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We provide a theoretical study of the quantum adiabatic evolution algorithm with different 

evolution paths proposed in [ 11. The algorithm is applied to a random binary optimization 

problem (a version of the 3-Satisfiability problem) where the n-bit cost function is sym- 

metric with respect to the permutation of individual bits. The evolution paths are produced, 

using the generic control Hamiltonians H ( r )  that preserve the bit symmetry of the under- 

lying optimization problem. In the case where the ground state of H ( 0 )  coincides with 

the totally-symmetric state of an n-qubit system the algorithm dynamics is completely de- 

scribed in terms of the motion of a spin-n/2. We show that different control Hamiltonians 

can be parameterized by a set of independent parameters that are expansion coefficients of 

H ( r )  in a certain universal set of operators. Only one of these operators can be responsible 

for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. 

We show that it is possible to select a coefficient for this operator that guarantees a poly- 

nomial complexity of the algorithm for all problem instances. We show that a successful 

evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 

and provide a complete characterization of such paths. 

PACS numbers: 03.67.Lx,89.70.+~ 

I. INTRODUCTION. 

Recently a novel paradigm was suggested for the design of quantum algorithms for solving 

combinatorial search and optimization problems based on quantum adiabatic evolution [2]. In the 

quantiim adiabatic evokitioii alg~?thz (QAA) a q ~ a . n P ~ r n  stzte is c!cse!y f d c w h g  i! ground state 

of a specially designed slowly time-varying control Hamiltonian H ( T ) .  At the beginning of the 
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I algorithm the control Hamiltonian H ( 0 )  = HB has a simple form with a known ground state that 

is easy to prepare, and at the final moment of time it coincides with the “problem” Hamiltonian 

H p  which ground state encodes the solution of the classical optimization problem in question 

Here E, is a cost function defined on a set of 2” binary strings z = {zll . . . zn} z k  = 0,1, each 

containing n bits. The summation in (1) is over the 2“ states Iz) forming the computational basis 

of a quantum computer with n qubits. State I , zk )k  of the IC-th qubit is an eigenstate of the Pauli 

matrix &z with eigenvalue 1 - 2zk & 1. If at the end of the QAA the quantum state is sufficiently 

close to the ground state of H p  then the solution to the optimization problem can be retrieved by 

the measurement. 

It has been shown recently [7] that the query complexity argument that lead to the exponential 

lower bound for the unstructured search [8] cannot be used to rule out the polynomial time solution 

of NP-complete Satisfiability problem by the quantum adiabatic evolution algorithm (QAA). 

I 
I 

~ 

A set of examples of the 3-Satisfiability problem has been recently constructed [4, 71 to test 

analytically the power of QAA. In these examples the cost function E, depends on a bit-string z 

with n bits, z = ( z l ,  z2, . . . , zn}, only via a Hamming weight of the string, wz = z1 f z 2  +. . . fz,, 

so that E, = f (w,) where the function f(w) is in general non-monotonic and defines a particular 

instance of this “Hamming Weight Problem” (HWP). In [4, 71 the original version of QAA [2] 

was applied to the HWP where the control Hamiltonian is a linear interpolation in ti-e between 

the initial and final Hamiltonians. 

In this case, it was shown [4, 71 that the system can be trapped during the QAA in a local 

minimum of the cost function for a time that grows exponentially in the problem size n. It was 

also shown [4] that an exponential delay time in the quantum adiabatic algorithm can be inter- 

preted in terms of the quantum-mechanical tunnelling of an auxiliary large spin between the two 

intermediate states. 

I 

The above example has a significance greater than just being a particular simplified case of a 

binary optimization problem with symmetrized cost. Indeed, one can argue that it shows a generic 

mechanism for setting “locahty traps” in the 3-Satisfiability problem [lo]. But most importantly, 

this example demonstrates that exponential complexity of QAA can result from a collective phe- 

I 
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nomenon in which transitions between the configurations with low-lying energies can only occur 

by simultaneous flipping of large clusters containing order-n bits. In spin glasses, there is typically 

an exponential number of such configurations, the so-called local ground states. A similar picture 

may be applicable to random Satisfiability problems [15]. In some cases, these transitions can be 

understood and described in terms of macroscopic quantum tunnelling. A tunnelling of magne- 

tization was observed in large-spin molecular nanomagnets [ 1 11 and in disordered ferromagnets 

CW. 
The paper [l] suggests that large tunnelling barriers can be avoided in QAA by using multiple 

runs of QAA with realizations of the control Hamiltonians H ( r )  sampled from a random ensem- 

ble. This ensemble is chosen in a sufficiently simple and general form that does not depend on the 

specific instance of the optimization problem. Different Hamiltonians H( 7 )  correspond to differ- 

ent paths of the unitary evolution that begin and end in the same initial and final states (modulus 

phase factors). The complexity of QAA with different paths for the HWP was tested numerically 

in [ 11 using an ensemble of random 8 x 8 matrices. The results indicate that the H W P  may be 

solved in polynomial time with finite probability. 

In case when the random paths H ( 7 )  preserve the bit-permutation symmetry of the problem 

it is natural to describe the random ensemble of H ( r )  in terms of the dynamics of a spin-n/2 

system. This approach allows for a general theoretical analysis of the algorithm. In the present 

paper, we perform t h s  analysis for the random version of H W P  (over-constrained 3-Satisfiability 

problem) by mapping the dynamics of QAA onto the motion of a quantum particle in a 1D effective 

potential. This allows us to compute the statistical weight of the successful evolution paths in the 

ensemble and provide a complete characterization of such paths. 

11. QUANTUM ADIABATIC EVOLUTION ALGORITHM WITH DIFFERENT PATHS 

In a QAA with different paths [l], one specifies the time-dependent control Hamiltonian 

B(t) = H ( r )  

H ( r )  = (1 - T )  HB + 7(1 - r )  HE + r H p ,  
1 L 

T = - E ( 0 , l ) .  T 

(3) 

where the control parameter T plays the role of dunensionless time. This Hamiltonian guides the 

quantum evolution of the state vector l$(t)) according to the SchrBdinger equation ihia~$(t))dt = 
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H ( T )  /$ ( t ) )  from t = 0 to t = T ,  the run time of the algorithm. H p  is the “problem” Hamiltonian 

given in (1). HB and HE are ‘driver” Hamiltonians designed to cause the transitions between the 

eigenstates of Hp.  

An initial state of the system I$(O)) is prepared as a ground state of the initial Hamiltonian 

H ( 0 )  = HB. It is typically constructed assuming nu knowledge of the solution of the classical 

optimization problem and related ground state of Hp. In the simplest case 

1 n 

j=1 Z 

where CT: is a Pauli matrix for j-th qubit and C > 0 is some scaling constant. The ground state of 

HB has equal projections on any of the 2” basis states Iz) (2). 

Consider instantaneous eigenstates lq$k ( 7 ) )  of H ( T )  with corresponding eigenvalues Ek (7) ar- 

ranged in non-decreasing order at any value of 7 E (0,1) 

Provided the value of T is large enough and there is a finite gap for all t E LO, T )  between the 

ground and exited state energies, AA(7) = X1(7)  - &(T) > 0, quantum evolution is adiabatic 

l and the state of the system I$(t)) stays close to an instantaneous ground state, I&(t/T)) (up to a 

phase factor). Because H ( T )  I= H p  the final state I+((T)) is close to the ground state ldO(7 = 1)) I 

of the problem Harmltonian. Therefore a measurement performed on the quantum computer at 

t = T will find one of the solutions of combinatorial optimization problem with large probability. 
I Quantum transition away from the adiabatic ground state occurs most likely in the vicinity of the 

point 7 e rC where the energy gap AA(7) reaches its minimum (avoided-crossing region). The 

probability of the transition is small provided that [17] 

where 

I 
I 

The r.h.s. in Eq. (6) gives an upper bound estimate for the required runtime of the algorithm and 

the task is to find its asymptotic behavior in the limit of large n >> 1. The numerator in (6) is of 
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the order of the largest eigenvalue of dH/dr  = H p  - HB + (1 - 2 7 ) H ~ ,  which typically scales 

polynomially with n. However, AEmin can scale down exponentially with n and in such cases the 

required runtime of the quantum adiabatic algorithm to find a solution grows exponentially fast 

with the size of the input. 

One should note that the second term in the r.h.s. of (3) is zero at r = 0 and r = 1. Therefore, 

by using different driver Hamiltonians HE one can design a family of (possibly random) adiabatic 

evolution paths that start at r = 0 in the same generically chosen initial state and anive at the 

ground state of Hp at r = 1. In general, different paths will correspond to different minimum 

gaps gmin and one can introduce the distribution of minimum gaps. This distribution can be used 

to compute the fraction of the adiabatic evolution paths f that arrive at the ground state of Hp 

within polynomial time, 

T 5 cnn-a,  a > 0 ,  c = O(1). 

For a successfully designed family of paths the fraction f is bounded from below by a polynomial 

in l / n  which leads to the average polynomial complexity of QAA. 

III. BINARY OPTIMIZATION PROBLEM WITH SYMMETRIC COST FUNCTION 

Consider a binary optimization problem defined on a set of n-bit strings z with the cost function 

E, in the following form: 
n 

E, = f ( W , ) ,  w, = CZj. (9) 
j=1 

This cost is symmetric with respect to the permutation of bits, it depends on a string z only through 

the number of unit bits in the string w, (the Hamming weight). In this paper we consider the cost 

function (9) in the following form which is generalization of the cost introduced in [4,7,9] 

Here the sum is over all possible 3-bit subsets of the n-bit string z. A subset zil + zi2 + zi3 
contributes to the total cost a weight factor p k  where IC is a number of units bits in the subset. A set 

of weights { p k }  defines an instance of this generalized Hamming Weight Problem (HWP). One 

can formulate a random version of HWP,  e.g., by drawing numbers { p k }  independently from a 

uniform distribution defined over a certain range. 



In the limit of large n >> 1 the cost function (10) takes the following form: 

here I = n/2 and we only keep the terms of the leading order in n. The coefficients ,8k in (1 1) are 

linear combinations of p k  

I here ( k  = 1 for IC = 0 , l  and & = -1 for IC = 2,3. 

The function G p  ( q )  in (1 1) is a thud degree polynomial in q, and the form of the function 

depends on the coefficients ,& b k ) .  It is easy to show that there is a finite size region in the 

parameter space { p k )  where Gp(q) is a non-monotonic function of q that has global and local 

minima on the interval q E (- 1 , 1 ) .  Those minima are separated by a finite barrier with width 6q = 

O(1). The barrier separates strings that have close values of the cost E, but are at large Hamming 

distance from each other: they have O(n) distinct bits. T h ~ s  property can lead to exponentially 

small minimum gaps in QAA due to the onset of low-amplitude quantum tunnelling [4]. 

W. CONSTRUCTION OF THE CONTROL HAMILTONIAN 

A. Representation in terms of operator components of the total spin 

It is natural to consider the control Hamiltonians (3) for solving the H W P s  that are symmet- 

ric with respect to permutation of individual bits (2). In what follows, we use the normalized 

components of the total spin operator S for the system of n individual spins-; 

Here Sj are the projections of the total spin operator on the j-th axis ( j  = zJ y ,  z )  and 6; are Pauli 

matrices for the i-th spin. For the sake of bookkeeping, in (13) and also throughout the paper we 

use “hats” for tile spin operators, such as S,, i i j ,  and some others, in order to distinguish them 

from their corresponding eigenvalues [S, and ni, respectively, in the above example). 

To obtain the problem Hamiltonian (1) we make use of the obvious connection between the 

values of the Hamming weight function w, of an n-bit string z and Corresponding eigenvalues nz I 
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FIG. 1 : Plots of the cost function (1 1) G, vs q for different choices of the weights { p k } .  Curve 1 corresponds 

to po = 0 ,  p l  = 3, p2 = 1, p3 = I, and the cost function G p ( q )  has a global minimum at q = 1, 

corresponding to the string z with the Hamming weight zero, z1 = 2 2  = . . . = zn = 0. It also has a local 

minimum at q = -1 corresponding to the bit string with Hamming weight n, z1 = 1 2  = . . . = z, = 1. The 

curve 1 yields the particular form of the cost function Gp(q) considered in [4], [I] ,  Curve 2 corresponds to 

po = 0.5, p l  = 2.5: p2 = -2: p3 = 0.3, it has a global minimum at q = q* inside of the interval (-1: 1). 

This minimum corresponds to approximately (,La) bit strings z that all have the same Hamming weight 

w, = w* = n( 1 - q*)/2.  

of the spin projection operator fiz 

wz n, = 1 - 1. f iz Iz)  = nzlz>, 

Then from Eqs. (2),( 11) and (14) we obtain 

Hp(fi,) = Z3 Gp ( f i t ) .  (15) 

YJe chose the drive: E-r, ?r, i! bit-symmetJic fam thzd coincides with (4) (up to a constant term) 
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B. Bit-symmetric drivers HE 

It was proposed in [l] that HE can be constructed using some generic ensemble of random 

matrices. The bit-symmetric random drivers for the cost functions of the type (10) can be con- 

structed as follows [l]. One generates an 8 x 8 random Hermitian matrix A with zero diagonal 

elements and non-diagonal elements that are independent random numbers identically distributed 

in a certain interval. Matrix elements of Azt,z3 can be enumerated by all possible configurations 

of a 3-bit string {xi, z j  , z k } .  Then HE takes the form 

Here 12) are computational basis states Eq. (1) corresponding to bit-strings z = {z l ,  . . . , 2"). Each 

randomly selected A generates HE and therefore a random path modification of the QAA. 

From the above discussion, it follows that the matrix of the operator HE (17) is symmetric 

with respect to the bit permutations and therefore it commutes with the operator of a total spin 

S2 of a system of n spins 5 .  This means that HE acts independently in each of the sub-spaces 

corresponding to certain values of the total spin 0 5 I 5 [22]. It follows from (15) and (16) that 

the same is true for the total control Hamiltonian (3) 

Since in our case the initial state (4) is a totally symmetric combination of a11 states and therefore 

corresponds to the maximal spin I = 5, our system always stays in this sub-space during the 

algorithm. Therefore in the analysis of the complexity of QAA one can reduce the 2" x 2" ma*ix 

of N ( T )  to the (2n+ 1) x (2n+ 1) matrix that only involves the states with different spin projections 

of the maximum total spin I = 5. Binary strings corresponding to the quantum states from this 

subspace are distinguished from each other by their Hamming weight only. 

In Appendix A, we show that in the case of real-valued symmetric matrices A and in the Iarge- 

spin limit, the bit-symmetric driver HE (17) can be presented as a linear combination of 6 operators 

expressed in terms of the large spin operator components f iz , fiz acting in the subspace with I = 5. 
Using this fact, and also Eqs. (15) and (16) one can write a bit-symmetric control Hamiltonian (3) 

in the following form 
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where { n / k }  ( k  = 1, .  . . , 6 )  are independent real coefficients given in Eq. (A8). As we show in 

Appendix A, any random realization of the matrix A can be mapped onto combinations of drivers 

(20) by the appropriate choice of the coefficients -/k. This fact allows us to analyze the minimum 

gap in QAA with different paths (3) using the WKB analysis of the dynamics of a spin-; in the 

large spin limit (n >> 1). 

V. ADIABATIC EVOLUTION OF A LARGE SPIN 

A. WKB approximation for the large spin 

Our analysis in this section is a particular application of the WKB-type approach commonly 

used for the description of quantum spin tunnelling in magnetics [18], [19], [20], [12]. This 

approach is applicable for the large spins ( I  >> l), which is the case of interest for us. 

We choose z as a quantization axis and following the standard procedure to obtain the effective 

quasi-classical Hamiltonian in polar coordinates { e ,  ‘p} with 8 E [O, 7r] and cp E [0,27r]. We make 

use of the Villain transformation [23] 

1 
1 ’  fi, = J1+ E - fiz ( f iz  + E )  cos ($3) , € = - 

where azimuthal angle operator $3 satisfies the cornmutation relation 

In a change of notation we introduce a coordinate q and canonically-conjugate momentum lj (cf. 

P31) 
,. 

(23) 
. d  

-@, p = -%E- E 
dq 

q = f i z ,  

(-1 5 q 1). Expanding (21) in the large spin limit E << 1, we obtain 

Finally, we write the scaled H d t o n i a n  of the system (19) in terms of the new variables 
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where 
/ -  \ 

H(q,@, T )  = G ( J1  - q2 cos@: q ,  T )  , 

and AH is a small correction 

(here dG/dn, has the same arguments as G in (26)). 

The stationary Schr6dinger equation ( 5 )  in the new basis 

can be solved in the WKB approximation with the small parameter E << 1 playing the role of a 

Plank constant. Then the wave function Q ( q )  takes the form 

where in the leading order in E the action function ,4(q) satisfies the following Hamilton-Jacobi 

equation 

This equation describes a 1D auxiliary mechanical system with coordinate q, momentum p ,  energy 

A, and Hamiltonian function H(q, p ,  7). Classical orbits satisfy the Hamiltonian equations 

where Hq and H p  stand for the partial derivatives of H with respect to q and p ,  respectively. Sta- 

tionary points of the dynamics (q* p * )  correspond to the elliptic and saddle points of the Hamilto- 

nian function 

H&*,P*,T)  = 0, H k ? * , P * J )  = 0, (33) 

Elliptic points are minima (or maxima) of H( q ,  p ,  r )  on the ( q ,  p )  plane. They satisfy the condition 

where H p p  is understood as a second derivative of H with respect to p ,  etc. Saddle points corre- 

spond to fl: < 0 in (34). 



In the limit E << 1 the adiabatic ground state Qo(q;  r) (29) is localized in the small vicinity of 

the fixed points (q*,  p * )  corresponding to the global minimum of H( q,  p ,  r> at a given value of 7-. To 

logarithmic accuracy the WKB-asymptotic (30) of the ground-state wave function is determined 

by the mechanical action for the imaginary-time instanton trajectory ( q ( t ) , p ( t ) )  emanating from 

the fixed point (q*,  p * )  

Qok;  7) = - W q ;  4 * , P * ,  7 )  a exp [-I J o  d t ~ ( t ) p 1 : t ) ]  , 

q(-ioo) = q*: p(-zoo)  = p*,  q(0)  = q .  (35) 
E -im 

Integration in (35) is along the imaginary axis (-zm, 0). The instanton trajectory obeys Eq. (32) 

with the boundary conditions given above and t E (-zoo, 0) corresponding to the line of integra- 

tion in (35). The choice of the final instant, t = 0, is arbitrary since the instanton trajectory is 

degenerate with respect to a shift of the time axis. 

We note that the WKB asymptotic (35) decays exponentially fast as the coordinate q in (35) 

moves away from its value at the global minimum q* into the classically inaccessible region. This 

corresponds to the growth of the imaginary part of the action in (35), similar to the conventional 

quantum tunnelling in the potential. In the vicinity of (q*,p,)  the ground-state wave function 

Q'o (4) takes the form similar to that of harmonic oscillator: 

here w* > 0 is defined in (34). Similarly, the energy spectrum in that region corresponds to the 

classical elliptic orbits with oscillation frequency ,C2, 

AI, - H(q,,p,, 7) N E S ~ ,  k + - , k = 0,1,. . . . (37) ( 3 
We note that the frequency 

between the ground and first exited states, AA = &*(T). 

depends on r and determines the time-varying instantaneous gap 

VI. LOCAL AND GLOBAL BIFURCATIONS DURING THE QAA 

It can be seen from Eq. (26) that the global minimum of H ( q ,  p ,  7 )  will correspond top, = kk7r 

( k  = 0, il, . . .) provided that the following condition holds for all n,: 
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where the positive and negative signs of w, correspond to even and odd values of k ,  respectively. 

The value of q, in (38) corresponds to the global minimum of the effective potential U(q ,  r) 

U ( 4 )  = G(z/l-42,q,r); U ( d  - U(4*) > 0. (39) 

Under the above condition the Hamiltonian function of the system near the global minimum (q* ,  0) 

exactly corresponds to that of the harmonic oscillator with effective frequency R, (34) and mass 

m, (36) 

m,nf = U”(q,). 

In the WKB picture the ground state of the system correspond to the particle performing zero-level 

oscillations near the bottom of the slowly varying potential U ( q ,  7 ) .  There are two types of the 

bifurcations that can destroy the above adiabatic picture: 

1. Local bifurcation 

Assume that at sone  instant of time 7 = 70 the effective mass rn,(r) goes to infinity. In the 

vicinity of this point the Hamiltonim function (26) can be approximated as follows: 

6q = Q - q * ( 7 0 ) ,  s = 7- - 701 

where 

a2 G 2 d2 G 
an, 

a0 = -+l- q,(ro)), bo= - d m ,  dn,dr 

d 2  U 
do = - 

dqdr  
d 2  U 
dq2 

co = - 

in the above equations all functions are evaluated at the point ( q , ( ~ ~ ) ~ p  = 0). Equation (41) 

corresponds to A3 bifurcation point [24]. It can be seen from (41) that for r > ro the single global 

minimum of H ( q ,  p ,  r) splits into the two minima with nonzero momenta 
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Due to the symmetry H(q, p ,  r) = H(q, -p ,  7) the two global minima with nonzero p ,  will stay 

symmetric with respect to the q-axis at later times. 

It follows from (34), (40)) that the linear oscillation frequency vanishes at the bihrcation point, 

R, (T~) = 0, however the energy gap AA(ro) # 0. By solving the SchrBdinger equation ( 5 )  at this 

point in the representation of the momentum p one can find the eigenfunctions ii?k ( p ,  ro) and eigen- 

values &(To) corresponding to a ID quantum system moving in a quartic potential (cf. Eq. (AI)). 

This analysis yields an estimate for the value of the gap, and the characteristic localization range 

6P for %(PI To) 

Ax N €*’3, dp N (44) 

The size of the energy barrier in momentum p separating the two global minima in (41) grows 

with time for r - ro and this leads to a rapid decrease of the energy gap. Sufficiently far from 

the bifurcation point, r - ro >> E ~ / ~ ,  each of the global minima (q*(r ) ,p: (r ) )  gives rise to its 

own WKB asymptotic (35) localized at the minimum. The ground state and the first exited state 

correspond to their symmetric and anti-symmetric combinations, respectively 

k = 0 , l .  (45) 

For r - 7-0 >> the tunnelling splitting of energy levels for the symmetric and antisymmetric 

states determines the value of the gap AA(r) and decreases exponentially fast with r - ro. Away 

from the bifurcation region, r - ro = O( l), the gap scales down exponentially with. n (note that 

E = 2/n). 

As a result of the local bifurcation, the purely adiabatic evolution in QAA collapses. The 

amplitude of staying in the adiabatic ground state for 7- < ro is nearly equally split between the 

states (45) with the two lowest eigenvalues. In general, this may reduce the probability of finding 

a system in a ground state at r = 1 by a factor of 2. We note that the control Hamiltonian (19) 

is at most a cubic polynomial in n,, n,, and therefore the number of local bifurcation events 

during QAA is of the order of one. In the worst case they will cause the reduction of the success 

probability in QAA by a constant factor. 

For a given instance of the cost function (1 1) defined by the coefficients ,& (or p k )  the onset of 

local bifurcations (41) depends on the choice of the driver Hamiltonian HE (20). 

There are a number of ways to select coefficients yk’s in the dnver Hamiltonian (20) to avoid 

local bifurcations during QAA in a broad range of values of the coefficients p k .  For example, to 
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completely suppress local bifurcations (41) one can'keep in (20) only terms linear in fix and set 

A. Global bifurcation 

The Hamiltonian function H = H( 4;  p ,  T) defines a 3D surface over a 2D plane (4, p )  and the 

shape of this surface varies with time r. We consider global bifurcations of this surface where 

the energies of its two minima cross each other at some instant of time r = 7-o while the distance 

between the minima on the (4, p )  plane remains finite at the crossing point. For r > ro the 

minima exchange their roles: global minimum becomes local and vise versa. Before and after the 

intersection in the energy space the two minima are uniquely identified with the ground and first 

exited states of the system's Hamiltonian (26). The corresponding wave functions Qo,z ( 4 )  are well 

approximated by their asymptotic expressions(35),(36). 

The small vicinity of the global bifurcation point can be described within the standard 2-level 

avoiding-crossing picture. There X€fo,l (q)  are given by symmetric and antisymmetric superpositions 

of the WKB-asymptotic corresponding to intersecting minima. The value of the gap changes with 

time as Jc2((7- - 7 0 ) ~  + AA;,, where c is some constant and the minimum gap is determined by 

the overlap of the WKB asymptotic. To logarithmic accuracy it is given by the imaginary part of 

the mechanical action (35) along the instanton trajectory connecting the two minima 

(47) 

Here q t )  p t  are coordinates of the two minima; H(q; ~ p i ,  r0) = H(q2, p:, -r0), and the instanton 
I trajectory obeys the Eqs. (32). The analytical expression for the minimum gap was studied in [4], 

[9] for the case H E  = 0, using a simplified version of the Hamming Weight problem (10). Below 

we identify certain geometrical properties of the global bifurcations in the case H E  = 0 that will 

be used later in the selection of the drivers HE for the successful QAA. 
~ 



FIG. 2: The global bifurcation mechanism: the effective potential profiles U (4:  7 )  vs q for 7 < 70, T = 70 

and 7 > 70 are represented by the curves 1,2, and 3, respectively. 

I .  The case HE = 0 

In the case n/j = 0 ( j  = 1 . . .6), the Hamiltonian has a minimum at p ,  (r) = 7rk and the value of 

q*(r) corresponds to the global minimum of the effective potential U(q ,  r) (39). We use Eq. (19) 

and also the condition U’(q*) = 0 to obtain the following equation for q*(r) 

This equation holds until the global bifurcation point at r = ro where q* (r) changes discontinu- 

ously in time (see Fig. 2). At the minimum of the potential U”(q,) > 0 and therefore the direction 

of the motion of q*(r) entirely depends on the direction of the “force”, -G>(q*). At r = 0 the 

potential U(q ,  0) has a unique minimum at the point q = q,(O) = 0. It is clear that with this 

initial condition equation (49) can lead to a “wrong” minimum of GP (4) that lies above the global 

minimum, and such cases will give rise to a global bifurcation. This effect is illustrated in Fig.1 

where the two different cost functions correspond to the same direction of motion for ql(r). The 

value of q,(r) may either smoothly approach the global minimum of the cost (curve 2), or move 

toward a ”wrong” local minimum (curve l), leading to the global bifurcation and exponentially 

small gap in QAA. Adding HE to the control Hamiltonian can invert the direction of motion of 

q* (7) toward k e  global ,?linirn~~~ of Gp(q). This car! be seen from the fact the Eq.(49) in presence 

of HE possesses the additional tern 
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(here we drop for sake of brevity the argument ‘i- in q x ( r ) ) .  Clearly, the successful G E  should not 

possess reflection symmetry with respect to nz. Therefore we should only select the terrns in (20) 

that contain odd powers of n,. Talung into account (46) we arrive at the followbg form of the 

driver Hamiltonian 

GE(%, .izz) = 74nr n,. (51) 

This driver can remove the potential banier between the two competing global minima of U(q ,  T )  

by shifting the original minimum at r = 0 towards the true global minimum of the cost function 

GP(q) (cf. Fig. 1). In the classical picture (26) the driver (51) corresponds to an external field 

parallel to z-axis which can destroy the tunnelling barrier along this direction. The mechanism of 

such tunnelling avoidance is similar to the one considered in [ 11, where the external field gener- 

ated by the driver (51) compensates the effective field due to the linear term proportional to the 

coefficient p1 in the probIem Hamiltonian (1 I-). 

B. Bifurcation transition to the tunnelling regime 

In general, one can expect that a complete suppression of the tunnelling barrier at all values 

of r requires a certain magnitude (and sign) of the coefficient 74 depending on the choice of the 

coefficients Pk in the cost function Gp(q) .  

The transition to the tunnelling regime can be described as an A3 bifurcation point, illustrated in 

Fig.2. The effective potential U changes parametrically with r, 7 4  and (,&}. Near the bifurcation 

point (rc, 7 d C ,  qc) ,the potential has the form U = a Sq4 + b Sy6q2 + c 6467 where br,  Sq) 67 are 

deviations from the bifurcation point in r1 q and 74, respectively. The corresponding conditions for 

the A3 bifurcation point are: 

- 0. 
au d2U a3u 
aq aq2 dq3 
- = - E - -  

Taking into account (39) and (19),(20),(51), the above equation yields 

These equations should be solved for y4c and r, for the given set of the coefficients ,&. The 

blfurcation is avoided when 
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For example, in the particular case of the H W P  (10) considered in [4], [l], we have 

In this case the example of the driver Hamiltonian HE that allows to avoidance of tunnelling in 

QAA was given in [ l ]  where the value of 74 = -8 was used. According to (55) this value is way 

below the critical value 74'/4c. 

1. Numerical Simulations of the bifirrcation boundary 

We performed numerical simulations with the effective potential (39) checking for the onset 

of tunnelling for all pl, E [O; 31, k = 1, ... 4. The numeric simulations confirm that the situation 

discussed above is typical for the general HWP, implying that (51) is the only driver term that can 

be fundamentally responsible for the tunnelling avoidance in a general case, if the coefficient -14 is 

defined appropriately. In particular, one of the two drivers (51) with 

7 4  2 7c = 4.9 or 7 4  5 = -4.9 

always suppresses tunnelling in the QAA. 

F'IG. 3: The critical value yc vs domain size L. 
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We also solve the Eqs. (53) numerically for coefficients p k  taking values on a dense grid of points 

in the cube p k  E 10; L] (k=0,1,2,3). For each size of the cube L we select the point with largest 

value of */4c denoted below as n/c = T~ (L) .  The results are presented in Fig.3. The critical value 

yc is monotonically increasing in L,  and the dependence is close to linear for suEciently large 

L, but it is non-linear in the range 0 5 L 3. It can be inferred from Eq. (53) that a nonlinear 

dependence of “lC on the scale L is due to the fact that the critical time rC also depends on L. 

The linear dependence of yc ( L )  for large L has a simple intuition. According to (1 1) and (12), 

the magnitude of Gp(q)  is proportional to L. According to Eq.(49), the maximal magnitude of 

the coefficient p1 presents a ”force” that can possibly move a system into the local minimum at 

small 7- . From (12), we conclude that /PI Jmax = maxpkE[-L,Ll p1 = 21;. In the limit of large L, the 

role of the driver GB in (53) becomes unimportant. Therefore, the only competing terms are the 

driver GE and the problem Hamiltonian Gp. The term (50) generated by HE compensates (50) 

the ”force” p1 when 2 Ipllm,, and therefore in this limit we have 

One should note that among the effective potentials generated by choosing different { p k } ,  there 

are two subsets that can be mapped onto each other by means of the mirror reflection about the 

q-axis, U(q;  r) + -U(q: t ) .  We note that the same driver HE can not simultaneously suppress 

tunneIIing barriers in each of the two mutually symmetric potentials: if the tunnelling barriers are 

not suppressed with ”J~, they will be suppressed with -nlC7 and vice versa. This gives a simple 

intuition for the tunnelling barrier suppression boundary (54). 

Finally we conchde, that it is possible to hdicate the range of value of ly41 such that the driver 

Hamiltonian HE = l 3  y4hz hz will play the role of a universal driver that guarantees polynomial 

performance of the QAA for all instances of the generalized Hamming weight problem (10) provi- 

sory to the mirror-reflection symmetry in the possible choice of the cost functions and the common 

normalization factor L. 

VII. PROBABILITY OF SUCCESS OF THE QAA WITH RANDOM PATHS 

Using the analysis from the previous section one can estimate the probability of success for 

the QAA with random paths proposed in [l]. In that algorithm, the ensemble of random drivers 

HE was generated using random 3 x 3  matrices A,+zk (17). It is shown in Appendix A that 
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for the bit-symmetric optimization problem (10) the above ensemble is identical to the ensemble 

of independent uniformly-distributed random coefficients yk (k=l - 6) that appears in the large- 

spin representation of the driver HE (20). Then for any instance of o p t ~ z a t i o n  problem in (10) 

defined by the set of the coefficients { p k }  one should compute the fractionf of the domain of the 

coefficients { n / k }  where the following conditions are satisfied: 

(i). Condition for the nonzero effective mass (38). 

(ii). The condition (54) for the complete avoidance of the tunnelling barriers in combination with 

Eq. (53) for the bifurcation boundary. 

Here we compute the fraction f for the particular instance of the optimization problem (10) con- 

sidered in [ 1,4, 91. In this case Eq. (38) takes the form 

where n, = k d m  and 4% provides global minimum of U ( q ,  -7) (39). The effective mass is 

non-zero if w, # 0, and (58) yields an estimate on the range of {n} as 

Following [ 11 we assume that the non-diagonal matrix elements A,% zj rk are distributed in the 

interval [-3,3]. Making use of (A8), we obtain 

Therefore, the probability that inequality (59) is satisfied is estimated as 1-Lj2/ (50 x 16) M 

0.71875. On the other hand, the values of y4 in (A8) belong to the range, -12 5 y4 5 12. Using 

the value of yc N" -0.95 given in (55) we estimate the probability of y4 5 -yc to be approximately 

equal to M 0.46. Making an approximation that the cases when the effective mass is non-zero are 

statistically independent from the cases when y4 5 -yc, we obtain the total probability of success 

as Ptot ~ 0 . 4 6  x 0.71875= 0.334 M 1/3, which is in qualitative agreement with the numerical 

results of [ 11. This estimate can be generalized to the case when the matrix elements A,% ,3 zk are 

distributed in the interval [-L, L] for sufficiently large L > 3. In t h s  case, the probability that 

(59) is satisfied remains the same, M 0.71875, while the probability that y4 5 -yc is estimated as 



(4L - I-/,-]) /8L.  With the assumption of statistical independence, the total probability of success 

is Ptot = 0.718 x (4L - 0.95) /8L, and in the limit of large L >> 1 we have Ptot M 0.359 which 

exceeds slightly the value for L = 3. 

VIII. POLYNOMIAL QAA AND CLASSICAL DYNAMICS OF LARGE SPLN 

In absence of tunnelling, the dynamics of the large spin can be characterized by classical equa- 

tions of motion for the spin projections treated as c-numbers in the form [ 181 

d S  
d t  

with 

In coordinate form and in terms of the dimensionless spin projections, this yields 

where we took into account that since H does not contain the S, component, 

(w,, 0, w z ) .  In the case when the "effective magnetic field 

time, the system (61), (62) has two independent integrals of motion 

= E a 3  = 
w does not explicitly depend on 3 7  -+ 

z2 = s;+s;+s;, (64) 
1 WZSX f w,sz J = --(",?) - 

- d m .  
The first (64) reflects the conservation of total spin and also holds for an arbitrary time-dependent 

field 7? = E whereas the second integral corresponds to the adiabatic invariant of the system 

(61), (62). Since in our case $ = is parametrically time-dependent, the adiabatic invariant 

is conserved approximately for sufficiently slow parametric evolution. Note that the adiabatic 

solutions always play the role of "envelope solutions". This means that on average, the spin 

a 3  ' 
dH . 
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closely follows the adiabatic solution, but there are fast oscillatory-type motions superimposed 

on the slow adiabatic evolution. Basically, the adiabatic approximation in the classical case is 

applicable when the "slow" motion is much slower than the fEst oscillatory motion. This exactly 

corresponds to the adiabatic evolution of the spin system in the quantum case [22]. 

Making use of (64) and taking into account that at the instant r = 0, the total spin was parallel 

to the z-axis, we obtain J/Z = +wTnv - 1, or 7-= - 

implying that the total spin is always parallel the effective magnetic field 3. Therefore, the adia- 

batic evolution of the large spin can be simply described as the situation when the spin follows the 

effective field (on average). 

We note that at this level, there is a direct correspondence between the adiabatic classical so- 

lution and the quasiclassical wave functions of the large spin parallel to 3. From (65), it follows 

that this direction can be identified with the effective magnetic field 3, = dH. This justifies the 

"variational" approach introduced in [l, 41, identifying the variational wave functions with the 

adiabatic ground states along the evolution paths when the total spin is parallel to R . Therefore, 

one can observe that in the absence of tunnelling, the general HWP is solved essentially by the 

classical paths of the QAA. 

8.S 

+ 

M. CONCLUSIONS 

We apply the quantum adiabatic evolution algorithms with different paths [ 11 to the general- 

ized Hamming Weight Problem that corresponds to the specific case of the random Satisfiability 

problem defined in (10). We show that any random evolution path produced by this algorithm for 

the H W P  can be obtained by using 6 specific deterministic basis operators with random weights 

and therefore is parameterized by 6 independent random numbers. Therefore, the approach to 

QAA with different paths can still be reduced to the large spin dynamics for the HWP. We show 

that only one of these "generators" can be a "universal" driver fundamentally responsible for tun- 

nelling suppression for arbitrary H W P  and therefore the problem of constructing such a universal 

driver reduces to the definition of its weight y4. Due to the possible reflection symmetry of the cost 

function, any particular case of the general HWP can be solved with one of the two values of the 

weight with 1 ~ ~ 1  > 3/4c, that is by applying one of the two universal path modifications. We analyze 
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the nature of the wave functions along the successful paths and show that it is quasiclassical and 

corresponds to the dynamics of a large classical spin. Therefore, we show that the general HWP is 

solved by completely classical paths of the QAA and present a complete characterization of these 

paths. 

We analyzed in details the types of bifurcations of the effective Hamiltonian function N ( q ;  p )  

that lead to the collapse of the adiabatic evolution. The global bifurcations correspond to the onset 

of tunnelling in QAA and lead to the failure of the algorithm. In contrast, the local bifurcations 

while still corresponding to exponentially small minimum gap only lead to the decrease of the 

probability of success by a factor of 2. Since in a given problem function H ( q , p )  is a low de- 

gree polynomial in its arguments there are only a few local bifurcations possible. However, the 

phenomenon of local bifurcations may become impoitant for more difficult random optimization 

problems. Assuming the number of such bifurcations 111 is large the probability of success is 

reduced by a factor of 2-'. For fW that scales up with n that would lead to the failure of the 

algorithm. 

. 

The method described in the paper, suggests an interesting extension to the case of the K-SAT 

H W P  in the limit of large K .  In the large-spin limit, the effective potential can be described as a 

white noise with certain intensity and the well-known methods (optimal fluctuation approach) are 

applicable. This leads to the complete characterization of the minimal gap statistics. In particular, 

there always exists a range of parameters where the gap and therefore the run-time of QAA are 

polynomial in n in the large-n limit. 
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APPENDIX A: SPIN OPERATOR REPRESENTATION OF MATRIX A 

The random real symmetric 8 x 8 random matrix A introduced in (17), describes the "tran- 

sitions" between each of the 23 = 8 states for each clause involving 3 bits [l]. This matrix has 

(8 x 8 - 8) /2 = 28 independent matrix elements and can be presented in the form 

where A('), A(2) ,  A(3) correspond to the transitions involving one, two and three bits, respectively. 

For each realization, we have 

1 

SI s' =f 1 

1 
+ a , p  (.a'.,- + a,.+) - b, (1 + s .;) , 

s=+l 
p 2  

are the real coefficients. The indices (a ,  p, 7) E { 1,2,3} label the bits, 02, cz and 0: are the 

Pauli sigma-matrices of raisingflowering, z-projection and z-projection, respectively and s = &l 

.is a spin projection vaiable. Note that the operator f (1 + s g;) is a projector onto the spin state s 

for the bit k .  Clearly, the number of independent parameters in (A2) is 3 x 4 + 6 x 2 + 4 = 28, 

where the three terms of the sum correspond to A(1), A(2) and respectively. Note that this 

number of parameters equals the number of independent matrix elements of A estimated above. 



In the matrix form, the representation (A2) yields 

where the vector 5 of 8 basis states is 
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<=[+++; ++- ;  +-+;  ++- ;  -++;  -+ - ;  - -+ ;  ---I*, (A51 

and the lower left portion of the symmetric matrix Ac is obtained by reflection with respect to the 

diagonal. 

The driver H E  is obtained by summation over all clauses. In doing this summation, we take 

into account that now the bit indices ( 2 ,  j ,  k} E { 1 , 2 ,  ... n} run through all n bits, whereas the 

indices (a ,  0 , ~ )  E { 1,2,3} characterizing the realization of Ac still run through the 3 bits (since 

the same realization of Ac is applied to all triples of bits). The driver HE is given by 

HE = Hg) + HE) + Ht), (A61 

where Hg) , H!), H$) correspond to the transitions involving one, two and three bits, analogous 

to (Al). 

1 + -  +zap (a, 0J + 0,q) 5 E b, (1 + s 0i), 

+ D (0,0TOl f UtaJ0,) E (0% f - +  O3 g k  OZa:, 0 k  ) . 

s = i l  

H$) = B (0% + + +  0,. a k  + O[Ud;ak) + C (O:O"TO,+ U[0;0k+) 

2 , 3 h  

+ -  

One should note that the second term on the r.h.s. for Hg) gives a contribution, which is diag- 

onal in S, representation and therefore leads to the effective "re-definition" of the cost function. 
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Following the logic of [ 11, we disregard such terms. Also, the commutation relations between the 

total spin components give contributions - 1/1 to the effective potential and can be neglected in 

the large-spin limit. Taking this into account, we obtain from (A7) in the large-spin limit 

where n, = Sa/Z is a dimensionless spin projection on a-axis and the coefficients { e l k }  are given 

by 

In particular, the deterministic driver considered in [ l ]  corresponds to b-+ = b+- = {b,} = 

{aap} = B = C = D = E = 0 , acy = 1 and b,, = -b-- = -2. It follows from (A8) that in 

this case, the only non-zero coefficient in (A8) is 74 = -8. This corresponds to HE = -4nS,S,, 

which is equivalent to HE = -2n (SzS, + S,S,) in the large-spin limit according to the above 

discussion. 

APPENDM B: BIFURCATION POINT ANALYSIS 

Taking into account only the 74 term in HE and expanding up to the 4th order, we obtain the 

conditions U’ = U” = U”‘ = 0 for the A3 bifurcation point { T ~ ,  T ~ ,  x} in the form [24] (cf. (52)) 

r c  (PI + 2D2z + 3 / 3 4  = - ( 1  - 7,) 2x - x3  + YCTC 1 - -x ~ [ ( 2” 2 ) 1  
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which have to be solved for “ic , T~ and z for the given { ,Ok} .  Solving for z, we obtain condition 

(53) in the text. 
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