
Performance Analysis of a Hybrid Overset Multi-Block Application
on Multiple Architectures

M. Jahed Djomehri* and Rupak Biswast
NAS Division, NASA Ames Research Center, Moffett Field, CA 94035

{djomehri ,rbiswas}@nas .nasa.gov

Abstract

This paper presents a detailed performance analysis of a multi-block overset grid compu-
tational fluid dynamics app!ication on multiple state-of-the-art computer architectures. The
application is implemented using a hybrid MPI+OpenMP programming paradigm that exploits
both coarse and fine-grain parallelism; the former via MPI message passing and the latter via
OpenMP directives. The hybrid model also extends the applicability of multi-block programs
to large clusters of SNIP nodes by overcoming the restriction that the number of processors be
less than the number of grid blocks. A key kernel of the application, namely the LU-SGS linear
solver, had to be modified to enhance the performance of the hybrid approach on the target
machines. Investigations were conducted on cacheless Cray SX6 vector processors, cache-based
IBM Power3 and Power4 architectures, and single system image SGI Origin3000 platforms.
Overall results for complex vortex dynamics simulations demonstrate that the SX6 achieves the
highest performance and outperforms the RISC-based architectures; however, the best scaling
performance was achieved on the Power3.

Keywords: Parallel performance, multi-level paradigm, cache-based architectures, vector ma-
chines, computational fiiiid dynamics

1 Introduction

A large fraction of high performance computing (HPC) platforms today use cache-based micropro-
cessors, which are assembled as systems of symmetric multi-processing (SNIP) nodes. Additionally,
in order for many important scientific “legacy codes” originally developed for vector machines
to perform efficiently on cache-based architectures, some significant changes in their algorithmic
structures must be made. Recent development of vector-based SMP systems [l] offers a nevi
HPC alternative for many of these legacy codes. To evaluate and compare the performance of
state-of-the-art cache- and vector-based architectures in conjunction with practical scientific prob-
lems, we have selected a high-fidelity NASA production Navier-Stokes CFD application, called
OVERFLOW-D [3, 71, that is based on multi-block overset grid methodology.

‘Computer Sciences Corporation
iNASti\ Advanced Supercomputing Division

1

c

-1 I ne overset, grid approach falls into the general class of Schwartz decompositioc methods [GI.
The solution process resolves the geometrical complexity of the problem domain by generating
and using overlapping multi-block structured discretization grids. This approach typically employs
a Chimera interpolation technique [lo] to periodically update and exchange inter-grid boundary
information. A brief overview of the OVERFLOW-D methodology is given in Section 2.

This paper describes our performance analysis of a hybrid MPI+OpenMP programming paradigm
implementation of OVERFLOW-D, and tested on multiple computer architectures. The approach
consists of two levels of parallelism: the first is coarse-grained based on MPI message passing while
the second is fine-grained based on OpenRiIP directives [6]. One major advantage of the combined
paradigms is that it extends the applicability of multi-block applications to large clusters of SMP
nodes. Details of the hybrid model as applied to OVERFLOW-D is presented in Section 3 .

Our hybrid approach is conceptually similar to the “Shared Memory Multi-Level Parallelism”
(MLP) [13] model that was initially developed at NASA Ames Research Center. However, the MLP
method uses a fundamentally different strategy for data exchange among processors. It exploits the
underlying shared memory for all data communication via direct memory referencing instructions
and is more efficient than message passing; but, its applicability is limited to pure shared memory
machines.

Furthermore, we describe the modifications that were made to a key numerical algorithm of the
application, namely the LU-SGS linear solver, in order to enhance the parallel performance of the
hybrid implementation. These modifications are reported in Section 4.

All performance evaluation experiments were conducted on four parallel machines: the Cray
SX6 vector system, the cache-based IBM Power3 and Power4 machines, and the shared memory SGI
Origin3000 (0310 platform. A brief description of these architectures and the compiler flags used
are given in Section 5. Performance results obtained using complex vortex dynamics simulations of
a practical problem of interest are presented in Section6. OveraIl results demonstrate that the SX6
outperforms the RISC-based architectures; however, the Power3 demonstrated the best scalability
agd the 0 3 K achieved the highest sustained floating-point performance (relative to peak).

In this section, we provide a brief overview of the high-fidelity multi-block overset grid application
for Navier-Stokes simulations, called OVERFLOW-D [7]. 1
2.1 Flow Solver

The overset grid application is popular within the aerodynamics community due to its ability to
handle complex designs with multiple geometric components, whereby individual body-fitting grids
are easily constructed about each component. OVERFLOFV-D is explicitly designed to simplify
the modeling of problems when components are in relative motion. At each time step, the flowfield
equations are solved independently on each grid (also known as blocks or zones) in a sequential

, , t i i i -
i i

Four overset grids

Inter-group exchanges Receiver Donor

Group 2 j I . .

: o Intra-groupexchanges I .

Figure 1: 0%-erset grid intra-group and inter-group communication.

manner. Overlapping boundary points or inter-grid data is updated from previous solutions prior
to the start of the current time step using a Chimera interpolation procedure [lo]. The code
uses finite differences in space, with a variety of spatial differencing and implicit/explicit temporal
time-stepping. A domain connectivity program is used to determine the inter-grid boundary data.

The main computational logic at the top level of the sequential code consists of a “time-loop”, a
“grid-loop” , and a “subiteration-loop” . The last two loops are nested within the time-loop. Within
the grid-loop, solutions are obtained on the individual grids with imposed boundary conditions,
where the Chimera interpolation procedure successively updates inter-grid boundaries after com-
puting the numerical solution on each grid. Convergence of the solution process is accelerated by
the subiteration-loop. Upon completion of the grid-loop, the solution is automatically advanced to
the next time step by the time-loop. The overall procedure may be thought of as a Gauss-Seidel
iteration.

2.2 Grid Connectivity Interpolation

The Chimera interpolation procedure [lo] determines the proper connectivity of the individual

continuity of the solutions; for higher-order accuracy and to retain certain physical features in the
solution, a double fringe overlap is sometimes used [ll]. A program named Domain Connectivity
Function (DCF) [SI computes the inter-grid donor points that have to be supplied to other grids
(see Fig. 1). The DCF procedure is incorporated into the OVERFLOW-D code and fully coupled
with the flow solver. All boundary exchanges are conducted at the beginning of every time step
based on the interpolatory updates from the previous time step. In addition, for dynamic grid
systems, DCF has to be invoked at every time step to create new holes and inter-grid boundary
data.

g$&. Adjacent grids are e;qjected to h2p-e at :eat one-ce:! (sing!? fringe) iygerlap to ens.;re the

3

3 Hybrid Programming ,Mode!

In the following subsections, we briefly describe a hybrid two-level parallel design [6], which im-
plements a combined MPIf OpenhlP model, into OVERFLOW-D. The combined implementation
permits the execution of the application either in pure message passing mode or, as in the true
hybrid model, with multiple threads per MPI process (or task).

3.1 Message Passing Parallelization

The first level of parallelization is based on the MPI message passing library using the single program
multiple data (SPMD) paradigm. The MPI model has been developed around the multi-block
feature of the sequential code, which offers a natural coarse-grain parallelism [14]. To facilitate
parallel execution, a grouping strategy is required to assign each grid to an MPI process, and
concurrently distribute the workload across the processors in a load-balanced fashion. The total
number of groups, G, is equal to the number of MPI processes; Ad. Since a grid can only belong
in one group, the total number of grids, 2, must be at least equal to &I. If 2 is larger than M ,
a group will consist of more than one grid. There are various, simple to sophisticated, grouping
strategies [4] available for overset grid applications. In this paper, the bin-packing approach was
used and is reviewed in Section 3.1.1 for the sake of completeness. The assignment of groups to
processors is somewhat random: and is taken care of by the operating system, usually based on a

first-touch strategy at the time of the run.
The logic in the MPI model differs slightly from that of the sequential case (G = P = 1)

mentioned in 2.1. Here the grid-loop is subdivided into two procedures, a loop over groups (“group-
loop”) and a loop over the grids within each group. Since each MPI process is assigned to only
one group, the group-loop is performed in parallel, with each group performing its own sequential
grid-loop. The inter-grid boundary updates among the grids within each group (called intra-group
updates) are performed as in the serial case. Chimera updates are also necessary for overlapping
grids that are in different groups, and are known as inter-group exchanges (see Fig. 1). The
inter-group donor points from grids in group G, to grids in group GJ are stored in a send buffer
and. exchanged beheen the corresponding processes via MPI calls. These inter-group exchanges
are transmitted at the beginning of every time step based on the interpolatory updates from the
previous time step. The message passing is done by an efficient asynchronous communication
model. discussed in Section 3.1.2, based on the MPI library.

3.1.1 Grouping Algorithm

The original parallel version of OVERFLOW-D uses a grid grouping strategy based on a bin-packing
algorithm [14]. It is one of the simplest clustering techniques that strives to maintain a uniform
number of “weighted” grid points per group while retaining some degree of connectivity among
the grids withi= each group. Prior to the grouping procedure, each grid is weighted depending on
the physics of the solution sought. The goal is to ensure that each weighted grid point requires

4

the same arnount of computational work. For instance, the execution time per point belonging to
near-body grids requiring viscous solutions is higher than that for the inviscid solutions of off-body
grids. The weight can also be deduced from the presence or absence of a turbulence model. The
bin-packing algorithm then sorts the grids by size in descending order, and assigns a grid to every
empty group. Therefore, at this point: the G largest grids are each in a group by themselves. The
remaining 2 - G grids are then handled one at a time: each is assigned to the smallest group that
satisfies the connectivity test with other grids in that group. The connectivity test only inspects for
an overlap between a pair of grids, regardless of the size of the boundary data or their connectivity
to other neighboring grids. The process terminates when all grids are assigned to groups.

3.1.2 Asynchronous Communication

Inter-processor communication can be synchronous or asynchronous, but the choice significantly
affects the MPI programming model. The current version of OVERFLOW-D uses asynchronous
message passing that relaxes the communication schedule in order to hide latency [5]. Asynchronous
communication consists of non-blocking MPI send/receive calls. These pairs of non-blocking invo-
cations place no constraints on each other in terms of completion. Receive completes immediately,
even if no messages are available, and hence allows maximal concurrency. In general, however,
control flow and debugging can become a serious problem if, for instance, the order of messages
ceeds to be preserved. Fortunately, in the overset grid application, the Chimera boundary updates
take place at the completion of each time step, and the computations are independent of the or-
der in which messages are sent or received. Being able to exploit this fact allows us to easily use
asynchronous communication within OVERFLOW-D.

3.2 OpenMP Implementation

The second level of parallelism in the hybrid approach is based on the OpenMP programming
model, where explicit compiler directives are inserted into the code at the loop level. The logic
is the same a s in the pure MPI case, only the computationally intensive portion of the code (i.e.

the grid-loop) is multi-threaded via OpenMP. In our current implementation, an equal number
of OpenMP threads are spawned for each MPI task. The total number of processors used is the
product of the number of MPI tasks and OpenMP threads.

The OpenMP thread initialization follows a fork/join procedure. Whenever a parallel region is
encountered, one of threads acts as the master while the others behave as team members; otherwise
the master executes alone while the others remain idle. Message passing is performed by the master
thread only; in other words, there is no inter-group cross communication among the threads.
Fig. 2 illustrates the schematic of the hybrid implementation for two MPI processes and four
OpenMP threads. Master threads within each MPI task exchange inter-group boundary data in
OVERFLOW-D.

5

1 l1 1 proc = thrd 2 21 I proc = thrd

21 22 23 24

T -I-
Figure 2: Schematic of the hybrid MPI+OpenMP implementation, master-thread MPI communi-
cation, and parallel OpenMP computation.

4 LU-SGS Reorganization

Both the pure MPI and hybrid programming models discussed above were developed based on the
sequential (serial) version of OVERFLOW-D, the organization of which was designed to exploit
vector machines, such as the Cray-YMP and C90. The same basic code structure is used on
all machines; except for the LU-SGS [16], linear solver that required significant modifications to
enhance efficiency. The LU-SGS solver combines the advantages of LU factorization and Gauss-
Siedel relaxation to improve the numerical convergence rate. Unfortunately, the inherited data
dependencies in the scheme require the availability of the solution on the previous diagonal line
for each diagonal line in the solution process. The “hyper-line” algorithm, similar to the “hyper-
plane” algorithm [a], was used in the original code to achieve reasonable parallel performance on
the vector machine. However, for cache-based machines, there are two main deficiencies of the
algorithm: poor cache utilization and small communication granularity. In fact, a naive version of
the OpenMP LU-SGS code performed very poorly on an 0 3 K , achieving a speedup of only 1.2 on
four CPUs for a small test case. The poor performance was a direct consequence of the original
code structure which suggested the insertion of OpenMP directives into some of the inner loops.

A smart approach to parallelize the LU-SGS scheme is based on the pipeline algorithm described
in [15]. Fig. 3 illustrates the pipeline method for a 1-D pipeline in which the data grid is partitioned
in the K dimension among four threads (or processors). Thread 0 starts from the lower-left corner
and works on one slice of the data for the first L value. Other threads wait for the data to become

available. Once thread 0 finishes its job. thread 1 can start working on its slice for the same L

6

0 0 0 0
+-+-+

'0 '9 '9 0 0 0
0 1 I I '+!l O O O O 0 0 0

L

Figure 3: Illustration of a pipeline parallelization method for LU-SGS.

and, in the meantime, thread 0 moves onto the next L. This process continues until all the threads
become active. Then they all work concurrently to the opposite end, as indicated by the large
arrow in the figure. The pipeline algorithni has better cache performance and less communication
cost than the hyper-plane algorithm. The new parallel version improved the hybrid performance,
with a speedup of 2.9 on 4 CPUs for the same test case mentioned earlier.

On the Power3/4 and 03K machines, this pipeline algorithm was implemented, while a vector
strategy was executed on the SX6. Except for a few minor changes in several subroutines in an
effort to meet the specific iVlPI/OpenhlP compiler requirements on each machine, the LU-SGS
program has been the only module to be reorganized to enhance efficiency.

5 Target Architectures

All experiments were performed on four state-of-the-art parallel machines: the Gray SX6 system
at Arctic Region Supercomputing Center (ARSC), the IBM Power3 at Lawrence Berkeley National
Laboratory (LBNL), the IBM Power4 temporarily installed at NASA Ames Research Center (ARC),
and the SGI Origin3000 (03K) also at ARC. We give a brief overview of each platform as well a s

the compiler flags that were used to run OVERFLOW-D.

5.1 System Specifications

The cacheless SX6 uses vectorization to exploit regularities in the computational structure, thereby
expediting uniform operations on independent data sets. Memory latencies are masked by over-
lapping pipelined vector operations with memory fetches. The system at ARSC is a single SMP
node consisting of eight 500 MHz processors, each with a peak performance of 8 Gflops/s. The

7

processors contain 72 vectcr registers, each holding 256 64-bit vards. Fx non-vectorizable instruc-
tions, the SX6 contains a scalar processor with a 64KB instruction cache, a 64KB data cache, and
128 general-purpose registers. Since the SXG vector unit is significantly more powerful than the
scalar processor. it is critical to achieve high vector operation ratios, either via compiler discovery
or explicitly through code (re-)organization.

The Power3 system at LBNL: part of IBRI’s RS/6000 series, has 380 SMP compute nodes.
Each 375 MHz processor contains two floating-point units (FPUs) that can issue a multiply-add
(MADD) per cycle for a peak performance of 1.5 GFlops/s. The out-of-order architecture uses
prefetching to reduce pipeline stalls due to cache misses. The CPU has a 32KB instruction cache
and a 128KB 128-way set associative L1 data cache, as well as an 8MB four-way set associative
L2 cache with its own private bus. Each SMP node consists of 16 processors connected to main
memory via a crossbar. Multi-node configiirations are networked via the IBM Colony switch using
an omega-type topology.

The IBM Power4 pSeries 690 is the latest generation of IBLI’s RS/6000 series. The temporary
system at ARC was composed of two 32-way ShIP nodes, coupled together via the Colony switch.
Each 32-way SMP consists of 16 Power4 chips (organized as 4 MCIVls), where a chip contains two
1.3 GHz processor cores. Each core has two FPUs capable of a fused MADD per cycle. for a peak
performance of 5.2 Gflops/s. Each processor contains its own private L1 cache (64KB instruction
and 32KB data) with prefetch hardware; however, both cores share a 1.5MB unified L2 cache.
The directory for the L3 cache is located on-chip, but the memory itself resides off-chip. The L3
is designed as a stand-alone 32MB cache, or to be combined with other L3s on the same MChI
to create a larger interleaved cache of up to 128MB. All our Power4 experiments reported in this
paper were obtained within one compute node.

The SGI 03K is a scalable, hardware-supported cache-coherent nonuniform memory access (CC-
NUMA) system, with an aggressive communication architecture. The hardware makes all memory
equally accessible from a software perspective by sending memory requests through routers located
on the nodes. Memory access time is nonuniform, depending on how far away the word lies from
the processor. The interconnection network is a hypercube, bounding the maximum number of
memory hops to a logarithmic function of the number of processors. Results presented in this
paper were obtained on the 512-processor system at ARC. Each 03K node is an SMP containing
four 400 MHz MIPS R12000 IP35 processors and 512 MB of local memory. Each processor, with
a peak performance of 0.8 GFlops/s, also has separate 32 KB L1 instruction and data caches, and
a 2-way set-associative 8 MB L2 cache where only it can fetch and store data.

5.2 Compiler Flags

The following compiler options were used in conjunction with the SX6 f90 and C compiler in
building 64-bit executables for MPI and hybrid applications. The -P openmp option was turned
off in building the the pure MPI executable.

0 FFLAGS = -C vsafe - f O -P openmp -size-t64

8

e CFLAGS = -h s i ~ e - t 6 4

0 LDFLAGS = -Wl,”-h size- t64“

The following compiler options were used on IBM Posver3/4 systems. Here, the 64-bit executa-
bles were built for the MPI and hybrid applications! using Fortran and C: compiler scripts, mpxlfr
and xlc-r, respectively.

0 FFLAGS = -03 -g -q64 -qsmp=omp -qfixed -qnosave

0 CFLAGS = -0 -g -q64
0 LDFLAGS = m p x l f r -q64 -qsmp

The following compiler options were used on the SGI 0 3 K system to build the 64-bit executables
for IVfPI and hybrid applications using f90 and C compilers, respectively. The OpenMP option -mp

was turned off for the MPI application.

0 FFLAGS = -03 -64 -mips4 -rl0000 -mp
0 CFLAGS = -03 -mips4 -rl0000 -64
0 LDFLAGS = -03 -64 -mips4 -mp

6 Perfmmafice Results

The CFD problem used for the experiments in this paper is a Navier-Stokes simulation of vortex
dynamics in the complex wake flow region for hovering rotors. Figure 4 shows sectional views
of the test application grid system. The Cartesian off-body wake grids surround the curvilinear
near-body grids with uniform resolution, but become gradually coarser upon approaching the outer
boundary of the computational domain. Specifically, the spacing of the off-body grid nearest the
rotor blade is As, that for the next surrounding level is 2As, and so on for every successive level.
Figure 5 shcvs E cut plane through the computed vortex wake system including vortex sheets as
well as a number of individual tip vortices. A complete description of the underlying physics and an
extensiTIe analysis of the numerical simulations pertinent to this test problem can be found in [la].
Our overset grid system test case consisted of 41 blocks and approximately 8 million grid points.

Tables 1, 2, and 3 show total execution timings, T,,,,, on the Cray SX6, IBM Power3 and
Power4, and SGI 0 3 K systems, respectively. T,,,, is the time required to solve every iteration
of the application (averaged over 20 iterations), and includes the computation, communication,
Chimera interpolation, and processor idle times. T,,,, is reported for both the MPI and hybrid
paradigms to demonstrate the impact of the second level of parallelism introduced by OpenMP.
The hybrid runs with -M NfPI tasks and one OpenMP thread are conceptually equivalent to pure
MPI runs with !VI tasks; however, due to procedural differences, the timings may be somewhat
different. A dash (-) entry in these tables indicates that data was either, “not available” or “not
applicable” .

9

Figure 4: Sectional views of t,he test application grid system: (a) off-body Cartesian wake grids,
(b) near-body curvilinear grids, and (c) cut plane through the off-body wake grids surrounding the
hub and rotors.

Figure 5: Computed vorticity magnitude contours on a cutting plane located 45' behind the rotor
blade.

Performance results on the SX6 are presented in Table 1. The MPI and hybrid paradigms are
appended with a -V or -NV to indicate whether or not the code was vectorized: with respect to
the LU-SGS linear solver. The table includes data regarding Boating point operations per second
(Mflops/s), the average vector length (AVL), and vector operation ratio (VOR). AVL and VOR
were measured using the SX6/f90 compiler option, -ftrace. Observe that TeXec for runs with the
vectorized version of LU-SGS are smaller than the non-vectorized ones by at least a factor of 3X,
signifying the performance improvement gained by vectorizing the solver. The relatively small AVL

10

11.1 PI OpenMP
P Tasks Threads Paradzgm T,,,, (sec) Ad f lopsls -4V-L
2 2 - MPI-NV 16.4 760 83
2 2 - MPI-V 5.5 2265 87
2 2 1 Hybrid-XV 16.7 746 83
2 2 1 Hybrid-V 5.6 2492 84
4 4 - M PI-NV 9.1 1369 74
4 4 - MPI-v 2.8 4450 84
4 4 1 Hybrid-NV 9.1 1369 74
4 4 1 Hybrid-V 2.8 4450 83
4 2 2 Hybrid-V 3.6 3461 80
6 6 - MPI-NV 5.7 2185 75
6 6 - MPI-V 2.0 6230 81
6 6 1 Hybrid-NV 5.9 2111 75
6 6 1 Hybrid-V 2.1 5934 79
6 2 3 Hybrid-V 3.0 4153 77
8 8 - MPI-YV 5.9 2111 75
8 8 - MPI-v 1.6 7787 79
8 8 1 Hybrid-NV 6.1 2042 75
8 8 1 Hybrid-V 1.6 7787 76
s 2 4 Hybrid-V 2.5 4984 77
8 4 2 Hybrid-V 1.8 6922 79

and limited VOR explain why the code achieves a maximum of only '7.8 Gflops/s on 8 processors
(12% of peak). Reorganizing OVERFLOW-D would achiev-e higher vector performance; however,
extensive effort would be required to modify this production code.

Except for P = 8, the hybrid paradigm slight!y underperforms MPI due to the overhead associ-
ated with OpenMP thread management. For a given total number of processors, runs with larger

numbers of OpenMP threads appear to be less efficient than those with fewer threads. This is
&O due to OpeiihZ' fiverheads. H~xek-er, the primary ad;.a,,r,tngz ~f usicg the hybrid pzr,.adigm for
overset grid applications is that it allows execution on larger processor counts. The performance
scalability for both paradigms is almost identical but is expected to suffer for large numbers of MPI
tasks due to workload imbalance.

Timing results and h/Iflops/s on the IBM Power3 and Power4 systems are shown in Table 2; in

addition, the L1 cache hit rate and TLB misses per cycle are listed for the Power3. These data
could not be obtained on the Power4 due to its short temporary duration at ARC. As expected,

the Power4 outperforms the Power3 over the entire range of processors, from two to 32. Note
that for P = 32, the Power3 runs were split across two SMP nodes communicating via Colony
switches; whereas all runs on the Power4 were executed on one SMP node enjoying fast intra-cabinet
interconnects. Nevertheless, the Power3 results are impressive. For small numbers of processors

VOR (%)
77
80
77
77
68
76
68
71
71
67
73
67
68
66
61
69
60
69
67
68

11

Table 2: Performance results on the IBAI Power3 and Power4 systems

A1 P I OpenMP Power3 Power4
P Tasks Threads Paradigm T;;,,,, (see) i l f f lopsls L1 (%) TLB (%) T,,,, (sec) Mflops l s
2 2 - MPI 46.7 266 93.3 0.245 15.8 788
2 2 1 Hybrid , 28.9 43 1 98.1 0.123 18.2 684
4 4 - MPI 26.6 468 95.4 0.233 8.5 1465
4 4 1 Hybrid 14.9 838 98.5 0.215 10.1 1233
4 2 2 Hybrid 15.2 819 98.1 0.123 10.5 1186

13.2 943 96.6 4.3 2897

2076 7.4 1683 99.0 0.101
8 8
8 8 1 0.187 /I 6.0 I MPI

Hybrid
- 1

8 2 4 Hybrid 9.2 1354 98.2 0.112 5.9 2111
8 4 2 Hybrid 8.0 1557 98.9 0.183 6.2 2009
16 16 - MPI 8.0 1557 98.2 0.143 3.7 3367
16 16 1 Hybrid 4.6 2708 99.5 0.054 4.5 2768
16 8 2 Hybrid 4.1 3039 99.2 0.084 3.9 3194
16 4 4 Hybrid 4.8 2595 99.0 0.176 3.7 3367
16 2 8 Hybrid 7.6 1639 99.0 0.080 4.0 3115
32 32 - MPI 4.5 (2 nodes) 2768 98.7 0.108 3.4 (1 node) 3664
32 32 1 Hybrid 4.7 (2 nodes) 2651 99.7 0.044 2.8 (1 node) 4450
32 16 1 Hybrid 2.4 (2 nodes) 5191 99.5 0.039 3.6 (1 node) 3461
32 8 4 Hybrid 2.6 (2 nodes) 4792 99.2 0.071 2.7 (1 node) 4614

0.100 2.8 (1 node) 4450
Hybrid 14.1 (2 nodes) 883 0.046 3.4 (I node) 3664

32 4 8 Hybrid 3.8 (2 nodes)
32 2 16

(P = 2 and P = 4); the Power4 timings are significantly better than those for the Power3; this is
due to the Power4’s faster clock and complex but effective data locality system implemented via
the architectural association of the L1, L2, and L3 caches.

For P = 8, both systems achieve about 7% of peak performance for the pure MPI runs; however,
the hybrid paradigm on the Power3 runs at more than 14% of peak. For P = 32, the Power3 remains
scalable (achieving 11% of peak), whereas the Power4 performance deteriorates significantly. This
is probably because of the complex architecture of the Power4 which we were unable to fully exploit.
Timing comparisons between the pure MPI and hybrid paradigms on the Power3 show that the
latter outperforms the former, and for some cases, by a factor of nearly 2X. On the Power4, the
same comparison shows that MPI performs better than the hybrid strategy for P < 16; however,

the reverse is true for P = 32. As on the SX6, runs with larger numbers of OpenMP threads
beyond an optimal value is less efficient, for a fixed value of P .

The L1 hit rate and TLB misses on the Power3, although reasonable for small P , improve
significantly with the number of processors used. For example, TLB misses for P = 32 shows
an improvement of 4X relative to P = 4. On the Power3: the timing for P = 32 with two MPI
tasks and 16 OpenMP threads is extremely poor; the reasons being a lack of data locality and that
the job is split across two SMP nodes. However, the most important cause for poor performance

12

Table 3: Performance results on the SGI 0 3 K sysLem

MPI
Hybrid
Hybrid

21.8
22.0
21.5

OpenMP
Threads

4
8
8
8
8
16
16
16
16
16
16
16
32
32
32
32
32
32
32
32

-

1

2
8
8
2
4
16
16
8
4
4
2
2

32
32
8
8
4
4
2
2

-

1
2

MPI
Hybrid
Hybrid
Hybrid
A4 PI

Hybrid
Hybrid
Hybrid

Hybrid-PIN
Hybrid

Hybrid-PIN
MPI

Hybrid
Hybrid

Hybrid-PIN

Hybrid-PIN

Hybrid-PIN

Hybrid

Hybrid

-

1
4
2

11.2
11.3
14.1
13.7
6.1
6.3
7.6
12.2
6.6

12.7
8.3
3.8
3.s
7.9
3.4
12.6
4.7
16.5
8.8

-

1
2
4
4
8
8
-

1
4
4
8
8
16
16

li
Paradigm 1) T,,,, (sec:

Hybrid

M f li3pps/s

313
312
571
566
5 79
1112
1192
853
909

2032
1977
1639
1021
1887
981
1501
3278
3278
1577
3664
988

2651
753

1416

is the overhead associated with the OpenMP thread management procedures vihich negate the
computational benefits.

Timing results and floating point operations per second on the SGI 0 3 K are shown in Table 3
Results for the hybrid paradigm are presented in two fashions for certain rum: one is the basic
hybrid strategy and the other is appended with a -PIN. Hybrid-PIN uses a special SGI 0 3 K
O/S system call, called “pin-to-node”. Under current IRIX scheduling, the placement of the MPI
processes (tasks) and spawned OpenMP threads (for mixed MPIf OpenMP jobs) may have various

possible permutations over the selected compute nodes. An optimal placement of threads and
processes may be furnished via the pin-to-node function, which consists of low-level IRIX calls.
In other words, pin-to-node prevents dynamic thread migration during the entire course of the
computation. The pin-to-node procedure is part of the MLP library, and has been frequently used
in the context of the single system image shared-memory programming model [13].

We have implemented the pin-to-node procedure in cor?jtlnction with our hybrid approach for
enhanced performance. As seen in Table 3: the timing results for the hybrid-PIN paradigm exceed

13

that for OLiI standard hybrid method. The impro-Femerit factor varies n-ith the number of threads.
For P = 32. with four LIP1 tasks and eight OpenMP threads, hybrid-PIN outperforms hybrid by
a factor of almost 3X. Surprisingly, when using two tasks and 16 threads, the performance of the
03K is extremely poor. Similar observations could also be made from Table 2. There are at least
two possible reasons: lack of data locality and the overhead associated with OpenhIP procedures
(such as fork/join and synchronization). A maximum of 3.6 Gflops/s is achieved on 32 processors
(14% of peak performance). As on the SX6 and Power4 machines, pure MPI results are slightly
better than those with hybrid-PIN. Also, increasing the number of OpenMP threads does not help.

In terms of absolute timings (T,,,,), the SX6 (when running the vectorized solver) outperforms
the other three architectures. Results show that the best run time for 8 processors on the SX6
(1.6 secs) is more than 40% less than the best 32-processor Power4 number (2.7 secs). Scalabil-
ity on the Power3 exceeds all others; the 03K ranks second for our test application. The 03K
demonstrated the highest sustained performance (14% of peak on 32 processors).

The hybrid programming paradigm is the most complex as it combines two layers of coarse-
and fine-grain parallelism. In general, it therefore requires more programmer effort; however, our
results show that for the same total number of processors, the best hybrid run performs comparably
as the pure NIPI implementation. On the Power3 though, the hybrid results were significantly (and
rather surprisingly) better than NIPI. Adding more OpenMP threads beyond an optimal number.
depending on the number of MPI tasks, did not improve performance. However, the primary
advantage of the hybrid paradigm for overset grid applications is that it extends their applicability
to large clusters of SMP nodes. In other words, hybrid programming is particularly appropriate
when the number of overset grids is less than the number of processors to be used, or when load
balancing becomes difficult due to the wide disparity in grid sizes 141.

7 Summary and Conclusions

In this paper, we presented a detailed performance analysis of a high-fidelity multi-block Navier-
Stokes application on multiple state-of-the-art computer architectures. We implemented and used
a hybrid (NIPI+OpenMP) programming paradigm to exploit both coarse and fine-grain parallelism
and extend the application’s applicability to large clusters of SMP nodes. We considered a practical
CFD simulation of vortex dynamics in the flow region of a complex configuration and conducted
our experiments on the cacheless Cray SX6 vector processors, the cache-based IBM Power3 and
Power4 architectures, and the single system image SGI Origin3000 platforms.

We showed the important role of restructuring a key kernel of the application, namely the LU-
SGS linear solver, to improve performance on the above architectures. We analyzed and compared
the runtime results and performance scalabiiity on each architecture for both pure hIPI and hybrid
paradigms. We showed that in terms of execution timings, the SX6 outperforms the other three
architectures; in fact, the best run time for eight processors on the SX6 is more than 40% less than
the best 32-processor run on the Power4. We conclude that even though the pure MPI approach
demonstrated a slight edge over the hybrid method, both paradigms still perform similarly for the

14

.

same total number of processors, except for the Power3 where the hybrid results viere sigriificant~y-
better. Finally, we showed that the hybrid scheme will be the more viable approach for extending
multi-block applications to clusters of SMPs, for cases where the number of processors is comparable
to or larger than the number of overset grids.

Acknowledgements

The authors would like to thank Dr. Leonid Oliker at L,awrence Berkeley National Laboratory
for arranging access to the Cray SX6 and IBM Power3 machines. The first author was sup-
ported by NASA Ames Research Center under contract number DTTS59-99-D-O0437!’A61812D
with AMTI/CSC.

References

[l] http://www.jamstec.go.jp. Earth Simulator Center

[2] E. Barszcz, R. Fatoohi, V. Venkatakrishnan, and S. Weeratunga. “Solution of Regular, Sparse
Triangular Linear Systems on Vector and Distributed-Memory Multiprocessors”. Technical
Report RNR-93-007, NASA Ames Research Center, Moffett Field, CA, 1993.

[3] P. G. Buning, D. C. Jespersen, T. H. Pulliam, TV. M. Chan, J . P. Slotnick, S. E. Krist: and K. J .
Renze. Overflow User’s Manual, Version 1.89. NASA Langley Research Center, Hampton,
VA, 1999.

[4] M. J. Djomehri, R. Biswas, and N. Lopez-Benitez. “Load Balancing Strategies for Multi-Block
Overset Grid Applications”. In Proc. 18th Intl. Conf. on Computers and Their Applications,
pages 373-378, 2003.

[5] M. J. Djomehri, R. Biswm, M. Postdani, and R. C. Strawn. “An Analysis of Performance

Enhancement Techniques for Overset Grid Applications”. In Proc. 17th Intl. Conf. on Parallel
i: 2 n:-J-.L-.L J D--~- - - . . , - . -

I L / w L ~ Z U U L ~ U 1 1 ~ ~ ~ 2 3 l l b Y Syvzposium, 2003.

[6] M. 3. Djomehri and H. H. Jin. “Hybrid MPI+OpenMP Programming of an Overset CFD
Solver and Performance Investigations”. Technical Report NAS-02-002, NASA Ames Research
Center, Moffett Field, CA, 2002.

[7] R. Meakin. “On Adaptive Refinement and Overset Structured Grids”. In Proc. 13th AIAA
Computational Fluid Dynamics Conf., number AIAA-97-1858, 1997.

[8] R. Meakin and A. nl1. Wissink. “Unsteady Aerodynamic Simulation of Static and Moving
Bodies Using Scalable Computers”. In Proc. 14th AIAA Computational Fluid Dynamics Conf.,
number AIAA-99-3302, 1999.

15

[9] I;. Saad. Iterative Methods for spiirse Linear system,^. PWS Publishing Company, Boston,

MA, 1996.

[lo] J. Steger, F. Dougherty, and J. Benek. “A Chimera Grid Scheme”. AS?/IE FED, (5), 1953

[ll] R. C. Strawn and J. U. Ahmad. “Computational Modeling of Hovering Rotors and Wakes”.
In Proc. 38th AIAA Aerospace Sciences Meeting &’ Exhibit, number AIAA-2000-0110, 2000.

[12] R. C. Strawn and hl. J. Djomehri. “Computational Modeling of Hovering Rotor and Wake
Aerodynamics”. AIAA Journal of Aircraft, 39:786-793, 2002.

I
[13] J. R. Taft. “Achieving 60 GFLOP/s on the Production CFD code OVERFLOW-WlLP”. Par-

allel Computing, 27:521-536, 2001.

[14] A. &I. ”iiissink and R. Meakin. “Computational Fluid Dynamics with Adaptive Overset Grids
on Parallel and Distributed Computer Platforms”. In Proc. Intl. Conf. on Parallel and Dis-
tributed Processing Techniques and Applications, pages 1628-1634, 1998.

[15] M. Yarrow and R. Van der Wijngaart. “Communication Improvement for the NAS Parallel
Benchmark: A Model for Efficient Parallel Relaxation Schemes”. Technical Report RNR-97-
032, NASA Ames Research Center, Moffett Field, CA, 1997.

[16] S. Yoon and A. Jameson. (‘An LU-SSOR Scheme for the Euler and Navier-Stokes E,quations”.
In Proc. 25th AIAA Aerospace Sciences Meeting &’ Exhibit, number AIAA-87-0600, 1987.

16

