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Abstract 

This paper presents a detailed performance analysis of a multi-block overset grid compu- 
tational fluid dynamics app!ication on multiple state-of-the-art computer architectures. The 
application is implemented using a hybrid MPI+OpenMP programming paradigm that exploits 
both coarse and fine-grain parallelism; the former via MPI message passing and the latter via 
OpenMP directives. The hybrid model also extends the applicability of multi-block programs 
to large clusters of SNIP nodes by overcoming the restriction that the number of processors be 
less than the number of grid blocks. A key kernel of the application, namely the LU-SGS linear 
solver, had to be modified to enhance the performance of the hybrid approach on the target 
machines. Investigations were conducted on cacheless Cray SX6 vector processors, cache-based 
IBM Power3 and Power4 architectures, and single system image SGI Origin3000 platforms. 
Overall results for complex vortex dynamics simulations demonstrate that the SX6 achieves the 
highest performance and outperforms the RISC-based architectures; however, the best scaling 
performance was achieved on the Power3. 

Keywords: Parallel performance, multi-level paradigm, cache-based architectures, vector ma- 
chines, computational fiiiid dynamics 

1 Introduction 

A large fraction of high performance computing (HPC) platforms today use cache-based micropro- 
cessors, which are assembled as systems of symmetric multi-processing (SNIP) nodes. Additionally, 
in order for many important scientific “legacy codes” originally developed for vector machines 
to  perform efficiently on cache-based architectures, some significant changes in their algorithmic 
structures must be made. Recent development of vector-based SMP systems [l] offers a nevi 
HPC alternative for many of these legacy codes. To evaluate and compare the performance of 
state-of-the-art cache- and vector-based architectures in conjunction with practical scientific prob- 
lems, we have selected a high-fidelity NASA production Navier-Stokes CFD application, called 
OVERFLOW-D [3, 71, that is based on multi-block overset grid methodology. 
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-1 I ne overset, grid approach falls into the general class of Schwartz decompositioc methods [GI. 
The solution process resolves the geometrical complexity of the problem domain by generating 
and using overlapping multi-block structured discretization grids. This approach typically employs 
a Chimera interpolation technique [lo] to periodically update and exchange inter-grid boundary 
information. A brief overview of the OVERFLOW-D methodology is given in Section 2. 

This paper describes our performance analysis of a hybrid MPI+OpenMP programming paradigm 
implementation of OVERFLOW-D, and tested on multiple computer architectures. The approach 
consists of two levels of parallelism: the first is coarse-grained based on MPI message passing while 
the second is fine-grained based on OpenRiIP directives [6]. One major advantage of the combined 
paradigms is that it extends the applicability of multi-block applications to large clusters of SMP 
nodes. Details of the hybrid model as applied to OVERFLOW-D is presented in Section 3 .  

Our hybrid approach is conceptually similar to the “Shared Memory Multi-Level Parallelism” 
(MLP) [13] model that was initially developed at NASA Ames Research Center. However, the MLP 
method uses a fundamentally different strategy for data exchange among processors. It exploits the 
underlying shared memory for all data communication via direct memory referencing instructions 
and is more efficient than message passing; but, its applicability is limited to pure shared memory 
machines. 

Furthermore, we describe the modifications that were made to a key numerical algorithm of the 
application, namely the LU-SGS linear solver, in order to enhance the parallel performance of the 
hybrid implementation. These modifications are reported in Section 4. 

All performance evaluation experiments were conducted on four parallel machines: the Cray 
SX6 vector system, the cache-based IBM Power3 and Power4 machines, and the shared memory SGI 
Origin3000 (0310 platform. A brief description of these architectures and the compiler flags used 
are given in Section 5. Performance results obtained using complex vortex dynamics simulations of 
a practical problem of interest are presented in Section6. OveraIl results demonstrate that the SX6 
outperforms the RISC-based architectures; however, the Power3 demonstrated the best scalability 
agd the 0 3 K  achieved the highest sustained floating-point performance (relative to peak). 

In this section, we provide a brief overview of the high-fidelity multi-block overset grid application 
for Navier-Stokes simulations, called OVERFLOW-D [7]. 1 
2.1 Flow Solver 

The overset grid application is popular within the aerodynamics community due to its ability to 
handle complex designs with multiple geometric components, whereby individual body-fitting grids 
are easily constructed about each component. OVERFLOFV-D is explicitly designed to simplify 
the modeling of problems when components are in relative motion. At each time step, the flowfield 
equations are solved independently on each grid (also known as blocks or zones) in a sequential 
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Figure 1: 0%-erset grid intra-group and inter-group communication. 

manner. Overlapping boundary points or inter-grid data is updated from previous solutions prior 
to the start of the current time step using a Chimera interpolation procedure [lo]. The code 
uses finite differences in space, with a variety of spatial differencing and implicit/explicit temporal 
time-stepping. A domain connectivity program is used to determine the inter-grid boundary data. 

The main computational logic at the top level of the sequential code consists of a “time-loop”, a 
“grid-loop” , and a “subiteration-loop” . The last two loops are nested within the time-loop. Within 
the grid-loop, solutions are obtained on the individual grids with imposed boundary conditions, 
where the Chimera interpolation procedure successively updates inter-grid boundaries after com- 
puting the numerical solution on each grid. Convergence of the solution process is accelerated by 
the subiteration-loop. Upon completion of the grid-loop, the solution is automatically advanced to 
the next time step by the time-loop. The overall procedure may be thought of as a Gauss-Seidel 
iteration. 

2.2 Grid Connectivity Interpolation 

The Chimera interpolation procedure [lo] determines the proper connectivity of the individual 

continuity of the solutions; for higher-order accuracy and to retain certain physical features in the 
solution, a double fringe overlap is sometimes used [ll]. A program named Domain Connectivity 
Function (DCF) [SI computes the inter-grid donor points that have to be supplied to other grids 
(see Fig. 1). The DCF procedure is incorporated into the OVERFLOW-D code and fully coupled 
with the flow solver. All boundary exchanges are conducted at the beginning of every time step 
based on the interpolatory updates from the previous time step. In addition, for dynamic grid 
systems, DCF has to be invoked at every time step to create new holes and inter-grid boundary 
data. 

g$&. Adjacent grids are e;qjected to h2p-e at :eat one-ce:! (sing!? fringe) iygerlap to ens.;re the 
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3 Hybrid Programming ,Mode! 

In the following subsections, we briefly describe a hybrid two-level parallel design [6], which im- 
plements a combined MPIf OpenhlP model, into OVERFLOW-D. The combined implementation 
permits the execution of the application either in pure message passing mode or, as in the true 
hybrid model, with multiple threads per MPI process (or task). 

3.1 Message Passing Parallelization 

The first level of parallelization is based on the MPI message passing library using the single program 
multiple data (SPMD) paradigm. The MPI model has been developed around the multi-block 
feature of the sequential code, which offers a natural coarse-grain parallelism [14]. To facilitate 
parallel execution, a grouping strategy is required to assign each grid to an MPI process, and 
concurrently distribute the workload across the processors in a load-balanced fashion. The total 
number of groups, G, is equal to the number of MPI processes; Ad. Since a grid can only belong 
in one group, the total number of grids, 2, must be at least equal to &I. If 2 is larger than M ,  
a group will consist of more than one grid. There are various, simple to sophisticated, grouping 
strategies [4] available for overset grid applications. In this paper, the bin-packing approach was 
used and is reviewed in Section 3.1.1 for the sake of completeness. The assignment of groups to 
processors is somewhat random: and is taken care of by the operating system, usually based on a 

first-touch strategy at the time of the run. 
The logic in the MPI model differs slightly from that of the sequential case (G = P = 1) 

mentioned in 2.1. Here the grid-loop is subdivided into two procedures, a loop over groups (“group- 
loop”) and a loop over the grids within each group. Since each MPI process is assigned to only 
one group, the group-loop is performed in parallel, with each group performing its own sequential 
grid-loop. The inter-grid boundary updates among the grids within each group (called intra-group 
updates) are performed as in the serial case. Chimera updates are also necessary for overlapping 
grids that are in different groups, and are known as inter-group exchanges (see Fig. 1). The 
inter-group donor points from grids in group G, to grids in group GJ are stored in a send buffer 
and. exchanged beheen the corresponding processes via MPI calls. These inter-group exchanges 
are transmitted at the beginning of every time step based on the interpolatory updates from the 
previous time step. The message passing is done by an efficient asynchronous communication 
model. discussed in Section 3.1.2, based on the MPI library. 

3.1.1 Grouping Algorithm 

The original parallel version of OVERFLOW-D uses a grid grouping strategy based on a bin-packing 
algorithm [14]. It is one of the simplest clustering techniques that strives to maintain a uniform 
number of “weighted” grid points per group while retaining some degree of connectivity among 
the grids withi= each group. Prior to the grouping procedure, each grid is weighted depending on 
the physics of the solution sought. The goal is to ensure that each weighted grid point requires 
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the same arnount of computational work. For instance, the execution time per point belonging to 
near-body grids requiring viscous solutions is higher than that for the inviscid solutions of off-body 
grids. The weight can also be deduced from the presence or absence of a turbulence model. The 
bin-packing algorithm then sorts the grids by size in descending order, and assigns a grid to every 
empty group. Therefore, at this point: the G largest grids are each in a group by themselves. The 
remaining 2 - G grids are then handled one at a time: each is assigned to the smallest group that 
satisfies the connectivity test with other grids in that group. The connectivity test only inspects for 
an overlap between a pair of grids, regardless of the size of the boundary data or their connectivity 
to other neighboring grids. The process terminates when all grids are assigned to groups. 

3.1.2 Asynchronous Communication 

Inter-processor communication can be synchronous or asynchronous, but the choice significantly 
affects the MPI programming model. The current version of OVERFLOW-D uses asynchronous 
message passing that relaxes the communication schedule in order to hide latency [5]. Asynchronous 
communication consists of non-blocking MPI send/receive calls. These pairs of non-blocking invo- 
cations place no constraints on each other in terms of completion. Receive completes immediately, 
even if no messages are available, and hence allows maximal concurrency. In general, however, 
control flow and debugging can become a serious problem if, for instance, the order of messages 
ceeds to be preserved. Fortunately, in the overset grid application, the Chimera boundary updates 
take place at the completion of each time step, and the computations are independent of the or- 
der in which messages are sent or received. Being able to exploit this fact allows us to easily use 
asynchronous communication within OVERFLOW-D. 

3.2 OpenMP Implementation 

The second level of parallelism in the hybrid approach is based on the OpenMP programming 
model, where explicit compiler directives are inserted into the code at the loop level. The logic 
is the same a s  in the pure MPI case, only the computationally intensive portion of the code (i.e. 

the grid-loop) is multi-threaded via OpenMP. In our current implementation, an equal number 
of OpenMP threads are spawned for each MPI task. The total number of processors used is the 
product of the number of MPI tasks and OpenMP threads. 

The OpenMP thread initialization follows a fork/join procedure. Whenever a parallel region is 
encountered, one of threads acts as the master while the others behave as team members; otherwise 
the master executes alone while the others remain idle. Message passing is performed by the master 
thread only; in other words, there is no inter-group cross communication among the threads. 
Fig. 2 illustrates the schematic of the hybrid implementation for two MPI processes and four 
OpenMP threads. Master threads within each MPI task exchange inter-group boundary data in 
OVERFLOW-D. 
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Figure 2: Schematic of the hybrid MPI+OpenMP implementation, master-thread MPI communi- 
cation, and parallel OpenMP computation. 

4 LU-SGS Reorganization 

Both the pure MPI and hybrid programming models discussed above were developed based on the 
sequential (serial) version of OVERFLOW-D, the organization of which was designed to exploit 
vector machines, such as the Cray-YMP and C90. The same basic code structure is used on 
all machines; except for the LU-SGS [16], linear solver that required significant modifications to 
enhance efficiency. The LU-SGS solver combines the advantages of LU factorization and Gauss- 
Siedel relaxation to improve the numerical convergence rate. Unfortunately, the inherited data 
dependencies in the scheme require the availability of the solution on the previous diagonal line 
for each diagonal line in the solution process. The “hyper-line” algorithm, similar to the “hyper- 
plane” algorithm [a], was used in the original code to achieve reasonable parallel performance on 
the vector machine. However, for cache-based machines, there are two main deficiencies of the 
algorithm: poor cache utilization and small communication granularity. In fact, a naive version of 
the OpenMP LU-SGS code performed very poorly on an 0 3 K ,  achieving a speedup of only 1.2 on 
four CPUs for a small test case. The poor performance was a direct consequence of the original 
code structure which suggested the insertion of OpenMP directives into some of the inner loops. 

A smart approach to parallelize the LU-SGS scheme is based on the pipeline algorithm described 
in [15]. Fig. 3 illustrates the pipeline method for a 1-D pipeline in which the data grid is partitioned 
in the K dimension among four threads (or processors). Thread 0 starts from the lower-left corner 
and works on one slice of the data for the first L value. Other threads wait for the data to become 

available. Once thread 0 finishes its job. thread 1 can start working on its slice for the same L 
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Figure 3: Illustration of a pipeline parallelization method for LU-SGS. 

and, in the meantime, thread 0 moves onto the next L. This process continues until all the threads 
become active. Then they all work concurrently to the opposite end, as indicated by the large 
arrow in the figure. The pipeline algorithni has better cache performance and less communication 
cost than the hyper-plane algorithm. The new parallel version improved the hybrid performance, 
with a speedup of 2.9 on 4 CPUs for the same test case mentioned earlier. 

On the Power3/4 and 03K machines, this pipeline algorithm was implemented, while a vector 
strategy was executed on the SX6. Except for a few minor changes in several subroutines in an 
effort to meet the specific iVlPI/OpenhlP compiler requirements on each machine, the LU-SGS 
program has been the only module to be reorganized to enhance efficiency. 

5 Target Architectures 

All experiments were performed on four state-of-the-art parallel machines: the Gray SX6 system 
at Arctic Region Supercomputing Center (ARSC), the IBM Power3 at Lawrence Berkeley National 
Laboratory (LBNL), the IBM Power4 temporarily installed at NASA Ames Research Center (ARC), 
and the SGI Origin3000 (03K) also at ARC. We give a brief overview of each platform as well a s  

the compiler flags that were used to run OVERFLOW-D. 

5.1 System Specifications 

The cacheless SX6 uses vectorization to exploit regularities in the computational structure, thereby 
expediting uniform operations on independent data sets. Memory latencies are masked by over- 
lapping pipelined vector operations with memory fetches. The system at ARSC is a single SMP 
node consisting of eight 500 MHz processors, each with a peak performance of 8 Gflops/s. The  
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processors contain 72 vectcr registers, each holding 256 64-bit vards. Fx non-vectorizable instruc- 
tions, the SX6 contains a scalar processor with a 64KB instruction cache, a 64KB data cache, and 
128 general-purpose registers. Since the SXG vector unit is significantly more powerful than the 
scalar processor. it is critical to achieve high vector operation ratios, either via compiler discovery 
or explicitly through code (re-)organization. 

The Power3 system at LBNL: part of IBRI’s RS/6000 series, has 380 SMP compute nodes. 
Each 375 MHz processor contains two floating-point units (FPUs) that can issue a multiply-add 
(MADD) per cycle for a peak performance of 1.5 GFlops/s. The out-of-order architecture uses 
prefetching to reduce pipeline stalls due to cache misses. The CPU has a 32KB instruction cache 
and a 128KB 128-way set associative L1 data cache, as well as an 8MB four-way set associative 
L2 cache with its own private bus. Each SMP node consists of 16 processors connected to main 
memory via a crossbar. Multi-node configiirations are networked via the IBM Colony switch using 
an omega-type topology. 

The IBM Power4 pSeries 690 is the latest generation of IBLI’s RS/6000 series. The temporary 
system at ARC was composed of two 32-way ShIP nodes, coupled together via the Colony switch. 
Each 32-way SMP consists of 16 Power4 chips (organized as 4 MCIVls), where a chip contains two 
1.3 GHz processor cores. Each core has two FPUs capable of a fused MADD per cycle. for a peak 
performance of 5.2 Gflops/s. Each processor contains its own private L1 cache (64KB instruction 
and 32KB data) with prefetch hardware; however, both cores share a 1.5MB unified L2 cache. 
The directory for the L3 cache is located on-chip, but the memory itself resides off-chip. The L3 
is designed as a stand-alone 32MB cache, or to be combined with other L3s on the same MChI 
to create a larger interleaved cache of up to 128MB. All our Power4 experiments reported in this 
paper were obtained within one compute node. 

The SGI 03K is a scalable, hardware-supported cache-coherent nonuniform memory access (CC- 
NUMA) system, with an aggressive communication architecture. The hardware makes all memory 
equally accessible from a software perspective by sending memory requests through routers located 
on the nodes. Memory access time is nonuniform, depending on how far away the word lies from 
the processor. The interconnection network is a hypercube, bounding the maximum number of 
memory hops to a logarithmic function of the number of processors. Results presented in this 
paper were obtained on the 512-processor system at ARC. Each 03K node is an SMP containing 
four 400 MHz MIPS R12000 IP35 processors and 512 MB of local memory. Each processor, with 
a peak performance of 0.8 GFlops/s, also has separate 32 KB L1 instruction and data caches, and 
a 2-way set-associative 8 MB L2 cache where only it can fetch and store data. 

5.2 Compiler Flags 

The following compiler options were used in conjunction with the SX6 f90 and C compiler in 
building 64-bit executables for MPI and hybrid applications. The -P openmp option was turned 
off in building the the pure MPI executable. 

0 FFLAGS = -C vsafe - f O  -P openmp -size-t64 
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e CFLAGS = -h s i ~ e - t 6 4  

0 LDFLAGS = -Wl,”-h size- t64“ 

The following compiler options were used on IBM Posver3/4 systems. Here, the 64-bit executa- 
bles were built for the MPI and hybrid applications! using Fortran and C: compiler scripts, mpxlfr  
and xlc-r, respectively. 

0 FFLAGS = -03 -g -q64 -qsmp=omp -qfixed -qnosave 

0 CFLAGS = -0 -g -q64 
0 LDFLAGS = m p x l f r  -q64 -qsmp 

The following compiler options were used on the SGI 0 3 K  system to build the 64-bit executables 
for IVfPI and hybrid applications using f90 and C compilers, respectively. The OpenMP option -mp 

was turned off for the MPI application. 

0 FFLAGS = -03 -64 -mips4 -rl0000 -mp 
0 CFLAGS = -03 -mips4 -rl0000 -64 
0 LDFLAGS = -03 -64 -mips4 -mp 

6 Perfmmafice Results 

The CFD problem used for the experiments in this paper is a Navier-Stokes simulation of vortex 
dynamics in the complex wake flow region for hovering rotors. Figure 4 shows sectional views 
of the test application grid system. The Cartesian off-body wake grids surround the curvilinear 
near-body grids with uniform resolution, but become gradually coarser upon approaching the outer 
boundary of the computational domain. Specifically, the spacing of the off-body grid nearest the 
rotor blade is As,  that for the next surrounding level is 2As, and so on for every successive level. 
Figure 5 shcvs E cut plane through the computed vortex wake system including vortex sheets as 
well as a number of individual tip vortices. A complete description of the underlying physics and an 
extensiTIe analysis of the numerical simulations pertinent to this test problem can be found in [la]. 
Our overset grid system test case consisted of 41 blocks and approximately 8 million grid points. 

Tables 1, 2, and 3 show total execution timings, T,,,,, on the Cray SX6, IBM Power3 and 
Power4, and SGI 0 3 K  systems, respectively. T,,,, is the time required to solve every iteration 
of the application (averaged over 20 iterations), and includes the computation, communication, 
Chimera interpolation, and processor idle times. T,,,, is reported for both the MPI and hybrid 
paradigms to demonstrate the impact of the second level of parallelism introduced by OpenMP. 
The hybrid runs with -M NfPI tasks and one OpenMP thread are conceptually equivalent to pure 
MPI runs with !VI tasks; however, due to procedural differences, the timings may be somewhat 
different. A dash (-) entry in these tables indicates that data was either, “not available” or “not 
applicable” . 
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Figure 4: Sectional views of t,he test application grid system: (a) off-body Cartesian wake grids, 
(b) near-body curvilinear grids, and (c) cut plane through the off-body wake grids surrounding the 
hub and rotors. 

Figure 5: Computed vorticity magnitude contours on a cutting plane located 45' behind the rotor 
blade. 

Performance results on the SX6 are presented in Table 1. The MPI and hybrid paradigms are 
appended with a -V or -NV to indicate whether or not the code was vectorized: with respect to 
the LU-SGS linear solver. The table includes data regarding Boating point operations per second 
(Mflops/s), the average vector length (AVL), and vector operation ratio (VOR). AVL and VOR 
were measured using the SX6/f90 compiler option, -ftrace. Observe that TeXec for runs with the 
vectorized version of LU-SGS are smaller than the non-vectorized ones by at  least a factor of 3X, 
signifying the performance improvement gained by vectorizing the solver. The relatively small AVL 
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11.1 PI OpenMP 
P Tasks Threads Paradzgm T,,,, (sec) Ad f lopsls -4V-L 
2 2 - MPI-NV 16.4 760 83 
2 2  - MPI-V 5.5 2265 87 
2 2  1 Hybrid-XV 16.7 746 83 
2 2  1 Hybrid-V 5.6 2492 84 
4 4  - M PI-NV 9.1 1369 74 
4 4  - MPI-v 2.8 4450 84 
4 4  1 Hybrid-NV 9.1 1369 74 
4 4  1 Hybrid-V 2.8 4450 83 
4 2  2 Hybrid-V 3.6 3461 80 
6 6  - MPI-NV 5.7 2185 75 
6 6  - MPI-V 2.0 6230 81 
6 6  1 Hybrid-NV 5.9 2111 75 
6 6  1 Hybrid-V 2.1 5934 79 
6 2  3 Hybrid-V 3.0 4153 77 
8 8  - MPI-YV 5.9 2111 75 
8 8  - MPI-v 1.6 7787 79 
8 8 1 Hybrid-NV 6.1 2042 75 
8 8  1 Hybrid-V 1.6 7787 76 
s 2 4 Hybrid-V 2.5 4984 77 
8 4  2 Hybrid-V 1.8 6922 79 

and limited VOR explain why the code achieves a maximum of only '7.8 Gflops/s on 8 processors 
( 12% of peak). Reorganizing OVERFLOW-D would achiev-e higher vector performance; however, 
extensive effort would be required to modify this production code. 

Except for P = 8, the hybrid paradigm slight!y underperforms MPI due to the overhead associ- 
ated with OpenMP thread management. For a given total number of processors, runs with larger 

numbers of OpenMP threads appear to be less efficient than those with fewer threads. This is 
&O due to OpeiihZ' fiverheads. H~xek-er, the primary ad;.a,,r,tngz ~f usicg the hybrid pzr,.adigm for 
overset grid applications is that it allows execution on larger processor counts. The performance 
scalability for both paradigms is almost identical but is expected to suffer for large numbers of MPI 
tasks due to workload imbalance. 

Timing results and h/Iflops/s on the IBM Power3 and Power4 systems are shown in Table 2; in 

addition, the L1 cache hit rate and TLB misses per cycle are listed for the Power3. These data 
could not be obtained on the Power4 due to its short temporary duration at ARC. As expected, 

the Power4 outperforms the Power3 over the entire range of processors, from two to 32. Note 
that for P = 32, the Power3 runs were split across two SMP nodes communicating via Colony 
switches; whereas all runs on the Power4 were executed on one SMP node enjoying fast intra-cabinet 
interconnects. Nevertheless, the Power3 results are impressive. For small numbers of processors 

VOR (%) 
77 
80 
77 
77 
68 
76 
68 
71 
71 
67 
73 
67 
68 
66 
61 
69 
60 
69 
67 
68 
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Table 2: Performance results on the IBAI Power3 and Power4 systems 

A1 P I  OpenMP Power3 Power4 
P Tasks  Threads Paradigm T;;,,,, (see) i l f f lopsls L1 (%) TLB (%) T,,,, (sec) Mflops l s  
2 2 - MPI 46.7 266 93.3 0.245 15.8 788 
2 2 1 Hybrid , 28.9 43 1 98.1 0.123 18.2 684 
4 4 - MPI 26.6 468 95.4 0.233 8.5 1465 
4 4 1 Hybrid 14.9 838 98.5 0.215 10.1 1233 
4 2 2 Hybrid 15.2 819 98.1 0.123 10.5 1186 

13.2 943 96.6 4.3 2897 

2076 7.4 1683 99.0 0.101 
8 8 
8 8 1 0.187 /I 6.0 I MPI 

Hybrid 
- 1  

8 2 4 Hybrid 9.2 1354 98.2 0.112 5.9 2111 
8 4 2 Hybrid 8.0 1557 98.9 0.183 6.2 2009 
16 16 - MPI 8.0 1557 98.2 0.143 3.7 3367 
16 16 1 Hybrid 4.6 2708 99.5 0.054 4.5 2768 
16 8 2 Hybrid 4.1 3039 99.2 0.084 3.9 3194 
16 4 4 Hybrid 4.8 2595 99.0 0.176 3.7 3367 
16 2 8 Hybrid 7.6 1639 99.0 0.080 4.0 3115 
32 32 - MPI 4.5 (2 nodes) 2768 98.7 0.108 3.4 (1 node) 3664 
32 32 1 Hybrid 4.7 (2 nodes) 2651 99.7 0.044 2.8 (1 node) 4450 
32 16 1 Hybrid 2.4 (2 nodes) 5191 99.5 0.039 3.6 (1 node) 3461 
32 8 4 Hybrid 2.6 (2  nodes) 4792 99.2 0.071 2.7 (1 node) 4614 

0.100 2.8 (1 node) 4450 
Hybrid 14.1 (2 nodes) 883 0.046 3.4 (I node) 3664 

32 4 8 Hybrid 3.8 (2 nodes) 
32 2 16 

( P  = 2 and P = 4); the Power4 timings are significantly better than those for the Power3; this is 
due to the Power4’s faster clock and complex but effective data locality system implemented via 
the architectural association of the L1, L2, and L3 caches. 

For P = 8, both systems achieve about 7% of peak performance for the pure MPI runs; however, 
the hybrid paradigm on the Power3 runs at  more than 14% of peak. For P = 32, the Power3 remains 
scalable (achieving 11% of peak), whereas the Power4 performance deteriorates significantly. This 
is probably because of the complex architecture of the Power4 which we were unable to fully exploit. 
Timing comparisons between the pure MPI and hybrid paradigms on the Power3 show that the 
latter outperforms the former, and for some cases, by a factor of nearly 2X. On the Power4, the 
same comparison shows that MPI performs better than the hybrid strategy for P < 16; however, 

the reverse is true for P = 32. As on the SX6, runs with larger numbers of OpenMP threads 
beyond an optimal value is less efficient, for a fixed value of P .  

The L1 hit rate and TLB misses on the Power3, although reasonable for small P ,  improve 
significantly with the number of processors used. For example, TLB misses for P = 32 shows 
an improvement of 4X relative to P = 4. On the Power3: the timing for P = 32 with two MPI 
tasks and 16 OpenMP threads is extremely poor; the reasons being a lack of data locality and that 
the job is split across two SMP nodes. However, the most important cause for poor performance 
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Table 3: Performance results on the SGI 0 3 K  sysLem 

MPI 
Hybrid 
Hybrid 

21.8 
22.0 
21.5 

OpenMP 
Threads 

4 
8 
8 
8 
8 
16 
16 
16 
16 
16 
16 
16 
32 
32 
32 
32 
32 
32 
32 
32 

- 

1 

2 
8 
8 
2 
4 
16 
16 
8 
4 
4 
2 
2 

32 
32 
8 
8 
4 
4 
2 
2 

- 

1 
2 

MPI 
Hybrid 
Hybrid 
Hybrid 
A4 PI 

Hybrid 
Hybrid 
Hybrid 
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Hybrid 
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2032 
1977 
1639 
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1887 
981 
1501 
3278 
3278 
1577 
3664 
988 

2651 
753 
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is the overhead associated with the OpenMP thread management procedures vihich negate the 
computational benefits. 

Timing results and floating point operations per second on the SGI 0 3 K  are shown in Table 3 
Results for the hybrid paradigm are presented in two fashions for certain rum: one is the basic 
hybrid strategy and the other is appended with a -PIN. Hybrid-PIN uses a special SGI 0 3 K  
O/S system call, called “pin-to-node”. Under current IRIX scheduling, the placement of the MPI 
processes (tasks) and spawned OpenMP threads (for mixed MPIf OpenMP jobs) may have various 

possible permutations over the selected compute nodes. An optimal placement of threads and 
processes may be furnished via the pin-to-node function, which consists of low-level IRIX calls. 
In  other words, pin-to-node prevents dynamic thread migration during the entire course of the 
computation. The pin-to-node procedure is part of the MLP library, and has been frequently used 
in the context of the single system image shared-memory programming model [13]. 

We have implemented the pin-to-node procedure in cor?jtlnction with our hybrid approach for 
enhanced performance. As seen in Table 3: the timing results for the hybrid-PIN paradigm exceed 
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that for OLiI standard hybrid method. The impro-Femerit factor varies n-ith the number of threads. 
For P = 32. with four LIP1 tasks and eight OpenMP threads, hybrid-PIN outperforms hybrid by 
a factor of almost 3X. Surprisingly, when using two tasks and 16 threads, the performance of the 
03K is extremely poor. Similar observations could also be made from Table 2. There are at least 
two possible reasons: lack of data locality and the overhead associated with OpenhIP procedures 
(such as fork/join and synchronization). A maximum of 3.6 Gflops/s is achieved on 32 processors 
(14% of peak performance). As on the SX6 and Power4 machines, pure MPI results are slightly 
better than those with hybrid-PIN. Also, increasing the number of OpenMP threads does not help. 

In terms of absolute timings (T,,,,), the SX6 (when running the vectorized solver) outperforms 
the other three architectures. Results show that the best run time for 8 processors on the SX6 
(1.6 secs) is more than 40% less than the best 32-processor Power4 number (2.7 secs). Scalabil- 
ity on the Power3 exceeds all others; the 03K ranks second for our test application. The 03K 
demonstrated the highest sustained performance (14% of peak on 32 processors). 

The hybrid programming paradigm is the most complex as it combines two layers of coarse- 
and fine-grain parallelism. In general, it therefore requires more programmer effort; however, our 
results show that for the same total number of processors, the best hybrid run performs comparably 
as the pure NIPI implementation. On the Power3 though, the hybrid results were significantly (and 
rather surprisingly) better than NIPI. Adding more OpenMP threads beyond an optimal number. 
depending on the number of MPI tasks, did not improve performance. However, the primary 
advantage of the hybrid paradigm for overset grid applications is that it extends their applicability 
to large clusters of SMP nodes. In other words, hybrid programming is particularly appropriate 
when the number of overset grids is less than the number of processors to be used, or when load 
balancing becomes difficult due to the wide disparity in grid sizes 141. 

7 Summary and Conclusions 

In this paper, we presented a detailed performance analysis of a high-fidelity multi-block Navier- 
Stokes application on multiple state-of-the-art computer architectures. We implemented and used 
a hybrid (NIPI+OpenMP) programming paradigm to exploit both coarse and fine-grain parallelism 
and extend the application’s applicability to large clusters of SMP nodes. We considered a practical 
CFD simulation of vortex dynamics in the flow region of a complex configuration and conducted 
our experiments on the cacheless Cray SX6 vector processors, the cache-based IBM Power3 and 
Power4 architectures, and the single system image SGI Origin3000 platforms. 

We showed the important role of restructuring a key kernel of the application, namely the LU- 
SGS linear solver, to improve performance on the above architectures. We analyzed and compared 
the runtime results and performance scalabiiity on each architecture for both pure hIPI and hybrid 
paradigms. We showed that in terms of execution timings, the SX6 outperforms the other three 
architectures; in fact, the best run time for eight processors on the SX6 is more than 40% less than 
the best 32-processor run on the Power4. We conclude that even though the pure MPI approach 
demonstrated a slight edge over the hybrid method, both paradigms still perform similarly for the 
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same total number of processors, except for the Power3 where the hybrid results viere sigriificant~y- 
better. Finally, we showed that the hybrid scheme will be the more viable approach for extending 
multi-block applications to clusters of SMPs, for cases where the number of processors is comparable 
to or larger than the number of overset grids. 
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