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Introduction

A droplet combustion experiment (DCE) was designed and run onboard the MSL-1 mission of
the Space Shuttle Columbia. There were two flights of this mission—STS-83 in April of 1997 and
STS-94 in July of 1997. The reflight occurred because a fuel-cell power problem onboard the shuttle
forced an early termination of the first flight; this was the only shuttle mission to be flown twice. DCE
data were obtained during both flights, as summarized in Table 1. The STS-83 data have been reported
and analyzed previously,' but the STS-94 data have not yet been presented. The purpose of this report is
to help to make available a complete set of data from both flights in a uniform format in order to facilitate
further analysis of the results. The figures and initial text in this report were prepared by M. Ackerman;
the authorship reflects the composition of the MSL-1 team involved in droplet combustion.

A fiber-supported droplet combustion (FSDC) experiment also was run on STS-94. This smaller
“glovebox” experiment, which investigated the combustion of fiber-supported droplets (also called
tethered droplets) in Spacelab cabin air, had previously flown on the first United States Microgravity
Laboratory (USML-1) mission of STS-73, but successful measurements with heptane as the fuel in this
experiment were first obtained on STS-94. The FSDC data for heptane also are analyzed and reported
here, for comparison with the DCE results. A number of other fuels were also burned in the FSDC
experiments on STS-94, but data for those fuels are not given here since the present focus is strictly on
heptane droplet combustion; heptane droplet combustion in convective flow also was studied, but
similarly, only data without forced convection are considered here, since the investigation of convection
effects was not an objective of DCE, which was intended to concentrate on the combustion of quiescent
droplets in quiescent atmospheres.

The DCE experimental apparatus and procedures were described in a previous paper,' and some
analysis of the data has been published.” The reader is referred to these earlier publications for the
necessary background and details. Only brief descriptions of the experimental approach and data
collection are given here. The main focus is on presenting the results of the measurements and drawing
some conclusions from them. Studies will be made of the changes in the burning rate and flame behavior
as the initial droplet diameter and the environment are altered, and extinction phenomena will be
examined in more detail.

Experimental Approach and Data Collection

Familiarity with the DCE experiments may be obtained by consulting the diagrams of the
experimental apparatus that have been given previously.' To begin a series of experiments, the test
chamber was first vented to the space vacuum then filled from one of the premixed gas bottles that had
been prepared prior to flight. Each bottle had been selected to establish the desired pressure and oxygen
concentration in the test chamber after it was connected to the evacuated chamber and its valve was
opened. All of the gas bottles contained helium-oxygen mixtures; for one set of tests the cabin air was
used instead of a gas bottle. Since several burns were performed in the environment generated by each gas
bottle, the post-combustion gas was sampled prior to venting so that the composition could be examined
after return to earth. These examinations verified that changes in the atmospheres could be neglected in
interpreting results.

Once the environment was established, fuel was injected through two opposed needles. The
needles were slightly retracted during injection to form a liquid bridge. After the desired droplet size had
been reached, the needles were moved farther apart to stretch the droplet. This stretching helped to
achieve a more symmetric deployment and less drift of the droplet after deployment. Finally, the needles
were rapidly extracted from the droplet and from the field of view. The extraction caused a small amount
of liquid-droplet oscillation, which was observed to dampen viscously, generally in well under one
second.
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Just after the needles were extracted, hot-wire igniters were energized electrically to activate
combustion. These wires were already in place, having been initially positioned with the needles. After
ignition the igniters were withdrawn slowly to minimize the gas flow associated with their motion. The
igniters were initially visible to the cameras that provided both the droplet and flame views of
combustion, and in one test, number 18 in Table 1, the droplet struck the igniter. A series of photographs
of a typical burn can be found in the earlier paper.'

The apparatus included three cameras and a viewport that allowed the experimenter to take still
35 mm photographs. Two of the cameras were dedicated to data acquisition. The first was a 35 mm black-
and-white, high-speed motion-picture camera that took magnified, backlit views of the droplet. The
second was an ultraviolet-sensitive intensified-array camera equipped with a narrow-band interference
filter at 310 um (one of the bands of OH emission associated with combustion) for flame imaging. The
third camera was a color camcorder positioned to provide a general view of the combustion process and
not considered part of the data-acquisition system, although it did prove helpful for checking some data.
Images from the camcorder and from the ultraviolet camera were downlinked to the experimenters on the
ground and used to evaluate whether ignition had been successful and the character of the burning and
extinction, to determine what further tests needed to be done. In addition to the photographs, the
temperature and pressure of the combustion chamber were measured, recorded and downlinked.

A PC-based image-analysis system’ was used to measure droplet and flame diameters as
functions of time. Rectangular areas of interest (AOI’s) were defined by positioning boundaries just
overlapping the top, bottom, left and right edges of the droplet and flame; within each AOI, a change in
intensity was used to determine the edge location. The “threshold tracking” option of the program,’ which
sets the image to only black and white after defining a threshold and then uses the computer to
automatically find the white pixel farthest toward the selected edge (top, bottom, left, or right) of the AOI,
was used for most tests.

The interference arising from soot-particle images, from the droplet or flame nearing the edge of
the field of view or from dim flames necessitated manual tracking of parts of some tests. During manual
tracking, the same procedures were followed as in threshold tracking, but the computer operator selected
the location of the AOI and the droplet or flame boundary. The image was magnified to aid in
determining the edge location. This magnification uniformly increased the size of all the pixels in the
image so that the relative scaling was unaltered, yielding the correct number of pixels per millimeter.

To clarify the images and make the boundary more distinct, several filters and processes were
used. For the flame images, an edge-detecting filtering operation was employed; this operation involved
performing a convolution with a Sobel edge-detect filter. Further description of this filter can be found in
the NASA technical paper describing the image-analysis software.’ The edge-detect filter was not needed
for the droplet images because their edges where sharper. To identify the boundary of the droplet, an AOI
was assigned to encompass the entire droplet. A low-pass filter was then applied to this AOI, followed by
a morphological erosion and reconstruction of the droplet edge, to help eliminate soot-particle images
from the AOI. Again, more details on the filter and morphological processes can be found in the paper
describing the image-analysis software.’ Following the image processing the entire area of the droplet was
recorded to determine the movement of the droplet center and to calculate a third droplet diameter, in
addition to the two diameters measured in orthogonal directions. Area data were not recorded from the
flame images which appear as rings because determining the center movement or diameter from the areas
of flame images requires multiple measurements; by contrast, the droplet images appear as filled circles,
making diameter calculations simpler and more reliable. Additionally, less noise and more evenly circular
flames made this third diameter measurement less important in the flame view.

The computer-generated results were checked with visual measurements of some frames to insure
accuracy. Accuracy varied from test to test as a consequence of variations in the intensity of the lighting
(affected by the flame intensity) and the amount of soot present. Slight errors from the image processing
were also considered. Overall, the error (based on visual measurements) was estimated to be less than 5%
of the initial droplet diameter in the droplet measurements and less then 2% of the first-measured flame
diameter in the flame measurements.
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Approach to Reporting of Results

Only about half of the tests that were performed provided data that can be used. Among the
encountered difficulties that limited the amount of useful data acquired were failure to achieve
deployment or ignition of the droplet, failure of one or both of the data-acquisition cameras and drift of
the droplet out of the field of view of one or both of the cameras prior to completion of combustion. In the
present work, an objective was to extract from the experiments all of the possibly useful data on droplet
combustion contained in the recorded droplet-diameter and flame-diameter histories. To achieve this
objective, all of the tests that met minimal criteria were analyzed; these criteria were, first, that the droplet
was ignited, and, second, that the droplet or flame remained in the field of view of at least one of two
data-acquisition cameras, either droplet-view or flame-view, for a minimum of 0.5 seconds, the
approximate time required for initial transients to subside and a time short compared with burning times
of droplets in the size range investigated. Flame views without droplet views and droplet views without
flame views thus were accepted, although there were no instances in which the latter situation occurred
for 0.5 seconds or more. A third imposed criteria was that if a test lacked a droplet view, then the flame
had to stay in view until extinction. This third restriction excluded just two tests in which only flame
views of slowly increasing diameter soon passed out of the field of view; it was felt that, since even the
initial droplet diameters were uncertain in these tests, the data on the short flame-diameter histories would
not be useful.

Table 1 summarizes the results of the tests that satisfied these three criteria, ordered from high to
low pressures, from rich to lean atmospheres and from large to small initial droplet diameters. In addition
to specifying the test conditions (chamber pressure and oxygen percentage), Table 1 reports the burning
times, burning-rate constants and final flame and droplet diameters at extinction, when available. Also,
Table 1 gives drift velocities obtained from flame-view and droplet-view cameras as the magnitude of the
velocity of the center of the droplet or flame. These values are roughly indicative of the convective
velocities of the droplets with respect to the gas but cannot be equated exactly to those convective
velocities because of the absence of measurements of local gas velocities. Large convective velocities
increase droplet burning rates. The values of the drift velocities are smaller than those found in most free-
droplet combustion experiments, averaging about 3.4 mm/s and never exceeding 13 mm/s, except in test
18 in which the droplet rebounded from an igniter wire just after deployment, as noted previously.

Two approaches were taken in reducing the data on flame-diameter and droplet-diameter
histories. In the first approach, the raw data extracted from the image-analysis system were exhibited
graphically. To ease comparisons with the earlier paper that reported the STS-83 results and to minimize
noise resulting from soot images, the graphs report a droplet diameter determined from measurements of
the droplet area, assumed circular. The flame diameter reported in the graphs is the average of the two
orthogonal measurements. The average was used to reduce noise levels arising from small flame
irregularities in the flame views. The measurements typically differed from the reported values by less
than 5% in the droplet data and by less then 2% in the flame data.

In the second approach, these data were smoothed using the second degree Loess smoother” in the
statistical software package S-Plus. Because of the different behavior and different distributions of noise
in the droplet and flame data, different spans were specified for each. The droplet data had little curvature,
allowing a larger span to be used than for the flame data; however, noise differences between tests of long
and short duration led to the use of different spans for different droplets. In the longer tests noise was
primarily due to the computer interpreting a soot particle as the edge of the droplet, leading to
measurements exceeding the actual diameter. A long span is then needed to prevent a bump from
appearing in the data. As a result of the noise distribution and little curvature, a span of 75% of the data
set was used for most of the droplet tests. Droplet data from tests of short duration had less noise, and
most of the noise in these tests arose from droplet oscillation caused by deployment, which led to a more
uniform distribution above and below the actual diameter. Because of the smaller amount of noise and the
more uniform distribution, shorter spans were selected for these tests to even out this “chatter.”

NASA/TM—2003-212553 3



While the flame data were less noisy overall than the droplet data, they also exhibited noise
differences based on the duration of the tests. Unlike the droplet data, the flame data were noisier in the
short tests, since most of the noise came from a very bright initial flame as accumulated vapor ignited, an
occurrence which generally lasted less than a quarter of a second. Also, occasionally a very dim flame in
the final 0.5-1 s generated noise. The flame data also had more curvature than the droplet data. For the
longer flame data sets with less noise and higher curvature than the droplet tests, the span was set to only
25% of the data. Larger spans were used for a few of the shorter, noisier flame plots. These shorter tests
also exhibited less curvature, allowing a larger span to be used without losing important features of the
plot. Even after adjusting the span, the large initial noise and curvature of some tests made it impossible
for the smoothing algorithm to smooth these areas accurately; consequently, the first 0.5 s of many
droplet and flame graphs and the last 0.5 s of a few flame graphs were smoothed by eye.

The smoothed data were displayed graphically with estimated error bars indicating uncertainties.
Although the error bars are large, purposely drawn so to include all possible errors, the estimated error is
smaller, as indicated above. Figures 1 through 11 show this smoothed data obtained by the second
approach, and Appendix A presents the raw data obtained by the first approach. In Figures 1 through 11 a
“D” at the end of the trace is used to denote drift out of the field of view. A solid dot at the end of the
flame trace shows a known point of extinction. Droplet traces were not marked at extinction because
extinction is not visibly evident in that view.

All of the graphs in this paper start with zero as the time of ignition of the droplet, ignition being
defined as the first visual evidence of the flame. The tests were synchronized using the GMT (Greenwich
mean time) stamps in both views. The times agree, through the use of the GMT stamp, to within
0.1 second. All of the droplets show an increase in droplet diameter during ignition. This increase is due
to thermal expansion during heat-up and ignition, as previously discussed; to demonstrate this increase
more fully, the data from deployment to ignition are shown as occurring at negative times in the graphs
appearing in Appendix A, in all cases except those for which such data is unavailable because of the
droplet’s proximity to the igniter (tests 18, 21, and 22). It should be noted, however, that oscillations
arising from deployment (and the method of determining the droplet diameter from the area, which at
these earlier times is not always circular as assumed) cause noise that may mask the true nature of the
early droplet behavior. As noted earlier, this oscillation has usually been viscously damped prior to
ignition of the droplet. Ignition was chosen as the zero point because it eases the comparison of flame
data and burning rates (not all test have the same time span from deployment to ignition or even from hot-
wire initiation to ignition). More information on the initial increase in droplet diameter and initial
oscillation can be found in the earlier paper.' The initial diameters reported here differ slightly from those
given earlier' because at the time of ignition the droplet often is slightly smaller than its maximum size
recorded previously.' The present selection is consistent with the stated focus on combustion only.

The flame data were not recorded here for the first one to three frames at ignition (one frame is
equivalent to 1/30th of a second in the flame view) because of the initial size, shape and brightness of the
flame. The flame burnt excess accumulated vapors within the first tenth of a second and then settled down
to the expected spherical, steady glowing state. The initial frames showed variable, often large and
irregularly shaped flames.

Results at 1.00 Bar, 35% Oxygen

Results of three tests completed in this, the richest helium-oxygen environment at normal
atmospheric pressure, are shown in Fig. 1. These tests were performed on STS-83 and have been
thoroughly discussed previously.' The data in Table 1, Fig. 1, and Fig. A1 for these tests are included for
completeness; they also serve to demonstrate results of different types of data analysis since the methods
employed here differ somewhat from those used earlier.' The results obtained by the different methods are
not significantly different.
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All tests in this atmosphere show a classic rise then decrease in flame diameter, experiencing
diffusive extinction at measurable flame diameters. Droplet diameters at extinction are too small to be
measured, possibly zero. As previously discussed, there is also some curvature in the plots of droplet
diameter squared, the burning-rate constant decreasing with time during combustion, which is seen more
clearly in Fig. Al than in Fig. 1; Table 1 further quantifies variation in burning-rate constants by
reporting, besides an average value derived from a least-squares fit of the overall droplet-diameter history,
both an initial value obtained from the first part of the droplet-diameter history and a final value obtained
from the last part before extinction. It may be seen that variations on the order of 50% occur in this
atmosphere, even for the smallest droplet. Although the change may be due to absorption in the liquid,
during burning, of less volatile materials produced by pyrolysis in the region between the droplet and the
flame, the statement' is still valid that the “source of these [variations] remains a topic for further study.”
The results of the different kinds of data analysis reported here support the previous interpretations' and
do not indicate any need for revision of the earlier discussion.

Results at 1.00 Bar, 32% Oxygen

The success in STS-83 offered the opportunity to change the gas composition slightly for the
reflight, so that finer testing of the dependence of the combustion behavior on the oxygen concentration
could be performed. For this reason, experiments in helium-oxygen environments at 1.00 bar with 32%
oxygen mole fractions were carried out on STS-94. A motivation for decreasing the oxygen concentration
was the finding' of radiative extinction at lower oxygen mole fractions; the experiments at 32% oxygen
could narrow the uncertainty in the location of the boundary between diffusive and radiative extinction.
Figure 2 shows the results obtained at this lower oxygen concentration.

The two smaller droplets in Figs. 2 and A2 behave very much like the droplet of similar size that
was burned in 35% oxygen. The average burning rate is slightly less in 32% oxygen, and the flame
diameter slightly larger, as is to be expected, but the qualitative behavior, including the existence and
magnitude of curvature in the diameter-squared plots and the immeasurably small (possibly zero) droplet
diameter at extinction, are the same. It is especially interesting, however, to compare the behavior of the
largest droplet in Fig. 2 (test 4) with that of the largest droplet in Fig. 1 (test 1). Even though the initial
droplet diameter in test 1 is slightly larger than that in test 4, the flame diameter is noticeably larger in test
4. This larger flame is due to the lower oxygen concentration for test 4. The flame in test 4 does not
experience the strong soot-penetration event, seen in Fig. Al as a sudden increase in flame diameter
during test 1 and discussed previously.' The burning rate for test 4 is correspondingly lower than that for
test 1, especially near the end of the data trace, causing the initially larger droplet of test 1 to eventually
become smaller than the droplet of test 4 after both have burned for a sufficiently long time period
(approximately 5 seconds). The differences in the flame diameters and burning rates of these two
droplets, towards the end of the burn, clearly exceed experimental uncertainty. While the droplet in test 1
definitely experiences diffusive extinction, it is unclear whether the droplet in test 4 experiences diffusive
or radiative extinction. Both the flame and the droplet in this test drift out of the field of view before a
definitive judgment can be made. The radiative-diffusive boundary, at an initial droplet diameter of about
3.9 mm, therefore, may or may not extend beyond 32% oxygen; from Fig. 1 it is clear that it does not
extend to 35% oxygen, and from Fig. 3 it will be seen that it definitely extends beyond 30% oxygen.

Results at 1.00 Bar, 30% Oxygen

Figure 3 shows results obtained from the five successful burns in this environment. The first two
results, those from the two largest droplets, were obtained on STS-83 and have been discussed before.'
The largest experiences radiative extinction, the droplet diameter being of appreciable size when flame
extinction occurs and continuing to decrease in size through vaporization in the hot gas after flame
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extinction. This vaporization process can continue for time periods on the order of 5 seconds, as results in
other atmospheres will show. The smaller of these two droplets exhibits diffusive extinction. All three
STS-94 tests in this atmosphere were for even smaller initial droplet diameters, and they all exhibited
diffusive extinction, as would be expected.

The initial droplet diameters in the STS-94 tests were quite similar, and their diameter histories
are not clearly distinguishable, even in the raw data of Fig. A3. Their flame diameters, however, are
somewhat different, likely as a consequence of different amounts of initial fuel vaporization prior to
ignition. The differences amount to about 20 to 30%, somewhat more than the difference between tests 1
and 4 noted earlier. As burning proceeds the differences in the three flame diameters are seen to decrease,
indicating that the effects of the initial conditions diminish with time.

Curvature in the diameter-squared plots, like that found for the 35 and 32% oxygen, also is visible
in this 30% data (see Fig. A3). This curvature is of a lesser extent than at the higher oxygen contents, as is
evident by the entries in Table 1.

Results at 1.00 Bar, 25% Oxygen

Of the seven tests in this atmosphere, those for the three largest droplets were run on STS-83. It
was observed from these three tests that' “in 25% oxygen, the lower peak temperatures have reduced the
chemical rates to such an extent that flames of all sizes measured extinguished radiatively.” In view of the
fact that the initial droplet diameter was greater than 2 mm in these three runs, it is reasonable that the
four runs on STS-94 focused on droplets having initial diameters less than 2 mm, since that serves to test
whether any diffusive extinctions can occur in this atmosphere. Indeed, the results revealed that these
smaller droplets extinguished diffusively instead of radiatively, as may be seen from Fig. 4, thus
establishing the boundary between diffusive and radiative extinction as varying from initial droplet
diameters of perhaps 4 mm at 32% oxygen (Fig. 2) to about 3 mm at 30% oxygen (Fig. 3) to about 2 mm
at 25% oxygen (Fig. 4).

Since it is known that radiative extinction can occur even after the flame diameter has reached a
maximum value and has begun to decrease,” and since diffusive extinction occurs at easily measurable,
non-zero flame diameters, it can be difficult to distinguish between the two modes of extinction solely on
the basis of flame-diameter histories. Figure 4 demonstrates a better way to make this distinction for
heptane droplet combustion, namely on the basis of the droplet-diameter history. Radiative extinctions
occur at a substantially large droplet diameter, and continued vaporization of the liquid in the hot
atmosphere is evident in the droplet-diameter histories after radiative extinction, but with diffusive
extinction the heptane droplet diameters are always very small at extinction, and the droplet is often not
visible after extinction. The droplet diameters at extinction, reported in Table 1, are all close to the limit
of the droplet-view resolution; in the richer atmospheres they are too small to be measured, and even in
the leaner atmospheres there is substantial uncertainty in the values reported.

For diffusive extinctions, in which the droplet disappears very near the time of flame extinction,
an interesting question concerns whether the flame extinguishes before or after the droplet disappers;'
both situations are possible theoretically. Comparison of results for runs 15 and 16 in Figs. 4 and A4
suggests that both types of behavior may be possible. These two droplets had very nearly the same initial
diameter, but the initial flame diameter was clearly smaller in run 16. In this run (16) the flame definitely
extinguished before the droplet disappeared; on the other hand, in run 15, with a large initial flame
diameter, it appears that the flame may have persisted slightly longer than the droplet. The coordination
of timing between the flame and droplet views is accurate enough that it is not the main source of
uncertainty in these conclusions; instead, the main uncertainty is introduced through the droplet-view
spatial-resolution limitation which makes it difficult to ascertain exactly when the droplet disappears. If
both types of behavior indeed occur in Fig. 4, then it can be concluded that the initial condition affects
whether the flame or droplet disappears first, a result that could occur because the time-dependent
behavior in the outer zone allows its entire history to depend on the initial conditions. A greater amount of
pre-ignition vaporization, giving a larger initial flame diameter, could cause the flame to last longer than
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the droplet. This degree of uncoupling between flame and droplet is associated with the near-quasisteady
droplet behavior and the strong time-dependent influences on the flame. Theoretical analyses aimed at
improving explanations of these effects evidently should focus on influences of different amounts of
initial energy deposition. It is seen here that the initial condition at ignition may exert qualitative effects
even at extinction.

Since the droplet view was not available in test 17, the initial droplet diameter was estimated
from the camcorder view, as was also done for the other two tests listed in Table 1 that lack droplet
views. There is substantial uncertainty in these camcorder readings; indeed, the initial droplet diameter in
test 17 may well have been less than that in test 18, as the corresponding flame-diameter data would
suggest. The measured burning rate for test 18, listed in Table 1, is appreciably higher than for any other
test in this atmosphere, as would be expected from convective effects on this rapidly moving droplet. The
flame in this test clearly lasts longer than the droplet, as might be expected from the large amount of
vaporization that would occur as the droplet bounces off the igniter wire.

Initial and final burning-rate constants are not given in Table 1 for this atmosphere because
curvatures in quasisteady diameter-squared plots were not detectable in this weaker atmosphere.
Curvatures clearly decrease with increasing dilution of the atmosphere.

Results at 1.00 Bar, 20% Oxygen

All four tests at normal atmospheric pressure in the oxygen-helium atmosphere containing 20%
oxygen, shown in Fig. 5, were obtained on STS-94. Results at this lowest oxygen concentration are
noticeably different from those in other atmospheres. First, it should be observed that the traces extend for
only two seconds, the flames not even persisting that long. Although the slopes of the diameter-squared
curves appear to be small because of the short time period, the burning-rate data in Table 1 indicate rate
constants quite comparable with those at the other oxygen contents. The tests cover a wide range of initial
droplet diameters and show very small final droplet diameters for the two smallest droplets but
appreciably large final diameters for the two largest droplets. The flame-diameter histories are peculiar
and also qualitatively different for the largest and smallest droplets, increasing with time until extinction
for the largest droplets and always decreasing with time for the smallest. At first glance, it may seem that
the two largest droplets experience radiative extinction and the two smallest diffusive extinction, but
further study raises questions concerning this interpretation.

An important observation is the absence of any correlation between droplet and flame time
histories in Figs. 5 and AS. This suggests that the droplet is not responding to any flame behavior but
instead is merely vaporizing under the influence of the energy deposited in the ignition process, during
the brief period recorded. The different vaporization-rate constants of different droplets, then, would
mainly reflect different amounts of initial energy deposition, thereby accounting for the somewhat
irregular variation of burning rate with droplet size, shown in Table 1. The inward motion of the flames of
the two smaller droplets merely reflects the gradual consumption of fuel vapor formed during the ignition
process, while the outward motion for the larger droplets could be due to additional vaporization, a
greater influence at larger droplet size. With this interpretation, all of the extinctions are caused by energy
loss having an appreciable radiative component in this atmosphere. The atmosphere would be considered
as not having a sufficient amount of oxygen to support quasi-steady droplet combustion. The 20%
condition, then, would be beyond a flammability limit for droplet combustion, the brief periods of flame
existence, always less than 1.5 seconds, being a consequence only of the initial energy deposition.

This second interpretation appears to be the more convincing one. It implies that, in this
atmosphere, even the smallest droplet tested, namely one with an initial diameter of only about 0.9 mm, is
large enough to lie beyond the boundary of radiant extinction. The time scales are sufficiently short that
this tentative conclusion can be explored further in drop-tower testing. No drop-tower experiments have
yet been performed in this atmosphere.
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Results at 0.50 Bar, 40% Oxygen

All of the tests at 0.50 bar were run on STS-94. Fairly complete ranges of oxygen contents and
initial diameters were studied at this pressure, enabling pressure dependences to be inferred from
comparisons with results obtained at 1.00 bar.

Only one test was completed at 40% oxygen, the richest atmosphere investigated. From the
results, shown in Figs. 6 and A6, it is seen that diffusive extinction occurs and that the diameter-squared
plot exhibits curvature like that seen at 1.00 bar and 35% oxygen. Since the initial droplet diameter in this
test is rather large, it may be concluded that diffusive extinction may be expected for all accessible initial
droplet diameters in this atmosphere. This behavior is consistent with that found at 1.00 bar 35% oxygen;
reduction of the total pressure by a factor of two is more than offset by the 5% increase in oxygen
concentration of the atmosphere.

Results at 0.50 Bar, 35% Oxygen

Four tests were obtained in this atmosphere, as seen in Figs. 7 and A7. As indicated in Table 1, a
wide range of initial droplet diameters was explored, although the droplet view was unavailable for the
smallest droplet. The droplet-view traces in this atmosphere, as well as in 40% oxygen, are more irregular
than in other atmospheres. A tendency towards this kind of “noisy” behavior also was found in 35 and
32% oxygen at 1.00 bar and is caused by soot particles interfering with the droplet-diameter data
reduction. Sooting was less intense in lower-oxygen environments and did not degrade droplet-diameter
data in any of the helium-oxygen atmospheres at 30% oxygen and below. The irregularity in the 0.50 bar
35% oxygen tests prevented possible curvatures in diameter-square plots from being detected, and such
curvatures did not occur at 30% and below, thus demonstrating that at a given oxygen concentration the
curvature effects are noticeably less at the lower pressures. In fact, at lower pressure and lower oxygen,
small curvature begins to occur in the opposite direction, consistent with what has been predicted and
observed in air in drop-tower tests with smaller droplets.

For the two largest droplets in this atmosphere, both the flame and the droplet drifted out of the
field of view after about 3 to 5 seconds. It is, therefore, not possible to determine from the data whether
these flames would experience radiative or diffusive extinction. Figure 1 demonstrated that at 1.00 bar for
this oxygen concentration all droplets experienced diffusive extinction. The present data at 0.50 bar
clearly demonstrates diffusive extinction for the two smaller droplets, and comparison of the results for
test 26 with those for tests 2 and 3 reveals that the 2.1 mm droplet at 0.50 bar exhibits burning-time and
flame-diameter behavior intermediate between those of the 1.9 and 2.9 mm droplets at 1.00 bar. Burning-
rate constants in Table 1 for 0.50 bar at this oxygen content are less than those for 1.00 bar, but there is no
clear indication of any qualitative differences in behavior. Thus, it seems quite possible that all of the
droplets burned in this atmosphere at 0.50 bar would experience diffusive extinction, just as they did at
1.00 bar, even though the drift of the two larger droplets prevents drawing a definite conclusion. The
influence of pressure on the droplet-combustion behavior thus appears to be weak.

Results at 0.50 Bar, 30% Oxygen

The four tests at 0.50 bar in 30% oxygen, shown in Figs. 8 and A8, span a narrower range of
initial droplet diameters. The range nevertheless appears to be sufficient for demonstrating the different
types of combustion behavior that occur in this atmosphere—the largest droplet is seen to experience
radiant extinction, while the two smallest droplets exhibit diffusive extinction. Consequently, the
boundary between radiant and diffusive extinction in this atmosphere must occur at an initial droplet
diameter between 2 and 4 mm, which is comparable with what was found at 1.00 bar with this same
oxygen concentration. Comparison of Figs. 3 and 8 reveals that, aside from the smaller burning-rate
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constants at the lower pressure, the principal difference is that, for a given initial droplet diameter, flame
extinction occurs sooner at the lower pressure. This is consistent with a decrease in chemical reaction
rates with decreasing pressure. Despite this pressure effect on the burning time, the data are insufficient to
establish any clear pressure dependence of the boundary between radiant and diffusive extinction.

The data, as a whole, do reveal systematic dependences of burning-rate constants on conditions.
There are, however, some irregularities in the data, such as test 29, which showed an abnormally small
burning-rate constant. This may be due to failure to capture an appreciable portion of the history of this
test, for which the droplet and flame both soon leave the field of view. Irregularities such as this will be
excluded in later evaluations of burning rates, where attention will be limited to the data having the
greatest confidence.

Tests 30 and 31 suggest that diffusive extinction may occur before or after droplet disappearance,
as previously remarked in connection with results of tests 15 and 16.

Results at 0.50 Bar, 25% Oxygen

There was only one test in this, the most dilute atmosphere at 0.50 bar. As seen in Fig. 9,
however, it was a good test that clearly exhibited radiative extinction. Results of this test are best
compared with those of test 14, a similarly sized droplet at 1.00 bar. They both experienced radiant
extinction, and again, the extinction occurs somewhat earlier at the lower pressure. Another difference is
that the maximum flame diameter is somewhat larger at the lower pressure; this systematic effect can also
be seen by comparing corresponding tests in 30% oxygen for Figs. 3 and 8. Except for these quantitative
differences, however, the behaviors at 0.50 and 1.00 bar are quite similar.

Results for 0.25 Bar

Results of the 0.25-bar tests, listed in Table 1, are shown in Fig. 10. In 50% oxygen, only the
flame view was captured, and in Fig. 10 the flame diameter of this test is multiplied by a factor of two to
avoid confusion with the droplet-diameter curve of the other test; this multiplication was considered
unnecessary in the raw data of Fig. A10. The flame in this rich atmosphere exhibited diffusive extinction,
as expected, and appeared to burn somewhat longer than flames of similarly sized droplets in other
atmospheres, possible because of slower combustion at the lower pressure.

The droplet burned in 35% oxygen at this pressure exhibited radiative extinction. This is
noteworthy because no radiative extinctions were seen in 35% oxygen at higher pressures. It thus implies
that a pressure dependence of the boundary between radiative and diffusive extinction does exist, such
that the boundary moves to higher oxygen percentages at lower total pressures, as might be expected.
While the test implies the existence of this trend, data are insufficient for determining the pressure
dependence of the boundary.

DCE Results at 1.00 Bar in Air

Figure 11 shows results of the four DCE air tests. Corresponding FSDC tests are given in
Appendix B. The flames are much dimmer in this atmosphere than in the helium-oxygen atmospheres,
and this dimness led to inaccuracies in recording flame diameters, especially for the larger droplets and
for the two fiber-supported (tethered) droplets, giving rise to some irregularities seen in Figs. 11 and A11.
Along with the dimmer flames, less soot was evident in this atmosphere than in the helium-oxygen
atmospheres having oxygen concentrations of 30% or greater. Sooting behavior was discussed previously
for helium-oxygen atmospheres, and the general soot behavior for free droplets in air is similar to that in
helium-oxygen. Many soot particles are visible in the backlit droplet views of the air tests, the number
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being intermediate between that found in 25 and 30% oxygen in the helium-oxygen tests. A peculiarity of
the observed soot dynamics in the two tests of tethered droplets in air is that the soot moves towards the
fibers and thence towards the droplet, usually changing direction and retreating rapidly from the droplet
surface when very near that surface (probably in response to the higher fuel-vapor outward flow velocity
there), but occasionally apparently penetrating into the droplet. The motion towards the fiber and towards
the droplet could well be driven by thermophoretic forces. Ring-like vortices of soot thus tend to be
formed around the fiber.

One purpose of making measurements with both free and tethered droplets is to investigate the
possible influences of the tethering on the combustion behavior. Tests 35 and 36 serve this objective well
because their initial droplet diameters are very nearly identical. General agreement may be seen in that the
two droplet-diameter traces are nearly indistinguishable, and the two flame-diameter histories are roughly
similar; this supports the general usefulness of tethered-droplet experiments for drawing conclusions
about free-droplet combustion. There are, however, a number of differences in detail, beyond the soot
behavior, that are worth emphasizing.

First, as seen from the burning rates listed in Table 1, the tethered droplets have burning-rate
constants that are more than 10% larger. Preliminary calculations given in Appendix C suggest that this
may be due to additional heat input to the droplet by conduction along the fiber supports in the DCE tests.
Such heat input may also tend to generate bubbles of fuel vapor in the liquid during combustion. Bubbles
are not initially seen in the DCE tethered-droplet experiments but become evident several seconds into the
burn and appear to grow throughout the tests, escaping in the final frames. Since internal bubble growth
will decrease the measured rate of decrease of droplet diameter, the true burning-rate constants of the
tethered droplets, in so far as their mass-loss rates are concerned, may well exceed those of free droplets
by 20% or more. Interpretations of burning-rate measurements therefore need to consider possible
influences of bubbles in the liquid. Bubble formation could also influence curvatures in diameter-squared
plots, which are small in these experiments but tend to be in the same direction as those found in the
helium-oxygen atmospheres at the higher oxygen contents.

Second, combustion of the tethered droplets seems to exhibit events in which the flame diameter
increases abruptly in the middle of the burn. This behavior is evident in tests 35 and 37 in Figs. 11 and
A11 and is clear visually, where the increase is associated with apparent jets of flame that shoot across the
droplet field of view in a nonspherical manner. These have been suggested to result from soot-particle
combustion or from residual fuel leaking from needles but may also be due to release of fuel vapor from
the interior of the droplet, the vapor being formed by the heat input along the fiber supports. Although it
was not possible to correlate this behavior in time with observed changes in the liquid in the droplet view,
it is possible that such changes would be beyond the limit of detection. The tethered droplets thus exhibit
greater irregularities in combustion behavior that may be traced to influences of the fiber support.

Extinction events were less clear for the tethered droplets because of the dimness of the flame.
The dimness was so severe for the larger of the two tethered droplets that the flame could no longer be
detected after about 10 seconds of burning, even though it was clear from the droplet-diameter trace that
combustion was continuing. This effect is responsible for the end of the flame-diameter data for test 35 in
Figs. 11 and A11. The smaller free and fiber-supported droplets clearly exhibited diffusive extinction, but
because of the poor resolution and free-droplet drift, it was not possible to ascertain whether diffusive or
radiative extinction occurred for the two larger droplets in these experiments. For the two smaller
droplets, the droplet diameter at extinction was too small to be measured, possibly zero for the free
droplet, but the flame diameter at extinction could be determined for the free droplet and is given in
Table 1. Where entries are absent in Table 1, flame data are unavailable because of dimness, and droplet
data are unavailable because extinction times are unknown and bubbling associated with fiber interactions
causes data to be very irregular and unreliable. The FSDC experiments provide further information
relevant to these tests.
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FSDC Experiments

The FSDC experiment was designed to fit into the so-called “glovebox” facility in Spacelab. The
general characteristics and operation of the experiment have been described previously.’ Color cameras
for both a flame view and a droplet view were provided, both operating at 30 frames per second.
Backlight for the droplet view was supplied by a row of red light-emitting diodes (LED’s) which produce
good resolution of the droplet image. The blue flame, however, could not be detected by the flame-view
camera. This camera did, however, record glowing of the support fiber where the flame intersected the
fiber, and attempts were made to estimate the flame diameter from the location of the fiber glow. The
fiber glow typically revealed the initially increasing flame diameter, but the glow usually became
undetectable shortly after combustion began, being obscured by other lighting. It therefore was not
possible to obtain useable flame-diameter data for these heptane droplet tests in quiescent atmospheres,
and only droplet-diameter data are reported here. This flame-view difficulty was less severe for other
fuels and for heptane combustion in convective flow; FSDC data for other tests therefore provide flame
information.

Similar to the tethered DCE tests in air, the FSDC experiments involve deploying the droplet onto
the fiber from two opposed needles and employ hot-wire ignition in Spacelab cabin air. Unlike the
automated DCE sequencing, however, the deployment and needle retraction are accomplished manually
in FSDC by the operator in Spacelab, and by then pressing an ignition button the operator causes a single
hot-wire loop (not two as in DCE) to move to a predetermined ignition position and to be energized
electrically; after ignition is visually ascertained, the operator releases the ignition button, causing the hot-
wire to retract and deenergize. The tethering fiber was a Nicalon ceramic fiber wire 80 pm in diameter for
FSDC, in contrast to the Textron SCS-9A silicon-carbide fiber (also 80 microns in diameter) employed in
DCE. The Nicalon wire, which is made by Dow Corning, is composed of 58% silicon, 31% carbon, and
11% oxygen; further properties of the wires are discussed in Appendix C. In the FSDC experiments on
STS-73 the droplets were often observed to move along the fiber during burning. To eliminate this
motion, in the STS-94 flight of FSDC analyzed here, the fiber was provided with a ceramic epoxy bead,
390 um high and 670 pm wide, located at the center of the deployment and designed to anchor the droplet
at the desired position. The bead also was important for tests with forced convection to fix the droplet
location, and a number of experiments with two droplets burning simultaneously were performed,
requiring multiple beads on the fiber. The FSDC and DCE experiments in air thus differed by the
presence of the bead in the former.

To analyze the FSDC images, an AOI was defined at the top and bottom of the droplet (the left
and right sides contained the fiber). Thresholding, as described for the DCE tests, was used. To clarify the
images an AOI was defined to encompass the entire droplet, then an adaptive contrast stretching
histogram was performed, followed by a Sobel edge detection and an extraction of the red LED color
plane. The area AOI was not used for a diameter measurement with the FSDC data because the wire
added extra measured area that was not part of the droplet. The reported diameters, therefore, are not
averages of several diameter measurements, as in DCE, but instead are the single diameter measured
orthogonal to the wire. Previously® the formula (d’d )m was used for the diameter estimate, where d, is the
diameter transverse (orthogonal) to the fiber and d is the diameter parallel to the fiber; in the present
paper d was not recorded because of uncertainty in the measurements. From estimates based on previous’
and present data, the diameter reported here may therefore be smaller, on the average, by about 10 to
15%, depending on the initial droplet diameter. The difference in the transverse and parallel diameters
increases as the droplet volume decreases, and the ratio of the diameters approaches that of the bead.

Because of the bead and the manual deployment, it was more convenient to work with larger
droplets in FSDC than in DCE. Droplet diameters ranged from about 3 to over 6 mm, in contrast to the
1 to 4 mm range of DCE. Initial droplet diameters in the range of 3 to 4 mm, thus, were investigated in
both experiments. For heptane droplets in quiescent atmospheres, fifteen FSDC runs were completed and
are analyzed here, as reported in the following section. The general characteristics of the combustion
resembled those of the two tethered DCE runs in air; for example, both exhibited initially pure liquid
droplets that developed bubbles shortly after ignition, as discussed previously. The bubbling was more
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severe in FSDC than in DCE, possibly because of the presence of the bead, and the bubbling is
responsible for irregularities in recorded droplet-diameter histories. It may be worth remarking that
heptane droplets exhibited more severe bubbling than any other FSDC tests. This may be attributable to
the higher flame temperature (leading to greater rates of energy input, for example through absorption of
radiation by the bead) and lower boiling point of heptane, the greater volatility of the liquid favoring
bubbling. The bubbling usually caused the droplet to dance about the bead for a portion of the combustion
history, oscillating irregularly in position until the bead occupied a significant part of the spherical
volume. Bubble bursting was not observed, possibly because of the low burning rate or, perhaps more
likely, because of vapor escape from the interior along the fiber. Even though bursting was not observed,
most tests show a sudden change in diameter due to bubble dynamics. This change generally occurs near
the end of the test when the bubble occupies most of the droplet volume. In test 53, however, a bubble
forms early, grows rapidly, and causes a change in diameter less than half-way through the test, at about
2.5 seconds; then, another bubble forms (or perhaps some of the vapor from the first bubble remains),
grows, and causes a second change in diameter about 5 seconds into the test. Another similarity of the
FSDC and tethered DCE tests is the presence of flame jets visible in some, but not all, of the droplet
views. Soot particles could be seen with the backlight, moving in a vortex-like motion as previously
described. Sometimes they were deposited on the fiber, and, on occasion in its dancing motion along the
fiber, the droplet captured a deposited soot particle and carried it away.

Results of FSDC tests

The results of the FSDC tests that were analyzed are shown as raw data in Appendix B. At the
end of Appendix B is a graph containing all the FSDC tests analyzed for this paper; this graph shows the
similarities in droplet history (and, hence, burning rate) in different tests, indicating the repeatability of
results. Table 2 summarizes the numerical results along with the corresponding DCE results for air.

To aid comparisons with the DCE data, the FSDC droplet traces in Appendix B start at the
approximate time of ignition. Ignition is always strongly visible in the flame view, but the GMT in these
experiments was accurate only to 1 second; consequently, ignition in the droplet view is based on the
visual evidence in that view. To gauge accuracy, the number of frames between deployment and ignition
of several tests was counted in both views. Start times were found to agree within 0.2 seconds or less in
the two views.

The traces in Appendix B all show fairly linear diameter-squared plots. In most cases this
behavior continues to a very small diameter, not much different from the bead diameter. This type of
behavior is consistent with diffusive extinction but is not consistent with radiative extinction, which
occurs with larger final droplet diameters and causes the evaporation rate to decrease, as indicated earlier.
Tests 39, 40, and 42 have traces that end at large droplet diameters, which seem to indicate radiative
extinction. There is no indication of extinction at the time the traces end, however; tracking was unable to
continue because of dimness similar to that suffered in the flame views of the DCE air tests.
Consequently, it may be concluded that radiative extinction did not occur in the FSDC tests with heptane.
Since initial droplet diameters in these tests were as large as 6 mm, larger than the initial diameters in any
of the DCE tests in air, it seems unlikely that radiative extinction could have occurred in any of the air
tests in DCE. The tethered droplets have an additional heat input resulting in higher burning rates and,
possibly, additional fuel vaporization. It is conceivable that large free droplets in air could experience
radiative extinction, while the additional vaporization in the tethered experiments delays extinction. The
experiments that have been performed in these flights, however, do not establish the occurrence of
radiative extinction in air; they only establish a limit on the droplet diameter, on the order of 2 mm for
free droplets and 6 mm for FSDC tethered droplets, below which the extinction is definitely diffusive.

It is of interest to compare results of different types of tests in air for droplets of approximately
the same initial diameter. Tests 35, 36, and 52 are of particular note in this respect, since they all have
similar initial droplet diameters and encompass the three types of air tests—untethered DCE, tethered
DCE and FSDC. The burning-rate constant is higher for FSDC, and the DCE tethered test has a larger
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burning-rate constant than the untethered one. The increase in the burning-rate constant for FSDC may be
due to the bead on the fiber, which artificially inflates the droplet diameter, or it could be within the
normal variation from test to test. A comparison of burning-rate trends suggests the latter since test 52 is
at the upper limit of normal variation and test 35 is at the lower limit. The bead therefore may not affect
the burning rate appreciably more than the presence of the fiber seems to increases the burning rate.

The burning-rate summary in Table 2 includes all tests in air. It is seen from this summary that
average burning rates tend to be somewhat smaller (10 to 20%) for large droplets (possibly because of
greater radiant energy loss) and somewhat smaller (again 10 to 20%) for free droplets, as opposed to
tethered droplets, possibly because of added heat input to the liquid along the fiber. The results also show
small but measurable curvatures in diameter-squared plots, as may be seen by comparing initial and final
burning-rate constants. Differences tend to be on the order of 20%, less than found in the helium-oxygen
mixtures of low dilution but usually in the same direction, that is, higher burning-rate constants initially.
There is little difference between free and tethered droplets in this respect, both possibly preferentially
accumulating species of lower volatility, but there is greater test-to-test variation in the tethered
experiments (one of which shows the lowest burning-rate constant initially) as a consequence of
variability associated with droplet-fiber interaction.

Extinction Diameters

Theories have been developed for calculating droplet diameters at extinction, termed extinction
diameters. Different theories are based on different assumptions concerning chemical kinetics and droplet
combustion processes. Measurements of droplet diameters at extinction are useful for comparison with
theoretical predictions of extinction diameters. Table 1 lists all of the data obtained on droplet extinction
diameters. Some of this data is plotted in Fig. 12 to illustrate trends.

When diffusive extinction occurs, droplet diameters at extinction are very small, usually too small
to be measured and quite possibly often zero. There are seven entries in Table 1 in which droplet
diameters at extinction are too small to be measured, that is, less than a limit of resolution between about
0.05 and 0.5 mm, depending on the experiment. Only three entries in Table 1 report measurable droplet
extinction diameters for diffusive extinction. On the other hand, for radiative extinction, the droplet
extinction diameters are much more readily determined. Excluding the tests in 20% oxygen for the
reasons discussed previously, four droplet diameters at extinction are reported in Table 1, all of which are
also plotted in Fig. 12.

From the data in Fig. 12 for 1.00 bar and 25% oxygen, through which the curve is drawn, it is
seen that in this atmosphere the droplet extinction diameter increases with increasing initial droplet
diameter. This trend is consistent with theoretical estimates for radiative extinction. For diffusive
extinction with the flame in the quasisteady region, if the liquid fuel remains pure then the droplet
diameter at extinction theoretically is independent of the initial droplet diameter;’ the available data are
insufficient to test this prediction. Although no significant functional dependencies for diffusive
extinction could be measured, trends were obtained for radiative extinction. The point at 1.00 bar and
30% oxygen in Fig. 12 suggests a decrease in the droplet radiative extinction diameter with increasing
oxygen concentration at a given pressure and initial droplet diameter, while that at 0.50 bar and 25%
oxygen indicates an increase in the droplet radiative extinction diameter with decreasing pressure at a
given oxygen mole fraction and initial droplet diameter. Both of these trends are expected from the
dependence of the reaction rate on pressure and oxygen concentration.

In contrast to droplet diameters at extinction, substantial data were acquired on flame diameters at
extinction in helium-oxygen atmospheres. Indications are that flames always extinguish at flame
diameters large enough to be measured. Since fewer theoretical predictions have been made of these
flame extinction diameters (final flame diameters), additional theoretical work may be pursued for
making comparisons with the present experimental results, which are listed in Table 1 and partially
plotted in Fig. 13.

NASA/TM—2003-212553 13



The solid curves in Fig. 13 correspond to 1.00 bar and the dashed curves to 0.50 bar; these are the
pressures at which most of the data were obtained. From the three solid curves it is evident that, in
general, the final flame diameter increases as the oxygen mole fraction decreases—a behavior expected
from the dependence of the chemical reaction rate on the oxygen concentration. The solid curves show
that the final flame diameter also tends to increase with increasing initial droplet diameter. The rate of this
last increase is greatest in the middle of the region of radiant extinction, as theory suggests, but the
increase also occurs for diffusive extinction, as the curve for 1.00 bar and 35% oxygen demonstrates
(since in this atmosphere all extinctions were diffusive). Classical totally quasisteady theory would give
extinction flame diameters independent of initial droplet diameters, contrary to the experimental results in
35% oxygen. The flame therefore cannot be entirely quasisteady at extinction; it must be at least partially
in the outer non-quasisteady zone. At sufficiently small initial droplet diameters the final flame diameter
is independent of the initial droplet diameter, within experimental uncertainty, suggesting that quasisteady
conditions may be approached at these small sizes. It is of interest that the results for the solid curve at
25% oxygen show a tendency for the final flame diameter to become independent of the initial droplet
diameter at large initial droplet diameters as well, giving rise to an inflection in the curve; this may be a
consequence of approaching a radiation-dominated ignition limit for these large droplets in this highly
diluted atmosphere. Such inflections may occur in other atmospheres as well, although there are
insufficient data to demonstrate it, and their characteristics may depend on finer details of the method of
ignition, so that it is difficult to speculate on how these curves may behave at larger initial droplet
diameters. At the smallest initial droplet diameters, it is somewhat surprising how closely the curves
approach each other, the differences in final flame diameters in 30 and 35% oxygen being less than
experimental variability; further study of the chemical kinetics of diffusive flame extinction would be
needed to investigate this phenomenon.

Comparison of the solid and dashed curves in Fig. 13 reveals the influence of pressure on the
final flame diameter. The general behaviors at the two pressures are quite similar for both 30 and 35%
oxygen, and the point in Fig. 13 at 0.50 bar and 25% oxygen (test 32) is at least consistent with the
qualitative behaviors being the same at this mole fraction as well. The final diameters at the lower
pressure are, however, larger, as may be expected from the lower reaction rates. Just as the effect of
oxygen concentration is relatively small for diffusive extinction and becomes much larger as radiative
extinction begins (at increasing initial droplet diameter), so the pressure effect is comparatively small for
diffusive extinction. The small final flame diameter in Table 1 at 0.50 bar and 40% oxygen (test 23)
suggests that there is a definite dependence on oxygen mole fraction for diffusive extinction. Not plotted
in Fig. 13 are the two data points in Table 1 for 0.25 bar (tests 33 and 34); these data (one for diffusive
extinction and one radiative) are consistent with the same general behavior extending to this lower
pressure as well. A fairly coherent picture of the characteristics of the flame diameter at extinction, as
exemplified most clearly by the solid curves in Fig. 13, emerges from these results. Quantitative
explanations await future theoretical investigations.

It is of interest to exhibit graphically the boundary between radiative and diffusive extinction, in a
plane of oxygen mole fraction and initial droplet diameter for different pressures, as determined by these
experiments. Figure 14 is such a plot, with the open symbols corresponding to observations of diffusive
extinction and the closed symbols corresponding to radiative extinction. Figure 14 shows that, although
there is considerable uncertainty about exactly where the boundary lies, the general direction and
curvature of the boundary between the two regimes seems well defined. The error bars indicate the range
of uncertainty of the boundary location at 1.00 bar; data are insufficient to distinguish differences in
boundary locations at 1.00 and 0.50 bar.

Burning Rates

A summary graph of burning-rate constants as functions of initial droplet diameter is shown as
Fig. 15, based on the data given in Tables 1 and 2. In this figure the solid curves pertain to helium-oxygen
atmospheres at 1.00 bar, the dashed curves to helium-oxygen atmospheres at 0.50 bar and the dotted
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curves to air. The general trend of a decrease in the burning-rate constant with increasing initial droplet
diameter is evident in all of this data. Some specific data points, particularly the triangular points
representing 1.00 bar and 25% oxygen and the circles representing 0.50 bar and 35% oxygen, suggest the
existence of a minimum burning-rate constant at a particular initial droplet diameter, but in view of the
general trends of most of the data, it seem likely that these minima are only apparent and are the result of
run-to-run variability, although their existence cannot entirely be ruled out. The decreasing of the
burning-rate constant with increasing initial droplet diameter is consistent with previous work,’ where the
change was attributed to the formation of larger quantities of soot.

Figure 15 clearly shows that the burning-rate constant decreases with increasing dilution, as
expected. It seems noteworthy that the extent of this increase is much greater at 1.00 bar (solid curves)
than at 0.50 bar (dashed curves). At 0.50 bar the results for 35 and 30% oxygen are very close together,
and even the single point available at this pressure for 25% oxygen is quite close to these. Although there
would be greater confidence in the conclusion that the dilution effect is small at 0.50 bar if more data
were available at that pressure, there seems to be sufficient data to motivate seeking possible theoretical
reasons for the small effect. No theoretical explanation is immediately apparent.

The results in Fig. 15 for air clearly show the increase in the burning-rate constant caused by the
fiber support. The two untethered droplets definitely exhibited lower burning-rate constants, as remarked
previously. The burning-rate constants for air are substantially lower than those for helium-oxygen
mixtures because of the high thermal conductivity of helium.

Conclusion

The tests performed during MSL-1 led to the first documented radiant extinction in n-heptane
droplet combustion. The main DCE results pertain to combustion in helium-oxygen atmospheres with
ambient temperatures near room temperature. Tests performed at 1.00 bar showed that diffusive
extinction occurs for droplets smaller than 4.1 mm burning in a 35% oxygen environment with helium as
the inert. Diffusive extinction also occurs for droplets under 3.2 mm in a 30% environment and 1.7 mm in
25% oxygen. The 20% oxygen environment was shown to be unable to support the combustion of
droplets larger than 0.9 mm in initial diameter. At 1.00 bar radiant extinction was observed for droplets
over 3.9 mm in the 30% environment and 2.8 mm in the 25 and 20% environment. No tests at 35% in
1.00 bar exhibited radiant extinction (the largest droplet was 4.1 mm). For the 0.50-bar tests radiant
extinction was observed during two tests: 3.1 mm initial droplet diameter in a 30% oxygen environment
and 2.9 mm initial droplet diameter in the 25% oxygen environment. The 0.25-bar tests showed radiant
extinction at 35% oxygen with an initial droplet diameter of 2.6 mm and diffusive extinction at
50% oxygen with an initial droplet diameter of about 1.5 mm. These results can be viewed graphically in
Fig. 14 with an approximate radiant extinction limit drawn.

All of the droplets exhibited the classic linear decrease in time of the square of their diameter.
This behavior occurred independent of the more complex flame behavior. Flames were generally found to
grow and then shrink for tests that underwent diffusive extinction, and grow to a maximum diameter,
occasionally shrinking slightly, in cases of radiant extinction. Some exceptions were found to this flame
behavior, but all occurred during the 1.00 bar 20% oxygen tests, and they were assumed to result from
combustion of the accumulated vapors only. In several environments the graphs of the square of the
droplet diameter as a function of time exhibited a curvature wherein the burning-rate constant decreased
over time. The lower oxygen environments, as well as the lower pressures, did not exhibit this curvature.
The explanation of this phenomenon is still being explored.

Nonzero final flame diameters were measured in all tests that stayed within the view of the flame-
imaging camera. The final flame diameters appear to be dependent on initial droplet diameter, especially
in cases of radiative extinction. Additionally, several of these droplets (in the richer oxygen
environments) have immeasurably small to zero final droplet diameters, while in others the droplet still
exists when the flame extinguishes.
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Burning rate is seen to vary with initial droplet diameter, pressure, and oxygen content. The
burning-rate constant decreases with increasing initial droplet diameter. Additionally, the pressure and
oxygen percentage have the predicted effect on burning-rate constants—decreasing the pressure or
increasing the oxygen mole fraction increases the burning rate. More study of the influences of the initial
droplet diameter remains to be completed because the cause of the decrease is not well understood.

These results provide valuable data with which to compare current theories. They demonstrate the
usefulness of tethered tests for comparison with free-droplet behavior and show repeatability of results.
These results have raised new questions and have shown the need for more research in certain areas.
Further quantitative study of radiant extinction needs to be done, as does examination of final droplet and
flame diameters with diffusive extinction.
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Table 2: Summary of results for combustion in air

Burning-rate constant,
Test Initial diameter, Burn time, mm?/s
number mm S Initial ‘ Overall Final
FSDC
39 6.60 ? 0.60 0.50 @
40 5.82 58.80 0.65 0.53 | 0.50
41 5.71 3 0.46 0.51 é
42 5.47 @ 0.55 0.55 @
43 5.40 55.40 0.58 0.51 0.51
44 4.82 37.50 0.59 0.55| 0.36
45 4.65 39.50 0.54 0.56 | 0.48
46 4.60 36.70 0.72 0.56 | 0.50
47 4.41 32.80 0.66 054 | 045
48 4.31 32.00 0.66 0.54 | 047
49 3.58 18.20 0.72 0.7 0.50
50 3.58 19.40 0.81 0.68 | 0.50
51 3.34 18.50 0.78 0.62 | 047
52 3.10 11.50 0.80 0.77| 0.63
53 3.07 5.50 1.81 1.69| 0.86
DCE

35 3.10 18.00 | 0.57 0.56 | 0.44
36° 3.09 15.30 | 047 0.48 b
37 2.59 1150 | 0.89 0.68 | 0.51
38° 1.68 6.03 | 0.68 0.66 | 0.53

ddimness at the end of the test prevented measurement

®ot measurable due to drift out of the field of view

untethered (free) droplet
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Figure 1: Smoothed graphs of droplet diameter squared and flame diameter as a function of time
for an oxygen-helium environment at one bar and with a 35% mole fraction of oxygen.
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Figure 2: Smoothed graphs of droplet diameter squared and flame diameter as a function of time
for an oxygen-helium environment at one bar and with a 32% mole fraction of oxygen.
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Figure 3: Smoothed graphs of droplet diameter squared and flame diameter as a function of time
for an oxygen-helium environment at one bar and with a 30% mole fraction of oxygen.
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Figure 4: Smoothed graphs of droplet diameter squared and flame diameter as a function of time
for an oxygen-helium environment at one bar and with a 25% mole fraction of oxygen.
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Figure 5: Smoothed graphs of droplet diameter squared and flame diameter as a function of time
for an oxygen-helium environment at one bar and with a 20% mole fraction of oxygen.
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Figure 6: Smoothed graphs of droplet diameter squared and flame diameter as a function of time
for an oxygen-helium environment at one-half bar and with a 40% mole fraction of oxygen.
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Figure 7: Smoothed graphs of droplet diameter squared and flame diameter as a function of time
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Figure 8: Smoothed graphs of droplet diameter squared and flame diameter as a function of time
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for an oxygen-helium environment at one-half bar and with a 30% mole fraction of oxygen.
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Figure 9: Smoothed graphs of droplet diameter squared and flame diameter as a function of time
for an oxygen-helium environment at one-half bar and with a 25% mole fraction of oxygen.
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Figure 10: Smoothed graphs of droplet diameter squared and flame diameter as a function of time
for oxygen-helium environments at one-quarter bar and with 35% or 50% mole fraction of oxygen.
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Figure 11: Smoothed graphs of droplet diameter squared and flame diameter as a function of time
for an environment of cabin air at one bar.
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Figure 12: Droplet extinction diameter as a function of initial droplet diameter.
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Figure 13: Flame extinction diameter as a function of initial droplet diameter.
4.50
4 1.00 bar, Radiant extinction
< 1.00 bar, Diffusive extinction
4001 |mos0 bar, Radiant extinction ¢ o
0 0.50 bar, Diffusive extinction
3.50 A
T .
£ 3.00 - °
g n
7} o
<
£ 2.50 -
©
B
3 2.00 4
g °
S
°
£ 150 |
£
o
1.00 A
0.50 A
0.00 T T T T T T T T T T T T T T T
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Molar oxygen percentage

Figure 14: Proposed boundary between radiative and diffusive extinction in a plane of initial droplet
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Figure 15: Burning rate as a function of initial droplet diameter.
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Appendix A: DCE Data

This appendix presents the raw data for the DCE experiments. The numbering system is the same
as in the main text and is summarized in Table 1. The methods of data reduction are described in the main
text. Unlike Figs. 1 through 11 in the text, these graphs do not label the histories of droplets that drift
from the field of view.
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Figure A1: Graphs of droplet diameter squared and flame diameter as a function of time for
an oxygen-helium environment at one bar and with a 35% mole fraction of oxygen.
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Figure A2: Graphs of droplet diameter squared and flame diameter as a function of time for
an oxygen-helium environment at one bar and with a 32% mole fraction of oxygen.
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Figure A3: Graphs of droplet diameter squared and flame diameter as a function of time for
an oxygen-helium environment at one bar and with a 30% mole fraction of oxygen.
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Figure A4: Graphs of droplet diameter squared and flame diameter as a function of time for
an oxygen-helium environment at one bar and with a 25% mole fraction of oxygen.
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Figure A6: Graphs of droplet diameter squared and flame diameter as a function of time for
an oxygen-helium environment at one-half bar and with a 40% mole fraction of oxygen.
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Figure A7: Graphs of droplet diameter squared and flame diameter as a function of time for
an oxygen-helium environment at one-half bar and with a 35% mole fraction of oxygen.
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Figure A8: Graphs of droplet diameter squared and flame diameter as a function of time for

an oxygen-helium environment at one-half bar and with a 30% mole fraction of oxygen.
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Figure A9: Graphs of droplet diameter squared and flame diameter as a function of time for
an oxygen-helium environment at one-half bar and with a 25% mole fraction of oxygen.
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Figure A10: Graphs of droplet diameter squared and flame diameter as a function of time for
oxygen-helium environments at one-quarter bar and with 35% or 50% mole fraction of oxygen.
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an environment of Spacelab cabin air at one bar.
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Appendix B: FSDC Data

This appendix presents the raw data for the FSDC experiments. The numbering system is the

same as in the main text and is summarized in Table 2. The method of data reduction is described in the

main text. The final graph in this appendix contains all 15 FSDC tests involving heptane in quiescent air.
Graphs for three of the larger droplets end at appreciable droplet diameters because the lighting became

too dim to distinguish the edge of the droplet.
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Figure B1: Graph of droplet diameter squared as a function of time for FSDC test 39.
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Figure B2: Graph of droplet diameter squared as a function of time for FSDC test 40.

NASA/TM—2003-212553 35

70



35

*
* .
o CY 'S
" we_ ‘qose
30 ® TV A *,
Py 09, o o
*Pe 2%t s
* " * o *
< ¢ % » .« *
£ 251 0,0’ MR A
3 * LR " .
3 W wp o . *
© .
S 20 oo .:’\ s,
a % ‘0000’\ Sy s
= %" e 40 &
8 * OV
] *e “’Q’
E 15 > A
B o, °
9 "“0”“’0 .
o “
2 101
5 4
0 T T T T T T T T
0 5 10 15 20 25 30 35 40 45
Time (s)
Figure B3: Graph of droplet diameter squared as a function of time for FSDC test 41.
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Figure B4: Graph of droplet diameter squared as a function of time for FSDC test 42.
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Figure B6: Graph of droplet diameter squared as a function of time for FSDC test 44.
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Figure B7: Graph of droplet diameter squared as a function of time for FSDC test 45.
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Figure B8: Graph of droplet diameter squared as a function of time for FSDC test 46.
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Figure B9: Graph of droplet diameter squared as a function of time for FSDC test 47.
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Figure B10: Graph of droplet diameter squared as a function of time for FSDC test 48.
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Figure B11: Graph of droplet diameter squared as a function of time for FSDC test 49.
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Figure B12: Graph of droplet diameter squared as a function of time for FSDC test 50.
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Figure B14: Graph of droplet diameter squared as a function of time for FSDC test 52.
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Figure B15: Graph of droplet diameter squared as a function of time for FSDC test 53.
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Appendix C: Effects of Fiber Support

Fine fibers supported each droplet to hold it in place during all of the FSDC tests and during two
of the four DCE tests in air. Although the combustion is qualitatively the same in many respects with and
without the fiber support, there are quantitative influences of the fiber on the results. Quantitative
estimates of effects of fiber supports therefore are relevant to interpretation of the data. The purpose of
this appendix is to review the effects of the fibers and to provide quantitative estimates.

A droplet on a fiber is not exactly spherical but instead is elongated in the direction of the fiber
axis. The extent of this elongation has been measured and taken into account in data reduction,” and
successful theoretical descriptions have been developed.”'” As has been indicated in the text, some
bubbling was observed in the liquid for fiber-supported droplets, which is not present for free droplets;
influences of the bubbling have been indicated previously and therefore are not discussed here. Possible
influences of the fiber on soot behavior, including promotion of migration of soot into the liquid, also
have been discussed previously. Finally, where the flame intersects the fiber support, there is a small
quench region around the fiber, and heat transfer occurs from the flame across this region and along the
fiber by conduction. Quantitative estimates of possible influences of this heat transfer on the burning rate
are worthwhile, especially since Fig. 15 shows that burning-rate constants are about 10% larger for fiber-
supported DCE droplets than for free DCE droplet and about 20% higher for FSDC droplets. These
estimates require information on the thermal and heat-transfer properties of the wires and, for the FSDC
experiments, on those of the beads that hold the droplet in position along the wire.

To gauge the effects of heat conduction by the fiber support on the droplet burning rate a
comparison was made between the approximate amount of heat conducted along the wire and the
approximate amount of heat required for vaporization of the liquid fuel. For both of these calculations an
approximate droplet or flame diameter was needed. On the basis of DCE observations, estimates were
made mainly for an average case of a droplet diameter of 3 mm and a flame diameter of about 30 mm. In
view of the heptane latent heat of vaporization of 76 cal/g and liquid density of 0.7 g/cm’, the observed
burning-rates constants between 0.5 and 0.8 mm’/s provide a range of required heat-absorption rates for
these droplets between about 0.1 and 0.3 W. Estimated rates of heat input to the liquid from fiber supports
are to be compared with this total heat-rate requirement.

To calculate the rate of heat conduction along the fiber, the wire diameter and thermal
conductivity of the wire must be known. Specifications of the DCE and FSDC wires were given in the
FSDC section. They both are about 80 microns in diameter, but their compositions and suppliers differ.
The wires are made from the elements carbon, silicon and oxygen in different proportions. Phase
diagrams of this three-component system are helpful in ascertaining differences.""” The FSDC wires were
of spatially uniform composition with a significant oxygen content, but the DCE wires were constructed
by vapor deposition of silicon carbide on a fine carbon filament, with a slightly enriched carbon content
deposited at the external surface. The thermal conductivities of materials composed of the three-
component system depend not only on the elemental composition but also on the grain structure and types
of materials processing and wire construction. Although it might be supposed that variation in thermal
conductivities with these parameters would not be large, in fact values can range from about 0.4 to almost
500 W/m K, a variation of more than three orders of magnitude. In addition, changes in conductivities
with temperature may be large, exceeding an order of magnitude when temperatures vary from 300 to
1500 K, and the conductivities may increase or decrease with temperature for different materials.

The Nicalon wire of FSDC is reported to have a room-temperature thermal conductivity of
1.4 W/m K, " but data are unavailable on its temperature dependence. The Textron fiber used in DCE, on
the other hand, is more nearly a pure silicon carbide, whose thermal conductivity is reported” to vary
from 490 W/m K at 300 K to around 6 W/m K at 2300 K. A five-term fit to the silicon carbide
conductivity data" was employed to calculate the heat flow rate into the droplet from the flame for the
DCE tests, assuming the wire temperature at the flame position to lie between 1000 and 2000 K; values
ranging from 2x107 to 4x10” W were obtained. The conclusion that can be drawn from these estimates is
that heat conduction along the fiber could well provide the 10% increase in burning rate observed for
DCE.
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If the reported room-temperature thermal conductivity of the Nicalon wire is employed, then the
rate of heat conduction to the droplet along the wire is estimated to be only about 3x10~ W for the FSDC
tests, which is entirely negligible. To explain the experimentally observed higher burning rate for FSDC
on the basis of heat conduction along the wire alone, an average conductivity between 100 and 200 W/m
K is needed, twice that of the Textron and about two orders of magnitude greater than the reported room-
temperature value. Although, in view of current uncertainties, it is quite possible that the thermal
conductance of the Nicalon wire increases rapidly with temperature and is large enough, on the average,
to explain the observed FSDC burning-rate increases of about 20%, it is also relevant to seek other
possible reasons for the higher burning rates and greater bubbling observed for FSDC. A possible
explanation lies in radiative heat transfer to the bead on the FSDC wire. The bead was a porous material
with an irregular surface that through multiple reflections could be an efficient absorber of radiant energy
and generator of bubble nucleation sites. Radiant energy transfer estimates'® indicate that sufficient
energy may be absorbed by the bead to increase the burning rate by perhaps 10%. These estimates,
however, are not entirely conclusive, and in view of current uncertainties concerning thermal
conductivities, the exact cause of the increased burning rate remains to be determined.
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