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"But Farmer Hoggett knew that little ideas
that tickled and nagged and refused to go away

should never be ignored
for within them lie the seeds of destiny."

-from the movie Babe based on the novel

     of the same title written by Dick King-Smith
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CoxCox’’s Contributions Contribution

Cox generalized
implication among
logical statements to
degrees of implication
represented by real
numbers.
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Associativity of the ConjunctionAssociativity of the Conjunction

Results in the Product Rule

Consistency with associativity of the conjunction

)|()|()|( bacpabpacbp Ÿ=Ÿ
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ComplementationComplementation

Results in the Sum Rule

Consistency with complementatation

1)|(~)|( =+ abpabp

)|)(~(~)|( abpabp =
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Commutativy of the ConjunctionCommutativy of the Conjunction

Consistency with the commutativity of the conjunction

)|()|( habphbap Ÿ≡Ÿ

Results in Bayes Theorem
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Inferential CalculusInferential Calculus

The inferential calculus (probability theory) derives directly
from consistency with

Associativity

Commutativity

Complementation

These are BASIC mathematical ideas,
not restricted to inference.



Other Trails
Up the Mountain
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Other Trails up the MountainOther Trails up the Mountain

Dr. Aczel’s major contribution has been his thorough
investigation of the functional equations central to this
development.

Ray Smith and Gary Erickson investigated all possible forms of
the associativity equations.

Anton Garrett derived the sum and product rules using
consistency with the NAND operation.

Certainly I am missing other contributions…
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A More General DerivationA More General Derivation

Ariel Caticha derived the sum rule from consistency with
associativity of the disjunction

when a and b are logically independent.

The product rule can then be derived from consistency with
distributivity.

)|()|()|( hbphaphbap +=⁄

)|()|()|( hbphbaphbap Ÿ=Ÿ
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What is the Big Deal?What is the Big Deal?

Because the Sum and Product Rules are
not JUST associated with
Boolean algebras.

They are
associated with
Distributive Algebras!



Order
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Ordering RelationsOrdering Relations

 

P1. For all a,           . (Reflexive)
P2. If           and          , then (Antisymmetry)
P3. If           and          , then (Transitivity)

Now           is read “b contains a” or “b includes a”
If           and           one can write           and read

“a is less than b” or “a is properly contained in b”.

If           but                   is not true for any x in the poset P, then
we say that “b covers a”, written         .

To sets of objects, one can often impose additional structure,
such as a binary ordering relation denoted by          , which
satisfies for all a, b, c (Birkhoff 1967):

ba £

aa £
ba £ ab £ ba =
ba £ cb £ ca £

ba £
ba £ ba ≠ ba <

ba < bxa <<
ba p
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PosetsPosets
Together a set and an ordering relation are called a partially
ordered set, or a poset.

The set of Natural numbers {1, 2, 3, 4, 5} with the binary
ordering relation “is less than or equal to”        is a poset.

It is clear that:
(Reflexive)

As           and          , then (Antisymmetry)
As           and          , then (Transitivity)

Also            as            but
And            as            but there is no Natural number x such
that

22 £
22 £ 22 £ 22 =
32 £ 43 £ 42 £

32 < 32 £ 32 ≠
32 p

32 << x
32 <

£
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Visualizing the StructureVisualizing the Structure

TheThe covering relation can be used to visualize the structure of
a poset.

Whenever           draw b above a:ba £

1

2

2

3

4

5
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HaaseHaase Diagrams Diagrams

TheThe covering relation can be used to visualize the structure of
a poset.

Whenever           draw b above a.

And whenever            connect the
elements with a line:

This poset forms a chain.

ba £

ba p

1

2

3

4

5
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Incomparable ElementsIncomparable Elements

TheThere are times where for a given ordering relation, it is not
true that           or             .

We then write           read “a is incomparable to b”

Perhaps for the ordering relation “is healthier than” we have

ba £ ab £

ba ||
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AntichainsAntichains

TheThe diagram corresponding to a poset of three incomparable
elements is a picture with the elements placed side-by-side.

This is called an antichain.
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A More Useful IllustrationA More Useful Illustration

TheConsider the powerset of the set S = { a, b, c }

This is the set of all possible subsets of S:

{ }},,{},,{},,{},,{},{},{},{,)( cbacbcabacbaSP ∅=

A natural ordering is the relation “is a subset of”, Õ

{ }( )Õ∅= ,},,{},,{},,{},,{},{},{},{, cbacbcabacbaP
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First we note that                   ,
from which we also see that:

So we draw        above
and connect them with a line.

The First LevelThe First Level

The

}{aÕ∅
}{ap∅

}{a ∅ }{a

∅

{ }( )Õ∅= ,},,{},,{},,{},,{},{},{},{, cbacbcabacbaP
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Completing the First LevelCompleting the First Level

The

It is also true that                    and
so we draw them above         as well and
connect them with lines.

However,                 as neither one is the
subset of the other.

In addition,                and                 .
So we draw them on the same level and
do not connect them.

}{bp∅ }{cp∅
∅

}{||}{ ba

}{||}{ ca }{||}{ cb
}{b

∅

}{a }{c

{ }( )Õ∅= ,},,{},,{},,{},,{},{},{},{, cbacbcabacbaP
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The Second LevelThe Second Level

The

}{b

∅

}{a }{c

},{ ca},{ ba
Now we note that       is covered by

 two elements             and           .

}{a

},{ ba },{ ca

{ }( )Õ∅= ,},,{},,{},,{},,{},{},{},{, cbacbcabacbaP
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These elements also

 cover       and}{b }{c

The Second LevelThe Second Level

The

}{b

∅

}{a }{c

},{ ca},{ ba

{ }( )Õ∅= ,},,{},,{},,{},,{},{},{},{, cbacbcabacbaP



5 August 2003 MaxEnt 2003

Completing the Second LevelCompleting the Second Level

The

Now             also

covers       and       ,

but these top elements

are also incomparable.

}{b }{c

},{ cb

}{b

∅

}{a }{c

},{ ca},{ ba },{ cb

{ }( )Õ∅= ,},,{},,{},,{},,{},{},{},{, cbacbcabacbaP
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The Third LevelThe Third Level

The

Finally

covers all three two-

element subsets.

},,{ cba },{ cb

}{b

∅

}{a }{c

},{ ca},{ ba

},,{ cba

{ }( )Õ∅= ,},,{},,{},,{},,{},{},{},{, cbacbcabacbaP
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The Powerset of {The Powerset of {aa, , bb, , cc}}

The

}{b

∅

}{a }{c

},{ ca},{ ba },{ cb

},,{ cba

{ }( )Õ∅= ,},,{},,{},,{},,{},{},{},{, cbacbcabacbaP

Is a subset of

Õ



Lattices
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LatticesLattices
A lattice is a poset P where every pair of elements x and y has

a least upper bound called the join

a greatest lower bound called the meet

yx ⁄

}{b

∅

}{a }{c

},{ ca},{ ba },{ cb

},,{ cba },{}{}{ cbcb =⁄

}{},{},{ bcbba =Ÿ

Similarly

yx Ÿ

The green
elements are
upper bounds
of the blue circled
pair.  The green 
circled element is their
least upper bound or
their join.
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The Lattice Identities

L1.                                                                           Idempotent

L2.                                                                           Commutative

L3.                                                                               Associative

L4.                                                                               Absorption

If            the meet and join follow the Consistency Relations

C1.                                (x is the greatest lower bound of x and y)

C2 .                                (y is the least upper bound of x and y)

Lattice IdentitiesLattice Identities

xxxxxx =⁄=Ÿ ,

xyyxxyyx ⁄=⁄Ÿ=Ÿ ,

zyxzyxzyxzyx ⁄⁄=⁄⁄ŸŸ=ŸŸ )()(,)()(

xyxxyxx =Ÿ⁄=⁄Ÿ )()(

xyx =Ÿ

yyx =⁄

yx £



5 August 2003 MaxEnt 2003

The Dual LatticeThe Dual Lattice

The
The dual lattice can be obtained by reversing the ordering relation

Ÿ⁄

Õ

⁄Ÿ

⊇

This flips the lattice upside-down and exchanges meets and joins.

L

}{b

∅

}{a }{c

},{ ca},{ ba },{ cb

},,{ cba
∂L ∅

},,{ cba

},{ ba },{ ca },{ cb

}{a }{b }{c
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Top and Bottom ElementsTop and Bottom Elements

The
The greatest element is called the top

and is symbolized by 1, I, or T.

So that              for all x in L.

The least element is called the 

bottom and is symbolized by      or      .

So that                for all x in L.

^

}{b

^≡∅

}{a }{c

},{ ca},{ ba },{ cb

T≡},,{ cba

L

x≥T

∅≥x

∅
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A Distributive Lattice possesses structure additional to L1-4.

It also satisfies the following identity for all elements x, y, z.

D1.                                                                           Distributive

Note that these two equations are related by duality as the

dual of a distributive lattice is a distributive lattice.

Distributive LatticesDistributive Lattices

)()()(

)()()(

zxyxzyx

zxyxzyx

⁄Ÿ⁄=Ÿ⁄

Ÿ⁄Ÿ=⁄Ÿ
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Complemented Distributive LatticesComplemented Distributive Lattices

There is a special case of a distributive lattice that possesses

an interesting property where each element is associated with

one other element called its complement.

The complement has these properties

B1.

B2.

B3.

T=⁄^=Ÿ xxxx ~~

xx =)(~~

yxyxyxyx ~~)(~~~)(~ Ÿ=⁄⁄=Ÿ
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Lattices and AlgebrasLattices and Algebras

Associated with every lattice is an algebra.

Thus a lattice can be expressed either in terms of its elements 

and its ordering relation

or in terms of its algebra

£;L

⁄Ÿ,;L or perhaps ~,,; ⁄ŸL



Origins



Probability
from
Order
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Implication as an Ordering RelationImplication as an Ordering Relation

T is the Truism

    is the Absurdity

       Logical Disjunction

       Logical Conjunction

At this point the algebra associated with the complemented 

distributive lattice should look familiar - Boolean algebra.

More commonly, the poset is a set of assertions and the 

ordering relation is “implies” Æ≡£

∅

cba ⁄⁄

ba ⁄ ca ⁄ cb ⁄

ba c

^

≡⁄

≡Ÿ
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Boolean LatticesBoolean Lattices

The elements that cover       are called atoms.

In a Boolean lattice the atoms are the mutually exclusive 

assertions.  All other elements are joins of the atoms.

∅

a
21

∅

cba ⁄⁄

ba ⁄ ca ⁄ cb ⁄

ba c

23

∅

ba ⁄

ba

22

∅
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Join-Irreducible ElementsJoin-Irreducible Elements

An important subset of a lattice
is the set of elements that cannot
be written as a join of elements.
They are the join-irreducible
elements.

In a Boolean lattice, these are the
atoms, which by themselves form
an antichain.

One can use this property to 
identify a Boolean lattice.

23

∅

cba ⁄⁄

ba ⁄ ca ⁄ cb ⁄

ba c

a b c
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Powersets Powersets RevisitedRevisited

}{b

∅

}{a }{c

},{ ca},{ ba },{ cb

},,{ cba The powerset (the set of all 
subsets) of a set forms a 
Boolean lattice under the 
ordering relation      .

Note that the atoms form an
antichain.

The complement of a set S is

the set T \ S.

Õ
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Deductive InferenceDeductive Inference

∅

cba ⁄⁄

ba ⁄ ca ⁄ cb ⁄

ba c

Deductive inference is easy.

For all 

If             then           .

If             then           .

If             then             and            .

Note that:
The absurdity      (     ) implies everything.
The truism T is implied by everything.

yx ≠

yx Æ

yx £

yx £

xy Æ

yx || yx Æ xy Æ

^ ∅
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Inductive InferenceInductive Inference

∅

cba ⁄⁄

ba ⁄ ca ⁄ cb ⁄

ba c

Deduction is nice and all, but
sometimes I know that one of a
set of possibilities is true

And I want to know to what
degree that knowledge implies a
more simple hypothesis.

But since

it is only true that

Not vice versa!

acba ≥⁄⁄
cbaa ⁄⁄Æ
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Generalizing ImplicationGeneralizing Implication

∅

cba ⁄⁄

ba ⁄ ca ⁄ cb ⁄

ba c

To generalize to degrees of implication, we introduce a real-
valued function that takes two lattice elements to a real
number:

¬Æ¥ LLp :

In particular we write this as:

)|( Tap

Since one of a, b, or c is true, the
truism can be considered to be
our prior information, in part.
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Other ViewsOther Views

∅

cba ⁄⁄

ba ⁄ ca ⁄ cb ⁄

ba c

This function can be written in two different ways.

Typically when the premise is the truism, we can write this
function as a function that takes a single lattice element to a
real number: )(ap

And write the function as

in other cases.

)|( hap
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Following the RulesFollowing the Rules
To be consistent with the Boolean lattice structure, this new
measure must follow the rules:

L1-4, D1, and B1-3.

The key ones we use are

L3 Associativity of

D1 Distributivity

L2 Commutativity of

zyxzyx ŸŸ=ŸŸ )()(

)()()( zyyxzyx ⁄Ÿ⁄=Ÿ⁄
xyyx Ÿ=Ÿ

Ÿ

Ÿ



Valuations



5 August 2003 MaxEnt 2003

Valuations on LatticesValuations on Lattices
A valuation on a lattice is defined as a function that takes
a lattice element to a commutative ring.

                                   where A is an element of a
                                   commutative ring.

ALv Æ:

This has been investigated in
great detail by a small group
of mathematicians led by
Gian-Carlo Rota.
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Probability as a ValuationProbability as a Valuation
The function we defined for probability is a valuation.

∅

cba ⁄⁄

ba ⁄ ca ⁄ cb ⁄

ba c

¬Æ¥ LLp :

ALv Æ:

)()|( apap ≡T
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Why is this Useful?Why is this Useful?
There is a theorem that all valuations can be uniquely
determined from the valuations on the join-irreducible
elements of the lattice
AND
their assignments are arbitrary!

Thus, by assigning the
prior probabilities

the probabilities of any other pair of
elements in the lattice is determined.

∅

cba ⁄⁄

ba ⁄ ca ⁄ cb ⁄

ba c
)()()( cpbpap
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Assigning Priors is HardAssigning Priors is Hard
One can now see why assigning priors is difficult.

There is NO structure in the Boolean algebra of assertions that
can guide us in these assignments.

We must employ other principles
to assign them.

∅

cba ⁄⁄

ba ⁄ ca ⁄ cb ⁄

ba c
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Prior ProbabilitiesPrior Probabilities

Symmetry, constraints and consistency
with other aspects of the problem can be

used to assign prior probabilities.

Order-theoretic principles dictate the
remaining probabilities.



Probability Theory
from
Order
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Probability Theory and PhysicsProbability Theory and Physics

Thanks to the efforts of Ed Jaynes, Myron
Tribus and others, I am able to wave my
hands and say that I can derive much of
physics from order-theoretic principles.

Understanding Maximum Entropy
remains a challenge.



Geometry
from
Order
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Geometric ProbabilityGeometric Probability
Many geometric laws can be derived from order-theoretic
considerations.

Geometric objects can
be ordered, conjoined
and disjoined often
resulting in a distributive
lattice structure.

Valuations are assigned,
which are invariant with
respect to Euclidean
translations and rotations.
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These Valuations have a Basis!These Valuations have a Basis!
For three-dimensional Euclidean geometry all invariant
valuations can be written as a linear combination of 4 basis
valuations.

V = volume

A = surface area

W = mean width

c = Euler characteristic

m = aV + bA + cW + dc



5 August 2003 MaxEnt 2003

Euler Euler CharacteristicCharacteristic

VEF +-=c

2464)( =+-=tetrac

The Euler characteristic is a valuation.

For a 3D tetrahedron it is found by
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Euler Euler CharacteristicCharacteristic
For a cube, it is

VEF +-=c

28126)( =+-=cubec
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Corresponding LatticeCorresponding Lattice

e

h

d

g

c

ba
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Lattice Structure of a CubeLattice Structure of a Cube

cube

faces

edges

vertices rank 0

rank 1

rank 2

rank 3
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Mobius Mobius FunctionsFunctions

xyyx

yxzx

Pxxx

yzx

>=

<=

Œ=

Â
££

0),(

0),(

,1),(

m

m

m

A Mobius function for a partially ordered set  P is a
function that satisfies:

These functions are important for inverting other
functions on the lattice, as we will see later.

This is also related to the Euler characteristic in
distributive lattices.
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Inclusion-Exclusion PrincipleInclusion-Exclusion Principle

Mobius functions allow us to compute valuations on elements
higher in the lattice based on linear combinations of valuations
of elements lower in the lattice.

For many familiar structures this leads to
Rota’s inclusion-exclusion principle where when summing
we add at one level and subtract at the next and so on.

And we’ll see it also on the next slide…

VEF +-=c
We saw this with the Euler characteristic
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Joining Joining ParallelotopesParallelotopes

)()()()( 212121 PPvPvPvPPv Ÿ-+=⁄

2P1P

21 PP ⁄



Quantum Mechanics
from
Order



5 August 2003 MaxEnt 2003

Ariel Ariel CatichaCaticha

Ariel has also developed a very
interesting derivation of quantum
mechanics using Cox’s method
applied to experimental setups
rather than logical statements.

The concept of consistency with
the order-theoretic structure is
central here as well.
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Particles and MotionParticles and Motion

ix

fx

time

A particle moves from xi to xf

],[ if xx
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A Little More ComplexA Little More Complex

ix

fx

time

A particle moves from xi to x1

and then from x1 to xf

],,[ 1 if xxx 1x
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A Little More ComplexA Little More Complex

ix

fx

time

A particle goes from xi to xf

via x1 or x’1

]),,(,[ 11 if xxxx ¢ 1x 1x¢
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Experimental SetupsExperimental Setups

ix

fx

time
1x

We can look at this
experimental setup as
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The Meet OperationThe Meet Operation

ix

fx

time
1x

We can look at this
experimental setup as

being a combination of
two setups…

],,[

],[],[

1

11

if

if

xxx

xxxx

=

Ÿ
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The Join OperationThe Join Operation

ix

fx

time

This is a different way to
combine setups

]),,(,[

],[],,[

11

11

if

ifif

xxxx

xxxxxx

¢=

¢⁄

1x 1x¢
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Associativity of the MeetAssociativity of the Meet

The meet is associative, as

( )
( )

],,,[

],[],[],[

],[],[],[

],[],[],[

12

1122

1122

1122

if

if

if

if

xxxx

xxxxxx

xxxxxx

xxxxxx

=

ŸŸ=

ŸŸ=

ŸŸ
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Meet NOT Commutative!Meet NOT Commutative!

ix

fx

time
1x

However, experimental
setups are not commutative
under the meet operation!

This is because it makes
no sense for a particle to
go from x1 to xf and then
from xi to x1!
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Associativity of the JoinAssociativity of the Join

The join is also associative, as

( )
( )

]),,,(,[

],[],[],[

],[],[],[

],,[],,[],,[

111

111

111

111

if

iff

iff

ififif

xxxxx

xxxxxx

xxxxxx

xxxxxxxxx

¢¢¢=

⁄¢⁄¢¢=

⁄¢⁄¢¢=

⁄¢⁄¢¢

As long as each of these joins is allowed
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Join is CommutativeJoin is Commutative

Joins are commutative

],,[],,[],,[],,[ 1111 ifififif xxxxxxxxxxxx ¢¢⁄¢=¢⁄¢¢
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NOT a Lattice StructureNOT a Lattice Structure

What is interesting about setups is that because not
all meets and joins exist, setups do not form a lattice
structure.

They do form a poset however.

As the measure we will define is not probability, Ariel
represented it with         rather than

So lets continue…

)(ay )|( iap
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Sum and Product Rules AgainSum and Product Rules Again

Caticha showed that the

Sum Rule is derived from Associativity of the Join.

Product Rule from Distributivity.

)()()( baba yyy =Ÿ

)()()( baba yyy +=⁄
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AmplitudesAmplitudes

If we let the valuations on this poset take on complex
values, we have quantum mechanical amplitudes.

Caticha showed that one can then easily derive
Schrodinger’s Equation.

Feynman Path Integrals are simply analogous to
marginalizations.
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Probability and QMProbability and QM

Quantum Mechanics is NOT Probability Theory

Probability is a degree of implication defined on a
partially ordered set of logical statements.

Amplitudes are an analogous measure defined on
the partially ordered set of experimental setups.

This is exciting as it suggests that other analogous
measures can be constructed for other partially
ordered sets, leading to new laws!



Take Home Message
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Symmetry + Order = Laws



I would like to thank Ariel Caticha and
Carlos Rodríguez for their discussions,
which have enlightened and inspired me.

I would like to thank Robert Fry for introducing
me to this fascinating area of study.
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Cox Details
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ConjunctionsConjunctions

We look at the conjunction of two assertions implied by a premise

)( cba ŸÆ

and take as an axiom that this is a function of

)( ba Æ )( cba ÆŸand

[ ])(),()( cbabaFcba ÆŸÆ=ŸÆ

so that
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ConjunctionsConjunctions

We now conjoin an additional assertion

))(()( dcbadcba ŸŸÆ=ŸŸÆ

)( bax Æ= )( cbay ÆŸ=

[ ])(),( dcbacbaF ÆŸŸŸÆ=

Letting

)( dcbaz ÆŸŸ=

We have

[ ][ ]zyxFFdcba ,,)( =ŸŸÆ
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Associativity of the ConjunctionAssociativity of the Conjunction

We could have grouped the assertions differently

))(()( dcbadcba ŸŸÆ=ŸŸÆ

[ ][ ])(),(),( dcbacbaFbaF ÆŸŸÆŸÆ=

This gives us a functional equation

[ ][ ] [ ][ ]zyFxFzyxFF ,,,, =

[ ])(),( dcbabaF ŸÆŸÆ=

[ ][ ]zyFxF ,,=
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The Product RuleThe Product Rule

Functional Equation

As a particular solution we can take
which gives 

[ ] xyyxF =,

))(()( cbabacba ÆŸÆ=ŸÆ

and can be written in a more familiar form by changing notation

)|()|()|( bacabacb Ÿ=Ÿ

[ ][ ] [ ][ ]zyFxFzyxFF ,,,, =
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The Product RuleThe Product Rule

[ ] [ ] [ ][ ]yGxGGyxF 1, -=

In general however the solution is

where G is an arbitrary function.

[ ] [ ] [ ]bacGabGacbG Ÿ=Ÿ |||

We could call G probability!
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Logical ComplementsLogical Complements

[ ])()~( bafba Æ=Æ

So [ ])~())(~~( bafba Æ=Æ

[ ][ ])())(~~( baffba Æ=Æ

[ ][ ])()( baffba Æ=Æ

[ ][ ] xxff =

The degree to which a premise implies a statement
determines the degree to which it implies its contradictory.
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The Sum RuleThe Sum Rule

Another functional equation

A particular solution 
is which gives

( ) xxf -= 1

1)~()( =Æ+Æ baba

1)|~()|( =+ abab

In general
Cabgabg =+ )|~()|(

[ ][ ] xxff =
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Putting it TogetherPutting it Together

[ ] [ ] Cabgabg =+ |~|

[ ] [ ] [ ]bacGabGacbG Ÿ=Ÿ |||

The final general solution is 
and we have

[ ] [ ] rxxgxG =≡

rrr bacabacb )|()|()|( Ÿ=Ÿ

Cabab rr =+ )|~()|(

The solution to the first functional equation puts some
constraints on the second
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The Rules of ProbabilityThe Rules of Probability

The utility of this formalism becomes readily apparent when the 
implicant is an assertion representing a premise and the implicate
is an assertion or proposition representing a hypothesis

)()|( hypothesispremisepremisehypothesisp Æ≡

Note that probability is necessarily conditional!
And we never needed the concept of frequencies of events!

Setting r = C = 1 and writing the function g(x) = G(x) as p(x) 
we recover the familiar sum and product rules of probability

)|()|()|( bacpabpacbp Ÿ=Ÿ

1)|~()|( =+ abpabp
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Commutativy of the ConjunctionCommutativy of the Conjunction

The  symmetry of the conjunction of assertions

abba Ÿ≡Ÿ
means that under implication

)|()|( habphbap Ÿ≡Ÿ

)()( abhbah ŸÆ≡ŸÆ
also written as

)|()|()|( hbphbaphbap Ÿ=Ÿ

)|()|( haphabp Ÿ=

which means we can write
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BayesBayes’’  TheoremTheorem

( ) ( ) ( )
( )Idatap

Imodeldatap
ImodelpIdatamodelp

|

,|
|,| =

Posterior Probability Prior Probability

Likelihood

Evidence
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BayesBayes’’  TheoremTheorem

( ) ( ) ( )
( )Idatap

Imodeldatap
ImodelpIdatamodelp

|

,|
|,| =

Bayes’ Theorem is a Learning Rule

Data Dependent Term

Prior Knowledge

Improved State
of Knowledge
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Inferential CalculusInferential Calculus

In short we have the following calculus:

Product Rule

                                                                        associativity of

Sum Rule

                                                            complements

Bayes Theorem

                                                                        commutativity of

)|()|()|( IxpIxypIyxp Ÿ=Ÿ

1)|(~)|( =+ IxpIxp )(~~ xx =

)|(
)|(

)|()|(
Ixp

Iyxp
IypIxyp

Ÿ
=Ÿ

Ÿ

Ÿ


