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1 Introduction 

1.1 Task Objective 

The goal of this work was to create a design and prototype implementation of a database 
environment that is particular suited for handling the image, vision and scientific data asso- 
ciated with the NASA’s EOS Amazon project. We are focusing on a data model and query 
facilities that are designed to execute efficiently on parallel computers. A key feature of the 
environment is an interface which allows a scientist to specify high-level directives about how 
query execution should occur. Using the interface does not require an understanding of the 
intricate details of parallel scheduling. 

1.2 Introduction 

This report summarizes research activities to date and serves as the final 3-year subcontract 
report. In the first year, we interviewed NASA scientists in order to understand their re- 
quirements and formulated an initial design for the database environment. In the second 
year, we refined the design and implemented a prototype. In the third year, we evaluated 
and documented the environment. 

Our work was done in conjunction with the NASA Earth Observing System (EOS) Amazon 
Project at the University of Washington. The mission of the EOS Amazon project is to 
contribute to understanding the dynamics of the Amazon system in a natural state, and 
how it would evolve under possible change scenarios (from instantaneous deforestation to 
more subtle longer term climatic/chemical changes). The overall goal of the project is to 
determine how extensive land-use changes in the Amazon would modify the routing of water 
and its chemical load from precipitation, through the drainage system, and back to the 
atmosphere and ocean. The work is being undertaken by a number of groups here at the 
University of Washington including researchers in Hydrology headed by Thomas Dunne, in 
Biogeochemistry headed by Jeffrey Richey and Remote Sensing headed by John Adams. 

1.3 Scientists’ Requirements 

We interviewed the NASA scientists in order to understand their computing requirements. 
The scientists are working with data sizes on the order of hundreds of megabytes and pro- 
cessing algorithms whose completion time is on the order of minutes to hours. The scientists 
identified the following desirable properties for a computing environment to support scientific 
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research: 

0 

0 

0 

0 

0 

1.4 

Exploratory - The computing environment should facilitate the scientist’s exploration 
of different algorithmic solutions. 

Responsive - Algorithm results should be returned as quickly as possible especially 
if the scientist is waiting for them. 

Satisfies user requirements - The environment should schedule and execute al- 
gorithms based on the scientist’s requirements for resource utilization and algorithm 
execution. For example, a scientist might like to specify which results are most impor- 
tant, what processing resources are available and how to utilize these resources. 

High-level - The environment’s interface should let the scientist specify a high-level 
description of his algorithms and requirements. The environment should provide sup- 
port for scientists who are not computer experts. 

Organized - The computing environment should record and organize the scientist’s 
computer-based research work for later retrieval. 

Approach 

The scientific computing environment described in this report has these desirable properties. 
The approach we used to create this environment contains the following steps: 

1. An identification of how existing software tools fulfill the requirements described above. 

2. Creation of new algorithms and tools which fill the gap left by existing software tools. 

3. Integration of all these tools into a seamless whole. 

In summary, we have identified two keys areas which are not well supported by existing 
software. These areas are: 

1. Support for automated parallel program scheduling and execution. 

To achieve high-performance, programs are scheduled and executed on multiple proces- 
sors. Parallel scheduling is a complex problem and automation is a welcome solution 
for scientists. One disadvantage of traditional tools is that they optimize for a fixed 
collection of preset scheduling goals. Another is that they do not fully automate the 
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scheduling process. An automated scheduling system which is responsive to the scien- 
tists’ scheduling needs would improve both scientists’ satisfaction with their computer 
systems and their productivity. 

2. Suppor t  for scientific experimentation. 

An environment needs to provide a computer-based framework for scientists’ interac- 
tions. One typical interaction that scientists perform is parameterized experimentation 
with their programs. This experimentation helps the scientist to understand the effects 
of input parameter and coding changes. With automated support scientists could focus 
on analyzing their experimental results instead of the process required to generate the 
results. 

1.5 Background 

This section presents a high-level summary of existing software tools including programming 
languages, systems and databases, which scientists use to support their computer-based 
research work. This overview details how existing software tools fulfill the scientists’ require- 
ments and where they fall short. In addition, it provides a context for understanding how 
the computing environment described in this report builds upon and relates to existing tools. 

1.5.1 Languages 

Scientists have traditionally used sequential, imperative programming languages such as 
FORTRAN to express their scientific algorithms. Although FORTRAN is a low-level lan- 
guage it is the language of choice for most scientists. One reason for this is that it is fairly 
straightforward to express efficient programs based on arithmetic expressions. It is one of 
the few programming languages which provides standardized support for complex arithmetic. 
Another reason is there is a legacy of FORTRAN programs that has been developed by sci- 
entists over the years. Scientists are very interested in reusing these programs, leveraging 
their :.:ark upon these existing successful programs. 

An important advance in programming languages for scientists is visual programming lan- 
guages. One of the most successful type of visual languages are data-flow-based visual pro- 
gramming languages. Examples include languages such as AVS I281 and Cantata/KHOROS 

nipulate the program graph interactively, by adding and deleting tasks. Users have access to 
a library of existing tasks which are ready for use in their programs. These languages simplify 
program creation and the reuse of existing tasks. They support exploratory programming 
because changes can easily be made to programs without re-compiling. 

[23]. Programs are expressed graphicdy 8s data-fl=w-based pregram graphs. users Girl z z -  
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One useful addition to a visual programming environment is support for parallel program 
scheduling and execution. Researchers at the Boeing Company created a data-flow based 
visual programming environment called Access Manager which allows distributed task ex- 
ecution [24, 91. The first version of Cantata/KHOROS (version 1.0) also allows users to 
execute different tasks of their programs on different processors. Users are require to specify 
the details of this assignment. CM/AVS is an extension of AVS in which a parallel ver- 
sion of program tasks can be executed on the Thinking Machine CM-2 or CM-5 parallel 
computers[2]. Support for parallel program execution is a necessary first step in the process 
of providing support for automated parallel scheduling and execution. 

1.5.2 Systems 

Another way a scientist can improve his program’s efficiency is to use distributed system 
software tools, such as Condor [19] or DQS. These tools execute a set of independent jobs on 
networks of workstations. The scientist formulates his program as a collection of independent 
jobs and submits them to a job queue. The tool then automatically schedules and executes 
the jobs on a set of available workstations. Work continues on the creation of efficient 
distributed systems support tools. Recent research focuses on methods of identifying and 
using idle workstations and avoiding scheduling conflicts[5]. 

There are many task scheduling algorithms that can be used to schedule the tasks of a 
data-flow program graph in parallel. Task scheduling algorithms attempt to maximize the 
number of tasks executing in parallel while minimizing inter-processor communication costs. 
A taxonomy of task scheduling algorithms can be found in [8]. Lewis et al [12] also provides 
a useful introduction to task scheduling. Since most types of task scheduling problems are 
NP-complete, solution algorithms are based on heuristics. Traditionally these heuristics 
optimize for a fixed preset collection of goals. This is a problem if the scheduling goals of 
the algorithms conflict with the scheduling goals of the user. 

1.5.3 Databases 

Databases provide support for storing, organizing and accessing scientific data. Key features 
of a database are its data model, which describes the stored data’s relationships and seman- 
tics, and its query model, which describes how to retrieve the stored data. The relational 
data model represents data by tables of attributes. It is a simple model and popular for rep- 
resenting business data. Scientific data usually has more complex relationships than can be 
expressed using the relational model. Another concern is that scientific data, such as images 
and multi-level data structures, do not map well to relational tables. A second popular data 
model is the object-oriented model. Data is represented as a collection of data-structure- 
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based objects. The object-oriented model usually lacks effective query models, because the 
structures it represents are so diverse that it is difficult to query them efficiently. 

Recent research has focused on creating a data model and database system which supports 
scientists’ needs. Examples include GAEA [15], MDBS 1271 and DEVR [26]. These systems 
combine features of the relational and object-oriented data model, striving for the simplicity 
of the relational model with the expressiveness of the object-oriented model. 

1.5.4 Constraints 

A constraint expresses a relationship the user would like to hold in the solution of a particular 
problem. The environment described in this report uses constraints to express the user’s task 
scheduling preferences. Related environments that use constraints include geometric layout 
systems[22, 61, user interface builders[21] and machine vision systems [25]. 

An active area of research in constraint satisfaction is how to solve over-constrained systems 
(i.e. a set of constraints for which there is no solution that satisfies all constraints)[l6]. 
Freuder and Wallace [14] adapt standard backtracking and consistency checking algorithms 
to satisfy a maximal subset of the constraints. Borning et al describe another solution to this 
problem: the user arranges his constraints in a hierarchy[7]. In the event that all constraints 
cannot be satisfied, the constraints at a higher level in the hierarchy are satisfied before 
constraints at a lower level in the hierarchy. The constraints at the top level are called 
requirements (or hard constraints) and must always hold. The constraints at the lower 
levels are called preferences (or soft constraints) and are satisfied based on their level in the 
hierarchy. Constraints within a level are solved based on a relative weighting provided by 
the user. The user-directed scheduler described in this report fits into this paradigm. The 
scheduler has two levels: the requirement level and one preference level. Preferences are 
satisfied based on their relative weights. Future work could consist of allowing the user to 
express a hierarchy of constraints to the scheduler, so that the user can control the order of 
constraint sat isfact ion. 

1.5.5 Artificial-Intelligence-based Scheduling 

Scheduling is the process of assigning a set of jobs to set of limited resources over time. 
The quality of a schedule is usually defined by a collection of user-defined criteria and 
constraints. Artificial Intelligence (AI) is the study and creation of theory, algorithms and 
computer systems that use knowledge and encoded intelligence to solve complex problems. 
Thus, scheduling is a natural area of interest for researchers in Artificial Intelligence. 

AI researchers have built scheduling systems for a number of specific domains including 
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systems for scheduling telescope usage [17], space shuttle maintenance [30], manufacturing 
[13] and defense logistics [lo]. AI-scheduling solution methods are characterized by a number 
of features. Constructive methods build a complete schedule while repair-based methods 
incrementally update an existing but flawed schedule until a valid schedule is obtained. Fox’s 
ISIS manufacturing scheduling system use a constructive solution method [ 131. It iteratively 
builds a complete schedule by exploring a search space of partial schedules. It uses a beam- 
search which is guided by system and user constraints in order to find a schedule. Repair- 
based methods are useful for domains which change significantly over time. Repair-based 
methods only need to reschedule tasks affected by an external change to the problem. Zweben 
et al describe a repair-based scheduling system for space shuttle repair and maintenance[30]. 
It also uses a search-based solution method but explores a search space of complete schedules. 
A disadvantage of repair-based methods is that they usually use a local search-based solution 
method and therefore do not provide globally optimal schedules. 

Many AI schedulers use constraints to express requirements and preferences on the problem 
domain. A characteristic of a scheduler is how it relaxes the problem constraints when they 
are in conflict in order to find a solution. Different methods include satisfying a maximal 
subset of constraints[l7], using a fallback constraint if the original constraint cannot be 
satisfied [13], placing priorities on constraints and using a hierarchy of constraints[7]. 

The goal of this work is to create an automated task-scheduling environment. A critical 
component of the environment is a unique AI task-scheduler which allows the user to ex- 
press task-scheduling constraints. The task-scheduling domain is different than other studied 
AI scheduling domains. For example, there are significant differences between the tasks in 
the task-scheduling domain and the jobs in the manufacturing domain. Tasks in a task- 
scheduling domain can usually be assigned to any processor whereas jobs in the manufactur- 
ing domain are assigned to specific machines. In the task-scheduling domain, if dependent 
tasks are scheduled on different processors a communication cost is incurred. There is no 
similiar cost in the manufacturing domain. Furthermore, tasks in the task-scheduling do- 
main usually do not have start and finish deadlines as jobs do in the manufacturing domain. 
Because of the many required manufacturing constraints, problems in the manufacturing 
domain are usually over-constrained. Therefore solution methods usually focus on finding 
an acceptable solution. Problems in the task-scheduling domain are usually significantly less 
constrained and therefore this work uses a constructive solution method which can often 
provide an optimized solution to its users. 

1.5.6 A related environment 

The members of the Intelligent Data Management Project led by Nicholas Short at NASA 
Goddard are working on a prototype environment which can process the massive datasets 
generated by satellites that are part of NASA’s Earth Observing System [18]. The envi- 

6 



' 5  

ronment supports the querying, real-time processing and storing of satellite image data. In 
order to cope with the changing volume of incoming satellite image data by a given deadline, 
the environment has access to different versions of processing algorithms, which offer varying 
tradeoffs of result quality for shorter completion times. 

The major subsystems of the environment are a set of processing request queues, a planning 
system, an execution engine/monitor and an object database. 

0 The processing request queues accept processing requests from users. Their requests 
are high-level and declarative allowing a user to express what processing should be done 
rather than how. For example, a user can specify that a satellite image be registered 
without specifying a specific algorithm to do the registration. A user can also specify 
a completion deadline for a processing request. 

0 The planning system inputs a processing request and selects and composes a set of 
tasks into a program graph which fulfills the user's request. The tasks are selected 
from a collection of Khoros tasks, LAS tasks and user-defined tasks. Note that there 
are many tasks available to the planner, that perform the same type of operation 
but have different properties. For example, there may be multiple registration tasks: 
one which processes a specific image type, one which executes very quickly and one 
which produces registrations of very high quality. Task properties are formalized using 
conditions. Each task is annotated with a set of preconditions which must be true in 
order to execute the task and postconditions which are true after the task has executed. 
The planner unifies these conditions to create a program[3]. 

0 The execution engine executes the program generated by the planner on a network of 
workstations. It uses a dynamic scheduling technique developed by Ma et al [20] to 
schedule based on network traffic, processor utilization and task dependencies. 

In summary, Short et aZ's environment supports automatic program creation by allowing 
users to express requests for processing which are fulfilled by a planner. Scheduling requests 
are limited to completion deadlines. In contrast, our own work allows its users to express 
a full range of task-scheduling directives including the ordering of program results and the 
specification of task assignments and processor utilization levels. In addition, this work 
supports computer-based scientific experimentation. 

1.6 Structure of the Environment 

Having reviewed existing scientific software tools, we will now describe the components of 
the scientific computing environment presented in this report: 

'LAS is a geographic information system package used to process Landsat images. 
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0 Data-flow based visual programming environment - The scientist uses a visual 
programming environment to construct his programs. 

0 Scientific database - A database is used to organize and store information about 
program graphs and results. 

0 Distributed executor - The executor executes a program graph in parallel on a 
network of workstations in order to quickly generate the scientist’s results. It handles 
inter-processor communication between distributed tasks in the program graph and 
records performance information for use by the performance prediction tool. 

0 Scheduler - The scheduler automatically schedules a program graph on a network of 
workstations based on the scientist’s directives. The scientist’s directives are specified 
declaratively as constraints. 

0 Performance prediction - Program performance prediction is necessary for efficient 
scheduling. The scheduling algorithm uses performance estimates to make scheduling 
decisions. 

A diagram of the scientific computing environment is shown in Figure 1. The diagram 
shows the data-flow between the components of the environment. In this report, data-flow 
diagrams are represented visually with boxes representing operations and ovals representing 
data. Directed arrows define the flow of data through the data-flow diagram. 

Data input to the environment includes resource information, a program graph and the user’s 
scheduling directives. Available processors are specified initially by the system administra- 
tor. The program graph is specified using a visual programming environment. The user 
scheduling directives are specified using a constraint-based scheduling language. The pro- 
gram graph and resources are used by the automatic performance prediction tool to create a 
cost model of program execution and processor utilization. The scheduler inputs the resource 
information, the program graph, the user’s scheduling directives and performance estimate 
information. The scheduler outputs a schedule which fulfills the user’s scheduling directives. 
The program is then executed on a network of workstations using the distributed executor. 
During execution, performance data is collectcd and sent to the performance database for 
future use by the performance prediction tool. 

1.7 Outline 

Section 2 describes a problem space representation for task scheduling. This goal-oriented 
representation facilitates the specification of scheduling directives. It contains the definition 
of a language for specifying these directives and a number of examples, which show how to 
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Figure 1: Structure of the scientific computing environment 

9 



use the language to specify directives for task ordering, task placement, processor utilization 
and load balancing. In addition, it describes a search-based algorithm for fulfilling a user’s 
scheduling directives. Section 3 describes the prototype and an algorithm for automatically 
creating parameterized scientific experiments. Section 4 reports the results of a study of the 
environment performance. Results are presented on the performance of the environment on 
a large number of realistic imaging graphs and on how well the environment fulfills the user’s 
scheduling directives. Section 5 summarizes and describes future research directions. 

2 User-direct ed scheduling 

To achieve high performance, programs are scheduled and executed on multiple processors. 
Parallel scheduling is a complex problem and automation is a welcome solution for scientists. 
One disadvantage of traditional tools is that they optimize for a fixed set of preset scheduling 
goals such as simply minimizing completion time. Another is that they do not fully automate 
the scheduling process. A method for automatic scheduling which is responsive to their 
scheduling needs would improve both scientists’ satisfaction with computer systems and 
their productivity. 

This chapter describes an automatic scheduling method that was designed to meet these 
needs. First, a problem space representation for scheduling is described. This goal-oriented 
representation facilitates the specification of scheduling directives and is amenable to artificial- 
intelligence-based solution techniques including search and planning. Then a language for 
specifying scheduling directives is defined. Finally, a search-based algorithm for determining 
a schedule is described. 

2.1 Preliminaries 

A program graph consists of a set of functional tasks and set of input and output dependencies 
between these tasks. Figure 2 shows an example of a simple program graph with two tasks, 
one which inputs an image and another which displays an image. The output of the Input 
image task is used as input by the Display image task. 

Task scheduling is the process of assigning and ordering the execution of tasks from a pro- 
v gram graph onto a collection of processors. The parallel task execution model used by the 
environment assumes that each processor can run one task at a time. To execute a task on 
a processor: 

1. All inputs that are the outputs of tasks executed on another processor in the distributed 
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Figure 2: A program graph 

network are received in parallel. The processor blocks and waits until all inputs are 
received. 

2. The task is executed. 

3. All outputs that are inputs of a task executed on other processors in the distributed 
network are sent to these processors in parallel. 

Blocking communications assure the correct parallel execution of the task graph by guaran- 
teeing a task is not executed until all its inputs are available. 

2.2 A Problem Space Representation for Task Scheduling 

This section describes a problem space representation for task scheduling. A problem space 
is defined as a set of states and operators that moves between these states. A particular 
problem to be solved in a problem space is known as a problem instance and is defined by 
an initial state and a set of goal states. 

2.2.1 States 

A state represents an empty, partial or complete schedule of tasks to processors. It must 
represent task and processor scheduling information as well as other related information 
such as estimates of scheduled task start and finish times. A state consists of a collection 
of t.a-sks, a collectio~l of task depegdenciec a d  a co!!ection of pmcessms. Ekments of these 
collections are entities. Each entity consists of a set of attributes, each of which consists 
of a name and type. Attributes are detailed below using the following syntax: <attribute 
name>:<attribute type>; descriptive comment. The tasks, processors and task dependency 
entities are as follows: 
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Task Entity 

id:integer 
name : string 
exec-time:integer 

start-time: integer 
I 

finish-time:integer ¶ 

assigned-proc-id:integer I 

9 

Processor Entity 

id:integer 
name:string 
finish-time:integer 

assigned-task-ids 
:list 

uti1:integer 

a unique task id 
the task’s name 
the task’s execution time 
Note: all timings are expressed in seconds 
the task’s start time 
Note: the start of the schedule is time 0 
the task’s finish time 
the id of the processor this 
task is assigned to 

; a unique processor id 
; the processor’s name 
; the total running time of 
; the tasks scheduled on this processor 
; assuming no gaps or idle periods 
; an ordered list of tasks scheduled on 
; this processor 
; the processor’s CPU utilization 

Dependency Entity 

task-id:integer ; a task id 
dep-task-id:integer ; the id of the task that depends on 

; the output of the task with task-id 
; as input 

; dependency data 
; Note: if no communication is requiredthan 
; corn-time is 0. 

non-local-comm-time:integer ; the time to communicate this 
; dependency data to another processor in 
; in the network 

comm-time:integer ; the time to required to communicate this 
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2.2.2 Initial State 

The initial state has the following values initialized: 

0 There is a task entity for each task in the input data-flow program graph. 

0 There is a processor entity for each identified available processor. 

0 There is a dependency entity for each dependency in the program graph. 

All other attributes of these entities are assigned to a special symbol which represents un- 
known values. 

2.2.3 Operators 

An operator makes a transition from one state to another state. There is one operator in the 
problem space representation for task scheduling. Its name and type is: schedule-task-to- 
processor(integer, integer, state) + state. The result of executing the call, schedule-task- 
to-processor(task-id, proc-id, original-state) + new-state is that the task identified by task-id 
is scheduled on the processor identified by proc-id. 

2.3 Goal State 

The conditions required of a goal state are: 

0 Each task is scheduled to a processor. 

0 The task dependencies are respected by the schedule. That is, if a task is dependent 
upon another task for input, it runs after that task has completed. 

This completes the specification of a problem space representation for task scheduling. 

2We will use the following syntax to describe function types in this document: <function name>(<pa.ra.m 
type 1>, <param type 2> etc.) -+ <return param type>. 
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2.4 A Language for Expressing Scheduling Directives 

The problem space representation for task scheduling defines any complete valid schedule 
of tasks to processors as a goal state. Traditional task scheduling algorithms add another 
condition to these criteria. They optimize performance by working to minimize a partic- 
ular performance variable, such as processor completion time, or task finish times. These 
optimizations are always hard-encoded into the scheduling algorithm, and these algorithms 
do not allow other optimization criteria to be used. In this section, I describe a language 
in which a user can specify a variety of optimization criteria, by describing relationships he 
would like to hold between values in the goal state and values he would like to be minimized 
or maximized in the goal state. These s c h e d u h g  directives allow the user to optimize for 
performance as well as specify other desirable properties of a schedule including the order- 
ing of task outputs, specific task to processor assignments and specific processor utilization 
levels. 

2.4.1 Preliminaries 

The scheduling language is an extension of SQL [l, 111 a relational database query language. 
SQL is the pre-eminent database language in use today, enjoying wide acceptance among 
non-computer experts because of its ease of use. 

In SQL, a relation is a collection of entities with the same sets of attributes. A state in the 
task scheduling problem space representation is composed of three relations: tasks (task), 
processors (proc) and dependencies (dep). 

A basic SQL expression has three clauses: select, from and where. The from clause 
specifies the relations to be operated on. The where clause specifies a boolean predicate 
on entity attributes which are used to select entities from the relations. The select clause 
specifies the resulting relation in terms of the attributes of the selected entities. The syntax 
is: 

select (attributes from the  selected e n t i t i e s )  
f rom (relations) 
where (boolean predicate on the  ent i ty  attributes of the  re lat ions)  

The scheduling language defines importance and type constraints. Importance constraints 
are either requirements or preferences. Requirements must always hold, preferences are 
fulfilled based upon user-defined priorities. Constraint types include relationship-based con- 
straints that express a desired relationship between attributes of relations, value-based con- 
straints that express a desire for a value to be minimized or maximized, and ordering-based 
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constraints that express a desire for a particular ordering on a relation. The basic syntax 
for constraints is: 

assert (relat ionship I value I ordering) (requirement I preference) 

< s p e c i f i c  assert ion constructs) 
( 

1 

The bracket and slash notation used above (i.e { A l B  IC} )  means that one of the elements in 
the collection of choices is utilized. For example, valid constraints include: assert  value 
requirement and assert  ordering preference. 

Selecting elements from a collection An SQL expression can be used to select entities 
which pass a given test. Using the * symbol in the select clause returns all the attributes of 
an entity. Note that, the attributes of a relation are referred to by appending the attribute 
name to the entity type name. For example, the id attribute of the task: entity is task-id, 

Aggregating the elements of a relation SQL also provides a way to compute a single 
summary value from a collection of attribute values. In the select clause the user identifies 
a specific attribute to aggregate. Possible aggregate functions include: average, minimum, 
maximum, sum and count. 

2.4.2 Requirements 

The first type of scheduling directive is a requirement. A requirement guarantees that a 
user-specified constraint will hold in a goal state. Requirements are specified and tested 
with a requirement function. 

Relationship requirements A relationship requirement guarantees that a user-specified 
relationship will hold in a given state. The name and type of the relationship requirement 
function is: 

assert relationship requirement (expression, test, expression) -P boolean. 

It returns TRUE when applied to a valid state. For the call, assert relationship 
requirement (expression- 1, test- I ,  expression-2): 
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0 expression-1 and expression-2 are SQL expressions. The function applies the SQL 
expressions to the given state. The returned values are used to create relation-1 and 
relation-2. 

0 test-I is run on each element of the cross product of the previously created resulting 
relations (i.e. all possible pairs of an input value from the first relation and an input 
value from the second relation). If any test returns FALSE the requirement is FALSE. 

Example 1 - Ordering task output generation time To assert that the task with id 
1 finishes before the task with id 2 the following requirement is defined: 

assert relationship requirement ( 
(select task-finish-time from task where task-id = I) < 
(select task-finish-time from task where task-id = 2) ) 

Example 2 - Deadlines on task output generation time To assert that all tasks 
finish before a 30 seconds deadline the following requirement is defined: 

assert relationship requirement ( 
(select task-finish-time from task) < 30 ) 

Example 3 - Controlling task/processor assignments 
run on lillith the following requirement is defined: 

To assert all FFT tasks are 

assert relationship requirement ( 
(select task-assigned-proc-id from task where task-name = “FFT’ ’) = 
(select proc-id from proc where proc-name = “lillith’ ’1) 

Ordering requirements An ordering requirement function provides a means for asserting 
relationships which hold on an ordered sequence of values. Thus, the relationship test holds 
between each element of the sequence and any subsequent elements. Its name and type are: 

assert ordering requirement (sequence, ordering-test) + boolean. 

For the call, assert ordering requirement(sequence-1, ordering-test-1): 
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0 The ordering-test-1 is applied to sequence-1. The order-test clause is an extension 
to standard SQL, allowing the user to specify a sort order to test. The order-test 
clause identifies the attributes to  test and whether to test if the sequence is sorted in 
ascending or descending order. If any entity of the sequence is out of order the ordering 
test returns FALSE. 

Example - Ordering task output generation time To force the tasks to be scheduled 
in order of id number the following requirements is made: 

assert ordering requirement ( 
(select * from task where task-assigned-proc-id <> UNKNOWN) 
(order-test task-id asc)) 

Ordering-based requirement functions are useful for scheduling tasks to processors in a par- 
ticular order. Many traditional task algorithms define an order in which to schedule tasks. 
With ordering-based requirement functions this behavior can easily be mimicked. 

Additional goal state condition Requirements add an additional condition to the prob- 
lem state representation of a goal state: when applied to a goal state all defined relationship 
and ordering-based requirements must be TRUE. 

2.4.3 Preferences 

Relationship and Ordering Preferences The second type of scheduling directive is 
a preference. A preference specifies a relationship the user would like to hold in a goal 
state or a value the user would like to minimize or maximize in the goal state. There are 
relationship and ordering based preference functions and they are very similiar to relation 
and ordering requirement functions. The only difference between these types of preference 
and requirement functions is their return values. Requirement functions return TRUE if 
all tests are passed and FALSE otherwise. Preference functions return the number of failed 
tests. The name and type of the relationship and ordering preference functions are: 

3Note that the order-by clause creates a sequence from the unordered relation using one key and the 
order-test clause tests if the sequence is ordered based on a different key. 

4The order-by clause considers entities out of order if the task-assigned-proc-id value of the task earlier in 
the sequence is UNKNOWN and the task-assigned-proc-id value of the task later in the sequence is known. 
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assert preference order(expression, ordering-test) + integer. 5 

The ordering preference function computes for each element in the sequence the number 
of subsequent elements that should precede it in the specified ordering. The sum of these 
values is returned by the function. This calculation places decreasing emphasis on the correct 
ordering of entities as their distance from the beginning of the sequence increases. 

Example 1 - Balancing the task load on processors To specify a preference for a 
balanced task load among the processors the following function is specified: 

assert relat ionship preference 
a l l  (select task-start-time from task) <= 
a l l  (select proc-finish-time from proc) 

This expression states that there is a preference that all task start times be less than the total 
running time of each processor. The intuition for why this balances workload is that in an 
unbalanced workload, tasks start on some processor after other processors have finished. Note 
that this relationship should not be expressed as a requirement because when communication 
costs are excessive, optimal schedules are not balanced. 

Example 2 - Controlling processor utilization To specify a preference for the proces- 
sor calvin to be assigned at least twice as much task load as the processor lillith the following 
function is specified: 

assert relat ionship preference 
2 * (select proc-finish-time from proc where proc-name = ‘ ‘ l i l l i t h ’  ’) <= 

(select proc-finish-time from proc where proc-name = “Calvin”) 

Value-based preferences Value-based preferences allow the user to specify values they 
would like minimized or maximized in the goal state. The name and type of the value-based 
preference function is: 

assert value preference(optimization-type, integer, function, integer, integer) + integer. 

For the call assert value preference(opt-type, priority, value-function, min, max): 

5Requirement~ can be implemented with preferences as follows: assert relationship requirement 
calls assert relationship preference with the same parameters. If assert relationship preference 
returns 0 (tests failedj then return TRUE else return FALSE. 
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0 opt-type states whether to minimize or maximize the value function. 

0 priority is a measure of the importance of fulfilling this preference. Specifically, priority 
values have the following semantics: The relative importance of a particular preference 
is equal to its priority value over the total of all priority values. For example, if three 
preferences have priorities, 1, 2, 1, the relative importance of the preferences is 0.25, 
0.50, 0.25. For example, when choosing between two goal states, the environment 
will prefer a state which fulfills the second preference but not the first or third over a 
state which fulfills the first preference but not the second or third because the second 
preference is twice as important to the user as the first. 

0 value-function is a SQL expression which when applied to a given state returns an 
integer value. 

0 min, mu2 are estimates of lower and upper bounds on the result of the value-function. 
These values are used by the environment to scale the result of the value-function so 
that comparisons with other value-function results make sense. 

Example 1 - Minimizing processor run times To specify a preference for minimizing 
processor run times the following function is specified: 

assert value preference ( 
opt-type = minimize, priority = I, 
function = (select max(task-finish-time) from task) 
min = 0, max = (select sum(task-exec-time) from task) + 

(select sum(non-local-comm-time) from dep) ) 

All relationship and ordering-based preferences are expressed using value-based preferences 
because the environment can use value-based preferences to create a numeric measure of how 
much a state is preferred. 

Additional goal state condition Preferences add an additional condition to the problem 
state representation of a goal state: goal states which fulfill preferences based on their priority 
values are preferred. A formal description of how this condition may be met is described in 
the next section. 

6The maximum finish time value is bounded by the serial execution of all tasks plus the serial non-local 
communication of all dependency data. 
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2.5 A Search-based Scheduling Algorithm 

In this section, I describe a search algorithm for user-directed scheduling. Best-first search 
is used to find optimized goal states in the problem-space representation. A best-first search 
algorithm requires three functions: a successor function, which defines how to create the 
successor states of a state, an evaluation function, which gives each state a score, and a goal 
function, which identifies goal states. 

Best-first search selects from the set of states generated so far the state with the minimum 
score. It checks if the selected state is the goal state, if it is then the state is returned. 
Otherwise the successors of the selected state are created and evaluated and the process 
continues. 

2.5.1 Successor Function 

The name and type of the successor function is: successor(stute) + set of states. 

For the call successor(state1) the function creates: 

0 set1 - a set of all tasks that could be executed. This set is composed of each non- 
scheduled task whose dependent tasks are already scheduled. 

0 set2 - a set of all processors on which the tasks could be executed. This set is a list of 
all the available processors. 

For all pairs of elements, eZe1 E set1 and ele2 E set2, scheduled-tuslc-to-processor(eZe1, ele2, 
statel) is executed. These executions create a set of new states. 

All defined requirements are applied to each new state. If any requirement fails when applied 
to a new state, the state is removed from the set of new states. After this is complete, the 
remaining set of new states are returned as scccessors. 

2.5.2 Evaluation Function 

Semantics of priorities Preferences provide a mechanism for comparing states. For a call, 
assert value preference(opt-type, priority, value-function, min, max) the opt-type, priority, 
min and mux values allows the environment to scale the results of value functions so that 
comparisons make sense. The following variables are used to calculate a global preference 
comparison value, gtotal for a state from a set of 1 . . . up value-based preferences: 
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0 pi is the priority of preference i where i = 1. . . vp. 

0 ptotal is the sum of all the preferences priority values, that is, ptotal = 

0 vi is the result of the value function of preference i. 
p i .  

0 mini,maxi is the lower and upper bound values of preference i. 

0 si is the scaled preference value of preference i (si values are between 0 and 1 with 0 
preferred), that is, if (type = minimize) then si = m ~ x ~ ~ ~ n i  else si = maxilm;ni. max. -v .  

0 g;  is the scaled prioritized value of preference i, that is, g; = si * pi. 
0 gtotal is the sum of all the preferences scaled prioritized values, that is, gtotal = E;:, 9;. 

Ptotal 

The name and type of the evaluation function is: evaZuation(state) + integer. The evaluation 
function returns the global preference value, gtotal defined in the previous section. Best-first 
search find an optimized goal state but not necessary the optimal goal state because it stops 
as soon as it finds a goal state. Branch and bound search could be used to find the optimal 
goal state but the extra time it requires to search through the problem space is prohibitive. 

2.5.3 Goal Function 

The name and type of the goal function is: goaZ(state) + boolean. The goal function returns 
TRUE if all the tasks are scheduled and FALSE otherwise. 

2.5.4 Soundness and Completeness 

0 Soundness is the property that if a goal state is returned by the search it is valid. 
Informally, this is true because: 

- Only valid states are identified as goal states since the goal function only returns 

- Only valid states are generated because the successor function only schedules 

- Only valid states are generated because the successor function eliminates states 

TRUE if all tasks are scheduled. 

tasks whose dependent tasks have already been scheduled. 

WllIC UXL a lquirenients. -..l.' h bo 3.&.fy the -3- -- 

0 Completeness is the property that if a goal state exists it can be found by the search. 

- The successor function lists all valid task-to-processor assignments. Thus, all 
possible valid schedules can be generated. 
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2.5.5 Computational Complexity 

The computational complexity of a search algorithm is the branching factor raised to the 
depth of the search tree (i.e. O(b") where b is the branching factor and n is the depth). 
Let tusks be the number of tasks and procs be the number of processors. The worst case 
computational complexity is O( (tasks x p r ~ c s ) * ~ ~ ~ ~ )  . The average computational complexity 
is usually better than this, because the branching factor is usually significantly less than the 
total number of tasks. The removal of states that do not meet the user's requirements 
further reduces the branching factor. A study of the performance of this algorithm on a 
large number of imaging graphs is presented in Section 4. The study reports on the number 
of states the algorithm generates. 

3 SCE: The prototype 

This section describes a prototype of the scientific computing environment SCE developed 
in this research. The first subsection describes how the prototype supports computer-based 
scientific experimentation. The second subsection describes how the user interacts with the 
prototype and the outputs that are generated. The last subsection presents an overview of 
the implementation of the prototype. 

3.1 Computer-based Scientific Experimentation 

Scientists are interested in experimenting with their programs. They make parameter and 
coding changes to their programs and then analyze their results in order to understand the 
effects of these changes. With automated support, scientists can focus more on analyzing 
their experimental results than on how to generate these results. This section describes 
how SCE supports computer-based scientific experimentation. An efficient algorithm for 
automatically creating a computer-based experiment is presented. This is followed by a dis- 
cussion of another environment which provides support for experimentation and the specific 
advantages of the prototype's implementation. 

An experiment specifies the controlled substitution of tasks, data or parameters in the pro- 
gram graph. All possible combinations of substitutions may need to be tested. For 
example, a geologist working on a remote sensing problem might be interested in testing 

71n most data-flow based visual programming environments, parameters and data are not represent 
explicitly in a program graph. Instead they are considered part of each task. For example, parameters and 
data in Cantata/Khoros are specified as input values. Thus, to specify parameter and data substitutions a 
corresponding task is specified with modified input values. 
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the quality of a set of edge detection tasks on a collection of satellite images. Using the 
prototype’s visual programming environment, a program graph is created which consists of 
nodes for an input image task, edge detection task and display-image task connected as a 
sequence. The created program graph is shown in Figure 3. 

In the experiment, the first task, Inputimageregion-a, which contains data for the northern 
region of the Amazon river basin, is to be replaced with Inputimageregion-b, which contains 
data for the southern region of the basin. The second task, the Sobel edge detector is to be 
replaced with two different edge detection tasks: the Prewitt edge detector and the Canny 
edge detector as shown in Figure 4. All possible combinations of substitutions of input 
images and edge detection tasks are instantiated and executed as shown in Figure 5. The 
output images are labeled and stored in the database for later analysis. 

e) Display-image 

Figure 3: A sequence of tasks in a program graph 

Figure 4: Substitutions for the experiment 

Figure 5: An instantiated experiment 
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A simple way to create an experiment is to replicate the original program graph for each 
possible combination of substitutions and then make one set of substitutions to each repli- 
cated graph. This method was used to create the experiment shown in Figure 3. This simple 
method requires more task executions than are necessary. For example, in Figure 3 notice 
that the Inputimageregion-a task is executed three times although it is only necessary to 
execute it once. SCE uses a new experiment creation algorithm that avoids this problem 
by reusing the results of executed tasks. Reusing task results helps to minimize experiment 
execution time. 

3.1.1 Discussion 

A related environment which executes experiments on a collection of distributed workstations 
in parallel was created by D. Abramson et ~(41. The environment, Nimrod, allows a user 
to express a set of input parameters and data changes for a program. Nimrod creates 
experiments in a similiar manner to the example shown in Figure 3.3. The cross-product of 
user parameter changes is generated and elements from this set are input to copies of the 
original programs. These copies are scheduled and executed on a collection of distributed 
workst at ions. 

Nimrod and SCE both provide a concise and useful interaction model. Experiments provide 
a concise method for scientists to express a set of controlled changes to a program graph. 
With this support, scientists can express what changes they want to experiment with, but not 
how to implement these changes. Nimrod and SCE also both provide efficient experiment 
executions. Experiments execute efficiently because their program graph representations 
contain many independent execution paths which can be scheduled and executed in parallel. 

In addition, SCE simplifies experimentation with task substitutions in a program. Nimrod 
allows its users to experiment with different data and parameter inputs to their programs. 
Nimrod has no knowledge about the inner workings of the program on which it is running 
experiments. Thus, in order to make a task substitution in Nimrod, a scientist must modify 
his program by hand, removing the code to be substituted for, replacing it with new code 
and recompiling their program. After this process is complete he can use Nimrod to run 
experiments. In SCE, programs are represented as a collection of communicating tasks. SCE 
allows its users to experiment with program tasks. Thus, it is a simple matter to have the 
user identify which task to replace and to automatically substitute the user’s new task in 
its place. Specifying task substitution is useful when the user wants to experiment with a 
collection of different t a k s  which perform the same fcnctim, such a edge detection. 

Furthermore, SCE reduces the total amount of work required to execute an experiment. SCE 
uses an experiment creation algorithm which reuses task results whenever possible during an 
experiment. This algorithm allows scientists to obtain their experimental results faster than 
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Nimrod’s experiment creation algorithm. Nimrod’s algorithm replicates the entire program 
for each substitution. It cannot optimize the experiment creation process because it does not 
have any knowledge of the inner workings of the program on which it is running experiments. 

3.2 A Sample Session with SCE 

A sample user session with SCE is now presented. This includes a description of the com- 
ponents of SCE the user interacts with and the results of this interaction. This presentation 
helps the reader become familiar with the interface provided by SCE. 

3.2.1 User Inputs 

Visual program environment The scientist uses the visual programming environment, 
Cantata[23], to construct his programs. Figure 6 shows a Cantata workspace. The boxes 
represent tasks and lines connecting the tasks represent dependencies. The user selects tasks 
f rom the pull-down libraries at the top of the screen and connects the tasks together using 
dependencies to form a program graph. 

Scheduling directives interface The scientist uses a text editor to express his scheduling 
directives. A set of default directives are supplied by the environment. Note that these 
directives do not have to be utilized, they are provided as a suggestion. The goal of these 
directives is to minimize program completion time. The default directives are described in 
more detail in Section 4. 

Resource interface The scientist uses a text editor to create a list of available processors. 

Experiment interface The scientist currentiy defines an experiment using a text editor to 
specify locations for task substitutions and sets of the tasks to substitute into the program 
graph. Future work on the environment could consist of modifying Cantata’s interactive 
graphical interface to allow the user to express experiments graphically. Another useful 
feature would be to extend the experiment creation interface to allow the user to express 
experiments which do not create the fuii cross product of task substitutions. This is usehfui 
when the user is not interested in all experimental results. For example, in the example 
shown in Figures 3-5 the user may only be interested in testing the Sobel edge detector on 
Inputimageregiona and in testing the other edge detectors on both images. 
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Figure 6: The Cantata visual programming environment 
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3.2.2 Prototype Results 

After the user creates his program graph, scheduling directives and resources, SCE uses this 
data to create performance prediction information. This information is then passed to the 
scheduler which creates a schedule. Once the schedule is created, the tasks axe executed on 
the workstations and the program outputs are generated. SCE creates an information log 
which records the details of each run. Details include the program graph and directives used, 
the generated performance prediction information and schedule and the program execution 
statistics. The log is written in HTML and the user can browse the information with a 
browser such as Netscape Navigator. Figure 7 shows an example of the information log. 
Scheduling information is stored graphically as part of the information log. 

0 ---Information log--- 

Date: Thu-Jul-l8-15:40:58-PDT-1996 

Program graph /proJects/3D/ahren~/DIP/one-operhit-slicelbit-slices.wk 

Performance prediction tool: 
Performance prediction results 

User directives: 
Assertions 
Preferences 

Scheduler: 
Scheduling results 

Processors used: 
*oddvar 
*puyallup 
*chela 
*manstash 
*norge 
*lutefisk 

Executor: 
Execution results 

Figure 7: Information log 

This completes Section 3. Section 4 presents results of a performance evaluation of the 
environment which include results on the efficiency of the experiment creation algorithm 
and the performance of the environment when executing experiments. 

27 



4 Results 

This section reports the results of a performance evaluation of the environment and survey of 
usefulness of the environment to scientists to support their computer-based scientific research 
work. The performance evaluation consists of three different studies. The first study explores 
the performance of the environment using the default scheduling directives on a diverse 
collection of image processing program graphs. Results are presented on the performance of 
the prediction tool, the scheduler and the executor. The second study investigates how well 
the environment responds to the user’s scheduling directives. The third study examines the 
performance of the environment on computer-based scientific experiments. 

4.1 Testing Method 

The environment was tested by scheduling and executing a collection of program graphs 
which are a part of the Digital Image Processing (DIP) course for the cantata/Khoros vi- 
sual programming environment. The course presents lessons on topics in image processing 
and provides forty-seven example program graphs for students to modify and execute. Top- 
ics include image representation, image manipulation, linear and non-linear operators and 
pattern classification. The average number of tasks in the program graph is 18 and the 
average number of dependencies is 18. This data shows that the program graphs have a 
significant number of tasks and dependencies. All tests were executed on a collection of nine 
ethernet-connected Sun SPARCstation-IPXs. 

4.2 Performance Study 1 - Default Scheduling Directives 

The first study explores the performance of the environment using the default scheduling 
directives. The goal of these directives is to minimize program completion time. The default 
directives and their purpose are now described. 

The first default directive requires the scheduler to only use processors with utilizations 
of less than or equal to three percent. This allows a program graph to execute efficiently 
without interference from other user’s programs. The directive works by requiring that 
all processors with utilizations greater than three percent have their task assignment list 
be empty (Le. equal to TJNKNOWN). The second defa.1Ilt8 directive directs t,he scheduler 
to prefer states with more scheduled tasks. This directive allows the search algorithm to 
make efficient progress. The next three directives emulate Wu and Gajski’s task scheduling 

‘The Digital Image Processing course can be found on the World Wide Web at 
http://www .eece.unm.edu/dipcourse/. 
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algorithm[29]. The goal of their algorithm is to minimize program completion time. The 
algorithm first determines an order in which to schedule the tasks. Then, as each task 
is scheduled, the algorithm chooses the processor that allows its earliest start time. The 
ordering is computed as follows: for each task, the length of the longest path between the 
task and any output task is calculated. The path length is the sum of the execution times 
and non-local communication times of the tasks and dependencies on the path. The tasks 
are arranged in non-increasing order based on their calculated path lengths. 

Using these scheduling directives, the environment executes the DIP course program graphs. 
Results are presented on the performance of the scheduler, performance prediction tool, and 
executor. 

Figure 8 shows the number of states explored by the scheduler for the program graphs. 
Notice that for most graphs the environment explores less than five hundred states. Thus, 
the scheduler, when using the default directives, only needs to explore a small portion of the 
search space. 

Figure 9 presents the speedup achieved by the environment using the default directives for 
the collection of program graphs. It is important to study the speedup achieved by 
the environment to assess the performance of the default directives. During the scheduling 
process, the utilization assertion selects the number of processors that have a utilization of 3 
percent or less. From this set of selected processors, the scheduler then schedules tasks on a 
subset of these processors. This subset is called the scheduled processors. When the number 
of scheduled processors is equal to the number of selected processors, it is possible that the 
scheduler could have used more processors to obtain better speedup. These instances are 
identified in Figure 9 by a dot in front of the program graph name. 

lo 

The speedup data is grouped according to the number of scheduled processors (i.e. all 
program graphs scheduled on one processor, all program graphs scheduled on two processors, 
etc.). Within each group, the data is sorted from worst speedup to best speedup. The 
average speedup achieved was 1.4 on an average of 2.8 scheduled processors. l1 Note that 
the speedup the scheduler can obtain is limited by the existing data-flow parallelism in the 
program graphs. It is also important to note that this speedup was achieved without user 
intervention. The user provides a program graph to the environment, and it is automatically 
scheduled and executed. 

'A worst case estimate on the average number of states in the search state is 18 * 918 = 16218. 
l0Note that the input data used by the program graphs in this test was expanded to be 36 times larger 

(i.e. a factor of six expansion on the row and columns of the input images) in order to simulate the massive 
data sizes used by scieriiisks such as geologists working on remote sensing problems. 

l'The geometric mean is used to average normalized values such as speedups. 
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4.3 Performance Study 2 - User Directed Scheduling 

The second study investigates how well the environment responds to the user's scheduling 
directives. Multiple tests were executed as part of this study: 

1. A program completion time preference test 

2. A processor finish time preference test 

3. A task ordering preference test 

4. A task-to-processor assignment preference test 

4.3.1 A Program Completion Time Preference Test 

The goal of this test is to minimize program completion time. The default directives fulfill 
this goal. This is evidenced by the speedup of 1.4 obtained on the program graphs in 
performance study 1. Additional speedups were also obtained using the default directives 
on a set of computer-based scientific experiments. This data is presented in Section 4.4. 

4.3.2 A Processor Finish Time Preference Test 

The goal of this test is to prefer the finish time of one processor be at least twice the finish 
time of another processor. The processor that finishes early can be used for other computing 
tasks the user has in mind. For the test, two directives are used in addition to the second 
through fifth default directives. The first new directive requires that the environment only 
schedule tasks on the processors oddvar and norge. The second new directive requests that 
the finish time of the processor oddvar be at least twice that of the processor norge. 

Figure 10 shows the results of the test. Notice that the finish time of processor oddvar is 
always at least twice the finish time of processor norge as the user requested.12 

"Note that the reported results are execution times. Therefore they show the accuracy of the performance 
prediction tool as well as the quality of the scheduler. That is, the scheduler might fulfill the user's directives, 
but if its performance prediction information was incorrect, the execution results would most likely not fulfill 
the user's directives. 
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4.3.3 A Task Ordering Preference Test 

The goal of this test is to prefer a particular ordering of task outputs. For the task ordering 
preference test, multiple directives are added in addition to the default directives. Each 
directive adds a dependency between a pair of output tasks to achieve this goal. 

For the test, the output tasks of each DIP course program graph were identified, a random 
ordering of the tasks was generated and this ordering was preferred. The environment ordered 
the output tasks of all tested program graphs as requested. Table 1 presents a sample of 
the results of the test. The first column of the table lists the name of the tested program 
graph. The remaining columns lists the finish time in seconds of the tasks the user preferred 
to be output first, second, third, etc. Notice that the tasks are output in the order the user 
requested. 

Table 1: Task ordering directive results 

Program 
Graph 

combine-zoom-number 
det ect-edges 
label-display-area 
spatial-resolution 

Time Time Time 
I I 

20 sec. 1 29 sec. I 29 sec. 

Time Time 
I I 

42 sec. I 43 sec. I 

4.3.4 A Task-to-Processor Assignment Preference Test 

The goal of this test is to prefer a particular task-to-processor assignment. For the test, a 
single directive is added in addition to the default directives. The new directive prefers that 
all “Display Image” tasks execute on the processor willow. 

The DIP course program graphs were scheduled and executed using these directives and all 
“Display Image” tasks of each program graph were scheduled on the processor willow. Figure 
11 shows an example result schedule. Notice that all “Display Image” tasks are scheduled 
on willow. Notice also that the default directives work in concert with the task-to-processor 
assignment directive to cause the tasks to be scheduled on multiple processors in parallel, 
reducing program coiiipleiioii iiiiie. 
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Figure 11: A schedule created using a directive which prefers all “Display Image” tasks be 
scheduled on the processor willow. 
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4.4 Performance study 3 - Computer-Based Scientific Experi- 
mentation 

The third study explores the performance of the environment on a set of computer-based 
scientific experiments. Experiments are created using the program graphs of the DIP course. 
For each experiment, an input task and non-input task are randomly chosen. In the exper- 
iment, four different versions of both the input and non-input tasks were tested. Figure 12 
presents the speedup of computer-based scientific experiments. The result data is presented 
in the same manner as the speedup data in Figure 9. The average speedup is 3.4 on an av- 
erage of 5.5 scheduler processors. Notice the significant increase in speedup of these graphs. 
This is because experimentation creates many independent execution paths. 

Figure 13 presents a comparison of the experiment creation algorithm described in this 
report to the simple method of replicating the entire program graph for each experimental 
substitution used by Nimrod[4]. This graph shows the finish time of the experiment created 
with the experiment creation algorithm described in this report along with an estimate of the 
finish time of an experiment created with the simple method. The estimated finish time for 
the simple method is calculated by multiplying the time to run the original program graph 
on a single processor by the number of replications (i.e. in this case, 4 x 4 = 16 replications). 
This is the time required to execute the experiment on one processor. This time is divided 
by the number of scheduled processors used when scheduling the experiment created by the 
experiment creation algorithm described in this report. This provides the optimal finish 
time possible for the simple method. Notice that because the experiment creation algorithm 
described in this report reduces the workload required to create experimental results, its 
finish time is usually less than the optimal finish time of the simple method. 

4.5 User surveys 

A survey was given to potential users of the scientific computing environment in order to 
assess its usefulness. Three vision researchers and a geologist who works on remote sensing 
applications saw a demostration of the environment and completed a survey. In summary, 
the users felt the environment would be useful for their computer-based scientific research 
work. Specifically, in response to the question, “If you were running programs on a shared 
distributed network of workstations, is the scheduler a tool you would find useful for your 
scientific research work?” the geologist responded “Yes - this would be useful now in the 
remote sensing 1a.b as many users attempt, too sham a network of workstations.”. The survey 
also tried to assess how familiar the scientists were with the tools used in the environment. 
Most had used a visual programming environment but not the relational database language 
SQL. They did not think that this would be a hinderance to learning the scheduling language, 
however. In fact, in response to the question, “Is the scheduling language easy to learn and 
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Figure 12: Speedup of experiments 
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use?” all responded affirmatively. The users were also asked to order the usefulness of a 
collection of specific directives. The following list summarizes the user’s choices: 

0 Minimizing program completion time: 1 

0 Controlling task/processor assignments: 2 

0 Output ordering: 3 

0 Controlling processor utilization: 4 

0 Time-related directives (after 3:00, before 6:OO): 5 

Finally, the users were asked: “Is the support for computer-based scientific experimentation, 
a feature you would find useful for your scientific research work?” and most scientists 
responded positively with specific examples of research problems which would benefit from 
automatic experiment creation and execution. The full results of the geologist’s survey is 
presented in Appendix A. 

4.6 Summary 

This completes the performance study of the environment. In summary, the study has shown: 

0 Using the default directives, an average speedup of 1.4 on an average of 2.8 scheduled 
processors is achieved on the DIP course program graphs. 

0 The environment is responsive to the user’s scheduling directives. In a variety of 
tests including a processor finish time test, task ordering test and task-to-processor 
assignment test the environment fulfilled the user’s directives for all program graphs. 

0 The environment achieves very good performance on scientific experiments. An average 
speedup of 3.4 on an average of 5.5 scheduled processors is achieved. In addition, the 
experiment creation met hod presented in this report creates more efficient experiments 
than the simplemethod used by the Nimrod environment. On average, the experiments 
execute 2.1 times faster than an optimal execution of the experiments generated by 
the simple method. 

0 A survey was given to potential users of the scientific computing environment in order 
to assess its usefulness. In summary, the users felt the environment would be useful 
for their computer-based scientific research work. 
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5 Conclusions and Future Work 

This report describes a computing environment which supports computer-based scientific 
research work. Key features include support for automatic distributed scheduling and execu- 
tion and computer-based scientific experimentation. A new flexible and extensible scheduling 
technique that is responsive to a user’s scheduling directives, such as the ordering of pro- 
gram results and the specification of task assignments .and processor utilization levels, is 
presented. An easy-to-use constraint language for specifying scheduling directives, based on 
the relational database query language SQL, is described along with a search-based algorithm 
for fulfilling these directives. A set of performance studies show that the environment can 
schedule and execute program graphs on a network of workstations as the user requests. An 
algorithm for automatically generating scientific experiments is presented. Experiments pro- 
vide a concise method of specifying a large collection of parameterized program executions. 
The environment achieved significant speedups when executing experiments; for a large col- 
lection of scientific experiments an average speedup of 3.4 on an average of 5.5 scheduled 
processors was obtained. 

Future work on the environment could consist of a high-performance implementation of the 
scheduler and extensions to support other types of parallelism. A more efficient implementa- 
tion of the scheduler would allow the environment to quickly find solutions to very complex 
directives. Ideas for a more efficient implementation include using an imperative program- 
ming language, parallelism and incremental user directive calculations. Also, in addition 
to data-flow parallelism, the environment could be extended to support operator, pipeline 
and loop parallelism. The performance prediction tool would be extended to predict the 
performance of parallel and pipelined tasks. The scheduler and executor would need to be 
extended to handle these type of tasks as well. 
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A A Survey of Users of the Scientific Computing En= 
vironrnent 

A.l  The survey results of Milton Smith, geologist, member of 
the University of Washington EOS Amazon project team 

A.l . l  Requirements 

Will a computing environment which fulfills the stated requirements (i.e. exploratory pro- 
gram creation, high-performance program execution, responsive to scheduling directives) be 
useful to you in your scientific research work? 

Yes - it will assist in utilizing the computing resources available in the Remote 
Sensing Lab. 

A.1.2 Test programs 

Are the Digital Image Processing course program graphs representive of the types of programs 
you use in your scientific research work? 

They are representative but not comprehensive. Research involves the continu- 
ous ingestion, evolution and development of new algorithms. 

A.1.3 Visual programming environment 

Is the visual program environment a tool you would find useful for expressing programs for 
your scientific research work? 

Visualization is very important to  communicating research results. 

A.1.4 Scheduler 

1. If you were running programs on a shared distributed network of workstations, is the 
scheduler a tool you would find useful for your scientific research work? 

Yes - this would be useful now in the remote sensing lab as many users 
attempt to  share a network of workstations. 
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2. If you were running programs on a shared distributed network of workstations, which 
of the following directives do you think would be of useful to you? 

0 Output ordering: 

0 Controlling task/processor assignments: 3 

0 Controlling processor utilization: 4 

0 Minimizing program completion time: 1 
0 Time-related directives (after 3:00, before 6:OO): 2 

0 Other directives you create: 

3. Are you familiar with the database query language SQL? 
Yes to a limited extent. 

4. Do you feel that the scheduling directive language would be easy to learn and use? 

Yes - no problem 

5. Any other comments you have about the scheduler? 

None 

A.1.5 Distributed program executor 

Is the distributed program executor a tool you would find useful for your scientific research 
work? 

Yes - it makes sense in terms of our distributed computing resources. 

A.1.6 Computer-based scientific experimentation 

1. Is the support for computer-based scientific experimentation, a feature you would find 
useful for your scientific research work? 

This is definitely the wave of the future. We are interested. 

2. Any other comments about the environment’s support for computer-based scientific 
experimentation? 

Make it easy for the user community to take responsibility for its evolution. 
Simple modular interfaces that allow expansion of capabilities. 

44 



A.1.7 Improvements 

Do you have any suggestions for improving any component of the environment so that it 
would be useful to you for your scientific research work? 

Actually use it. 
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