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Abstract- Flight software and hardware and realistic space 
communications environments were elements of recent 
demonstrations of the Internet Protocol (IP) mission concept 
in the lab. The Operating Missions as Nodes on the Internet 
(OMNI) Project and the Flight Software Branch at 
NASA/GSFC collaborated to build the prototype of a 
representative space mission that employed unmodified off- 
the-shelf Internet protocols and technologies for end-to-end 
communications between the spacecrafthnstruments and the 
ground systemhers. The realistic elements used in the 
prototype included an RF communications link simulator 
and components of the TRIANA mission flight software and 
ground support system. A web-enabled camera connected to 
the spacecraft computer via an Ethernet LAN represented an 
on-board instrument creating image data. In addition to the 
protocols at the link layer (HDLC), transport layer (UDP, 
TCP), and network (IP) layer, a reliable file delivery protocol 
(MDP) at the application layer enabled reliable data delivery 
both to and from the spacecraft. The standard Network Time 
Protocol (NTP) performed on-board clock synchronization 
with a ground time standard. The demonstrations of the 
prototype mission illustrated some of the advantages of 
using Internet standards and technologies for space missions, 
but also helped identify issues that must be addressed. 
These issues include applicability to embedded real-time 
systems on flight-qualified hardware, range of applicability 
of TCP, and liability for and maintenance of commercial off- 
the-shelf (COTS) products. The NASA Earth Science 
Technology Office (ESTO) funded the collaboration to build 
and demonstrate the prototype IP mission. 
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1. INTRODUCTION 
The goal of the Space Internet Technology Testbed effort was 
to demonstrate in the laboratory the operation of a realistic IP 
mission prototype as a means to investigate the viability of 
using standard Internet protocols, open source real time 
operating systems (RTOSs), and standard Ethernet as the 

spacecraft bus. The desire to reduce future spacecraft 
development and mission operations costs motivated the 
activity. 
This activity demonstrated end-to-end satellite data flow 
concepts in a realistic space and ground system 
hardwarehoftware environment. The demonstrated data 
flows included 1) automated store and forward flow of 
simulated science data from a spacecraft instrument to 
multiple end user workstations, 2) automated real time flow 
of housekeeping data from the spacecraft Command & Data 
Handling (C&DH) software to an Integrated Test and 
Operations System (ITOS) ground support workstation, and 
3) real time data flow of ground commands from the ITOS 
workstation to the spacecraft instrument via the spacecraft 
C&DH software. This activity also investigated the Network 
Time Protocol (NTP) for automated time synchronization 
between the ITOS ground workstation and the spacecraft 
C&DH software, and between the spacecraft C&DH software 
and the simulated science instrument. 

2. OVERVIEW OF TESTBED 

Ground and Flight Segments 
The laboratory setup consisted of a ground segment and a 
flight segment configured to simulate a complete mission 
environment. 
The ground segment consisted of a Sun Ultra 10 running the 
ITOS ground system, a Cisco 1601/1603 router configured 
in multicast mode, two Principal Investigator workstations, 
and supporting Ethernet networking equipment. 
The flight segment consisted of a C&DH component running 
on a MCP750 single board computer in a Motorola 
CPX2000 Series 6U Compact PCI Chassis, a Canon 
Communication Camera, model VC-C 1 MK &Camera 
(model VC-C1 MK 11) connected to an Axis 240 Camera 
Server simulating a spacecraft instrument, a communication 
up/down link consisting of a Cisco 1601/1603 router, an 
Adtech Model SX/13 Data Channel Simulator, and 
supporting Ethernet networking equipment. 
There were also two workstations (not shown in Figure 1 
below), one on the Spacecraft Segment and one on the 
Ground Segment, both running the EtherPeek tool by 
WildPackets, Inc., to help with debugging and testing. 



. .  

C&DH Components 
The starting point for the effort was an existing partial port 
of the Triana C&DH flight software rehosted from VxWorks 
to the Linux operating system. This port included TCP/IP 
interfaces between the Triana flight software on a Power PC 
603 target with Ethernet interfaces to the ITOS workstation. 
Since generic Linux uses a time sliced, round robin 
scheduling mechanism, which is not capable of servicing real 
time deadlines typically found in flight software 
implementations, the Triana software was rehosted to a Real 
Time Operating System (RTOS). 
The initial investigation identified Real-Time Embedded 
Multiprocessing System (RTEMS) for use on the testbed 
(http://www.rtems.com/). RTEMS is open source and 
portable, and Code 582 has significant experience with the 
product. Recognizing a 6-month time constraint and limited 
personnel resources, the team initiated a procurement with 
Online Applications Research, Inc., Huntsville, AL, to add 
the Multicast Dissemination Protocol (MDP) client and 
server, and the Network Time Protocol (NTP) client and 
server, to the RTEMS core capability. Due to procurement 
delays, it was necessary to identify a backup RTOS, 
resulting in the use of RTLinux from FSMLabs. 
RTLinux is an open source product that runs on top of 
Linux, so it not only has the capabilities of Linux, but also 

can service real time interrupts in a timely manner. 14 
detailed treatment of the structure and capabilities of 
RTLinux is beyond the scope of this discussion. The reader 
is invited to seek more information from FSMLabs, Inc. 
(http://www. fswlabs.com/) 
The testbed team retargeted the Triana flight software to the 
RTLinux RTOS. The heritage Triana software interprocess 
communication mechanism, the Software Bus, used 
information in CCSDS packet headers to route command and 
telemetry packets between software subsystems onboard. 
Considering time and resource constraints, the team decided 
to keep the CCSDS packet structure, allowing reuse of the 
Software Bus and the existing Triana ITOS command and 
telemetry database with minor modifications to both. 
Science data transfer from the instrument to the C&DH, and 
between the C&DH and ground was implemented in UDP 
packets. 
The flight software components are discussed below: 

Command Ingest (CI) - Flight software component 
used to accept, validate and distribute real-time 
CCSDS command packets received from the ITOlS I 
ground workstation. CI was modified from the 
flight VxWorks version to use an IP socket and 
port. It received TCP/IP packets from ITOS and 
extracted the CCSDS packets in the data field. 
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Figure.1. Space Internet Technology Testbed Architecture 



Telemetry Output (TO) - Flight software component 
used to wrap housekeeping CCSDS packets in IP 
headers for transmission to the ITOS ground 
workstation. TO was modified from the flight 
VxWorks version to use an IP socket and port. It 
received CCSDS packets from software subsystems 
onboard and encapsulated the CCSDS packets in IP 
headers for transmission to the ITOS GSE 
workstation. 

software products may not actually be applicable. This can 
mostly be attributed to the fact that GSFC spacecraft 
hardware usually deviate in some manner from the COTS 
hardware platforms targeted by COTS software products, 
requiring some customization of the COTS software product 
that voids technical support. For example, the GSFC board 
support package written to support the port of VxWorks to 
the Mongoose V processor, resulted in a situation that 
reduced the value of technical support from the vendor. 

Health and Safety (HS) - Flight software component Further, consider the responsibilities of the flight software 
used to request, collect and format health and safety branch, Code 582. Code 582 is tasked with developing, 
data from the flight software subsystem tasks. It maintaining and operating software for embedded space 
sends housekeeping requests to the subsystem tasks, applications. This includes troubleshooting in-flight 
collects the responses into one CCSDS packet, then software and hardware anomalies. To perform these duties, a 
sends the CCSDS packet to TO for downlink. detailed knowledge is reauired of the hardware/software 

interfaces, and most 'software components. COTS 
'Oftware Bus (SB) - 'Oftware component software products are attractive in reducing development wed for interprocess communications~ SB routes costs, but may increase maintenance costs, because the 
CCSDS packets based On ID numbers purchase of the source code and additional personnel and validates sender and receiver tasks. SB is based 
on a table driven routing mechanism using message workings of the product, aueues provided bv the RTOS. 

may be required to understand the 

Instrument Support (IS) - This is a new component 
added for this effort. IS received instrument 
commands from the CI task delivered through SB. 
The instrument command was packaged in a 
CCSDS packet to accommodate the SB routing 
mechanism. IS then extracted the instrument 
command from the data portion of the CCSDS 
packet and forwarded the command via a 
socket/Ethernet interface to the simulated science 
instrument. IS received UDP science data packets 
from the instrument and placed the data in a 
specified directory in file format. 
File Transfer (FT) - This is a new component added 
for this effort. FT polled a directory for the creation 
of new files. When it finds a new file, it sends the 
file to the ground using the MDP protocol. 

Ground Components 
ITOS is the ground support environment used for spacecraft 
commanding and telemetry display. It runs on a Sun Ultra 
10. The ITOS database from the Triana mission was used as 
a starting point and modified to accommodate housekeeping 
telemetry from the IS task and to include instrument 
commands. Instrument commands included commands to 
turn the camera on and off, adjust the picture size and 
resolution, and adjust the picture frequency. A display page 
for real-time telemetry from the IS task was added. 
The Principal Investigator Workstations were two desktop 
computers running RedHat Linux and the xview to display 
JPEG picture files. 

3. SPACE RELATED ISSUES 

Flight Software versus Desktop Applications 
The spacecraft flight software domain is very different from 
industrial and desktop applications. While there is much to 
be learned and can be applied to spacecraft flight software 
from these areas, it has to be realized that, at least for GSFC 
flight software, many seemingly advantages of COTS 

Current GSFC flight software implementations use a real- 
time embedded software model implemented by VxWorks 
and RTEMS, where the Real Time Operating System 
(RTOS) provides interrupt vectoring for software responses 
to hardware events, and pre-emptive multitasking. The 
interrupt services have been critical in past flight applications 
for software to meet absolute deadlines where failure to 
respond within a given time limit can cause system failure. 
On the GLAS instrument for the ICESat mission, this hard 
real time limitation was 25 milliseconds. When an interrupt 
occurs, software tasking is paused, the processor context is 
saved, execution is switched to a specific interrupt service 
routine, the interrupt is serviced, then the processor context 
is switched back to the previous state of software tasking. 
These interrupts can set semaphores which can trigger the 
execution of high priority tasks. Pre-emptive multitasking 
permits the execution of multiple software programs to run 
as separate tasks within a single larger software environment. 
A lower priority task is allowed to execute until it 

completes its function, or is either preempted by an interrupt 
or a higher priority task that has encountered a condition that 
causes it to run. It is this interrupt and preemption scenario 
that is unique to real time embedded systems and is NOT 
addressed by desktop applications or most desktop operating 
systems. 
Desktop operating systems such as Linux in particular were 
not designed to service interrupts and allow for task 
preemption. Linux follows a process model, where software 
components (processes) are given equal periods of time to 
execute. No preemption is allowed, and interrupt response 
time can be extremely variable. Such operating systems are 
generally not suitable for representative real time applications 
requiring interrupt driven data transfers such as 1553 bus 
applications, attitude control systems or the servicing of 
sensor driven events. 
To accommodate this limitation of Linux, the RTLinux 
product of FSMLabs was chosen for use in this effort. 
RTLinux provides the ability to service hard real time 
deadlines, and permits Linux OS functionality. 
Unfortunately, the real time performance of RTLinux was not 
measured or demonstrated. Nonetheless, the embedded 



prioritized task model was implemented within a single 
RTLinux process. Essentially this effort executed flight 
software in a “window” type process. The effect is that the 
flight software is now just a timesliced process running on 
the Linux operating system. RTLinux permits interrupt 
servicing and runs the entire Linux OS as a preemptable 
process. If one considers this change in model, there is a 
definite transition where the “flight software” no longer 
controls a vast majority of system resources. These 
implications for hard real time behavior need to be 
characterized. 

4. LESSONS LEARNED 

RTOS Ports 
The intended hardware target was the Motorola MCP750 
because existing ports were available for RTEMS, and it was 
estimated that RTLinux could be ported to this architecture 
in a period of a week. However, the RTLinux rehost to the 
MCP750 was much more involved than expected and 
eventually required assistance from FSMLabs for 
completion. The apparent difficulty was rehosting a Linux 
kernel. In this case, the MCP750 was not a custom board, 
but it was not a widely supported platform, and the details 
were beyond our knowledge base. 
RTEMS is functional on the MCP750. However, due to 
time and resource constraints OAR was hired to implement 
MDP and NTP in the RTEMS core. The implementation 
was delivered, but is currently unverified. 
An additional difference between RTEMS and RTLinux is 
the memory resources required for each product. RTEMS 
requires 400K bytes compressed on disk while RTLinux 
requires 1.4 Mbytes. The RAM footprint is significantly 
different as well. RTEMS requires 470Kbytes while 
RTLinux is dynamically sized tending to expand to a 
minimum of 8 Mbytes. These characteristics indicate that 
RTEMS is targeted for embedded systems and requires 
minimal resources. RTLinux is a convert from the desktop 
world and requires more resources for operation. 
From this effort, it was concluded that operating system 
expertise is necessary for any endeavor, particularly for IP 
software such as MDP and NTP that require standard Linux 
OS calls and libraries. Operating system expertise is an 
essential core technical skill that is frequently taken for 
granted or overlooked. 

Multicast Dissemination Protocol (MDP) 
A primary design goal of MDP is to provide a reliable 
multicast protocol approach that is suitable for reliable 
dissemination of data over both wireless and wired networks. 
For this effort, the team used MDP version 2 downloaded 

from the internet. The MDP project homepage is 
http://mdp.pf.itd.nrl.navy.mil/. 
The flight software process had an MDP server implemented 
as a thread. This demonstrated viability for implementation 
within the existing embedded system flight software model. 
The MDP thread implementation was very successful. It 

continually scans a “hot” directory, and if a new file appears 
in that directory, the MDP server automatically sends it to 
the MDP client(s). The transfer is based on UDP packets 

and no acknowledgements (ACKs) are required. If an MDP 
block arrives at the client in a corrupt state, or does not arrive 
at all, the client sends a negative acknowledgement (NACK) 
to the server requesting retransmission. 
ACKs are returned from the client to the server only when a 
file has been successfully received on the ground. This ACK 
can be used by the server to delete files that have been 
successfully transmitted. Although this option exists, it was 
not implemented in this demo. 
The configuration of MDP in this effort was limited to a 
static version that cannot be interactively commanded. The 
setup parameters for MDP were hard coded and initiated on 
thread startup. Typically MDP options are entered on a 
command line in a process model operating system. Further 
work is necessary to determine if interactive commands to an 
MDP thread can be accommodated, or if a manner of 
stopping the thread, altering startup parameters, and 
restarting the thread is a viable option in an embedded 
systems environment. Additionally, coordination between 
the MDP client and server needs to be demonstrated during 
periods of uplink dropouts. It can be anticipated that the 
MDP server will continue to send files in the absence of 
ACKs and NACKs from the MDP client. If MDP client 
ACKs and NACKs are buffered and sent during the next 
spacecraft contact, how will the MDP server respond? This 
behavior needs to be investigated for representative periods 
where more time is spent out of contact than in contact with 
the spacecraft. Nonetheless, MDP has significant potential 
for space flight applications, and merits further examination. 
Also consider the maintenance requirement. If in-flight 

maintenance is required, then a closer examination is needed 
to understand the internals. 

Network Time Protocol (NTP) 
The testbed team downloaded the NTP product from the 
website at http://www.ntp.org, and implemented the NTP 
server as a separate process from the flight software. Due to 
time constraints the implementation of NTP as a thread was 
not investigated. NTP required a rather large footprint of 
199K and offered very little control over when time queries 
were performed. Hence, for most Earth orbit missions, the 
spacecraft will be out of contact with the ground for 
significant periods and NTP time queries will be 
unanswered. 
NTP comes as a packaged configuration for desktops and was 
successfully implemented on the MCP750 for this effort. 
Since there is little visibility in the setup process, no 
determination can be made on configuring NTP for custom 
spacecraft architectures. If COTS processor hardware is used 
for spacecraft, configuring NTP may not be an issue, given 
that a Linux or RTLinux type operating system is used. 
Unfortunately, the RTEMS upgrade to include NTP was not 
demonstrated. 
Further, the NTP time synchronization algorithm assumes 
linear oscillator degradation. Since it is a complex 
algorithm, an investigation is needed to determine how it 
will accommodate cyclic or intermittent oscillator anomalies 
due to thermal and radiation effects or hardware failure. An 
example of a flight software fix for timing hardware failure is 
the TRMM “no-clock” fix effort completed in 1999 and is 
currently ready for insertion into the spacecraft. Such a fix 
for an NTP spacecraft is currently unlikely due to 



unfamiliarity with the NTP internals and its interaction with 
low level hardware. The maintenance requirement question 
surfaces again. 
On the other hand, NTP appears to be a fair candidate for 
synchronizing time between spacecraft flying in 
constellations, or to synchronize NTP to a GPS receiver 
onboard a spacecraft. We can not make a definitive 
determination concerning NTP, since our involvement was 
limited to the implementation of NTP as a process, not as an 
embedded system thread, and since we had limited time to 
investigate its configuration, behavior, performance and 
internals. 

TCP 
The testbed exercise used TCP sockets for the Spacecraft 
C&DH and ITOS command link. On most occasions, the 
TCP connection was sufficient. However, there were 
instances where the C&DH software would lock up when the 
TCP connection was broken. This type of condition 
commonly results from improper application handling of 
socket error signals. Resource and time constraints prevented 
the development of a full socket error handling mechanism 
within the application, which would naturally be included in 
an actual flight implementation. During testbed testing 
activities, we recovered by rebooting both the C&DH 
computer and the ITOS workstation and re-establishing the 
TCP connection. 

5.  CONCLUSIONS 
Demonstrations conducted using the testbed served to boost 
familiarity with and acceptability of IP technology for 
possible use on future NASA missions. The use of flight 
software from a NASA mission (Triana) and other realistic 
mission elements in the testbed ensured serious consideration 
of the results. Further, the involvement of the Flight 
Software Branch at GSFC ensured that the experience gained 
with IP-centric implementations could be immediately 
related to actual mission projects. The experience also 
represented a stepping stone towards adopting new 
approaches to mission development. 
There can be no doubt concerning the benefits of standard 
protocols and buses. IP protocols have been demonstrated to 
be feasible for non-hard real time flight applications. The use 
of IP protocols in more rigorous time constrained 
environments requires firther investigation, because this was 
not addressed in the testbed task. 
Off-the-shelf protocols and toolkits such as MDP and NTP 
have potential for mission use but must be viewed in the 
larger scope of the spacecraft lifecycle. Savings in 
development need to be assessed relative to the effort 
required to gain the expertise with product internals necessary 
for effective maintenance and troubleshooting during both 
spacecraft integration and testing (I&T) and on orbit 
operations. 
The decision to fly IP is independent of the decision to fly 

an on-board LAN such as Ethernet. Similarly, the decision 
to fly an open source real time operating system such as 
RTLinux is independent of the other two decisions. All of 
these decision need to flow from a consensus among program 
management, and the system, hardware, and software 
engineers based on specific requirements. Through such 

cooperation the correct combination of COTS vs. custom 
hardware and software can be identified and assembled for a 
successful mission. 

6.  FUTURE WORK 
Despite successful laboratory and flight experiments, IP 
technology has not yet been carried forward into routine 
mission development at NASA. The near term obstacles lie 
in current absence of RTOSs that support standard POSIX 
operating system interfaces on custom flight hardware, and 
the performance characterization of IP in hard real time 
environments. 
Fortunately, the development of high-speed radiation- 
hardened processors for flight is rapidly reducing hardware 
limitations. However, niches will remain for micro- 
controllers and heritage hardware. RTOS selection for flight 
projects often goes hand-in-hand with flight hardware 
selection. Modem operating systems need modern hardware. 
The trend to provide these resources for flight use is slow, 

but gaining momentum. However, one may expect that for 
some embedded spacecraft applications, the migration to IP 
technology will be difficult. 
The CHIPSat mission (http://chips.ssl.berkeley.edu/) and the 
CANDOS experiment that flew on Shuttle mission STS-107 
(http://ipinspace.gsfc.nasa.gov/CANDOS/) took IP 
technology to the flight demonstration level in the NASA 
context, although the first IP mission that was designed as 
such (AlSAT-1) was flown by Surrey Satellite Technology 
(SSTL) in November, 2002 (http://www.sstl.co.uk/). 
These mission experiences, and the collaboration between the 
GSFC Flight Software Branch and the GSFC Operating 
Missions as Nodes on the Internet (OMNI) Project 
(http://ipinspace.gsfc.nasa.gov/), influenced the planned 
implementation of IP technologies in the Global 
Precipitation Measurement (GPM) mission, which will fly in 
2008 (http://gpm.gsfc.nasa.gov/). 
The GPM project has baselined both IP space-to-ground 
communications and an onboard Ethernet network using the 
flight Ethernet cards and switch technology developed by 
GSFC Code 561. A major issue to be resolved is reliable 
and redundant LAN configurations to insure fault tolerance 
and failover capabilities. 
Familiarity with space mission requirements and experience 
with IP mission prototypes support the expectation that the 
UDP transport layer protocol would be required for basic data 
communications on the space-ground link. While TCP can 
be used under some conditions to meet some mission 
requirements, it is not generally sufficient for spacecraft 
commanding,. This is immediately clear. First, 
commanding must be possible even when, as is often the 
case, there is only a forward link to, but no return link from, 
the spacecraft. Since TCP requires two-way 
communications, TCP cannot suffice. Additional factors 
that affect the viability of TCP for space communications are 
bit error rate (BER), link latency (bandwidth-delay product), 
and link asymmetry. Since UDP does not require two-way 
communications, and is unaffected by link asymmetry or 
link latency, it becomes the natural alternative to TCP for 
most IP mission data communications requirements. In 
particular, it is clear that it will suffice for the GPM 
baselined requirements. Whether TCP could be 



advantageously included for GPM in addition to the planned 
UDP mechanisms is yet to be determined. 
IP mission requirements for reliable file delivery can be met 
by an application running over UDP. Two candidate 
applications are available: CCSDS File Delivery Protocol 
(CFDP) and Multicast Dissemination Protocol (MDP). 
CFDP and MDP are similar but differ in important respects. 
The testbed demonstrated the use of MDP, but not CFDP. 

Evaluations of the two applications are being conducted, 
although a preliminary assessment by Code 582 has given 
the edge to CFDP for use on GPM. 
While much work has been done, the engineering of hard real 
time systems, where missed deadlines for software responses 
may cause system failure, to use IP technology has not yet 
been carried forward into routine mission development at 
NASA. Certainly implementing IP technology in nano- 
satellites and high performance instruments would be 
challenging due to restricted system resources and rigorous 
execution deadlines. Future work lies in the characterization 
of IP technology using the embedded system RTOS model 
in varying hard real time performance ranges. 
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