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Abstract 

Constant-Kmax fatigue crack growth tests were performed on two fine-
grain nickel-base alloys – Inconel 718 (DA) and René 95 – to determine 
if these alloys exhibit near-threshold time-dependent crack growth 
behavior observed for fine-grain aluminum alloys in room-temperature 
laboratory air.  Test results showed that increases in Kmax values resulted 
in increased crack growth rates, but no evidence of time-dependent crack 
growth was observed for either nickel-base alloy at room temperature. 

Introduction 

In cases where fatigue lives primarily depend on the early stages of crack growth, it is critical to 
understand the fatigue crack growth (FCG) characteristics in the near-threshold regime, defined 
schematically in Figure 1.  Considerable research has shown that an increase in FCG rates (da/dN) occurs 
with increasing stress ratio (R = Kmin/Kmax) due to a reduction in crack closure effects (ref. 1).  This R 
effect, schematically shown in Figure 1, is especially pronounced near the crack growth threshold.  
However, research has suggested that crack closure does not account for all stress ratio effects when R 
ranges from 0.5 to 0.95, and for Kmax greater than 0.4 KIC (refs. 2 and 3).  This work suggests that near 
threshold FCG can be influenced by other crack-tip damage mechanisms (Kmax effects) that are not related 
to crack closure.  For ingot metallurgy aluminum and titanium alloys, relatively small near threshold Kmax 
effects have been observed during closure free FCG (ref. 3).  Others have concluded that highly 
accelerated near threshold FCG rates during constant-Kmax testing of low toughness titanium and nickel-
based alloys are due to hydrogen assisted cracking (refs. 4-6). 
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Figure 1.  A schematic of the fatigue crack growth rate behavior in the near-threshold and Paris regimes.   
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The unusual room temperature near-threshold FCG behavior observed during constant-Kmax testing 
(5.5 and 11.0 MPa√m) of aluminum alloy 8009 (a powder metallurgy alloy) is plotted in Figure 2a (ref. 
7).  Transitions to accelerated FCG rates – here seen as dramatic slope changes in the da/dN versus ∆K 
data identified with arrows – were correlated with changes in crack surface morphology.  The crack 
surfaces produced immediately after and before the Kmax = 11.0 MPa√m transition at ∆K = 1.3 MPa√m 
are shown in Figures 2b and 2c, respectively.  The crack surfaces produced immediately after and before 
the Kmax = 5.5 MPa√m transition at ∆K = 0.8 MPa√m are shown in Figures 2d and 2e, respectively.  For 
both levels of Kmax, a flat fatigue crack surface morphology (micrographs shown in Figures 2c and 2e) 
was observed at higher levels of ∆K.  As ∆K was reduced and accelerated da/dN behavior was observed, 
the fatigue crack surface abruptly changed to a micro-void morphology (shown in Figures 2b and 2d) 
similar to that observed during elevated temperature creep crack growth (refs. 8 and 9).  Additional 
testing showed that the unusual near-threshold behavior of alloy 8009 was the result of a transition to a 
room-temperature creep mechanism, and that another powder metallurgy aluminum alloy (IN-905xl) 
exhibits similar behavior (ref. 10).  It is not known if this near-threshold creep mechanism is limited to 
fine-grain aluminum alloys, or is typical of fine-grain alloys in general.  Two fine-grain nickel-base 
alloys, Inconel 718 (DA) and René 95, were identified as potential candidates to exhibit near-threshold 
creep.  A series of constant-Kmax fatigue crack growth tests were performed on these alloys to determine if 
these fine-grain nickel-base alloys are susceptible to a near-threshold creep mechanism.   
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Figure 2.  Experimental evidence of a near-threshold transition in the FCG behavior of aluminum alloy 8009.  

Materials 

Both of the materials selected for study are nickel-base alloys that were developed for gas turbine 
applications.  This class of alloys is termed “superalloys” due to their high strength, high stiffness, good 
corrosion resistance, and excellent properties at high temperatures including high creep resistance.  The 
nominal chemical compositions of these alloys are listed in Table 1. 
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Table 1. Nominal chemical composition (by % wt.) 

Inconel 718 Rene' 95

Carbon (C) 0.04 0.15
Manganese (Mn) 0.2 -

Silicon (Si) 0.2 -
Chromium (Cr) 18.5 14

Cobalt (Co) - 8
Molybdenum (Mo) 3 3.5

Tungsten (W) - 3.5
Niobium (Nb) 5.1 3.5
Titanium (Ti) 0.9 2.5

Aluminum (Al) 0.5 3.5
Boron (B) - 0.01

Zirconium (Zr) - 0.05
Iron (Fe) 18.5 -

Copper (Cu) 0.2 -
Nickel (Ni) balance balance

 

Inconel 718 was developed in the 1950s for gas turbine applications and is one of the most versatile 
and widely used superalloys.  This alloy is heat treated to obtain the desired properties, based primarily on 
the precipitation of gamma-prime (γ΄) and gamma-double-prime (γ΄΄) phases for strengthening, and a 
delta (δ) phase for grain size control (ref. 11).  The standard processing for Inconel 718 involves forging, 
annealing, and aging.  Typically material is forged at 1950-2000oF with some finish forging at 1900-
1950oF.  Then the material is annealed at 1775oF for two hours followed by a water quench.  The standard 
treatment calls for the material to be aged at 1325oF for 8 hours, furnace cooled to 1150oF, and held at this 
temperature for an additional 8 hours.  However, the Inconel 718 used in this study was an ingot 
metallurgy alloy that was forged and processed according to a direct age (DA) schedule that results in 
smaller and more uniform grain sizes.  The DA process calls for forging to occur at slightly lower 
temperatures (1900-1950oF, with finish forging at 1850-1900oF), which is immediately followed by the 
standard aging process (no annealing).  A micrograph of the resulting microstructure of the Inconel 718 
(DA) is shown in Figure 3a.  The matrix consists of grains between 2 µm and 5 µm in diameter as 
reported by the manufacturer.  Rod shaped precipitates, typically 0.5 µm in diameter and 2-5 µm long, 
primarily exist along grain boundaries.  Larger particles are also seen that appear nearly spherical and 
typically 2-5 µm in diameter.  EDX (energy-dispersive X-ray) analysis indicates that the large spherical 
particles are rich in aluminum and titanium, and are therefore likely precipitates of the γ΄ phase (Ni3 (Al, 
Ti)).  The absence of significant aluminum and titanium in the smaller rod-shaped particles suggests that 
these particles are either precipitates of the γ΄΄or δ phases (both Ni3Cb).   

René 95 is a powder metallurgy alloy that was forged, heat treated, and aged.  Powder René 95 was 
hot compacted and extruded at a subsolvus temperature.  Isothermal forging and solution heat treating at a 
subsolvus temperature provided the uniform fine grain microstructure.  Following the solution heat treat 
cycle, this material was given a single aging treatment.  A micrograph of the resulting microstructure of 
the René 95 is shown in Figure 3b.  The matrix is seen in the figure as light-colored regions and consists 
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of grains that are approximately 2-5 µm in diameter as reported by the manufacturer.  EDX analysis 
indicates that the dark colored regions are relatively rich in both aluminum and titanium and are 
presumably γ΄ precipitates.    

10 µm

10 µm

(a) Inconel 718 (DA)

(b) René 95

Large spherical precipitates

Small rod-shaped precipitates

Matrix

Precipitates

Figure 3. Micrographs of fine-grain nickel-base alloys. 

Experimental Procedure 

Fatigue crack growth tests were performed using compact tension specimens, shown schematically in 
Figure 4.  The nominal thickness of Inconel 718 and René 95 specimens was 2.54 mm and 1.52 mm 
(0.100” and 0.060”), respectively.  Constant-Kmax tests were performed on both alloys using computer-
controlled servo-hydraulic test machines.  Testing was performed in room-temperature laboratory air (18-
24oC, relative humidity between 30% and 70%), at a cyclic loading rate of 10 Hz, and in accordance with 
ASTM standard E647 (ref. 13).  Crack length was monitored during tests using specimen back-face 
compliance data, and loads were continuously adjusted by the computer-controlled system to achieve 
programmed stress intensity factors (ref. 14).  Compliance-based crack length determinations were 
verified with visual measurements and the FCG test data was adjusted according to standard procedures 
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for the small differences (< 1%) between compliance-based and visual crack length measurements.  
During constant-Kmax tests ∆K was reduced (by increasing Kmin) as defined by the K-gradient, C = -787 
m-1 (-20 inch-1) (ref. 15).     

2.400"

2.500" thickness, B
2.000"

0.550"

0.400"

0.550"
0.800"

 

Figure 4. Compact tension (CT) specimen configuration. 

Experimental Results and Discussion 

Fatigue crack growth data for Inconel 718 DA and René 95 are plotted in Figures 5 and 6, 
respectively.  For each alloy constant-Kmax tests were performed at Kmax values ranging from 22 MPa√m 
(20 ksi√in) to 132 MPa√m (120 ksi√in) in increments of 22 MPa√m – a total of 6 tests per alloy.  
Examination of Figure 5 reveals a slight Kmax effect for the Inconel 718 (DA) data.  In other words, 
fatigue crack growth rates, da/dN, increase with increasing values of Kmax, and the data for higher Kmax 
values are shifted slightly to the left (lower ∆K) in Figure 5.  This Kmax effect affects crack growth data 
similar to load ratio (R) effects.  However, R effects are generally associated with crack closure effects 
and Kmax effects occur at high values of R in the absence of crack closure.  Using the ASTM working 
definition for determining the fatigue crack growth threshold values about 10-10 m/cycle, threshold values 
decrease from ∆Kth = 2.8 MPa√m at Kmax = 22 MPa√m to ∆Kth = 2.1 MPa√m at Kmax = 88 MPa√m (a 
25% reduction in ∆Kth).  Testing at higher Kmax values was terminated before achieving da/dN = 10-10 
m/cycle because the cyclic loads for these conditions was too small to ensure adequate load control.  The 
Kmax effects observed for the Inconel 718 (DA) material is typical of many well-behaved materials and is 
not considered an indicator of time-dependent crack growth similar to that observed for alloy 8009.  
Based on the observations that no abrupt slope changes were noted in the crack growth data (Figure 5) or 
the crack surface morphology, Inconel 718 (DA) does not appear to exhibit a room-temperature creep 
crack growth mechanism similar to aluminum PM alloys (Figure 2). 

The fatigue crack growth data for René 95, shown in Figure 6, is similar to that of Inconel 718 (DA) in 
that no abrupt slope changes were observed in the fatigue crack growth data.  Using the ASTM working 
definition for determining the fatigue crack growth threshold values about 10-10 m/cycle, threshold values 
decrease from ∆Kth = 2.9 MPa√m at Kmax = 22 MPa√m to ∆Kth = 2.3 MPa√m at Kmax = 88 MPa√m (a  
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INCONEL 718 (DA), 10 Hz
Room temperature, Laboratory air
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Figure 5.  Constant-Kmax fatigue crack growth data for Inconel 718 (DA). 

20% reduction in ∆Kth).  Testing at higher Kmax values was terminated before achieving da/dN = 10-10 
m/cycle because the cyclic loads for these conditions was too small to ensure adequate load control.  
Further, no abrupt changes in crack surface morphology were seen.  These observations suggest that René 
95 also does not exhibit a time-dependent crack growth mechanism at room temperature similar to 
aluminum PM alloys (Figure 2). 

Most of the crack growth tests were stopped at approximately da/dN = 3 x 10-11 m/cycle, so it is 
possible that a time-dependent crack growth mechanism occurs in these alloys that is only activated at 
crack growth rates below 10-11 m/cycle.  Additionally, creep deformation rates tend to be strongly 
dependent on temperature.  Typical creep deformation models relate the creep rate to the ratio of the test 
temperature and the melting temperature (ref. 16).  Considering that these nickel-base alloys have a 
significantly higher melting temperature than aluminum alloys, creep mechanisms are less likely to be 
active for nickel-base alloys at room temperature.  
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Rene '95, 10 Hz
Room temperature, Laboratory air
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Figure 6.  Constant-Kmax fatigue crack growth data for René 95. 

Conclusions 

Constant-Kmax fatigue crack growth tests were performed on two fine-grained nickel-base alloys – 
Inconel 718 (DA) and René 95 – to determine if these alloys exhibited a room-temperature creep crack 
growth mechanism similar to that observed in fine-grained aluminum alloys.  Increasing crack growth 
rates and decreasing values of fatigue crack growth threshold were observed as Kmax increased.  However, 
this behavior is typical of well-behaved alloys and is not considered an indication that these alloys are 
susceptible to a time-dependent crack growth mechanism at room temperature.  
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