
Developing A Web-based User Interface for
Semantic Information Retrieval

Daniel C. Berrios', Richard M. Kelle?

'Research Institute for Advanced Computer Science, MS 269-2,
NASA Ames Research Center, Moffett Field, CA USA 94035

NASA Ames Research Center, Moffett Field, CA USA 94035
{bemos, keller 1 @ernail.arc.nasa.gov

'Computational Sciences Division, MS 269-2,

Abstract. While there are now a number of languages and frameworks that en-
able computer-based systems to search stored data semantically, the optimal de-
sign for effective user interfaces for such systems is still unclear. Such inter-
faces should mask unnecessary query detail from users, yet still allow them to
build queries of arbitrary complexity without significant restrictions. We de-
veloped a user interface supporting semantic query generation for Semanticor-
ganizer, a tool used by scientists and engineers at NASA to comtmct networks
of knowledge and data. Through this interface users can select node types,
node attributes and node links to build ad-hoc semantic queries for searching
the Semanticorganizer network.

1 Introduction

To imbue web documents with machine-readable semantic content, authors now have
formats such as RDF for storing such content [l] and tools like Annotea and the
SHOE Knowledge Annotator [2] to help create such content. Furthermore, standards
for query languages to search this content are also beginning to emerge [3]. However,
there are still very few tools to help users create semantic queries in any of these lan-
guage, and the design of such tools remains the subject of ongoing research.

We have developed a user interface for building semantic queries of arbitrary com-
plexity for SemanticOrganizer' (SO), a combined knowledge and data repository that
features an extensive semantic network. Through this interface a user can generate a
complex query to search the SO knowledge space for sets of items consistent with the
query. The queries are stored as RDF models with-anonymous nodes, hidden within
HTML pages of the interface, and incrementally updated as the user builds a query.

We approached the design of this interface with the twin goals of accommodating
users who know nothing or very little about RDF and presenting the queries in a sim-
ple, straightforward manner. SO has a wide array of users who vary in technical

' httD:!/sciencedesk.arc.nasa.gov/

2 Daniel C. Berriosl, Richard M. Keller2

. .
Node Listing
(Figs. 2 & 5)

Select Range Class (Fig. 5)

Edit (literal)
Property Vdue(s)
(Fig. 3, upper right) Choose “Link’’ Property

(Fig. 3, lower right)

Figure 1. Flow of user interaction with the Semanticorganizer query building interface

savvy and who use a variety of computing platforms and software. By and large,
most user interaction with SO is via HTML forms, and we have eschewed more so-
phisticated interfaces such as specialized java applet widgets largely because of cross-
platfordbrowser compatibility issues. Thus, we sought to develop a semantic search-
ing interface using only HTML technology.

Methods

Because the task of building all but the simplest query can require substantial cogni-
tive reasoning on the part of users, we chose a successive refinement design for the
query building interface (Fig. 1). Users iteratively add “terms” to a query; each term
is represented as a typed, but otherwise anonymous node in the RDF model. Each
node is added by linking it to a node dready in the model through a “link” type prop-
erty selected from the SO knowledge network. The query can be submitted for execu-
tion any time after the first node is created and added to themcdel. In fact, the user

can continue to refine the query andor
submit it for execution even after
search results are presented.

Figures 2 through 7 show the
development of a query to search for all

Your query so far: DNA sequences from any bacterial
culture of a (stromatolite) sample with

user beginning to build a query using
the interface. The interface is separated

Figure 2. The Node Type Selection display of

lect a type for the first (and each successive)
node in the query

h e query budder interface. m e mer must Se- certain properties. Figure shows a

Developing A Web-based User Interface for
Semantic Information Retrieval

3

by a simple horizontal line into an upper query building area, in which users select
and edit terms in the query, and a lower query execution area, in which users can
choose to submit a query, view search results, or erase the current query and begin
again. Because the query (in its current state) is stored client-side (Le., embedded
within the web page) and not server-side, the user can ”back up” to previous versions
of the query at will using only their browser’s navigation buttons and pursue different
paths of query refinement.

As shown in Figure 2, the user begins to build the query by selecting the type
“DNA Sequence” for a new (anonymous) node in the model, labelled “DNA Se-
quence 1.” All nodes are typed and so labeled by order of creation. Specifying the
type for a node in the query adds a statement to the RDF model that restricts the type

Your query so far:

Find:

.. ,“.-I...-. -VI ~ --.-,--q,. ,.*..*”-
Clear Query I . Perform Search]

Figure 3. The Edit Node Properties step. After selecting a type for the new node, the user is pre-
sented with a form to selecvedit literal property values (upper right) andor choose a “link” type
property (lower right) to connect the new node to another node

4 Daniel C. Berriosl, Richard M. Keller?

property of the node to
the appropriate class.
The interface requires
the user to select a type
for each node before any
of the node’s properties
can be defined. While
this design choice ini-
tially followed logically
from the types of que-
ries we solicited from
potential users (e.g.,
“Find all experi-
ments.. .”, “Find all
samples.. .”, etc.), it also
obviated the need to de-

sequenced from

-

Your query so far:

Find‘

Figure 5. After selecting a ”link” type property, the user is re-
quired to choose from a set of possible range classes. In this
case, there is o d y one possible range cfass, “Cu!turc“, defmed
for the “sequenced from” property

velop methods for users to sort through the dozens or even hundreds of possible prop-
erties defined on all types in a given domain. Instead, the interface only needs to dis-
play those properties whose domain is the type of node selected.

After the user chooses the type of node to be added to the model, the interface dis-
plays the Edit Node form (Fig. 3). This form allows the user to enter or select literal-
valued properties of the node, or select from a list of properties that have other nodes
as ranges to link this node to other nodes in the model. Literals can be specified by
entering them directly or selecting from a list of allowed values (if such a list is de-
fined for the property type) and submitting the form; the returned page displays the
values along with an adjacent “scissors” icon which can be used to submit the form
again, this time removing the value. Values for any number of literal properties may
be submitted all at once or in any sequence as many times as desired. However, once
the user selects a “link” t y p property and submits the form, the interface requires the
user to specify a class for the range of this property (Fig. 4). After the user has se-
lected a range type, a new node (“Culture 1”) is added to the model, as well as a
statement restricting its type to the type specified, and a statement linking the two

nodes throuzh the se-
-.

I

Iected property. This
action returns the user to
the Node Listing Dis-
play, showing the two
newlv created anonv-
mow nodes along with
the list of all node types
(Fig. 5) .

At this point the user
can either select one of
the existing nodes in the

Your query so far:

model (to add other
finks and/or property

or choose the
Figure 4. The query after one round of node editing. The mer is
proceeding to shape the query by selecting the anonymous node
“Cukure i” as :he i~cc: node :G edit

Developing A Web-based User Interface for
Semantic Information Retrieval

5

Figure 6. The final complex query to search DNA sequences from any culture cultivated from
a sample of Cyanobacteria showing lithification

type for a third new node in the model. He or she can continue the cycle of creating
and editing existing nodes at will until satisfied with the query. This cycle could pro-
duce, for example, the complex query shown in Figure 6.

In the query execution area of the interface, we display generated queries in tabu-
iar fonn, which is well-supported in H M L . Each node in the query is assigned a
corresponding column in the tabular display, and each row displays one or more links
between nodes. While this format may not be concise, it is probably superior to
merely listing the nodes and l ink of the model.

We could have designed the interface such that users could create any type of
s a p h structure, including those with cycles. However, the use of HTMI, tables to
display queries with cycles clearly and unambiguously appeared very challenging, if
not impossible. ’Ihus, we chose not to allow users to generate cyclical query strw-
tures using this imtial version of the query-building interface.

At any time during the process of building the complex query, the user may choose
to completely erase the query through the “Clear Query” button or execute the query
by pressing the “Perform Search” button. Choosing to erasing the query removes the
RDF model embedded in the page and returns the user to the first step in the query
building process (see Figure 2).

To execute the query, we viewed searching the SO knowledge space using the gen-
erated query as a constraint satisfaction problem (CSP) (as others have): the nodes in
the query represent the set of variables in the CSP, the items in SO correspond to the
domain of possible values for these variables, and the various properties in the RDF
model that the user specifies represent the constraints. We developed procedures to

6 Daniel C. Berriosl, Richard M. Keller2

3 search results marching your query:

-- 56-001

H6C- 1: 165 ~RNA seauencr Sa-OoL

H6C-3: 16s r w ~ s e w n c e ! s l 58-001

Figure 7. Example search results. Each row represents a set of pos-
sible values for each node in the model

and the possible sets of values for the nodes are listed as rows
lar value shows the item in SO.

solve this CSP using
common pro9am-
ming techniques to
increase efficiency,
including node and
arcconsistency
tracking.

Figure 7 shows
the search results for
the query shown in
Figure 6. Each node
in the query corre-
sponds to a column
in the results table,

Clicking on a particu-

Discussion

We present our experience developing a complex query generation interface that we
hope will be effective and at the same time intelligble to naYve web users. The mis-
sions and scientific activities conducred at NASA often involve users with a wide vz-
riety of sophistication in computer science and experience with computing tools. Yet
even unsophisticated users have advanced information needs that will require them to
be able to specify complex queries.

We will extend the functions of the interface to include more features that users
will likely require, such as selecting and searching for multiple values for literal-
valued properties (using Boolean OR), specifying ranges of values for special types of
literals such as dates and times, and range sets for link-type properties. Because
building some queries often requires significant time and thought, we are also devel-
oping methods for users to store, retrieve, re-edit and re-execute complex queries.

References

[l]

[2]

M. S. Lacher and S. Decker, "KDF, topic maps, and the semantic Web,"
Markup Languages: Theory & Practice, vol. 3, pp. 313-37, 2001.
J. Heflin, J. Hendler, and S. Luke, "SHOE: A Knowledge Representation
Language for Internet Applications.," Dept. of Computer Science, University
of Maryland at College Park., Technical Report CS-TR4078 (UMIACS TR-

L. Miller, A. Seaborne, and A. Reggiori, "Three implementations of
SquishQL, a simple RDF query language," presented at ISWC 2002. First In-
ternational Semantic Web Conference Proceedings. Sardinia, Italy, 2002.

99-71) 1999.
[3]

