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Abstract 
An agglomeration multigrid scheme has been 
implemented into the sequential version of the NASA 
code USM3Dns, tetrahedral cell-centered finite 
volume Eulermavier-Stokes flow solver. Efficiency 
and robustness of the multigrid-enhanced flow solver 
have been assessed for three configurations assuming 
an inviscid flow and one configuration assuming a 
viscous fully turbulent flow. The inviscid studies 
include a transonic flow over the ONERA M6 wing 
and a generic business jet with flow-through nacelles 
and a low subsonic flow over a high-lift trapezoidal 
wing. The viscous case includes a fully turbulent 
flow over the RAE 2822 rectangular wing. The 
multigrid solutions converged with 12%-33% of the 
Central Processing Unit (CPU) time required by the 
solutions obtained without multigrid. For all of the 
inviscid cases, multigrid in conjunction with an 
explicit time-stepping scheme performed the best 
with regard to the run time memory and CPU time 
requirements. However, for the viscous case 
multigrid had to be used with an implicit backward 
Euler time-stepping scheme that increased the run 
time memory requirement by 22% as compared to the 
run made without multigrid. 

Introduction 
Unstructured-grid (USG) methodology has emerged 
as a mature computational fluid dynamics (CFD) tool 
for rapid aerodynamics analysis and design of 
complex configurations. It offers a substantially 
reduced turnaround time for CFD solutions due 
primarily to the ease and speed at which unstructured 
grids can be generated. Key components of the USG 
methodology have been consolidated into a flow 
analysis tool called the NASA Tetrahedral 
Unstructured Software System (TetrUSS). The 

TetrUSS system [ l ]  is a loosely integrated, user- 
friendly software that comprises of a geometry setup 
tool GridTool [2], a tetrahedral grid generator 
VGRIDns [3,4], and a flow solver USM3Dns [5,6]. 

Traditional tlow solvers based on a single grid tend to 
suffer from a degradation of the asymptotic 
convergence rate as the mesh is relined. The 
relaxation schemes in these flow solvers efficiently 
eliminate high frequency error modes but fail to 
reduce low frequency errors that hamper the flow 
convergence [7]. This difficulty can be circumvented 
by multigrid methodology [8]. In this method a 
sequence of meshes is employed such that a smooth 
error on a fine mesh appears as a high frequency 
error on a coarser mesh, where it can be efficiently 
reduced by a relaxation scheme. Multigrid methods 
have been successfully utilized by several structured 
grid Euler/Navier-Stokes solvers where a sequence of 
optimized coarser meshes can be readily generated 
from a base fine grid. In the past decade, various 
multigrid strategies [9-131 have also been 
successfully demonstrated for the unstructured grid 
flow solvers. These strategies include overset grids 
[9], where multiple coarser grids are separately 
constructed, and agglomerated grids [ 10-1 31, where 
coarser grids are constructed by coalescing 
neighboring fine grid cells. A primary benefit of an 
agglomeration multigrid method is that it spares a 
user the effort of manually generating multiple 
coarser grids, which may not even be feasible for 
complex geometries. Most of the multigrid 
implementations involving unstructured grids are 
based on node-centered schemes with a few 
exceptions [ I  1 j .  Current work seeks to evaluate 
benefits of' multigrid technique in a cell-centered flow 
code and to add to a relatively sparse body of 
literature in this arena. 
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Methodology 

implemented in an unstructured grid based flow code 
USM3Dns. USM3Dns is a tetrahedral cell-centered, 
finite volume Euler and Navier-Stokes flow solver. 
Each tetrahedron forms the elemental control volume 
for the spatial discretization. Inviscid flux quantities 
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are computed across each cell face using Roe’s flux- 
difference splitting [ 141. Spatial discretization is 
accomplished by a novel reconstruction process [ 151 
which is based on an analytical formulation for 
computing solution gradients within tetrahedral cells. 
The solution is advanced to a steady state by an 
implicit backward Euler time-stepping scheme [ 161. 
Flow turbulence effects are modeled by either the one 
equation model of Spalart-Allmaras (S-A) [17], or 
one of the recently implemented [IS] two equation 
models of k-E and Menter’s Shear Stress Transport 
(SST). The S-A model can be optionally coupled 
with a wall function boundary condition to reduce the 
number of cells in the sublayer region of the 
boundary layer. 

The coarse grids are constructed in two steps by 
volume agglomeration. In the first step, all the fine 
grid cells attached to the body surface or a far-field 
boundary are identified and merged with its 
neighboring (only those cells are eligible that are not 
already assigned to a previous coarser cell) cells to 
form a new coarser cell. After all of these prioritized 
boundary cells are assigned to a coarser cell, an 
unassigned fine grid cell on the agglomeration front 
is picked in a random order and merged with its 
eligible neighbors to form a new coarser cell. The 
schematic view of this procedure is outlined in sketch 
(a) below where a seed cell (the first cell assigned to 
a newly defined coarse cell) is shown with thick lines 
and its unassigned neighbors are shown with thinner 
lines. The procedure is repeated until all the fine grid 
cells are assigned to a coarser parent cell. In the 
second step, a set of fine grid faces at the interface of 
a given pair of coarser cells is used to render a single 
resultant face [19]. This step reduces the number of 
faces in a coarse grid that has a direct bearing on the 
computational efficiency of the agglomeration 
multigrid technique. 

sketch (a) sketch (b) 

Two variants of the agglomeration strategy illustrated 
previously in the step 1 are also available. In the first 
alternative which may be best suited for an isotropic 

grid associated with inviscid solutions, neighboring 
cells surrounding all the vertices of the seed cell are 
agglomerated as shown in sketch (b). In sketch (b), 
the additional neighbors (compared to the neighbors 
shown in sketch (a)), are shown with the dashed 
lines. The second alternative for the agglomeration 
procedure is illustrated in sketch (c), which may be 
the most suitable method for highly stretched cells 
inherent in a boundary layer grid corresponding to 
the viscous solutions. In this procedure, a coarse cell 
is formed by a sequential directional-coarsening, 
where a cell coarsening in the body-normal direction 
(that generates prisms for the tetrahedral grid) is 
followed by a coarsening in the lateral (stream- and 
span-wise) directions (that agglomerates the 
neighboring prisms). A preliminary evaluation of all 
the three strategies has revealed that the strategy 
illustrated in sketch (a) is more robust and therefore it 
has been chosen for all the results presented in the 
later section. 

The coarse grid generation process is embedded 
within the flow solver itself. The generation of 
multiple coarser grids requires a trivial amount of 
CPU time. 

The equations on coarse grids are discretized using 
the techniques similar to that used for the finest 
tetrahedral grid. One notable difference is that coarse 
grid inviscid flux calculation procedure is first order 
accurate. Also, the turbulence model equations are 
not solved on the coarser grids. The turbulence 
effects on the coarse grids are derived from the finest 
grid values. The multigrid solution is advanced in 
time by either a three stage Runge-Kutta scheme or 
an implicit backward Euler time marching scheme. 
Local time stepping is employed for all grids. The 
flow solution is transferred from a fine grid to a 
coarser grid by a volume-weighted averaging 
whereas the prolongation of correction from a coarse 
grid to a finer grid is based on a simple injection. The 
restriction of the residuals to a coarser grid is 
accomplished by summation of the residuals of fine 
grid cells that define a coarser cell. One relaxation 
sweep is performed at every grid level to smooth the 
high frequency error components. The relaxation 
step is followed by a coarse grid correction to 
efficiently reduce the low frequency errors. The 
corrections generated by a coarse grid are smoothed 
before transferring them to a finer grid. Typically, 
one (V-cycle) or two (W-cycle) multigrid cycles are 
performed for the coarse grid correction. 

. 
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Results 
The tetrahedral unstructured grids around the 
following test configurations have been generated 
using the grid generator VGRIDns. For the multigrid 
runs, the tetrahedral grid serves as the finest grid 
from which all coarser grids are generated using the 
volume agglomeration technique described earlier. 
Therefore, the tetrahedral grid will be referred to as 
the baseline grid in the discussion below. For all the 
test cases, flow fields have been computed using the 
solver USM3Dns. The non-multigrid solutions 
corresponding to a single baseline grid will be 
referred to as the baseline solutions hereafter. 

Inviscid Cases 

The inviscid multigrid implementation has been 
tested on three different configurations, namely, the 
ONERA M6 wing, a generic business jet with flow- 
through nacelles, and a high-lift trapezoidal wing. For 
all the test cases, flow fields have been computed 
based on both, an explicit and an implicit time 
marching schemes with and without multigrid. 
However, for all the cases the multigrid solution that 
used an explicit scheme outperformed the one that 
used an implicit scheme, with respect to CPU time as 
well as runtime memory. Therefore, the multigrid 
solution based on an implicit scheme will not be 
shown elaborately. 

ONERA M6 Wing 

The baseline grid for this case consists of 346,939 
tetrahedral cells and 702,589 triangular faces. The 
computational boundary is discretized with 17,422 
triangular faces. Based on this underlying grid, four 
coarser grids have been generated consisting of 
123,933, 35,746, 7,470 and 1,265 polyhedral cells, 
respectively, yielding a cell-based average coarsening 
ratio of 4.1. The coarser grids consist of 406,356, 
189,291, 52,158 and 9,955 polygonal faces, 
respectively. A view of the baseline and four coarser 
grids on the wing surface has been presented in the 

Figure 2 that shows the number of coarse grid cells 
that comprises of a certain number of constituent 
finer grid cells of the preceding level. 

Figure !. .A. histogmE h3s ! x e E  p:esen:ed in t!!e 

The flow field around the present configuration has 
k e n  computed cnnsidering 2 free streim Mzch 
number of 0.84 and an angle-of-attack of 3.06'. 
Multigrid solutions have been generated based on 
five (baseline and four coarse) grids described 
previously, using both, V- and W-cycle. Convergence 
history of the flow residue, the lift coefficient and the 
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drag coeflicient corresponding to thc V- and W-cycle 
multigrid explicit solutions and the bascline explicit 
solution has been displayed in the Figure 3. Although 
not shown in the figure, V- and W-cycle multigrid 
implicit and baseline implicit solutions have also 
been obtained for this case. The convergence 
characteristics of various solution techniques have 
been summarized in the Table I that describes the 
CPU time required to drive the l i l t  cwflicient to three 
diflerent levels of tolerancc. The run time memory 
and the CPU time per iteration needed for various 
methods of solution are listed in the Table 2. 

The W-cycle multigrid explicit run has been found to 
be the most competitive of all the multigrid runs. The 
W-cycle multigrid explicit scheme yielded the 
converged solution more than ten times fastcr as 
compared to the baseline explicit scheme and about 
four to six times faster as compared to the baseline 
implicit solution. Figure 4 presents il comparison of 
the surface pressure coefficients obtained using the 
W-cycle multigrid explicit and the baseline implicit 
methods at two span wise cross-sections of the wing. 
The multigrid solution is nearly identical to the 
baseline implicit solution, as expected. For thc 
subsequent cases, multigrid convergence 
characteristics will be demonstrated for the W-cycle 
only. 

Generic Business Jet 

The baseline grid for this case consists of 784,078 
tetrahedral cells and 1,585,006 triangular faces. The 
computational boundary is discretized with 33,700 
triangular faces. Based on this grid, four coarser grids 
have been generated consisting of 280,627, 79,868, 
16,692 and 2,870 polyhedral cells, respectively, 
yielding a cell-based average coarsening ratio of 4.1. 
The coarser grids consist of 919,074, 424,086, 
1 17,3 17 and 22,617 polygonal faces, respectively. 

A view of the baseline body surface grid is presented 
in the Figure 5. The flow field around this 
configuration has been computed for a free stream 
Mach number of 0.75 and an angle-of-attack of 3'. 
The W-cycle multigrid explicit solution has been 
obtained using the base grid and four coarser grids 
described previously. The surface Mach number 
contours for this solution have been shown in the 
Figure 5 .  Convergence of the flow residue, the lift 
coefficient and the drag coefticient corresponding to 
the W-cycle multigrid explicit, the baseline explicit 
and the baseline implicit methods has been 
demonstrated in the Figure 6. The multigrid solution 
rendered the converged lift- and drag coefficients 
more than fifteen times faster compared to the 
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baseline explicit solution and more than four times 
faster compared to the baseline implicit solution. 

Subsequently, an assessment of the effect of grid 
density on the multigrid convergence characteristics 
has been made. For this purpose, in addition to the 
grid used thus far, two more grids, namely, a coarser 
and a finer grid, have been generated. The grid used 
thus far has been designated as medium grid. The 
coarse grid has 150,362 tetrahedral cells whereas the 
fine grid has 1,204,476 tetrahedral cells. The 
computational boundary has been represented with 
1 1,706 triangular faces in the coarse grid and 48,430 
triangular faces in the line grid. Both of these grids 
have been used to obtain the W-cycle multigrid 
explicit and implicit solutions. For this purpose, lour 
agglomerated coarse grids have been generated from 
each of these two baseline grids. The baseline 
explicit and implicit solutions have also been 
generated for the two baseline grids. Convergence of 
the flow residue, the lift coefficient and the drag 
coefficient corresponding to the W-cycle multigrid 
explicit and the baseline explicit inviscid solutions 
obtained on three different grid densities has been 
shown in the Figure 7. A summary of the number of 
iterations and the CPU time required by various 
methods to obtain the lift coefficient within 0.1 % of 
its final value for coarse and fine base grid has been 
presented in the Table 3. Convergence of the 
multigrid solutions has been found to be much less 
dependent on the grid density as compared to that of 
the baseline solutions. 

Trapezoidal Wing 

This geometry represents a generic high-lift 
configuration with a leading-edge slat and a trailing- 
edge flap. The baseline grid for this case consists of 
862,670 tetrahedral cells and 1,757,46 1 triangular 
faces. The computational boundary is discretized 
with 64,242 triangular faces. Four coarser grids have 
been generated consisting of 307,879, 86,953, 17,888 
and 3,059 polyhedral cells, respectively, yielding a 
cell-based average coarsening ratio of 4.1. The 
coarser grids consist of 1,015,282, 459,568, 124,778 
and 24,044 polygonal faces, respectively. Thc 
baseline grid on the body surface has been presented 
in the Figure 8. 

The flow field around this configuration has been 
computed for a tiee stream Mach number of 0.2 and 
an angle-of-attack of 8'. The W-cycle multigrid 
explicit solution has been obtained using the baseline 
grid and four coarser grids described previously. The 
surface Mach number contours for this solution have 
been shown in the Figure 8. The solutions have also 

been computed using the baseline explicit and the 
baseline implicit methods. The baseline explicit 
solution failed to converge despite a lower Courant- 
Freidrich-Lewis (CFL) number and has been stopped 
after 3500 cycles. Convergence of the flow residue, 
the lift coefficient and the drag coefficient 
corresponding to the W-cycle multigrid explicit, the 
baseline explicit and the baseline implicit methods 
has been demonstrated in the Figure 9. The multigrid 
explicit solution converges about three times faster 
than the baseline implicit solution. However, for this 
case the convergence of the multigrid explicit 
technique has somewhat degraded. 

Viscous Case 

Efficacy of the present multigrid implementation for 
a viscous turbulent flow analysis has been assessed 
on one case, namely, RAE 2822 rectangular wing 
with a span of 20% of the chord. The baseline grid 
for this case consists of 86,314 tetrahedral cells and 
190,110 triangular faces. The computational 
boundary is discretized with 34,964 triangular faces. 
The grid consists of 23 points across the boundary 
layer at any location on the wing. The grid spacing in 
the normal direction at the wing surface is 4.2 x 10.'. 
Three coarser grids have been generated consisting of 
29,899, 9,462 and 2,369 polyhedral cells, 
respectively, yielding a cell-based average coarsening 
ratio of 3.3. A lower grid coarsening ratio for this 
case, as compared to the previous inviscid cases, is 
due to the fact that the grid coarsening in the span 
wise direction is constrained due to the close 
proximity of the end wall boundaries. Additionally, 
for the current case only three coarse grid levels have 
been used whereas all the previous cases have used 
four levels of coarse grid. It may be noted that for all 
the previous cases, the fourth coarse grid level has 
substantially contributed to the enhancement of the 
overall grid coarsening ratio. The coarser grids 
consist of 23,638, 13,663 and 5,375 polygonal faces, 
respectively. A close up view of the grid around the 
airfoil surface for the baseline, the first and the third 
level coarse grid has been presented in the Figure 10. 

. 

The flow field around the RAE 2322 wing has been 
computed for a free stream Mach number of 0.75, an 
angle-of-attack of 2.72' and a Reynolds number of 
6.2 x lo6. For the presently used baseline grid and 
Reynolds number, an average Y+ is 1 for the first 
layer of nodes above the wing surface. Turbulence 
effects on the tetrahedral grid have been modeled 
using the one-equation S-A model. 
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The multigrid solution based on the W-cycle failed to 
satisfactorily converge tor this case. Therefore, V- 
cycle has been used for the multigrid runs. 
Convergence of various solutions based on the V- 
cycle multigrid explicit, the V-cycle multigrid 
implicit, the baseline explicit and the baseline 
implicit methods has been summarized in the Table 
4. The runtime memory and the CPU time needed for 
each of the above solution methods has been 
documented in the Table 5. It is evident from the 
Table 4 that the solution based on an explicit scheme, 
either with or without multigrid, fails to offer a viable 
alternative to the solution based on an implicit 
scheme. Thcrefore, a comparison ofthe flow residue, 
the lift coefficient and the drag coefficient 
convergence, shown in the Figure 11, has been 
restricted to the V-cycle multigrid implicit and the 
baseline implicit methods. It is apparent from the 
Table 4 and the Figure 1 I that the multigrid solution 
as compared to the baseline solution converges faster 
by at least a factor of three. The surface pressure 
coefficients obtained using the V-cycle multigrid 
implicit and the baseline implicit methods as well as 
the measurements [20] have been compared in the 
Figure 12. It is evident from the figure that the 
multigrid solution is nearly identical to the baseline 
implicit solution and matches well with the 
measurements. 

Concluding Remarks 
Agglomeration-based multigrid scheme has been 
successfully implemented in the sequential version of 
the tetrahedral cell-centered flow solver USM3Dns. 
Assessment of the multigrid-enhanced code has been 
made using three inviscid flow cases and one viscous 
turbulent flow case. The inviscid results indicate that 
the W-cycle multigrid in conjunction with an explicit 
scheme significantly outperforms the baseline 
implicit method. The W-cycle multigrid explicit 
method has yielded a converged solution with less 
than 50% of the memory and 15%-33% of the CPU 
time required by the baseline implicit scheme. The 
baseline explicit scheme has performed poorly and 
cannot be considered as a viable solution method for 
complex configurations. For the solitary viscous case 
studied presently, V-cycle multigrid in conjunction 
with an implicit scheme has delivered a converged 
solution with 12%-25% of the CPU time required by 
the baseline implicit scheme. The multigrid implicit 
scheme has required about 22% more memory as 
compared to the baseline implicit scheme. For the 
viscous case, multigrid explicit scheme has 
performed poorly from the standpoint of the CPU 
time. The W-cycle multigrid has also failed to exhibit 
a required degree ofthe robustness. 

Evaluation of the multipid efficiency for more 
viscous cases will be continued hereafter. The present 
agglomeration strategy yields an average g@d- 
coarsening ratio of 4 which is half the ideal 
coarsening ratio for a three-dimensional grid. The 
present multigrid implementation can be further 
optimized if a more effective grid coarsening strategy 
can be devised. A comprehensive evaluation of the 
various agglomeration strategies discussed previously 
will be necessary for this purpose. Future work will 
focus on formulating superior grid-coarsening 
strategy and better relaxation scheme for error 
smoothing, such as a line implicit method. Finally, 
multi.g-id will be implemented in to the parallel 
version of the flow solver. 
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A 1QQn7Q 979 (38) 1,454 (53) Multigrid, W-cycle I 

I Alpha EV6-500 CPU time in seconds (number ofcycles) required to 

4,OS 1 ( 136) 

I Mulrlgrla 

I exvlicit I “.Loo”’o I 
NO multlgld, 

exvlici t 0.288073 3 1,608 (2,807) 40,612 (3,541) - 1  85,600(7,210) 1 
4,391 (56) 

6,374 (49) 
I 

0.288044 5,996 (1 2 1) 7,746 (156) 14,098 (283) No multigrid, 
implicit 

Table 1 : Convergence characteristics of various solution techniques for computing an inviscid flow around the 
ONERA M6 wing at M,. = 0.84, a = 3.06’. 
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Memory 
(wordskell) 

86 

Solution technique 

Multigrid, V-cycle, 
cxulicit 

Time/i tcrat ion 
(Alpha EV6-500 CPU 

seconds) 

21.2 

86 Multigrid, W-cycle 
exvlici t 

I No multigrid, I < A  

31.2 

1 1 7  implicit 

Solution technique 

Table 2: Memory and CPU time per iteration required by various solution techniques for computing an inviscid flow 
around the ONERA M6 wing case at M, = 0.84, a = 3 . 0 6 ' .  

Alpha EV6-667 CPU 
time in seconds (number 

Baseline grid final CL of cycles) required to 
get CL within 0.1 % of 

final value 

Table 3: Summary of the convergence characteristics of various solution techniques for computing an inviscid flow 
using coarse and fine grids around a generic business jet at M, = 0.75, a = 3 ' .  

. 
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final C,, Solution technique 
Alpha EV6-667 CPU time in seconds (number of cyclcs) 

required to get CL within 

0.3% of final 0.1% of final Five decimal 
valuc value places 

. 

Table 4: Summary of the convergence characteristics of various solution techniques for computing a viscous 
turbulent flow around the RAE 2822 rectangular wing at M,, = 0.75, a = 2.72', ReL= 6.2 x 10'. 

Solution technique 1 Multigrid, V-cycle, 

implicit 
No multigrid, 

L implicit 

Timehteration 
(Alpha EV6-667 
CPU seconds) 

Memory' 
(wordskell) 

112 I 5.2 

71 I 2.6 

236 I 10.9 

193 6.4 

Table 5: Memory and CPU time per iteration required by various solution techniques for computing a viscous 
turbulent flow around the RAE 2822 rectangular wing at M ,  = 0.75, a = 2.72', ReL = 6.2 x IO6. 
* The numbers in this column do not represent a typical viscous case. See the details of the grid in the case 
description. 

. 
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Baseline (finest) grid 

Coarse grid level 1 

Coarse grid level 3 

Coarse grid level 4 

Coarse grid level 2 

Figure 1 :  Surface grids on the ONERA M6 wing corresponding to the baseline grid and four coarser 
agglomerated grids. 
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Figure 2:  Histogram displaying the distribution of 
fine grid cells in a coarser agglomerated grid for the 
ONERA M6 wing. 
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Figure 3: Convergence history of the V- and W- 
cycle multigrid explicit and the baseline explicit 
inviscid solutions obtained for the ONERA M6 
wing at M,= 0.84, a = 3.06'. 
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Figure 4: Comparison of the surface pressure 
coefficients corresponding to the W-cycle multigrid 
explicit and the baseline implicit inviscid solutions 
at two span wise cross-sections of the ONERA M6 
wing at Me= 0.84, a = 3.06'. 

Figure 5: Surface grid corresponding to the baseline 
grid and surface Mach number corresponding to the 
W-cycle multigrid explicit inviscid solution for a 
generic business jet configuration at M, = 0.75, a = 
3.0'. 

I 
1 -60 1 0 ~ 0 0  ' 2&0 ' ' lokb 40:oo 5 0 L  

..__- - 

CPU time (seconds, Alpha EV6-667) I -- ~ - 

I CPU time (seconds. Alpha EV6-667) I 

Figure 6: Convergence history of the W-cycle 
multigrid explicit, the baseline explicit and the 
L..,.-l. "asdne implicit i~iviscicl wiuiions obtained for a 
generic business jet configuration at M, = 0.75, a = 
3.0'. 
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I iterations I 

u 500 1000 1500 2000 ' 00 

~ iterations 

Figure 7: Convergence history of the W-cycle 
multigrid explicit and the baseline explicit inviscid 
solutions obtained using three baseline grids of 
varying density for a generic business jet at M, = 
0.75, a =  3.0'. 

Figure 8: Surface grid corresponding to the baseline 
grid and surface Mach number corresponding to the 
W-cycle multigrid explicit inviscid solution for a 
generic high-lift trapezoidal wing at M ,  = 0.20, a = 
8'.  
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Figure 9: Convergence history of the W-cycle 
multigrid explicit, the baseline explicit and the 
baselice imp!icit inviscid soliitions o';:aificb t j r  a 
generic high-lift trapezoidal wing at M, = 0.20, a = 
8'.  
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Coarse grid level I 

Coarse grid level 3 

Figure 10: Close-up view of the baseline grid and 
the first and the third level coarse grids on a span 
wise end wall for the RAE 2822 rectangular wing. 

13 
American Institutc of Aeronautics and Astronautics 



AIAA 2004-0759 

. ~ 
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~ multiglld (Implicit. V-cycle) _ _ _ _  without mulbgnd (implicit) 

Figure 11: Convergence history of the V-cycle 
multigrid implicit and the baseline implicit viscous 
turbulent flow solutions obtained for the RAE 2822 
rectangular wing at M, = 0.75, a = 2.72', ReL = 6.2 
x IO'. 

r---- - - 
Wmpuled mulbwid (V-cycle Impiicit) 
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Figure 12: Comparison of the surface pressure 
coefficients corresponding to the V-cycle multigrid 
implicit and the baseline implicir viscous turbulent 
flow solutions and the measurements obtained lor 
the RAE 2822 rectangular wing at M, = 0.75, a = 
2.72', ReL= 6.2 x IO'. 
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