns only the region in which the tests have been
made. One states, 1n fact, that the intensity of the longitudinal tur-
bulence decreases when the distance from the grid increases.
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CHAPTER III
THE CORRELATION LAWS WHICH DERIVE FROM R,(p) = exp(-ip])

We study in this chapter the correlation laws of the form

=K
BA(p) = [Ao + nZl‘ATl COS(mnCp):lexp("clp” (7‘"’)
n=.
Ra(p) = |1 + > Ancnlpln exp(-cjpi) (75)
n=.
n=K
R (p) = 2 A, exp(-cnjpi) ('76)

ar, (0)

For these laws, the condition —:%S—— = 0 1s verified only in
exceptlonal cases; the dissipation energy is therefore generally not
finite. These laws are nevertheless of interest because they are rela-
tively simple and can frequently represent satisfactorily the experimental
correlation curves. Although it 1s not possible to apply them to the cal-
culation of the value of 1 (or of A), they can nevertheless serve for
determining the spectrum of turbulence end for the application of Th. von
Kermen's law in a flow of homogeneous and isotropic turbulence.

Since the aim of this study is to permit the selection of an uncom-
plicated equation for representation of the experimental curve, we shall
exemine only the simplest examples of these laws.

1. Iew R,(p) = exp(~|pl)

If one makes in the equations (T&), (75) K = O and in equation (76)
K =1, one finds the slmplest example of these laws

Ralp) = exp(-1p1) (77)

The use of thils equation for representing the transverse correlation
curve has already been proposed by the National Bureau of Standards as we
.have recalled in the first chepter. H. L. Dryden also has utilized it,
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by analogy, for representing the longitudinal correlation, and has deduced
from it the spectral function (ref. 12).

Making the Fourier transform according to (57), one finds for the
spectrum of the turbulence following a straight line in the direction A
the expression =

mmn=§?ig (78)
A

() Assume the longitudinal-correlation law corresponding to (77)
be : .

Ry (t) = exp(-1¢]) _ (79)

In a flow of homogeneous and isotroplec turbulence, one may apply the
equation (60) for determining the transverse-correlation curve which will
be

1 1
By(n) = (1 - Elnl)exp(- Elﬂl) (80)
and which one can represent as a function of &, applying (59) by
5y (8) = (1 - e fle(-1e1) (80')

The correlation curve By(n) intersects the absclssa axis for the
value g = L  and becomes negative for the values larger than 1, passing
through the minimum: [By(n)]mi = -0.5 exp(-3) = -0.0249 for 1 = 6.
Figure 7 represents the curves:n R (&), By(n), and 'By(g).

One can give the correlation law also with the apparent correlation
length as a basis. One will obtain Xx = 1 and applying equation (69)
one finds: Xy = 1 + exp{-2) = 1.1353. Taking (70) into account, one
can trace By as a function of n(ap). The curve whilch represents the

longitudinal spectrum corresponding to (78)

ox(Q) = % ——— ‘ (81)

is given in figure 8. .
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(b) Assuming the transverse-correlation law

B (n) = exp(-|n) (82)

one finds, in a flow of homogeneous and isotropic turbulence, the
longitudinal-correlation law

R (&) = -2—2'—2- 1-(1+ 21tl) e@(‘-2lél):| (83)

which can be expressed as a function of 17 by the relation
2
Re(n) = St - (24 nl)exe(-1nl)] (83')
n

The curves represented by the three last equations are given in fig-
ure 9. To the.transverse-correlation law (82) there corresponds the
transverse spectrum anaslogous to (78). In a flow of homogeneous and
isotropic turbulence, one finds the longitudinal spectrum by applying
equation (64). One obtains

?,.(Q) = ;%%[;25 arc tan(%) - l] (84)

The two longitudinal spectra (81) and (82) are compared in figure 8.
Iet us note that, by assuming the correlation law (82), one does not
obtain the spectrum (81) employed by H. L. Dryden (ref. 12), but the spec-
trum represented by the equation (84) (when the turbulence is homogeneous
&nd isotropic). Besides, the two spectra do not differ greatly.

(c) Compaering the transverse-correlation law (82) with the results
of the experiment NBS.l, one finds (fig. 10) that the experimental points
are relatively represented by the theoretical curve. A similar comparison
made for the experiment NBS.7 gives a still better result (fig. 11). With
the transverse-correlstion law known, one can give the longitudinal cor-
relation, for homogeneous and isotroplc turbulence; it will here be deter-
mined by the relation {83). The theoretical curve and the experimental
points (NBS.Ta) have been drawn in the figure, for the longitudinal cor-
relation Bx(n), and since the points are not placed on the curve, one

can say immediately that the turbulence of the flow in which the experi-
ments NBS.7 have been made is not homogeneous and isotropic.
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12. Law

n=K
Ba(p) = [Ao +Zl Ap cos{mp cp):leicp(-cml)
n=

The equation (T4) may be represented in a slightly different form
by replacing m, which has an arbitrary value by integers n. One then

obtains the law
n=K
Balp) = I:Z'__; Ay cos(ncp):l exp(-clpl) (85)

which comprises a Fourier serles. An application of this series will,
besides, be difficult because it will require, in general, employment

of a rather large number of terms. We study here only the simplest laws
which have the form of the equation (T4), and in the first place, the
one which one obtains when Aj =0 and K = 1.

(a) Law EA(p) = exp(-c|p|)cos(mep).- To the correlastion law of the
form

Ba(p) = exp(-clol)cos(mep) (86)

there corresponds the spectral function -

=2 1 T 8
(@) ﬁ[;e + (mc + Q)2 * c? + (me - O)%] (&7)

Integrating the equation (86) from zero to infinity, one finds

1 .

C=T—
m- + 1

The spectral function is always positive. Since the equations (86)
and (87) depend only on the absolute value of m, one can admit that m
is always positive. -

The correlation curves (fig. 12) have the form of a demped sine,
the damping of which decreases with increasing m. When one has obtained
an experimental correlation curve of this type, one might have difficulties
in measuring its correlation length with sufficient precision and then to
represent it as a function of p, in order to compare the experimental
curve with the theoretical curves. It will be much easler to make the
comparison on the basis of the apparent correlation length. The value pg
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for whlch the correlation curves intersect the p-axlis is given by

L. Applying equation (69), one finds the ratio of the apparent

p =

0 2mc
correlstion length and the true correlation length which depends only on
the value of the coefficient m

T
XA=mexp-z)+l

and which is represented in figure 15. Figure 13 gives the correlation
curves as functions of p(aP). The abscissas of the intersection points
of these curves with the axis of the p(aP) are represented as functions

of m in figure 15. Figure 16 gives the ebscissa [p(ap)]gmin of the

minimum of the correlation coefficient as a function of m, likewlse the
value of this minimum

[p(ap)]Bmin = -;L(- mein = 3-12 nTlc- arc ta.n(—% + :t)

[I_}A(p)]min = ;2—”:-; exp [—% arc tan (-% + :t):l

The spectral curves are represented in figure 1h. These curves pass
through maxima, the values of which increase with m. Figure 17 gilves

the value of [QA]cpmax to which corresponds the maximum of the spectral
function and which one celculates by applying the relation

2 _emfw®+ 1 - (m2+1)
|:QA:Iq"max (1!12+l)2

and also the value of [CPA(QA)] which one obtains by applying this
mex

relastion to (87). Since Q, is aiways positive, the maximm of the
spectral function corresponds to QA = 0, for all values of m smeller

than \/5.75.

As has been said In the second chapter, the coefficlents of the
equation representing the correletion curve mey be found by calculsting
the moments of different orders for the experimental curve and by comparing
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them with the moments of the theoretical curve. In the actual case only
one coeffilcient is to be determined. Also, it is sufficient to know the
moment of the first order. When one represents the correlation law as a

function of p, one finds L 1) =1 =~ m?, and by giving the curve as a

function of p(aP) one obtains, applying eguation (Té)

[&(1)](@) ) Xig [%(1 b n2)+ an-i]e@(’gﬁ) + (1 _ mz)

A

These two moments are glven as functions of the coefficient m in
figure 18.

(a) When one has, in a flow of homogeneous and lsotropic turbulence,
e longitudinel-correlation law of the form. N

R (£) = exp(-c|&|) cos(met) (88)
where
c = 1
me + 1

one finds for the transverse correlation, epplying the equation (60):

B,(n) = [(1 - § cin)eos(d men) - f melnlotn( mc|n;)]exp (-2 c1ni) 89)

One can express this correlation as e function of &, by applying
to this last equation the relation (59).

(B) When the transverse-correlation lew in a flow of homogeneous and
isotropic turbulence is ) _ =

Ry(n) = exp(-c|n|)cos(men) (90)

one finds with equation (61) for the longitudinal correlstion

R, (£) =gl_2 [ﬁz(lgl + 1l)sin(2mcle|) -

%(2[&[ +1 - nﬁacos(2mc§€]exp(-2clgl) + %(l - m2) (o1)
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(7) Since the points of the experiment NBS.8 are placed along a curve
the shape of which recells the curves represented in filgure 13, we try to
represent them by such & curve. For obtalning the coefficient m, one

(1) (ap)
takes L in table IV and one finds in figure 18 m = 0.45.
Transferring this value into equation (90), we find the correlation curve

which is given as a function of p(aP) in figure 19 and which represents
the experimental points quite satisfactorily.

(b) Law R,(p) = [AO + Aq cos(mcpﬂ_exp(-clpl).- When one makes in
equation (T4) K = 1, one obtains the correlstion law of the form

R (p) = [AO + Ay cos(mcp)] exp(-CIpl) (92)

The spectral function which is calculated with the equation (57)
will be

28 A A
n®) =295 s+ 1 + L

(93)
P+ 0® 2y (@ + me)@ @ + (@ - mc:)2

For determining the coefficients of these equations, one must apply
the conditions (48) and (55), and one obtains

Agm® + 1
=l—A0 and c=£—
m2+l

A

which permits to give (92) and (93) as functions of only two coefficients.
The coefficients Ap and m cannot be arbitrary, and their values are

fixed by the inequation

1, (5m2 + 8) + V16m¥ + 80m2 + 6k
"2 << o2

The ratio of the apparent correlation length and the true correla-
tion length is calculated with the equation (69), and one finds the
relation

X =1 - A_O_mjé_-l-_l-l}o me +m—(—§§:—z")— \Il - %(ﬂexp(-clpol)

where

Ao
lpo| = n:ll'—c arc cos(AO——_ )



50 NACA T™ 1436

As a consequence, the correlation curve 1ntersects the p-axis only
when Ao < 0.5.

The correlation curve 1s monotonous in the interval

(=2 + 1) ~ 2 + (w2 +l)+fm2+1

II].2 <A0< m2

and outside of thls interval the absclssas of the maxims and the minims
are given by

1 Ao 1 . 1
= e i — - 1IN [em————
P%E =O| = [Etrc 8 n<AO e l) arc s n('__m2 - l)

We give in figure 20 the value of Aj es a function of m verifying
the conditions (48) to (52). The admissible values of the coefficients Ag
and m are divided into three types: .

First, tHhe coefficients for which %%é,< 0, that is, for which the

correlation curve does not present either minimum or meximum, with the
curve descending continuously from 1 to O

Second, the coefficients for which 0 £ EA £ 1 but for which %%A

can become negatlve so that the correlation then presents positive maxims
and minima

Third, the coefficients Ag, m for which -1 ( qA <1 wvhich gives
correlation coefficilents presenting positive mexims and negative minima.

Figure 21 represents the correlation laws as functions of p(aP)
for a few values of Ay and of m, and figure 22 gives the corresponding
spectral functions. One finds again in these figures_the curves already
given previously since one obtains the law’ (77) when Ao = 1, and has the

equation (86) for Ag =
These curves permit representing the experimental results by suyper-

imposing the theoretical curves on points traced &s functions of p ap),
For trying to determine the coefficients Ag and m, using the surface

moments of the curve, it would be necessary to give the moments of the
first and of the second order.

() When.the longitudinal-correlation law is of the form

B,(8) = [Ao + Ay cos(me|e])] exp(~cle|) (94)
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one finds for the transverse correlation, in a flow of homogeneocus and
isotropic turbulence, the expression

Bo(n) = I}-o( - % clnl) + Al( - % c|nl)cos(12-. mc'q) -
-)_:'I'A:L mc|n|sin(-32= mc|'q|)]exp (—%c[nl) (95)
which can be glven as a function § by

By(¢) = (l - %‘-.CIEI)BX(E) - £ &) meltlexp(-cltllin(melt])  (95')

(B) To the transverse-correlation law

Ry(n) = [Ao + Ay cos(men)]exp(-meini) (96)

there corresponds the longitudinal correlation

Ry(t) = Z;LE Ay of + :—2 {Al(mtgl + 1)sin(2melel) -

(el + 1 - n2)cos(2me) &) - Ag(Z + I8 1) texn(-2el2])
(o7)

which one can express as & function of 1n by applying the relation 7 = 2§.

(y) Superimposing on the experimental points of the experiment NBS.1l
the curves of the figure 21, one finds that one obtains a good representa-
tion when the coefficient m = 0.5 and when Ay lies between 2 and k.

We determined by trial and error that the best result corresponded to
Ag = 2.75. Figure 235 shows that the theoretical curve represents the

experimental results for this test perfectly.

Figure 24 gives the points of the experiment NBS.5 represented by
the curve m = 0.5, Ap = 2.

In figure 25 we represent the "'experM'ent H.4a by the longitudinal-
correlation curve m = 1.5, Ag = 0.6. This curve presents maxims and
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minima for lerge values of § as could be predicted on the basis of fig-
ure 20. Equation (95') permits calculation of the corresponding transverse-
correlation curve which represents very well the points of the experiment
H.Ub for the values of ¢ smaller than 1.2. One mey therefore assume

that the flow for which the experiments H.4k have been made approximates
rather closely & flow of homogeneous and lsotropic turbulence.

n=K

15. Law Rp(p) = [1+Z Ap cn(lpl)r]e@(-cmn-

n=1

(a) Law.- Ba(p) = [1 + &y clp{]exp(-c|pl)

When one makes in equation (75) K =1, one finds the correlation
law of the form o LT - Z

Ro(P) = [l + Aq CIpDexp(-CIpl) (98)
The corresponding spectral function is
2 _ g2
oa(a) =2 8fl 4 py =8 (99)
cT + O (02 + 92)

By integrating the equation (98) from zero to infinity, one finds
C=l+Al

and prescribing the conditions (48) to (52), one calculates that the coef-
ficient A; can lie between the limits

-1< A; g1

The abscissa of the intersection point of the correlation curve and
the p-axis is given by =
1

IPol == 2T + a1)

This shows that the curve intersects the axis only for Ay < 0. One

finds finally for the ratio of the apparent correlation length and of the
true correlation length the expression

'X.A:l-._A.Lexp_J;
1+ A A



NACA TM 1436 53

The figures 26 and 27 represent the correlation law and the spectral
function for several values of the coefficient A;. When one uses coef-

ficients of a value very close to -1, one must write them with a suffi-
cient number of decimals because then the value of A; has a very great
effect on the shape of the curves.

The minimum correlation coefficlient is given by the relation

e = 2 o (55)

and corresponds to the abscissa

A -1
PBnin Ay (1 + A7)

These equations are valld only for A; < O. The value [Q]q: < which

determines the. position of the maximum of the spectral function may be
calculated with the use of the equation

2 1+ 387
[qu)max A’l - 1 (l )

which permits determination of [q)A(QA)] by application of equation (99).
max

This maximum lies on the ¢-axis for all values of A; >- %.

In order to calculate the coefficlent Aj by the method of moments,

it suffices to know the moment of the first order which one finds by means
of the equation (T71)

(1) _ L+ 2
*a (1 + A1)

This method will be applicable only when ]_'._.(i) < 1l. The moment of first
order for the positive surface is obtained with equation (72) and is equal

to
[L(l):l (ap) - _L ___;_ {l + 2A’l + (l - 2Al) e}@(i)}
= A § (l R A1)2 Al
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The figures 28 to 31 represent the different characteristics of the
correlation curves (98) and of the spectrs corresponding to them.

Iet -the longitudinal-correlation law be of the form

B(€) = (1 + AL e[t )exp(~clt]) (200)

to which there corresponds in a flow of homogeneous and isotropic turbu-
lence the transverse-correlation law

By(n) = [} + %(iAl - l)c[nl - Al c n%]exp ( -clnl) (101)
which has the form of the laws given by equation (75).

To the transverse-~correlstion law

By(n) = (1 + &3 cinp)exp(-cin|) (102)

there corresponds in a flow of homogeneous and isotropic turbulence the
longitudinal correlation :

(g) = 2c2§2 {l + 28 - [(l + .?.Al)(l + 2c|g]) + hAg c?gﬂem(-aclél )}
(103)

In order to represent the points of the experiment NBS.9 (fig. 32)
by a law of this form, one may first try to apply the method of moments.

ap)
Taking the value of [ (lZ]( = 0.847, given in teble IV, as a basis,
one finds the coefficlent A; in figure 31. TFor obtalning the moment of

first order having this value, one may take either A = 0.6 or Ay = -0.5.

Superimposing on the points the figure 26, one finds that for the two coef-
ficients the curves represent the experimental points rather satisfactorily.
One sees, however, that a better result is obtained with the coefficient
A1 = -0.25 (fig. 32). Besides, 1t will happen quite frequently that one

obtains better results by trial and error than by the method of moments.

(l) (a-P)

For the experiment H. ko, |L = 0.762, hence, figure 31 gives
Ay = 0.95.  One ‘sees that thé transverse correlation curve corresponding
to this coefficient represents very well the experimental points (fig. 33).

The longitudinal-correlation curve given by the equation (103) likewise
represents very well the results of the experiment H.ha. As a result, the
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flow for which these experiments have been mede may be considered as
homogeneous and isotropic. Filgure 33 may be compared with figure 25
which also -represents the experiments H.4, In the first figure we repre-
sented the measurements of the transverse correlation by an equation and
deduced from it the longitudinal correlation by assuming a flow of homog-~
eneous and isotropic turbulence. Regarding the second, we selected first
the equation which represents the longltudinal-correlation curve and per-
formed then the calculation for the transverse correlation.

(b) Law.- Ba(p) = [} + Aq clp| + Ap czpé]exp(-c[p]).

By making in equation (75) K = 2, one obtains the correlation law
of the form

Balo) = [L+ Ay clo| + Ay c2o%]exn(-clol) (10%)

The spectral function which corresponds to this correlation law is
written

c2 - g2 + o c2(c2 - 302)

%(%)"%cTc_'é 1+4 =5

(105)
+ Q e + Qp 2 (c2+92)2

Integrating equation (104), one obtains

c=1+A] + 2A

and epplying the conditions (48) to (52) one finds the limits for the
coefficients of these equations

2 2
~(1+28p)<a g2 _1<A2$(“‘A1)+5/(;'A1) -9

The abscissa of the intersection point of the correlation curwe with
the p-axis will be

and the ratio of the apparent correlation length and the true correlation
length is equal to

2
Xp =1 - [} + (Al + 2A2)po + Ap cpé]exp(—lc|po)
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Meking the derivative of (104) equal to zero, one finds the abscissa
of the point for which the correlation coefficient is minimum or maximum

12 -A 1 V(I;l - 285)° - ao(1 - A1)
C 2A.2

de__
i

and which gives with the equation (104) the value of this coefficient.

The asbove relationships permit tracing of figure 34 in which we have
indicated the limits within which the coefficients Aj, Ap may vary with-

out causing the equation (104) to cease representing a correlation law.
We have, moreover, defined the domain in which one finds monotonous cor-
relation curves, furthermore the domain where the correlation curve pre-
sents a negative minimum and fifally the values of the coefficients for
which the curve presents a positive maximum (without counting EA(O) =1

which is not a maximum).

The figures 35 and 36 give the correlation curves and the spectral
functions for .several values of the coefficients A; and As. One finds

in these figures the curves presented already previously for the equa-

tion (98) which is a particuler case of the correlation law now being
gtudied.

When one knows the value of the moments of the first and second
order, one can calculate the coefficilents by solving the equations

(35 6g(l)c2 +6c-2=0 "

A = -[{J(l)cg - 3c + 2] Ay = %(c -4 - 1)

We have stated that the method of trial and error gives very good
results and is much faster than the method of moments. ~

When in a flow of homogeneous and isotropic turbulence the longitudinal-
correlation law is -

R(8) = [1+ 4y clel + Ay c®Z]exp(—cel) (106)

one finds, with application of von Karman's law, for the transverse cor-
relation the expression o _ :

R,(n) = l:l + £ - Lefn] + F(bay - ag)e® - L ¢?|n|3:|exp (-% einl)

(107)
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This equation likewlse has the form of the law (75), but with K = 3.

When, inversely, the transverse-correlation law is of the form

Ry(n) = [l + Ay c|n| + Ay czln‘?l]e@(-clm) (108)

one obtains in & flow of homogeneous and isotropic turbulence the longl-
tudinal correlation

gx(g) = > 32L 2{(1 + 28 + 6A2)[l - (1 + 2c)l§|]exp(-2c|§l) -
c .

]:)"‘(Al + 38p)c%e? + 8A2c5|§5|]exp(-2clgl )} (109)

The figures 37 to 42 show the results of several experiments and the
curves which represent them. These curves have been obtained by trial and
error. The results of the experiment NBS.2 are represented by the

- transverse correletion law (108) with coefficients Ay =0 and A, =0.1.
As shown in figure 34, the curve intersects the abscissa axis passing
through a minimum. Consequently, we have drawn this curve as a function

of nleR) (fig. 37).

The experiment KD.lc (fig. 38) concerns the correlation between the
transverse velocities at the fixed point, and the experimental points may
be represented by a lew analogous to (104), of the form

v

M

(Tl) = [; + Ay c|Ty| + A2.c272]exp(-c17l)

or

[+<]
T, = 'hTr' and I, =f Rv(s)ds
L P Jo P

P
with the coefficients A; = ~0.5, Ao = 0.3. One sees in figure 34 that

the correlation curve does not intersect the abscissa axis and that it is
monotonous.

The results of the experiment NBS.l have already been represented
very well by the law (96), in figure 23. One can represent them as well
by the correlation law (108), as shown in figure 39.
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The measurements of the transverse correlation EGR.1b are represented
in figure 40, by the curve of ‘the equation (108) with the coefficients A; =1

and Ap = 0.5. This curve Intersects the absclssa axls, and one represents

it as & function of ¢ &P). In a flow of homégeneous and isotropic turbu-
lence, there corresponds to the transverse-correlation law (108) the
longitudinal-correlation law (109) which one haes also represented as a

function of n(aP), taking into account the relation

(ep) _ , &
n =2 X

The experimental points of the experiment—EGR.las aré not very well
represented by this last law although some points are placed on the
curve R,. The experlments EGR,l have therefore been made in a flow,
the turbulence of which is not fully homogeneous and isotroplc but
reasonebly close to that state. :

The experiments KD.la and KD.1lb give the longitudinal and transverse
correletions between the simultaneous transverse velocities. In figure 41

we represented the correlation curve 3; (experiment Kﬁ:lb) as a function

of v = E%. If the flow in which these experiments were made were

homogeneous and isotropic,

\' v

By = B B = B

would correspond to the equations (5) which would permit application of
the equation (107) for calculation of the correlation curve 5;. Since

the experimental points KD.la deviete from this curve, the flow is not
homogeneous and isotropic.

Representing the results of the experiment H.2a by the longltudinal-
correlation law (106) (fig. 42), one finds the transverse correlation for
the hamogeneous and isotroplec turbulence; and one sees that the points of
the experiment H.2b doc not correspond to the curve By.

n=K
1. Law Ra(p) = :Z: An exp(-cn]pl)
n=1

The number of arbitrary constants one will have for. the laws of
this form is 2(K - 1). When K = 1, one has again equation (77) for
which there is no arbitrary constant. We study here only the correlation
law with K = 2. -
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(a) Law Ra(p) = A exp(-c|p]) + B exp(=3c|p‘).- Assuming in equa-
tion (76) K=2, Ay =A, A, =3B, cq=c, and cp = fc, one obtains
the correlstion law of the form

Ra(p) = A exp(-clpl) + B exp(-Belpl) (110)

to which corresponds the spectral function

2c 1 1
Q = —]A + B ——— — — 111
NGV [ 2 v 2, B 8202 1 QzA] (121)

Integrating equation (110) and applying the condition (50), one finds

c=A+ 38 B=1-A

B
which permits expression (110) and (111) as functions of two constants A
and B .

The coefficient B may be larger or smaller than unity, but one will
obtain exactly the same results by replacing thils coefficient by its
inverse. Assuming that O< B g 1, one finds for A the limits:

1 -8 1 -8

The abscissa of the intersection point of the correlastion curve with

the p-axis will be
1 A
Py | = ——=—— log
|°o] e(1 - B) (A—l>

and since 1t must be positive, the curve intersects the axlis only for
A >1, The ratio of the apparent-correlation length to the true-~
correlation length is

- 1 07 < 2 2]

The abscissa of the point for which the correlation coeffilcient is
minimum, is equal to

= ————-l —————A
lmeini e(1 - B) toe [B(A - 1)]
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and the value of this minimum is of the order of
L B
[RA] = A[E(A;—l)fll'ﬁ + (1 - 4a) .B_(u);ll'ﬁ
~Vmin A B A

The value of {, for which the spectrum presents a maximum may be
calculated with the equation

2 (1 - p2) Vv=aBp - (ap2 + Bp)
[QA}cpm&Lx - A + BP

and one obtains this maximum by substituting this vaelue into equation (111).

Figure 43 gives the limits within which A mey vary as functlions of
B. For the present law there are no correlgtion curves which present a
meximum es was the case for (104). There are only two types of curves:
those which intersect the axis and pass through s minimum value, and
those which do not intersect the axis and are monotonous. The correlation
curves and the- spectral curves are traced in figures 44 and 45 for several
values of B and of A. The different characteristics of these curves

are given in figures 46 to 51, -
The moments of the two filrst orders are given by the relstions

.1.'(1)=5J§A+§§) (2) . c3<q+%)

When one knows their values for an experimental coérrelation curve,
one can then determine the coefficients of equation (110) by solving the

equations

3 L(E) [L(l)] c® + [_(l) -—;-I_J(?)]c + [_(l) 1] =0

l1-c Be - 1
D e—————— - - A T eevm—
P c - celﬁl) e B-1 _

The moments of the "apparent" surface of the correlation curve are
given by the equations }

[L(l)](ap) =,% A[l - (a + l)b] + %[1 - (aB + 1)bﬂ
cox
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[L(z)](a.p) = -c;? A[z - (82 + 20 + 2)1:_)] + %E? - (2282 + 288 + 2)bB]}

or

) e

log ( T

_ 1
1-8 A-1
Figure 52 glves the moment of the first order L as a
&
function of A for several values of B. Figure 53 represents [L(z)]( »)
(1] (ep)
as a function of L . The curves corresponding to the different
values of B coincide in this figure when A > 1. Thus, when A > 1
and when the correlstion curves intersect the abscissa axis, one can
determine several correlstion laws which give the same moments of the
two first orders.

Assume the longitudinal-correlation law to be of the form

R (&) = A exp(-cle|) + B exp(-Be|t]) (112)

TIn a flow of homogeneous and isotropic turbulence, there corresponds
to this law the transverse correlation given by the equation

By(n) = A(l - % Clnl)e@(-% cnnl) + B(l - Bclnl)e@(-% Bclnl)
(113)

When one has in a flow of homogeneous and isotropic turbulence the
transverse-correletion law

Ry(n) = A exp(-cin]) + B exp(-Beini) (11%)

the longitudinal correlation is egual to

B{8) - 3 a1 - (eelgl + Dexp(-2clgl)] +

%[1 - (28clgl + 1)exp(-28ciel)] (115)
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One finds in table II, for the experiment NBS.3, the moments

[;(l{](ap) = 0.894 and [;(2{](&%) = 1.561. To thegé coordinates there

corresponds in figure 53 the coefficlent B = 0.25 with A < 1l. Tracing
then in figure 52 & horizontal, the ordinate of which is 0.894%, one finds

at the point of ite intersection with the curve B = 0.25 a coefficient A
which is approximately 0.25. The correlation curve corresponding to these
coefficlents actually represents the experimental polnts very satisfactorily

(fig. 5k4).
In the same manner one obtains for the experiment NPL.3 for which

[;(1) @®) _ 5752 ana [(2)] (@) _ 0.976, the coefficients B = 0.8

and A = -3. The correlation curve which corresponds to these coeffi-
clents is traced in figure 55. ' -

This method is not successful for the experiments H.la and NPL.la
for which we shall determine the coefficients by trial and error. For
the first time, we represent the points by the law (112) with the coeffi-
cients B = 0.25 'and A = 0.50 (fig. 56). Drawing the curve which
corresponds to equation (113), one sees that the polnts of the experi-
ment H.lb are not to be found on this curvej thils shows that the flow in
which these tests have been performed is not homogeneous and isotropic.

The results of the experiment NPL.la are represented by the
longitudinal-correlation law (112) with the coefficients B = 0.25
and A = 0.25 (fig. 57). The points of the experiment NPL.lb are placed
very exactly on the curve which corresponds to the- law (113). Hence
the result that the flow in which these tests have been performed 1s
homogeneous and lsotropic. - :
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CHAPTER IV

THE CORRELATION LAWS WEICH ARE DERIVED FROM R,(p) = exp (-ﬁ p2)

In this chapter we shall study the correlation laws of the form

=K
l‘_{A(p) = |:AO +nZl A, cos (mn cpi‘ exp(-c2p2) (116)
n=
n=K
R (p) == i (-cp20?) (117)
n=

dRA(O
Since for these laws —J%E—l = 0, it will be possible to determine

by calculstion the value of 1 (or of A). As equation (66) shows, the
relative dimension of the smallest eddies 1y 1s equal to the inverse

of the standard deviation of the longitudinal spectrum.

15. ILew Ba(e) = exp (-z6?)

When one mekes in equation (116) K = O and in equation (117)
K = 1, one obtains Gauss' curve

Ra(p) = exp (-ﬁ 92) (118)

Applying equation (57), one finds for the spectrum the relation
2 p°
PA(0a) = 2 exp |- L (119)

which represents a curve of the same form as the correlation curve. This
curve 1s given in figure 61 (for m = 0).

(a) When the longitudinal-correlation law is represented by the
equation

R (¢) = exp(- L £2) (120)
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one has, 1n a flow of homogeneous and isotroplc turbulence, for the
transverse correlation the expression

R,(n) = (l - & ne)exp (—% n2) (121)

The curves representing these two equations are yrepresented in fig-
ure 58. The curve which corresponds to (121) intersects the axis at the

point 179 = V%- whence: Xy erf(1) + 7= exp(-1) = 1.2581. The abscissa

of the point where the transverse correlation is minimum is equal to:

MR, 2 = 3.1915 and the value of this minimum 1s:
Byin = -exp(-2) = -0.1353. Applying equation (62), one finds: 1, = %

(b) In a flow of homogeneous and isotropic turbulence where the
transverse-correlation law is written .- -

By (n) = exp(-% 1?) (122)

one finds for the longitudinal correlation the expression

Bye(t) = L5 [1 - exp(-nez)] (123)
g

The curves which correspond to these two equations are given in figure 59.
For the dimension of the smellest eddies, the value Zy =2 % corresponds
to this law,

(c) The experiment EGR.1lb can be relatively well represented by the
curve: (12), as figure 60 shows. The points of the experiment EGR.la are
placed rather close to the curve which corresponds to the equation (123).
As a result, the flow rather approximates a flow of hdmogeneous and '
isotropic turbulence. Thls has already been seen whenl the test points
of the experiment EGR.1lb were represented by the equation (108) (see
fig. 40); whereas it~had not been possible to calculate, for that last
law, the value of Iy algebraically, one obtains now immediately

1

1y J’t.
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16. Law Ba(p) = [Ao + g A, cos (mn cp):l exp(-c p2)

In studying these laws with K =0 &and K =1, we did not find an
application for the experiments given 1in teble I. We present, neverthe-
less, a few curves for K = 0 as well as the equatlons for K =

(a) Law EA(p) = exp(-c2p2)cos(mep).- When one makes K = O in the

the equation (116), one obtalins the correlation law

Rr(p) = exp(-c2p2)cos(mep) (124)

to which corresponds- the spectrat function

2
?A(QA) = v%; exp(-%%g - %§§Ch(§§S§ (125)

Integrating the equation (124) from zero to infinity, one obtains

2
c = & e (-2)
Applying the conditions (48) to (53), one finds that the coeffi-
cient m may be arbitrary. Ohe assumes, consequently, that m 1is always

. positive.

The abscissa of the intersection point of the correletion curve and

the p-axis 1s given by I pl = c’ and one finds the ratio of the apparent

correlation length and the true correlation length by integrating (124)
from zero to pg

- +é:1 i_él (nl) [2(n - n1)] (m)nl

In order to calculate this coefficient, it is easier to draw the correla-

tion curves as functions of p and to determine L(aP) by planimetering
the area bounded by the curve up to its first point of intersection with
the abscilssa axis.

The correlation curves and the spectral curves are represented in
figures 61 and 62.
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(b) Law Ra(p) = [Ao + Aq _cos(mcp)] exp (-czp%.- To the correlation law

Ra(R) = [Ao + Aq cos(mcp)] exp(-cape) (126)

corresponds the spectral function
2 ap2
o7 (0n) = ghslho * 41 e (-F)on(E a)| |- 155 (a21)

Integrating the equation (126) one calculates the value of the coef-
ficient ¢ which is

o fii - onl- 2] onl- )

Applying the conditions (48) to (53) one finds that the coefficient Ag
may vary within the limits

O<hrg5+1
s

The absé¢isse of the intersection point of the correlation curve and
the p-axis is given by the relation

Ao
[pol = —arc cos oI
which shows that this curve intersects the axis when Apg < %‘-.
n=K -
17. ILaw Ra(p) = > An exp( -cp cx,2)
n=1

We shall study for these laws the particular case where K =2 with
the assumptions Al =A, A =3B, cp =c¢c, Cp = Be.

(a) Law Ba(p) = A exp (—c2p2) + B exp (—Becepz).- To the correlation

law _

Br(p) = A‘exp(-cepe) + B exp <—Bec292) (128)
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corresponds the spectrum

2 2

Integrating the equation (128), one finds

c=‘é;’g|}\.(ﬁ-l)+l] B=1-4

and applying the conditions (48) to (53), one obtains the limits within
which the coefficient A may vary

0<Asllla

The different characteristics of the correlation curves are given
by the relationships

p02 - :2_(?1:3-27 log (A;'::—l)

X, = g::L[A erf(epg) + B erf(Bcpo):l

2 _ 1 1 A
“Buin o2 (1 - g2) OgLsE(A - 1)]

1 A g2 A
= A expd - log + B exp<i-~ log
fnia 1- g2 [BQ(A - 1)] 1- g2 EBQ(A - 1)]

The figure 63 shows the values of the coefficients A and B which one
can assume for the correlation law (128). The curve intersects ‘the axis
when A > 1 while passing through a minimum value; it is posiltive and
monotonous for O <A <1,

Figures 64 and 65 gilve the correlation curves and the spectral
curves for some values of A and of B. PFigures 66 to 69 give the char-
acteristics of the correlation curves, reéferred to the spparent correla-
tion length.
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The moments of the true area bounded by the correlstion curve are

(1) o1 B (2) E B
R I (-

and for the "apparent" surface one has

I:L(l)] (ep) =k __dal1 - (&_)I;lgg By (A._J_)l-p
3 _2:2;2- A ‘32 A

(ap) -
] = L Ep eme(ong) + 25 ere(seso)] -

cpoEﬂ. exp(-czﬁa) + % ( Bg 2 2):, >

B

is given as a function of A and of B in

The moment [;.(l)] (e)

8,
figure 7O, [1’.,-(2)]( p) is glven as a function of [;(l) (ap) in fig-
ure fl. For A > 1, one has one and the same curve for all values of 8.

When the correlation curve does not cut the abscissa axis, one can
also determine the coefficients by calculation, by solving the equations

J;[;(l) . 1,(2)] -

- 1
2fe(z@)? < 21l2)]

/;[L(l) 1@ [L(l)) 2;_4(2)]2[1_%@(1)]

- Y 1-=8
B = 2¢ A:-——i___
\Ec;.(l)-l 1 -8

Iet the longitudinslecorrelation law be of the form

222)

Ry(t) = A exp(-c22) + B exp(-p3c2t (130)
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In a flow of homogeneous and isotropic turbulence the transverse
correlation which corresponds %o this law will be

By(n) = AL - £ cPrP)exp (- o2n2) + B(L - Beczna)e@(-llr B2c2n2> (131)

and the relstive length of the smallest eddies which 1s calculated by
application of the equation (62) is given by the relation

2 _ 1
"x 202 (a + Bp2) (122)

This length 1s represented as a function of A and of P in
figure T2.

When the transverse-correlation law 1s

By(n) = & exp(-c2r2) + B exp(-p2e2r?) (133)

one then finds in & flow of homogeneous and 1sotropic turbulence

R () = ﬁé A[l - exp (-ll.c2§2)]s%E|_ - e:@(-45202§2)] (134)
e

and equation (62) gives

2 1
Iy~ = ————— (135)
Y e2(a + BBR)

The relative length Zy is given as a function of A and of B in
figure T3.

g
To the experiment H.2b correspond the moments [L(lil( p) = 0.893

and [;(ei](ap) = 1.410. The point drawn with its coordinates in fig-

ure Tl is pleced rather close to the curve B = 0.25. Then one traces a
horizontal line with the ordinate 0.893 in figure TO and finds that it
intersects the curve B = 0.25 at two abscisse points A = 0.55

and A = 0.88. In figure Tl, the experimental point lies near to the part

of the curve B = 0.25 closest to the axis [L(li](ap). Therefore one
must in figure TO take account of the intersection point with the branch
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of the curve closest to the same axis. One thus obtains the two coeffi-
clents B = 0.25, A = 0.55. The experiment is represented by a point
which gives a negative correletion coefficient. In order to have a law
which represents a correlation curve which passes through negetive
values, 1t would be necessary that A > 1. 8o one sees that the point
which corresponds to the moments of the experimental curve is very far
distant from the curve A > 1 (solidly drawn in fig. T1). Thue it will
not be possible to find coefficients for the equation (113) in such a
manner that the curve represents the polnts of the experiment H.2b and
intersects the abscissa axis.

The transverse-~correlation curve calculated with the coeffi-
cients A = 0.55, B =0.25 and the experimental points H.Z2b are drawn
in figure Th.

Comparing the points of the experiment H.2a with the curve R, cal-

culated with the equation (134), one sees that the turbulence is not
homogeneous and isotroplc. This has, besides, already been seen in fig-

ure 42. The relative dimension Zy can be determined by the equation (135)

or by the figure T3 as scon as one assumes the turbulence to be isotropic.
In this case one would obtain 1y = 0.632.

The moments corresponding to the experiment H.4b are [;(li](ap) = 0.762

and Q(EE](QP) = 1,000, One finds the coefficlents B = 0.25 and A = 0.3

in the same manner as for the preceding experiment. The transverse-
correlation curve corresponding to these coefficients represents in effect
satisfactorily the experiment H.4b, and the longltudinal-correlation curve
calculated by means of the equation (134) overlaps with the points of the
experiment H.4b; this shows that the turbulence of the flow in which these
tests have been made may be considered homogeneous and isotropic. One
finds as the ratio of the dimension of the smallest eddies and of the
longitudinal-correlation length 1y = 0.621. o

Superimposing the polnts of the experiment NBS.9 on the curves of
the figure 64, one finds very quickly that they can be represented by the
equation (133) with the coefficients B = 0.25, A = 0.5 (fig. 76). One
obtainsseasily, by calculation or on the basis of figure T3, the value
ly = 0.619. ‘ . o ’

¥y

Likewise, the results of the experiment NPL.3 are represented by the
equation (133) with the coefficients B = 0.5 and A = 0.5 (fig. T7).
One finds, for these coefficlents, 1y = 0.952.
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CHAPTER V

THE CORREIATION LAWS DEVELOPED IN A SERIES
OF HERMITE POLYNOMIALS
In reference 5, J. Kampé de Fériet represents the correlation curve
by an equation which involves an expansion in a series of Hermite

polynomials.h With the notations wé are using in the present report, the
correlation law 1s written

=k
Ba(p) = [1 + ;f_l By Hzn(»/'e'cp)] exp(c?p?) (136)

where
2n

_ (-1)2 2n! 2n _2 2n(n-1) 4 n.an n! B8
Han(S)—ﬁzn-LE-l--a—rs + 2 T ] —.-.(-1)2 m

and for the first polynomlals one will have

32(5) =82 -1 H6(s) = 56 - 1584 + 4552 - 15

Hy(s) = st - 652 + 3 Hg(s) = 8 - 2888 + 2108* - L2082 + 105

To the correlation law (136) corresponds the spectral function

1 gk 2,2\ 22
an(8r) = =1 + S (<11 A5 ) |exp(-c26?) (157)
VEZ n=1 2c
which involves an expansion in a power series.
n=K
18, law |1 + E A c2np2n exp( c2p2)
n=

It would be much more convenient to employ an equation for repre-
sentetion of the correlation curves in which the development in a seriles
of Hermite polynomials is replaced by & power seriles

l"The study of the Hermite polynomials has been carried out by
J. Kemp€ de Fériet (ref. 18).



72 = NACA T™ 1436

=k B
B,A(p) = [l + nZ A, canpen]exp (-c2pa) (138)
n=1

The relationship between the coeffilclents of these two equations has
been given by J. Khmpe de Feriet and is written

k-n
nl:T
1 1 (n + 2111)
An = 2 =y ——p—=— B, + 2n
E!- nl=0 211. Ill. n l
- | S (139)
1 1t n; 3 (n+ 2np)!
Bp =2 2 (1) 73 . Ap + 2my
Ne nl=o nl nl.

Applying equations (57) to (138), one finds the spectral function

Q Q2

90 0 = 1+ 5 ()P L (B exp(— —) (140)
( A A) Ve l: n=1 2 #n fon Vac he?

which comprises a series of Hermite polynomials.

Integrating the equation (138) from zeroc to infinity, one obtains

S An} ()

The Iinequelity (53) leads to the general condition for all laws of
the form (138)
Alt< 1

In the equation (140) the coefficients, the indices of which are
even numbers, are preceded by a negative slgn. In order to confirm the
condition (52), it 1s necessary that Agx > O when K 1is even and that

Ag < O when K is odd. In the study of equation (138) one sees that in
this last case the correlsation curve Ba(p) will intersect the p-axis.

For determination of the other conditions which must be set up in order
to make the equation (138) really & correlation law, one must first know
the value of K and then apply the equation (52).
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The simplest law of the form given by (138) is obtained when
K = O. One then has Gauss' curve which has already been studied, equa-
tion (118).

(&) When in & flow~of homogeneous and isotropic turbulence the
longltudinal-correlation law is of the form

n=k

By(t) = l:l * ; An czn’sgn]exp (-c%2) (142)

one finds, with application of equation (60), the transverse-correlation
law

n=k
_ Lioas — 1) a2n2 1 on_2n (1 .22
Ry(n) = 41 + g(281-1)c"n +§22n[(n+l)An Ap-1|c™n exp(;;c n)
(143)
which is & law of a form similar to (142) but with other coefficients.

The equation (62) gives for the dimension of the smallest eddles
responsible for the energy dissipation by turbulent viscoslty the
relationship .

1, = (1kh)

* of2(@ - A7)

(b) To the trensverse-correlation law of the form

n=k

P N NP R

n=1

corresponds in a flow of homogeneous and lsotroplc turbulence the longi=-
tudinal correlation

o p\ 2=k 0170 (422
Ex(g) = Lp_]é—e 1l - exp(-ll-c E ) + Z niAnjl - (_n!__) exp (_Ll.czgz)
c & n=1 nl=0 1
(116)
and the equation (62) gives
1., = _._]:__. (1)4_7)
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19. Iaw le(p) [l + A cepz:le@ -c2p2)

When in equation (138) K l, one obtains the correletion leaw

2
Ba(p) = [l + Aq cap]exp (-czpz) (148)
to which corresponds the spectral function
s : 2 2
1_1, 8 a5
Q = - = - B8
(PA<"A) \lr_rc[l T2y 1 ca]exp( he? (249)

and where

7
c—2l+2A]J

We have already shown that the conditlon A; < 1 must be verified

whatever the value of K may be. On the other hand, in the actual case,
with K belng odd, it is necessary that AK = Ay < O. Finally, the

inequality (52), applied to the spectral function (149), gilves Ay > -2
whence there results the condition

-2< A O -

The correlation curve always Iintersects the p-exis. The various
characteristics of this curve as well as those of the spectral curve are
given by the relationshlps '

2
-l = -1 —a2n2
o A o X, = erf(ep) - 5 A1 po.ex'p( 2e?)
1 Cc e
> 11 -1 '- 1 - Ay
o e - 1y o8
Bmin ¢ A1 Ay

g =Pl el el 22

max \/:r_tc
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LA(l) = ﬁ(l + A]_)

(1) (ep) 1 2 2 2 2
[]-:-'A ] =E§|}+Al-(1+Al+Alcpo)]exp(-cpo)

The filgures 78 and T9 represent the correlation curves and the
spectral curves for some values of A, and the figures 80 to 83 give the
values of the expressions calculated above.

(a) To the longitudinsl-correlation law

B (2) = [1+ 8y 0?7 exp(-?) (150)

there corresponds in a flow of homogeneous and isotroplc turbulence the
transverse-correlation law

B (1) = [1 + Eeay - 1) canﬂexp (—% c2n2) (151)

(b) When in a flow of homogeneous and isotropic turbulence, the
transverse-correlstion law is of the form

B (n) = (1 + &) o] exp(-c2r2) (152)

the longitudinal-correlation law is

R (€) = ).;—2122 1+ A - |:l + Ay + 4By cagﬂ exp (—cega) (153)
C .

20. ILaw Ba(p) = EL + Ay <:2p2 + Ay c)'l'pl_:J exp (—czpe)
When in the equation (138) K = 2, one obtains the correlation law

13A(p) = [l + Al c2p2 + As c)'"p)'El exp (—capz) (154)

to which corresponds the spectral function
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. Ve L 16c%

and where

2 b
op(8n) = 2|1 + L+ 2, - (Al + 3A2)2—c£ + A2 L (155)

1
c=fg-[1+§Al+?IA2:|

The different characteristics of these curves are given by the relationships

2 _-A1 % Vhi2 - uay

Po
2c?a,

XA = erf (cpo) - -;:-[(Al + %Aa + Al c2p02) Po exp (—capo‘?)]

5 _2hy - Ay % \/(2A2 - Al)2 - bAy(1 - Ay)
— =0 2A2C2

. |
o = % EAl + SAp) t «(Al + 58p)% = Al + 6ap + 15"’*2):'

Applying the conditions (26) to (34), one finds for the coeffi-
clents A;, Ap the limits indicated in figure 84k. The figures 85 and 86

give the correlation curves and the spectrel curves, and the figures 87
to 90 represent the values of some characteristics of these curves.

"
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CHAPTER VI
TURBULENCE SPECTRA

21. Equations Sultable for Representing e Turbulence Spectrum

We have shown in the first two chapters what the conditions are which
must be imposed on an equation so that 1t can represent a turbulence
spectrum. In the following three chapters we have given the spectral func-
tions which correspond to a certaln number of correlation laws. One can
evidently perform the opposite operation by first assuming the equation of
the spectrum and then calculating the correlation law. The simplest equa-
tions one can propose for representation of the spectra are

¢ = A exp(-Ba2) P =--JE-§ ® = A exp(-BlQl)
1 + BQ

See equations (78) and (118). Writing them for the G. I. Taylor
spectra, one will have

%() = 2 exp (—% %2) (256)
and
o (2g)= £ I—fﬂ-t—a (157)

Imposing the conditions (52) and (54) to (56), one finds for the
third

%u(2) = § e (- £ |oul) (158)
and the corresponding correlation law is written

1
2
19 2
l+TT
In figure 91 we compare these three spectral curves, and in fig-
ure 92 the correlation curves which correspond to them.

By(T) = (159)
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22, Exﬁerimental Spectra

For representing an experimental spectrum by an equation, one may
employ the same methods as for the correlation laws. Notably, one may
search for this equation by trial and error after having superimposed
the experimental points on the spectral curves drawn in the numerous
figures given in this report. ) .. )

When the correlation length is not known and the experiment, con-
sequently, does not glve the curve Qt(ﬂt) but only ft(w), one plots,

in this case, on logarithmic coordinates Uf(w) as a function of &

U
and then superimposes it on the curves @(f), noting that

Uft(w)g = ¢t(ﬂt)ﬂt

Figure 93 represents the results of the experiment NPL.ke as well
as the spectral curve corresponding to the equation (129) where A = 0.6
and B = 0.15. It should be noted that, in representing the correlation
curve (128) corresponding to this spectrum, one will obtain a curve which
does not represent the polnts of the experiment NPL.1lb, Thus, it is pos-
sible to show that the verification of the G. I. Taylor equations of
which we have spoken in chapter I, section 3 is not exact. This indicates
how difficult it is to make verlfications of thils type.
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CHAPTER VII

CONCILUSIONS

l. There is much confuslon regarding the numerous correlation coef-
ficients and spectra studied by the various authors. We hope to have
shown the difference between these diverse factors by the use of appro-
priate notatlons. These notations may seem relatively complicated but
we are of the oplnion that one must not shy away from a complicated nota-
tion which may make the ldeas clearer.

2. By studying homogeneous turbulence for which, moreover, the time
averages of the turbulent velocity are equal to the space averages, we
show that the correlation coefficlents between the simultaneous turbulent
velocities at two points placed elong & straight line of given direction
and a given distance apart are the same whether the study is carried out
in the Euler or in the lagrange system. o

3. We Introduce in this report what we call the longitudinal spectrum
of turbulence which is obtasined by harmonic anaslysis of the curve repre-
senting the components of the simultaneous turbulent velocities u' along
a straight line parallel to the direction of the mean velocity. The trans-
verse spectrum 1s obtalned by study of the simultaneous u' along a
straeight line perpendicular to the direction of the mein veloeity.

4, In the study of the equations of G. I. Teylor which establish the
correlation between the simultenecus u' and the spectrum measured at
the fixed point (ref. 7), we show that there exists a coefficilent the
value of which may serve as a criterion for the legitimascy of employing
these equations. This coefficient

_ Ly [a2Rm(0
Uf{ an

must be very small; only then the G. I. Taylor equations can be considered
exact.

5. We glve several important equations derived from Kfrmén's law for
a flow of homogeneous and isotroplc turbulence.

. 6. The representation of the correlation laws and the spectra by
empirical equations may be of very great service. We made a very large
number of applicatlions to the experlmental results, especially regarding
the correlation curve. When the equation which represents the longitudinal-
correlation curve is given, one may easily obtain the transverse-correlstion
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curve by applying Kérmén's law, and if one has the experimental points _
for the two curves, one can verlfy whether the flow in which these tests
have been made is homogeneous and isotropiec. On the other hand, one can
rapldly calculate the turbulence spectrum by making a Fourier transform.
By the same method, on the basis of the transverse-correlation law or of
the spectrum, one can study other characteristics of the turbulence.

T. The functions of the form

Ralr) = exp(-Kiri)o(r)

are generally more satisfactory for representation of the correlation
curves than the functions

Bo(2) = o157 o)

One succeeds in a very good representation of several results, employing
only two arbitrary coefficients in these functions.

8. The application of Hermite polynomials (ref. 5) to the representa-
tion of experimental correlation curves seems to be rather difficult since
it 1s necessary for the representation of an experimental curve to choose
more than two arbitrary factors.

Transleted by Mary L. Mahler —
National Advisory Committee -
for Aeronautics : =
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COMPARATIVE TABLE FOR SYMBOLS RELATING TO THE CORRELATION AND TO

THE SPECTRA USED BY DIFFERENT AUTEORS

The present report | Kempe Th. Kérmén A. A. Kalinske
- Ke G. I. Taylor|A. A. Eall and H. Motzfeld end
de Feriet E. G. Dryden E. R. ven Driest
Dimensionless -

symbols Ref*:' 3 Re?:'ss' Ref. 9 R]e_if'léo’ Ref. 14 Ref. 15
RY(x) | Bi(eY) Ry
R | BT Ry
R, (X) Bylt) Ry (Ry) Ry Ry, Rp
Ry(y) | Rylm) Ry(Rp) R, R, Ry
Rer(8)|  Ber(Tz) R(n)
Ri(x) | EL(eY) Ry
o) | ) Ry
Rf(n) Ry (rV) R'y
REM)|  BY(Y) R, Ry Ry
I L '
Ly Ips1p L
M L
@ E_ [} 2nn [} K = 2mn

S,
Ler,

£o(@) | L@y (By) 2= () (@)
£ep(0)| Lyp@er{er) | £lo) = ™




TABLE III

Distance from
Measuring @rid meeh he meesuring Mesn velocity,
Rame results in em 1;11:1; 1:‘0 n::: enfs 4 Remarks References
lengths
Correlation curves

RES.1 Ry(y) 12.70 ko Ref, 11, fig, 21
HB3.2 By(y) 63 %0 1,220 Ref. 11, fig. 5
NB3.3 Ry(y) 1.7 "o 1,220 One will Ref. 11, fig. 5
s,k Ry(y) 2.5% %0 1,220 par s Ref. 11, #1g. 5
HEB.5 Ry(y) 8.25 ko 1,220 points without Ref, 11, fig. 5
HES.6 Ryé’) 12.70 50 1,220 :opg'recﬂo:;h‘:!.ldng Ref, 11, fig. 5
NB3.Ta x) into accomt the
NBS.Tb :;(y) ] 2.5 0 1,220 length of the Ref. 11, fig. 28

hot wire
NBS.8 Ry(y) 63 Ref, 11, fig. 23
KB3.9 Ry(y) 2.54 Ref, 11, fig. 23
NEBS.10 Ry(y) 12,70
H.la Re(x)
_— B0) ] l.27 32 610 Ref, 9, fig. 1T
H.2a (x)
R2b g(w) } 1.27 57.5 610 Ref. 9, fig. 17
5L Ry (x) }
B3b R,(y) 63 28 610 Ref. 9, fig. 12
H.ha Ry(x)
. R,(y) } 63 8 610 Ref, 9, fig. 12
NPL.1e Ry(x)
¥FL.2b Ryly) } 762 215 Bef, T, f1g. b

Curve calenlabed by

REL.2 Ryg,(h) 2,29 25,5 610 means of th.:‘mlion Ref. 6, p. UTh

MAAAUTeNen
NPL.3 Ryly) 2,29 763 Ref. 6, fig. 1
HiR.1a By (x) Tests male in a
EGR.1b Ry(y) 95 2k hydrodynaxic Ref. 16, fig. 3
EGR.1c Bm(h) channal

\

D12 Be(x) Tosts made in &
ED.1b n;(y) 19.8 hydrodynexic Ref, 15, fig. 3, 5

cbannal
KD.1c B{(n)

Turbulence spactra

¥ES,11 £y, (w) 2.5 k0 Ref. 12, fig. 1
HES,12 () 2.% 160 Ref. 12, fig. 2
NP3.ha £y (m) h57
HPL.bb (o) 610
NPL.ho £(m) 7.62 21.5 762 Ref. 17, telle II
KPL. b fi(m) 915
KrL.be £1() 1,067
M1 £1(x) 100 Bperimente near Ref. 13, fig. 2, 3

9¢HT WL VOVN
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TABLE IV

L(ap) y [L(l)] (ap) L(2):|(ap) (=) L [-I-‘-(l):l (ap) [L(g) (ap)
MBS.1 [2.72 em 1.039 1.907 H.2a |1.800 em
NBS.2 |0.251 cm|0.245 em| 0.909 1.242 H.2b |0.783 em|0.T70 cm| 0.89% 1.k10
NBS.3 |0.520 cm 0.894 1.561 H.3a {0.635 cm
NBS.% [0.795 em 0.794 1.19% H.3b |0.340 cm{0.334 emj 0.911 1.527
NB3.5 [1.995 cm|1.945 em| 0.952 1.563 H.bae {0.980 cm
NBS.6 [2.845 em 1.0%2 1.889 H.bb 10.558 cm 0.762 1.000
NBS.T72|0.945 cm 0.960 1.7 NPL.la|2.74% cm 1.125 2.350
NBS.7b| 0.682 cm 0.957 1.598 NPL.1b|1.55cm [1.45 em | 0.967 1.718
NBS.8 [0.240 cm 0.863 1.634 NPL.2 |0.0044 s 1.157 2.687
NBS.9 |0.768 cm 0.847 1.31% NPL.3 |0.445 em 0.752 0.976
NBS.10}0.82 cm 1.008 1.832 KD.la [2.3% cm 0.986 0.905
H.la [1.3%8 em KD.1b |2.90 cm 1.048 1.068
E.1b [0.634k em|0.634 em| 0.928 © 1,587 KD.lc |0.208 s 1.250 2.895
EGR.1Dbj b* 0.678 1.378

*In reference 16 the suthor hes mot given the measuring units.

QEHT WL VOVN
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TABLE V
Exp. |NBS.T|H.1 |EH.2 |E.3 |H.G | NPL.1
Lx/Ly | 1.39 | 2.11] 2.34| 1.90| 1.76 | 1.92

KD.1

<= |8
21

1021+

87
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116 - NACA TM 1436
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