
Demonstrating a Realistic IP Mission Prototype
-

James Rash, Arturo B. Ferrer
NASNGoddard Space Flight Center

Greenbelt, MD 20771
Nancy Goodman, Samira Ghazi-Tehrani, NASNGSFC

Joe Polk, Vantage Systems, Inc.
Lorin Johnson, Interface and Control Systems, Inc.

Greg Menke, Bill Miller Raytheon
Ed Criscwolo, Keith Hogie, Ron Parise

Computer Sciences Corp
7700 Hubble Dr.

Lanham-Seabrook, MD 20706

Abstract- Flight software and hardware and realistic space
communications environments were elements of recent
demonstrations of the Internet Protocol (IP) mission concept
in the lab. The Operating Missions as Nodes on the Internet
(OMNI) Project and the Flight Software Branch at
NASA/GSFC collaborated to build the prototype of a
representative space mission that employed unmodified off-
the-shelf Internet protocols and technologies for end-to-end
communications between the spacecrafthnstruments and the
ground systemhers. The realistic elements used in the
prototype included an RF communications link simulator
and components of the TRIANA mission flight software and
ground support system. A web-enabled camera connected to
the spacecraft computer via an Ethernet LAN represented an
on-board instrument creating image data. In addition to the
protocols at the link layer (HDLC), transport layer (UDP,
TCP), and network (IP) layer, a reliable file delivery protocol
(MDP) at the application layer enabled reliable data delivery
both to and from the spacecraft. The standard Network Time
Protocol (NTP) performed on-board clock synchronization
with a ground time standard. The demonstrations of the
prototype mission illustrated some of the advantages of
using Internet standards and technologies for space missions,
but also helped identify issues that must be addressed.
These issues include applicability to embedded real-time
systems on flight-qualified hardware, range of applicability
of TCP, and liability for and maintenance of commercial off-
the-shelf (COTS) products. The NASA Earth Science
Technology Office (ESTO) funded the collaboration to build
and demonstrate the prototype IP mission.

TABLE OF CONTENTS
1. INTRODUCTION

3. SPACE RELATED ISSUES
4. LESSONS LEARNED
5. CONCLUSIONS
6. FUTURE WORK
7. ACKNOWLEDGEMENTS

2. OVERVIEW OF TESTBED

1. INTRODUCTION
The goal of the Space Internet Technology Testbed effort was
to demonstrate in the laboratory the operation of a realistic IP
mission prototype as a means to investigate the viability of
using standard Internet protocols, open source real time
operating systems (RTOSs), and standard Ethernet as the

spacecraft bus. The desire to reduce future spacecraft
development and mission operations costs motivated the
activity.
This activity demonstrated end-to-end satellite data flow
concepts in a realistic space and ground system
hardwarehoftware environment. The demonstrated data
flows included 1) automated store and forward flow of
simulated science data from a spacecraft instrument to
multiple end user workstations, 2) automated real time flow
of housekeeping data from the spacecraft Command & Data
Handling (C&DH) software to an Integrated Test and
Operations System (ITOS) ground support workstation, and
3) real time data flow of ground commands from the ITOS
workstation to the spacecraft instrument via the spacecraft
C&DH software. This activity also investigated the Network
Time Protocol (NTP) for automated time synchronization
between the ITOS ground workstation and the spacecraft
C&DH software, and between the spacecraft C&DH software
and the simulated science instrument.

2. OVERVIEW OF TESTBED

Ground and Flight Segments
The laboratory setup consisted of a ground segment and a
flight segment configured to simulate a complete mission
environment.
The ground segment consisted of a Sun Ultra 10 running the
ITOS ground system, a Cisco 1601/1603 router configured
in multicast mode, two Principal Investigator workstations,
and supporting Ethernet networking equipment.
The flight segment consisted of a C&DH component running
on a MCP750 single board computer in a Motorola
CPX2000 Series 6U Compact PCI Chassis, a Canon
Communication Camera, model VC-C 1 MK &Camera
(model VC-C1 MK 11) connected to an Axis 240 Camera
Server simulating a spacecraft instrument, a communication
up/down link consisting of a Cisco 1601/1603 router, an
Adtech Model SX/13 Data Channel Simulator, and
supporting Ethernet networking equipment.
There were also two workstations (not shown in Figure 1
below), one on the Spacecraft Segment and one on the
Ground Segment, both running the EtherPeek tool by
WildPackets, Inc., to help with debugging and testing.

. .

C&DH Components
The starting point for the effort was an existing partial port
of the Triana C&DH flight software rehosted from VxWorks
to the Linux operating system. This port included TCP/IP
interfaces between the Triana flight software on a Power PC
603 target with Ethernet interfaces to the ITOS workstation.
Since generic Linux uses a time sliced, round robin
scheduling mechanism, which is not capable of servicing real
time deadlines typically found in flight software
implementations, the Triana software was rehosted to a Real
Time Operating System (RTOS).
The initial investigation identified Real-Time Embedded
Multiprocessing System (RTEMS) for use on the testbed
(http://www.rtems.com/). RTEMS is open source and
portable, and Code 582 has significant experience with the
product. Recognizing a 6-month time constraint and limited
personnel resources, the team initiated a procurement with
Online Applications Research, Inc., Huntsville, AL, to add
the Multicast Dissemination Protocol (MDP) client and
server, and the Network Time Protocol (NTP) client and
server, to the RTEMS core capability. Due to procurement
delays, it was necessary to identify a backup RTOS,
resulting in the use of RTLinux from FSMLabs.
RTLinux is an open source product that runs on top of
Linux, so it not only has the capabilities of Linux, but also

can service real time interrupts in a timely manner. 14
detailed treatment of the structure and capabilities of
RTLinux is beyond the scope of this discussion. The reader
is invited to seek more information from FSMLabs, Inc.
(http://www. fswlabs.com/)
The testbed team retargeted the Triana flight software to the
RTLinux RTOS. The heritage Triana software interprocess
communication mechanism, the Software Bus, used
information in CCSDS packet headers to route command and
telemetry packets between software subsystems onboard.
Considering time and resource constraints, the team decided
to keep the CCSDS packet structure, allowing reuse of the
Software Bus and the existing Triana ITOS command and
telemetry database with minor modifications to both.
Science data transfer from the instrument to the C&DH, and
between the C&DH and ground was implemented in UDP
packets.
The flight software components are discussed below:

Command Ingest (CI) - Flight software component
used to accept, validate and distribute real-time
CCSDS command packets received from the ITOlS I
ground workstation. CI was modified from the
flight VxWorks version to use an IP socket and
port. It received TCP/IP packets from ITOS and
extracted the CCSDS packets in the data field.

Spacecraft

I
cube I

I

Stratum 4 I
I

I

I

I I
Spacecraft LAN (Ethernet)

Ground

Spacecraft C&DH on MCP750

NTP
Stratum 3

r------ CommILink-

FSW -Flight Soltware
C&DH -Command & Data Handling
NTP - Network Time Protocol
MDP - Multicast Dissemination Protocol
SB - Soilware Bus task
IS - Instrument Suppan task
TO. Telemetry Output task
C1. Command Ingest task
GSE - Ground Suppan Environment
CNE .Center Network Environment
ITOS - Integrated Test and Operations System

I Serial
I MOKbps

I I
I !

I I I

Router

Instrument
I Data I I Data

UDP CNE Network (Ethernet)

GSE Workstation

Figure.1. Space Internet Technology Testbed Architecture

Telemetry Output (TO) - Flight software component
used to wrap housekeeping CCSDS packets in IP
headers for transmission to the ITOS ground
workstation. TO was modified from the flight
VxWorks version to use an IP socket and port. It
received CCSDS packets from software subsystems
onboard and encapsulated the CCSDS packets in IP
headers for transmission to the ITOS GSE
workstation.

software products may not actually be applicable. This can
mostly be attributed to the fact that GSFC spacecraft
hardware usually deviate in some manner from the COTS
hardware platforms targeted by COTS software products,
requiring some customization of the COTS software product
that voids technical support. For example, the GSFC board
support package written to support the port of VxWorks to
the Mongoose V processor, resulted in a situation that
reduced the value of technical support from the vendor.

Health and Safety (HS) - Flight software component Further, consider the responsibilities of the flight software
used to request, collect and format health and safety branch, Code 582. Code 582 is tasked with developing,
data from the flight software subsystem tasks. It maintaining and operating software for embedded space
sends housekeeping requests to the subsystem tasks, applications. This includes troubleshooting in-flight
collects the responses into one CCSDS packet, then software and hardware anomalies. To perform these duties, a
sends the CCSDS packet to TO for downlink. detailed knowledge is reauired of the hardware/software

interfaces, and most 'software components. COTS
'Oftware Bus (SB) - 'Oftware component software products are attractive in reducing development wed for interprocess communications~ SB routes costs, but may increase maintenance costs, because the
CCSDS packets based On ID numbers purchase of the source code and additional personnel and validates sender and receiver tasks. SB is based
on a table driven routing mechanism using message workings of the product, aueues provided bv the RTOS.

may be required to understand the

Instrument Support (IS) - This is a new component
added for this effort. IS received instrument
commands from the CI task delivered through SB.
The instrument command was packaged in a
CCSDS packet to accommodate the SB routing
mechanism. IS then extracted the instrument
command from the data portion of the CCSDS
packet and forwarded the command via a
socket/Ethernet interface to the simulated science
instrument. IS received UDP science data packets
from the instrument and placed the data in a
specified directory in file format.
File Transfer (FT) - This is a new component added
for this effort. FT polled a directory for the creation
of new files. When it finds a new file, it sends the
file to the ground using the MDP protocol.

Ground Components
ITOS is the ground support environment used for spacecraft
commanding and telemetry display. It runs on a Sun Ultra
10. The ITOS database from the Triana mission was used as
a starting point and modified to accommodate housekeeping
telemetry from the IS task and to include instrument
commands. Instrument commands included commands to
turn the camera on and off, adjust the picture size and
resolution, and adjust the picture frequency. A display page
for real-time telemetry from the IS task was added.
The Principal Investigator Workstations were two desktop
computers running RedHat Linux and the xview to display
JPEG picture files.

3. SPACE RELATED ISSUES

Flight Software versus Desktop Applications
The spacecraft flight software domain is very different from
industrial and desktop applications. While there is much to
be learned and can be applied to spacecraft flight software
from these areas, it has to be realized that, at least for GSFC
flight software, many seemingly advantages of COTS

Current GSFC flight software implementations use a real-
time embedded software model implemented by VxWorks
and RTEMS, where the Real Time Operating System
(RTOS) provides interrupt vectoring for software responses
to hardware events, and pre-emptive multitasking. The
interrupt services have been critical in past flight applications
for software to meet absolute deadlines where failure to
respond within a given time limit can cause system failure.
On the GLAS instrument for the ICESat mission, this hard
real time limitation was 25 milliseconds. When an interrupt
occurs, software tasking is paused, the processor context is
saved, execution is switched to a specific interrupt service
routine, the interrupt is serviced, then the processor context
is switched back to the previous state of software tasking.
These interrupts can set semaphores which can trigger the
execution of high priority tasks. Pre-emptive multitasking
permits the execution of multiple software programs to run
as separate tasks within a single larger software environment.
A lower priority task is allowed to execute until it

completes its function, or is either preempted by an interrupt
or a higher priority task that has encountered a condition that
causes it to run. It is this interrupt and preemption scenario
that is unique to real time embedded systems and is NOT
addressed by desktop applications or most desktop operating
systems.
Desktop operating systems such as Linux in particular were
not designed to service interrupts and allow for task
preemption. Linux follows a process model, where software
components (processes) are given equal periods of time to
execute. No preemption is allowed, and interrupt response
time can be extremely variable. Such operating systems are
generally not suitable for representative real time applications
requiring interrupt driven data transfers such as 1553 bus
applications, attitude control systems or the servicing of
sensor driven events.
To accommodate this limitation of Linux, the RTLinux
product of FSMLabs was chosen for use in this effort.
RTLinux provides the ability to service hard real time
deadlines, and permits Linux OS functionality.
Unfortunately, the real time performance of RTLinux was not
measured or demonstrated. Nonetheless, the embedded

prioritized task model was implemented within a single
RTLinux process. Essentially this effort executed flight
software in a “window” type process. The effect is that the
flight software is now just a timesliced process running on
the Linux operating system. RTLinux permits interrupt
servicing and runs the entire Linux OS as a preemptable
process. If one considers this change in model, there is a
definite transition where the “flight software” no longer
controls a vast majority of system resources. These
implications for hard real time behavior need to be
characterized.

4. LESSONS LEARNED

RTOS Ports
The intended hardware target was the Motorola MCP750
because existing ports were available for RTEMS, and it was
estimated that RTLinux could be ported to this architecture
in a period of a week. However, the RTLinux rehost to the
MCP750 was much more involved than expected and
eventually required assistance from FSMLabs for
completion. The apparent difficulty was rehosting a Linux
kernel. In this case, the MCP750 was not a custom board,
but it was not a widely supported platform, and the details
were beyond our knowledge base.
RTEMS is functional on the MCP750. However, due to
time and resource constraints OAR was hired to implement
MDP and NTP in the RTEMS core. The implementation
was delivered, but is currently unverified.
An additional difference between RTEMS and RTLinux is
the memory resources required for each product. RTEMS
requires 400K bytes compressed on disk while RTLinux
requires 1.4 Mbytes. The RAM footprint is significantly
different as well. RTEMS requires 470Kbytes while
RTLinux is dynamically sized tending to expand to a
minimum of 8 Mbytes. These characteristics indicate that
RTEMS is targeted for embedded systems and requires
minimal resources. RTLinux is a convert from the desktop
world and requires more resources for operation.
From this effort, it was concluded that operating system
expertise is necessary for any endeavor, particularly for IP
software such as MDP and NTP that require standard Linux
OS calls and libraries. Operating system expertise is an
essential core technical skill that is frequently taken for
granted or overlooked.

Multicast Dissemination Protocol (MDP)
A primary design goal of MDP is to provide a reliable
multicast protocol approach that is suitable for reliable
dissemination of data over both wireless and wired networks.
For this effort, the team used MDP version 2 downloaded

from the internet. The MDP project homepage is
http://mdp.pf.itd.nrl.navy.mil/.
The flight software process had an MDP server implemented
as a thread. This demonstrated viability for implementation
within the existing embedded system flight software model.
The MDP thread implementation was very successful. It

continually scans a “hot” directory, and if a new file appears
in that directory, the MDP server automatically sends it to
the MDP client(s). The transfer is based on UDP packets

and no acknowledgements (ACKs) are required. If an MDP
block arrives at the client in a corrupt state, or does not arrive
at all, the client sends a negative acknowledgement (NACK)
to the server requesting retransmission.
ACKs are returned from the client to the server only when a
file has been successfully received on the ground. This ACK
can be used by the server to delete files that have been
successfully transmitted. Although this option exists, it was
not implemented in this demo.
The configuration of MDP in this effort was limited to a
static version that cannot be interactively commanded. The
setup parameters for MDP were hard coded and initiated on
thread startup. Typically MDP options are entered on a
command line in a process model operating system. Further
work is necessary to determine if interactive commands to an
MDP thread can be accommodated, or if a manner of
stopping the thread, altering startup parameters, and
restarting the thread is a viable option in an embedded
systems environment. Additionally, coordination between
the MDP client and server needs to be demonstrated during
periods of uplink dropouts. It can be anticipated that the
MDP server will continue to send files in the absence of
ACKs and NACKs from the MDP client. If MDP client
ACKs and NACKs are buffered and sent during the next
spacecraft contact, how will the MDP server respond? This
behavior needs to be investigated for representative periods
where more time is spent out of contact than in contact with
the spacecraft. Nonetheless, MDP has significant potential
for space flight applications, and merits further examination.
Also consider the maintenance requirement. If in-flight

maintenance is required, then a closer examination is needed
to understand the internals.

Network Time Protocol (NTP)
The testbed team downloaded the NTP product from the
website at http://www.ntp.org, and implemented the NTP
server as a separate process from the flight software. Due to
time constraints the implementation of NTP as a thread was
not investigated. NTP required a rather large footprint of
199K and offered very little control over when time queries
were performed. Hence, for most Earth orbit missions, the
spacecraft will be out of contact with the ground for
significant periods and NTP time queries will be
unanswered.
NTP comes as a packaged configuration for desktops and was
successfully implemented on the MCP750 for this effort.
Since there is little visibility in the setup process, no
determination can be made on configuring NTP for custom
spacecraft architectures. If COTS processor hardware is used
for spacecraft, configuring NTP may not be an issue, given
that a Linux or RTLinux type operating system is used.
Unfortunately, the RTEMS upgrade to include NTP was not
demonstrated.
Further, the NTP time synchronization algorithm assumes
linear oscillator degradation. Since it is a complex
algorithm, an investigation is needed to determine how it
will accommodate cyclic or intermittent oscillator anomalies
due to thermal and radiation effects or hardware failure. An
example of a flight software fix for timing hardware failure is
the TRMM “no-clock” fix effort completed in 1999 and is
currently ready for insertion into the spacecraft. Such a fix
for an NTP spacecraft is currently unlikely due to

unfamiliarity with the NTP internals and its interaction with
low level hardware. The maintenance requirement question
surfaces again.
On the other hand, NTP appears to be a fair candidate for
synchronizing time between spacecraft flying in
constellations, or to synchronize NTP to a GPS receiver
onboard a spacecraft. We can not make a definitive
determination concerning NTP, since our involvement was
limited to the implementation of NTP as a process, not as an
embedded system thread, and since we had limited time to
investigate its configuration, behavior, performance and
internals.

TCP
The testbed exercise used TCP sockets for the Spacecraft
C&DH and ITOS command link. On most occasions, the
TCP connection was sufficient. However, there were
instances where the C&DH software would lock up when the
TCP connection was broken. This type of condition
commonly results from improper application handling of
socket error signals. Resource and time constraints prevented
the development of a full socket error handling mechanism
within the application, which would naturally be included in
an actual flight implementation. During testbed testing
activities, we recovered by rebooting both the C&DH
computer and the ITOS workstation and re-establishing the
TCP connection.

5. CONCLUSIONS
Demonstrations conducted using the testbed served to boost
familiarity with and acceptability of IP technology for
possible use on future NASA missions. The use of flight
software from a NASA mission (Triana) and other realistic
mission elements in the testbed ensured serious consideration
of the results. Further, the involvement of the Flight
Software Branch at GSFC ensured that the experience gained
with IP-centric implementations could be immediately
related to actual mission projects. The experience also
represented a stepping stone towards adopting new
approaches to mission development.
There can be no doubt concerning the benefits of standard
protocols and buses. IP protocols have been demonstrated to
be feasible for non-hard real time flight applications. The use
of IP protocols in more rigorous time constrained
environments requires firther investigation, because this was
not addressed in the testbed task.
Off-the-shelf protocols and toolkits such as MDP and NTP
have potential for mission use but must be viewed in the
larger scope of the spacecraft lifecycle. Savings in
development need to be assessed relative to the effort
required to gain the expertise with product internals necessary
for effective maintenance and troubleshooting during both
spacecraft integration and testing (I&T) and on orbit
operations.
The decision to fly IP is independent of the decision to fly

an on-board LAN such as Ethernet. Similarly, the decision
to fly an open source real time operating system such as
RTLinux is independent of the other two decisions. All of
these decision need to flow from a consensus among program
management, and the system, hardware, and software
engineers based on specific requirements. Through such

cooperation the correct combination of COTS vs. custom
hardware and software can be identified and assembled for a
successful mission.

6. FUTURE WORK
Despite successful laboratory and flight experiments, IP
technology has not yet been carried forward into routine
mission development at NASA. The near term obstacles lie
in current absence of RTOSs that support standard POSIX
operating system interfaces on custom flight hardware, and
the performance characterization of IP in hard real time
environments.
Fortunately, the development of high-speed radiation-
hardened processors for flight is rapidly reducing hardware
limitations. However, niches will remain for micro-
controllers and heritage hardware. RTOS selection for flight
projects often goes hand-in-hand with flight hardware
selection. Modem operating systems need modern hardware.
The trend to provide these resources for flight use is slow,

but gaining momentum. However, one may expect that for
some embedded spacecraft applications, the migration to IP
technology will be difficult.
The CHIPSat mission (http://chips.ssl.berkeley.edu/) and the
CANDOS experiment that flew on Shuttle mission STS-107
(http://ipinspace.gsfc.nasa.gov/CANDOS/) took IP
technology to the flight demonstration level in the NASA
context, although the first IP mission that was designed as
such (AlSAT-1) was flown by Surrey Satellite Technology
(SSTL) in November, 2002 (http://www.sstl.co.uk/).
These mission experiences, and the collaboration between the
GSFC Flight Software Branch and the GSFC Operating
Missions as Nodes on the Internet (OMNI) Project
(http://ipinspace.gsfc.nasa.gov/), influenced the planned
implementation of IP technologies in the Global
Precipitation Measurement (GPM) mission, which will fly in
2008 (http://gpm.gsfc.nasa.gov/).
The GPM project has baselined both IP space-to-ground
communications and an onboard Ethernet network using the
flight Ethernet cards and switch technology developed by
GSFC Code 561. A major issue to be resolved is reliable
and redundant LAN configurations to insure fault tolerance
and failover capabilities.
Familiarity with space mission requirements and experience
with IP mission prototypes support the expectation that the
UDP transport layer protocol would be required for basic data
communications on the space-ground link. While TCP can
be used under some conditions to meet some mission
requirements, it is not generally sufficient for spacecraft
commanding,. This is immediately clear. First,
commanding must be possible even when, as is often the
case, there is only a forward link to, but no return link from,
the spacecraft. Since TCP requires two-way
communications, TCP cannot suffice. Additional factors
that affect the viability of TCP for space communications are
bit error rate (BER), link latency (bandwidth-delay product),
and link asymmetry. Since UDP does not require two-way
communications, and is unaffected by link asymmetry or
link latency, it becomes the natural alternative to TCP for
most IP mission data communications requirements. In
particular, it is clear that it will suffice for the GPM
baselined requirements. Whether TCP could be

advantageously included for GPM in addition to the planned
UDP mechanisms is yet to be determined.
IP mission requirements for reliable file delivery can be met
by an application running over UDP. Two candidate
applications are available: CCSDS File Delivery Protocol
(CFDP) and Multicast Dissemination Protocol (MDP).
CFDP and MDP are similar but differ in important respects.
The testbed demonstrated the use of MDP, but not CFDP.

Evaluations of the two applications are being conducted,
although a preliminary assessment by Code 582 has given
the edge to CFDP for use on GPM.
While much work has been done, the engineering of hard real
time systems, where missed deadlines for software responses
may cause system failure, to use IP technology has not yet
been carried forward into routine mission development at
NASA. Certainly implementing IP technology in nano-
satellites and high performance instruments would be
challenging due to restricted system resources and rigorous
execution deadlines. Future work lies in the characterization
of IP technology using the embedded system RTOS model
in varying hard real time performance ranges.

7. ACKNOWLEDGEMENTS
NASA’s Earth Science Technology Office (ESTO) funded the
research described in this paper.

James Rash - Goddard Space Flight
Center - Mr. Rash currently manages the
Operating Missions as Nodes on the
Internet (OMNI) project in the Advanced
Architectures and Automation Branch at
NASA ’s Goddard Space Flight Center.
He also leads development of formal
methods capabilities with respect to
agent-based systems. Previous
assignments have included development of systems applying
artvicial intelligence and evolutionary programming
techniques. He was Principal Investigator on the IP mission
testbed task.

Arturo Ferrer - Goddard Space Flight
Center - Mr. Ferrer is the lead engineer

for the Flight Software Technology Lab
in the Flight Software Branch at NASA’s
Goddard Space Flight Center. He also
has development responsibilities for a
number of software subsystems on in-
house projects and provides technical
support for out-of house flight projects.
He was the Co-Investigator on the IP mission testbed task.

