
Report Documentation Page

. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

4 Visual Database System for Image Analysis on Parallel
Computers and its Application to the EOS Amazon Project

,. Title and Subtitle

6. Performing Organization Code

5. Report Date

'. Author(s)
-inda Shapiro

8. Performing Organization Report No.

5. Supplementary Notes
This work was performed under a subcontract issued by

Universities Space Research Association
10227 Wincopin Circle, Suite 21 2
Columbia, MD 21 044 Task 21

1. Performing Organization Name and Address
Jniversity of Washington
$917 University Way NE
Seattle, WA 981 05-6692

2. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Washington, DC 20546-0001

NASA Goddard Space Flight Center
Greenbelt, MD 20771

6. Abstract

10. Work Unit No.

11. Contract or Grant No. NAS5-32337
USRA subcontract No. 5555-21

13. Type of Report and Period Covered Final
August 1993 - July 1996

14. Sponsoring Agency Code

The goal of this task was to create a design and prototype implementation of a database environment
that is particular suited for handling the image, vision and scientific data assoicated with the NASA's
EOC Amazon project. The focus was on a data model and query facilities that are designed to
execute efficiently on parallel computers. A key feature of the enviroment is an interface which
allows a scientist to specify high-level directives about how query execution should occur.

7. Key Words (Suggested by Author@))

latabase enviroment for EOS Amazon project

18. Distribution Statement

Unclassif ied--Unlimited

9. Security Classif. (of ihis report)
Unclassified

20. Security Classif. (of ihis page) 21. No. of Pages 22. Price
Unclassified 1

A Visual Database System for Image Analysis
on Parallel Computers and its Application

to the EOS Amazon Project
Subcontract No. 555-21

Linda G. Shapiro, Steven L. Tanimoto, and James P. Ahrens

Department of Computer Science and Engineering

University of Washington

Box 352350, Seattle, WA 98195-2350

Final Report

October, 1996
1994 - 1996

1 Introduction

1.1 Task Objective

The goal of this work was to create a design and prototype implementation of a database
environment that is particular suited for handling the image, vision and scientific data asso-
ciated with the NASA’s EOS Amazon project. We are focusing on a data model and query
facilities that are designed to execute efficiently on parallel computers. A key feature of the
environment is an interface which allows a scientist to specify high-level directives about how
query execution should occur. Using the interface does not require an understanding of the
intricate details of parallel scheduling.

1.2 Introduction

This report summarizes research activities to date and serves as the final 3-year subcontract
report. In the first year, we interviewed NASA scientists in order to understand their re-
quirements and formulated an initial design for the database environment. In the second
year, we refined the design and implemented a prototype. In the third year, we evaluated
and documented the environment.

Our work was done in conjunction with the NASA Earth Observing System (EOS) Amazon
Project at the University of Washington. The mission of the EOS Amazon project is to
contribute to understanding the dynamics of the Amazon system in a natural state, and
how it would evolve under possible change scenarios (from instantaneous deforestation to
more subtle longer term climatic/chemical changes). The overall goal of the project is to
determine how extensive land-use changes in the Amazon would modify the routing of water
and its chemical load from precipitation, through the drainage system, and back to the
atmosphere and ocean. The work is being undertaken by a number of groups here at the
University of Washington including researchers in Hydrology headed by Thomas Dunne, in
Biogeochemistry headed by Jeffrey Richey and Remote Sensing headed by John Adams.

1.3 Scientists’ Requirements

We interviewed the NASA scientists in order to understand their computing requirements.
The scientists are working with data sizes on the order of hundreds of megabytes and pro-
cessing algorithms whose completion time is on the order of minutes to hours. The scientists
identified the following desirable properties for a computing environment to support scientific

1

research:

0

0

0

0

0

1.4

Exploratory - The computing environment should facilitate the scientist’s exploration
of different algorithmic solutions.

Responsive - Algorithm results should be returned as quickly as possible especially
if the scientist is waiting for them.

Satisfies user requirements - The environment should schedule and execute al-
gorithms based on the scientist’s requirements for resource utilization and algorithm
execution. For example, a scientist might like to specify which results are most impor-
tant, what processing resources are available and how to utilize these resources.

High-level - The environment’s interface should let the scientist specify a high-level
description of his algorithms and requirements. The environment should provide sup-
port for scientists who are not computer experts.

Organized - The computing environment should record and organize the scientist’s
computer-based research work for later retrieval.

Approach

The scientific computing environment described in this report has these desirable properties.
The approach we used to create this environment contains the following steps:

1. An identification of how existing software tools fulfill the requirements described above.

2. Creation of new algorithms and tools which fill the gap left by existing software tools.

3. Integration of all these tools into a seamless whole.

In summary, we have identified two keys areas which are not well supported by existing
software. These areas are:

1. Support for automated parallel program scheduling and execution.

To achieve high-performance, programs are scheduled and executed on multiple proces-
sors. Parallel scheduling is a complex problem and automation is a welcome solution
for scientists. One disadvantage of traditional tools is that they optimize for a fixed
collection of preset scheduling goals. Another is that they do not fully automate the

2

scheduling process. An automated scheduling system which is responsive to the scien-
tists’ scheduling needs would improve both scientists’ satisfaction with their computer
systems and their productivity.

2. Suppor t for scientific experimentation.

An environment needs to provide a computer-based framework for scientists’ interac-
tions. One typical interaction that scientists perform is parameterized experimentation
with their programs. This experimentation helps the scientist to understand the effects
of input parameter and coding changes. With automated support scientists could focus
on analyzing their experimental results instead of the process required to generate the
results.

1.5 Background

This section presents a high-level summary of existing software tools including programming
languages, systems and databases, which scientists use to support their computer-based
research work. This overview details how existing software tools fulfill the scientists’ require-
ments and where they fall short. In addition, it provides a context for understanding how
the computing environment described in this report builds upon and relates to existing tools.

1.5.1 Languages

Scientists have traditionally used sequential, imperative programming languages such as
FORTRAN to express their scientific algorithms. Although FORTRAN is a low-level lan-
guage it is the language of choice for most scientists. One reason for this is that it is fairly
straightforward to express efficient programs based on arithmetic expressions. It is one of
the few programming languages which provides standardized support for complex arithmetic.
Another reason is there is a legacy of FORTRAN programs that has been developed by sci-
entists over the years. Scientists are very interested in reusing these programs, leveraging
their :.:ark upon these existing successful programs.

An important advance in programming languages for scientists is visual programming lan-
guages. One of the most successful type of visual languages are data-flow-based visual pro-
gramming languages. Examples include languages such as AVS I281 and Cantata/KHOROS

nipulate the program graph interactively, by adding and deleting tasks. Users have access to
a library of existing tasks which are ready for use in their programs. These languages simplify
program creation and the reuse of existing tasks. They support exploratory programming
because changes can easily be made to programs without re-compiling.

[23]. Programs are expressed graphicdy 8s data-fl=w-based pregram graphs. users Girl z z -

3

One useful addition to a visual programming environment is support for parallel program
scheduling and execution. Researchers at the Boeing Company created a data-flow based
visual programming environment called Access Manager which allows distributed task ex-
ecution [24, 91. The first version of Cantata/KHOROS (version 1.0) also allows users to
execute different tasks of their programs on different processors. Users are require to specify
the details of this assignment. CM/AVS is an extension of AVS in which a parallel ver-
sion of program tasks can be executed on the Thinking Machine CM-2 or CM-5 parallel
computers[2]. Support for parallel program execution is a necessary first step in the process
of providing support for automated parallel scheduling and execution.

1.5.2 Systems

Another way a scientist can improve his program’s efficiency is to use distributed system
software tools, such as Condor [19] or DQS. These tools execute a set of independent jobs on
networks of workstations. The scientist formulates his program as a collection of independent
jobs and submits them to a job queue. The tool then automatically schedules and executes
the jobs on a set of available workstations. Work continues on the creation of efficient
distributed systems support tools. Recent research focuses on methods of identifying and
using idle workstations and avoiding scheduling conflicts[5].

There are many task scheduling algorithms that can be used to schedule the tasks of a
data-flow program graph in parallel. Task scheduling algorithms attempt to maximize the
number of tasks executing in parallel while minimizing inter-processor communication costs.
A taxonomy of task scheduling algorithms can be found in [8]. Lewis et al [12] also provides
a useful introduction to task scheduling. Since most types of task scheduling problems are
NP-complete, solution algorithms are based on heuristics. Traditionally these heuristics
optimize for a fixed preset collection of goals. This is a problem if the scheduling goals of
the algorithms conflict with the scheduling goals of the user.

1.5.3 Databases

Databases provide support for storing, organizing and accessing scientific data. Key features
of a database are its data model, which describes the stored data’s relationships and seman-
tics, and its query model, which describes how to retrieve the stored data. The relational
data model represents data by tables of attributes. It is a simple model and popular for rep-
resenting business data. Scientific data usually has more complex relationships than can be
expressed using the relational model. Another concern is that scientific data, such as images
and multi-level data structures, do not map well to relational tables. A second popular data
model is the object-oriented model. Data is represented as a collection of data-structure-

4

based objects. The object-oriented model usually lacks effective query models, because the
structures it represents are so diverse that it is difficult to query them efficiently.

Recent research has focused on creating a data model and database system which supports
scientists’ needs. Examples include GAEA [15], MDBS 1271 and DEVR [26]. These systems
combine features of the relational and object-oriented data model, striving for the simplicity
of the relational model with the expressiveness of the object-oriented model.

1.5.4 Constraints

A constraint expresses a relationship the user would like to hold in the solution of a particular
problem. The environment described in this report uses constraints to express the user’s task
scheduling preferences. Related environments that use constraints include geometric layout
systems[22, 61, user interface builders[21] and machine vision systems [25].

An active area of research in constraint satisfaction is how to solve over-constrained systems
(i.e. a set of constraints for which there is no solution that satisfies all constraints)[l6].
Freuder and Wallace [14] adapt standard backtracking and consistency checking algorithms
to satisfy a maximal subset of the constraints. Borning et al describe another solution to this
problem: the user arranges his constraints in a hierarchy[7]. In the event that all constraints
cannot be satisfied, the constraints at a higher level in the hierarchy are satisfied before
constraints at a lower level in the hierarchy. The constraints at the top level are called
requirements (or hard constraints) and must always hold. The constraints at the lower
levels are called preferences (or soft constraints) and are satisfied based on their level in the
hierarchy. Constraints within a level are solved based on a relative weighting provided by
the user. The user-directed scheduler described in this report fits into this paradigm. The
scheduler has two levels: the requirement level and one preference level. Preferences are
satisfied based on their relative weights. Future work could consist of allowing the user to
express a hierarchy of constraints to the scheduler, so that the user can control the order of
constraint sat isfact ion.

1.5.5 Artificial-Intelligence-based Scheduling

Scheduling is the process of assigning a set of jobs to set of limited resources over time.
The quality of a schedule is usually defined by a collection of user-defined criteria and
constraints. Artificial Intelligence (AI) is the study and creation of theory, algorithms and
computer systems that use knowledge and encoded intelligence to solve complex problems.
Thus, scheduling is a natural area of interest for researchers in Artificial Intelligence.

AI researchers have built scheduling systems for a number of specific domains including

5

systems for scheduling telescope usage [17], space shuttle maintenance [30], manufacturing
[13] and defense logistics [lo]. AI-scheduling solution methods are characterized by a number
of features. Constructive methods build a complete schedule while repair-based methods
incrementally update an existing but flawed schedule until a valid schedule is obtained. Fox’s
ISIS manufacturing scheduling system use a constructive solution method [131. It iteratively
builds a complete schedule by exploring a search space of partial schedules. It uses a beam-
search which is guided by system and user constraints in order to find a schedule. Repair-
based methods are useful for domains which change significantly over time. Repair-based
methods only need to reschedule tasks affected by an external change to the problem. Zweben
et al describe a repair-based scheduling system for space shuttle repair and maintenance[30].
It also uses a search-based solution method but explores a search space of complete schedules.
A disadvantage of repair-based methods is that they usually use a local search-based solution
method and therefore do not provide globally optimal schedules.

Many AI schedulers use constraints to express requirements and preferences on the problem
domain. A characteristic of a scheduler is how it relaxes the problem constraints when they
are in conflict in order to find a solution. Different methods include satisfying a maximal
subset of constraints[l7], using a fallback constraint if the original constraint cannot be
satisfied [13], placing priorities on constraints and using a hierarchy of constraints[7].

The goal of this work is to create an automated task-scheduling environment. A critical
component of the environment is a unique AI task-scheduler which allows the user to ex-
press task-scheduling constraints. The task-scheduling domain is different than other studied
AI scheduling domains. For example, there are significant differences between the tasks in
the task-scheduling domain and the jobs in the manufacturing domain. Tasks in a task-
scheduling domain can usually be assigned to any processor whereas jobs in the manufactur-
ing domain are assigned to specific machines. In the task-scheduling domain, if dependent
tasks are scheduled on different processors a communication cost is incurred. There is no
similiar cost in the manufacturing domain. Furthermore, tasks in the task-scheduling do-
main usually do not have start and finish deadlines as jobs do in the manufacturing domain.
Because of the many required manufacturing constraints, problems in the manufacturing
domain are usually over-constrained. Therefore solution methods usually focus on finding
an acceptable solution. Problems in the task-scheduling domain are usually significantly less
constrained and therefore this work uses a constructive solution method which can often
provide an optimized solution to its users.

1.5.6 A related environment

The members of the Intelligent Data Management Project led by Nicholas Short at NASA
Goddard are working on a prototype environment which can process the massive datasets
generated by satellites that are part of NASA’s Earth Observing System [18]. The envi-

6

' 5

ronment supports the querying, real-time processing and storing of satellite image data. In
order to cope with the changing volume of incoming satellite image data by a given deadline,
the environment has access to different versions of processing algorithms, which offer varying
tradeoffs of result quality for shorter completion times.

The major subsystems of the environment are a set of processing request queues, a planning
system, an execution engine/monitor and an object database.

0 The processing request queues accept processing requests from users. Their requests
are high-level and declarative allowing a user to express what processing should be done
rather than how. For example, a user can specify that a satellite image be registered
without specifying a specific algorithm to do the registration. A user can also specify
a completion deadline for a processing request.

0 The planning system inputs a processing request and selects and composes a set of
tasks into a program graph which fulfills the user's request. The tasks are selected
from a collection of Khoros tasks, LAS tasks and user-defined tasks. Note that there
are many tasks available to the planner, that perform the same type of operation
but have different properties. For example, there may be multiple registration tasks:
one which processes a specific image type, one which executes very quickly and one
which produces registrations of very high quality. Task properties are formalized using
conditions. Each task is annotated with a set of preconditions which must be true in
order to execute the task and postconditions which are true after the task has executed.
The planner unifies these conditions to create a program[3].

0 The execution engine executes the program generated by the planner on a network of
workstations. It uses a dynamic scheduling technique developed by Ma et al [20] to
schedule based on network traffic, processor utilization and task dependencies.

In summary, Short et aZ's environment supports automatic program creation by allowing
users to express requests for processing which are fulfilled by a planner. Scheduling requests
are limited to completion deadlines. In contrast, our own work allows its users to express
a full range of task-scheduling directives including the ordering of program results and the
specification of task assignments and processor utilization levels. In addition, this work
supports computer-based scientific experimentation.

1.6 Structure of the Environment

Having reviewed existing scientific software tools, we will now describe the components of
the scientific computing environment presented in this report:

'LAS is a geographic information system package used to process Landsat images.

7

0 Data-flow based visual programming environment - The scientist uses a visual
programming environment to construct his programs.

0 Scientific database - A database is used to organize and store information about
program graphs and results.

0 Distributed executor - The executor executes a program graph in parallel on a
network of workstations in order to quickly generate the scientist’s results. It handles
inter-processor communication between distributed tasks in the program graph and
records performance information for use by the performance prediction tool.

0 Scheduler - The scheduler automatically schedules a program graph on a network of
workstations based on the scientist’s directives. The scientist’s directives are specified
declaratively as constraints.

0 Performance prediction - Program performance prediction is necessary for efficient
scheduling. The scheduling algorithm uses performance estimates to make scheduling
decisions.

A diagram of the scientific computing environment is shown in Figure 1. The diagram
shows the data-flow between the components of the environment. In this report, data-flow
diagrams are represented visually with boxes representing operations and ovals representing
data. Directed arrows define the flow of data through the data-flow diagram.

Data input to the environment includes resource information, a program graph and the user’s
scheduling directives. Available processors are specified initially by the system administra-
tor. The program graph is specified using a visual programming environment. The user
scheduling directives are specified using a constraint-based scheduling language. The pro-
gram graph and resources are used by the automatic performance prediction tool to create a
cost model of program execution and processor utilization. The scheduler inputs the resource
information, the program graph, the user’s scheduling directives and performance estimate
information. The scheduler outputs a schedule which fulfills the user’s scheduling directives.
The program is then executed on a network of workstations using the distributed executor.
During execution, performance data is collectcd and sent to the performance database for
future use by the performance prediction tool.

1.7 Outline

Section 2 describes a problem space representation for task scheduling. This goal-oriented
representation facilitates the specification of scheduling directives. It contains the definition
of a language for specifying these directives and a number of examples, which show how to

8

Figure 1: Structure of the scientific computing environment

9

use the language to specify directives for task ordering, task placement, processor utilization
and load balancing. In addition, it describes a search-based algorithm for fulfilling a user’s
scheduling directives. Section 3 describes the prototype and an algorithm for automatically
creating parameterized scientific experiments. Section 4 reports the results of a study of the
environment performance. Results are presented on the performance of the environment on
a large number of realistic imaging graphs and on how well the environment fulfills the user’s
scheduling directives. Section 5 summarizes and describes future research directions.

2 User-direct ed scheduling

To achieve high performance, programs are scheduled and executed on multiple processors.
Parallel scheduling is a complex problem and automation is a welcome solution for scientists.
One disadvantage of traditional tools is that they optimize for a fixed set of preset scheduling
goals such as simply minimizing completion time. Another is that they do not fully automate
the scheduling process. A method for automatic scheduling which is responsive to their
scheduling needs would improve both scientists’ satisfaction with computer systems and
their productivity.

This chapter describes an automatic scheduling method that was designed to meet these
needs. First, a problem space representation for scheduling is described. This goal-oriented
representation facilitates the specification of scheduling directives and is amenable to artificial-
intelligence-based solution techniques including search and planning. Then a language for
specifying scheduling directives is defined. Finally, a search-based algorithm for determining
a schedule is described.

2.1 Preliminaries

A program graph consists of a set of functional tasks and set of input and output dependencies
between these tasks. Figure 2 shows an example of a simple program graph with two tasks,
one which inputs an image and another which displays an image. The output of the Input
image task is used as input by the Display image task.

Task scheduling is the process of assigning and ordering the execution of tasks from a pro-
v gram graph onto a collection of processors. The parallel task execution model used by the
environment assumes that each processor can run one task at a time. To execute a task on
a processor:

1. All inputs that are the outputs of tasks executed on another processor in the distributed

10

Figure 2: A program graph

network are received in parallel. The processor blocks and waits until all inputs are
received.

2. The task is executed.

3. All outputs that are inputs of a task executed on other processors in the distributed
network are sent to these processors in parallel.

Blocking communications assure the correct parallel execution of the task graph by guaran-
teeing a task is not executed until all its inputs are available.

2.2 A Problem Space Representation for Task Scheduling

This section describes a problem space representation for task scheduling. A problem space
is defined as a set of states and operators that moves between these states. A particular
problem to be solved in a problem space is known as a problem instance and is defined by
an initial state and a set of goal states.

2.2.1 States

A state represents an empty, partial or complete schedule of tasks to processors. It must
represent task and processor scheduling information as well as other related information
such as estimates of scheduled task start and finish times. A state consists of a collection
of t.a-sks, a collectio~l of task depegdenciec a d a co!!ection of pmcessms. Ekments of these
collections are entities. Each entity consists of a set of attributes, each of which consists
of a name and type. Attributes are detailed below using the following syntax: <attribute
name>:<attribute type>; descriptive comment. The tasks, processors and task dependency
entities are as follows:

11

Task Entity

id:integer
name : string
exec-time:integer

start-time: integer
I

finish-time:integer ¶

assigned-proc-id:integer I

9

Processor Entity

id:integer
name:string
finish-time:integer

assigned-task-ids
:list

uti1:integer

a unique task id
the task’s name
the task’s execution time
Note: all timings are expressed in seconds
the task’s start time
Note: the start of the schedule is time 0
the task’s finish time
the id of the processor this
task is assigned to

; a unique processor id
; the processor’s name
; the total running time of
; the tasks scheduled on this processor
; assuming no gaps or idle periods
; an ordered list of tasks scheduled on
; this processor
; the processor’s CPU utilization

Dependency Entity

task-id:integer ; a task id
dep-task-id:integer ; the id of the task that depends on

; the output of the task with task-id
; as input

; dependency data
; Note: if no communication is requiredthan
; corn-time is 0.

non-local-comm-time:integer ; the time to communicate this
; dependency data to another processor in
; in the network

comm-time:integer ; the time to required to communicate this

12

2.2.2 Initial State

The initial state has the following values initialized:

0 There is a task entity for each task in the input data-flow program graph.

0 There is a processor entity for each identified available processor.

0 There is a dependency entity for each dependency in the program graph.

All other attributes of these entities are assigned to a special symbol which represents un-
known values.

2.2.3 Operators

An operator makes a transition from one state to another state. There is one operator in the
problem space representation for task scheduling. Its name and type is: schedule-task-to-
processor(integer, integer, state) + state. The result of executing the call, schedule-task-
to-processor(task-id, proc-id, original-state) + new-state is that the task identified by task-id
is scheduled on the processor identified by proc-id.

2.3 Goal State

The conditions required of a goal state are:

0 Each task is scheduled to a processor.

0 The task dependencies are respected by the schedule. That is, if a task is dependent
upon another task for input, it runs after that task has completed.

This completes the specification of a problem space representation for task scheduling.

2We will use the following syntax to describe function types in this document: <function name>(<pa.ra.m
type 1>, <param type 2> etc.) -+ <return param type>.

13

2.4 A Language for Expressing Scheduling Directives

The problem space representation for task scheduling defines any complete valid schedule
of tasks to processors as a goal state. Traditional task scheduling algorithms add another
condition to these criteria. They optimize performance by working to minimize a partic-
ular performance variable, such as processor completion time, or task finish times. These
optimizations are always hard-encoded into the scheduling algorithm, and these algorithms
do not allow other optimization criteria to be used. In this section, I describe a language
in which a user can specify a variety of optimization criteria, by describing relationships he
would like to hold between values in the goal state and values he would like to be minimized
or maximized in the goal state. These s c h e d u h g directives allow the user to optimize for
performance as well as specify other desirable properties of a schedule including the order-
ing of task outputs, specific task to processor assignments and specific processor utilization
levels.

2.4.1 Preliminaries

The scheduling language is an extension of SQL [l, 111 a relational database query language.
SQL is the pre-eminent database language in use today, enjoying wide acceptance among
non-computer experts because of its ease of use.

In SQL, a relation is a collection of entities with the same sets of attributes. A state in the
task scheduling problem space representation is composed of three relations: tasks (task),
processors (proc) and dependencies (dep).

A basic SQL expression has three clauses: select, from and where. The from clause
specifies the relations to be operated on. The where clause specifies a boolean predicate
on entity attributes which are used to select entities from the relations. The select clause
specifies the resulting relation in terms of the attributes of the selected entities. The syntax
is:

select (attributes from the selected e n t i t i e s)
f rom (relations)
where (boolean predicate on the ent i ty attributes of the re lat ions)

The scheduling language defines importance and type constraints. Importance constraints
are either requirements or preferences. Requirements must always hold, preferences are
fulfilled based upon user-defined priorities. Constraint types include relationship-based con-
straints that express a desired relationship between attributes of relations, value-based con-
straints that express a desire for a value to be minimized or maximized, and ordering-based

14

constraints that express a desire for a particular ordering on a relation. The basic syntax
for constraints is:

assert (relat ionship I value I ordering) (requirement I preference)

< s p e c i f i c assert ion constructs)
(

1

The bracket and slash notation used above (i.e { A l B IC}) means that one of the elements in
the collection of choices is utilized. For example, valid constraints include: assert value
requirement and assert ordering preference.

Selecting elements from a collection An SQL expression can be used to select entities
which pass a given test. Using the * symbol in the select clause returns all the attributes of
an entity. Note that, the attributes of a relation are referred to by appending the attribute
name to the entity type name. For example, the id attribute of the task: entity is task-id,

Aggregating the elements of a relation SQL also provides a way to compute a single
summary value from a collection of attribute values. In the select clause the user identifies
a specific attribute to aggregate. Possible aggregate functions include: average, minimum,
maximum, sum and count.

2.4.2 Requirements

The first type of scheduling directive is a requirement. A requirement guarantees that a
user-specified constraint will hold in a goal state. Requirements are specified and tested
with a requirement function.

Relationship requirements A relationship requirement guarantees that a user-specified
relationship will hold in a given state. The name and type of the relationship requirement
function is:

assert relationship requirement (expression, test, expression) -P boolean.

It returns TRUE when applied to a valid state. For the call, assert relationship
requirement (expression- 1, test- I , expression-2):

15

0 expression-1 and expression-2 are SQL expressions. The function applies the SQL
expressions to the given state. The returned values are used to create relation-1 and
relation-2.

0 test-I is run on each element of the cross product of the previously created resulting
relations (i.e. all possible pairs of an input value from the first relation and an input
value from the second relation). If any test returns FALSE the requirement is FALSE.

Example 1 - Ordering task output generation time To assert that the task with id
1 finishes before the task with id 2 the following requirement is defined:

assert relationship requirement (
(select task-finish-time from task where task-id = I) <
(select task-finish-time from task where task-id = 2))

Example 2 - Deadlines on task output generation time To assert that all tasks
finish before a 30 seconds deadline the following requirement is defined:

assert relationship requirement (
(select task-finish-time from task) < 30)

Example 3 - Controlling task/processor assignments
run on lillith the following requirement is defined:

To assert all FFT tasks are

assert relationship requirement (
(select task-assigned-proc-id from task where task-name = “FFT’ ’) =
(select proc-id from proc where proc-name = “lillith’ ’1)

Ordering requirements An ordering requirement function provides a means for asserting
relationships which hold on an ordered sequence of values. Thus, the relationship test holds
between each element of the sequence and any subsequent elements. Its name and type are:

assert ordering requirement (sequence, ordering-test) + boolean.

For the call, assert ordering requirement(sequence-1, ordering-test-1):

16

0 The ordering-test-1 is applied to sequence-1. The order-test clause is an extension
to standard SQL, allowing the user to specify a sort order to test. The order-test
clause identifies the attributes to test and whether to test if the sequence is sorted in
ascending or descending order. If any entity of the sequence is out of order the ordering
test returns FALSE.

Example - Ordering task output generation time To force the tasks to be scheduled
in order of id number the following requirements is made:

assert ordering requirement (
(select * from task where task-assigned-proc-id <> UNKNOWN)
(order-test task-id asc))

Ordering-based requirement functions are useful for scheduling tasks to processors in a par-
ticular order. Many traditional task algorithms define an order in which to schedule tasks.
With ordering-based requirement functions this behavior can easily be mimicked.

Additional goal state condition Requirements add an additional condition to the prob-
lem state representation of a goal state: when applied to a goal state all defined relationship
and ordering-based requirements must be TRUE.

2.4.3 Preferences

Relationship and Ordering Preferences The second type of scheduling directive is
a preference. A preference specifies a relationship the user would like to hold in a goal
state or a value the user would like to minimize or maximize in the goal state. There are
relationship and ordering based preference functions and they are very similiar to relation
and ordering requirement functions. The only difference between these types of preference
and requirement functions is their return values. Requirement functions return TRUE if
all tests are passed and FALSE otherwise. Preference functions return the number of failed
tests. The name and type of the relationship and ordering preference functions are:

3Note that the order-by clause creates a sequence from the unordered relation using one key and the
order-test clause tests if the sequence is ordered based on a different key.

4The order-by clause considers entities out of order if the task-assigned-proc-id value of the task earlier in
the sequence is UNKNOWN and the task-assigned-proc-id value of the task later in the sequence is known.

17

assert preference order(expression, ordering-test) + integer. 5

The ordering preference function computes for each element in the sequence the number
of subsequent elements that should precede it in the specified ordering. The sum of these
values is returned by the function. This calculation places decreasing emphasis on the correct
ordering of entities as their distance from the beginning of the sequence increases.

Example 1 - Balancing the task load on processors To specify a preference for a
balanced task load among the processors the following function is specified:

assert relat ionship preference
a l l (select task-start-time from task) <=
a l l (select proc-finish-time from proc)

This expression states that there is a preference that all task start times be less than the total
running time of each processor. The intuition for why this balances workload is that in an
unbalanced workload, tasks start on some processor after other processors have finished. Note
that this relationship should not be expressed as a requirement because when communication
costs are excessive, optimal schedules are not balanced.

Example 2 - Controlling processor utilization To specify a preference for the proces-
sor calvin to be assigned at least twice as much task load as the processor lillith the following
function is specified:

assert relat ionship preference
2 * (select proc-finish-time from proc where proc-name = ‘ ‘ l i l l i t h ’ ’) <=

(select proc-finish-time from proc where proc-name = “Calvin”)

Value-based preferences Value-based preferences allow the user to specify values they
would like minimized or maximized in the goal state. The name and type of the value-based
preference function is:

assert value preference(optimization-type, integer, function, integer, integer) + integer.

For the call assert value preference(opt-type, priority, value-function, min, max):

5Requirement~ can be implemented with preferences as follows: assert relationship requirement
calls assert relationship preference with the same parameters. If assert relationship preference
returns 0 (tests failedj then return TRUE else return FALSE.

18

0 opt-type states whether to minimize or maximize the value function.

0 priority is a measure of the importance of fulfilling this preference. Specifically, priority
values have the following semantics: The relative importance of a particular preference
is equal to its priority value over the total of all priority values. For example, if three
preferences have priorities, 1, 2, 1, the relative importance of the preferences is 0.25,
0.50, 0.25. For example, when choosing between two goal states, the environment
will prefer a state which fulfills the second preference but not the first or third over a
state which fulfills the first preference but not the second or third because the second
preference is twice as important to the user as the first.

0 value-function is a SQL expression which when applied to a given state returns an
integer value.

0 min, mu2 are estimates of lower and upper bounds on the result of the value-function.
These values are used by the environment to scale the result of the value-function so
that comparisons with other value-function results make sense.

Example 1 - Minimizing processor run times To specify a preference for minimizing
processor run times the following function is specified:

assert value preference (
opt-type = minimize, priority = I,
function = (select max(task-finish-time) from task)
min = 0, max = (select sum(task-exec-time) from task) +

(select sum(non-local-comm-time) from dep))

All relationship and ordering-based preferences are expressed using value-based preferences
because the environment can use value-based preferences to create a numeric measure of how
much a state is preferred.

Additional goal state condition Preferences add an additional condition to the problem
state representation of a goal state: goal states which fulfill preferences based on their priority
values are preferred. A formal description of how this condition may be met is described in
the next section.

6The maximum finish time value is bounded by the serial execution of all tasks plus the serial non-local
communication of all dependency data.

19

2.5 A Search-based Scheduling Algorithm

In this section, I describe a search algorithm for user-directed scheduling. Best-first search
is used to find optimized goal states in the problem-space representation. A best-first search
algorithm requires three functions: a successor function, which defines how to create the
successor states of a state, an evaluation function, which gives each state a score, and a goal
function, which identifies goal states.

Best-first search selects from the set of states generated so far the state with the minimum
score. It checks if the selected state is the goal state, if it is then the state is returned.
Otherwise the successors of the selected state are created and evaluated and the process
continues.

2.5.1 Successor Function

The name and type of the successor function is: successor(stute) + set of states.

For the call successor(state1) the function creates:

0 set1 - a set of all tasks that could be executed. This set is composed of each non-
scheduled task whose dependent tasks are already scheduled.

0 set2 - a set of all processors on which the tasks could be executed. This set is a list of
all the available processors.

For all pairs of elements, eZe1 E set1 and ele2 E set2, scheduled-tuslc-to-processor(eZe1, ele2,
statel) is executed. These executions create a set of new states.

All defined requirements are applied to each new state. If any requirement fails when applied
to a new state, the state is removed from the set of new states. After this is complete, the
remaining set of new states are returned as scccessors.

2.5.2 Evaluation Function

Semantics of priorities Preferences provide a mechanism for comparing states. For a call,
assert value preference(opt-type, priority, value-function, min, max) the opt-type, priority,
min and mux values allows the environment to scale the results of value functions so that
comparisons make sense. The following variables are used to calculate a global preference
comparison value, gtotal for a state from a set of 1 . . . up value-based preferences:

20

0 pi is the priority of preference i where i = 1. . . vp.

0 ptotal is the sum of all the preferences priority values, that is, ptotal =

0 vi is the result of the value function of preference i.
p i .

0 mini,maxi is the lower and upper bound values of preference i.

0 si is the scaled preference value of preference i (si values are between 0 and 1 with 0
preferred), that is, if (type = minimize) then si = m ~ x ~ ~ ~ n i else si = maxilm;ni. max. -v .

0 g; is the scaled prioritized value of preference i, that is, g; = si * pi.
0 gtotal is the sum of all the preferences scaled prioritized values, that is, gtotal = E;:, 9;.

Ptotal

The name and type of the evaluation function is: evaZuation(state) + integer. The evaluation
function returns the global preference value, gtotal defined in the previous section. Best-first
search find an optimized goal state but not necessary the optimal goal state because it stops
as soon as it finds a goal state. Branch and bound search could be used to find the optimal
goal state but the extra time it requires to search through the problem space is prohibitive.

2.5.3 Goal Function

The name and type of the goal function is: goaZ(state) + boolean. The goal function returns
TRUE if all the tasks are scheduled and FALSE otherwise.

2.5.4 Soundness and Completeness

0 Soundness is the property that if a goal state is returned by the search it is valid.
Informally, this is true because:

- Only valid states are identified as goal states since the goal function only returns

- Only valid states are generated because the successor function only schedules

- Only valid states are generated because the successor function eliminates states

TRUE if all tasks are scheduled.

tasks whose dependent tasks have already been scheduled.

WllIC UXL a lquirenients. -..l.' h bo 3.&.fy the -3- --

0 Completeness is the property that if a goal state exists it can be found by the search.

- The successor function lists all valid task-to-processor assignments. Thus, all
possible valid schedules can be generated.

21

.

2.5.5 Computational Complexity

The computational complexity of a search algorithm is the branching factor raised to the
depth of the search tree (i.e. O(b") where b is the branching factor and n is the depth).
Let tusks be the number of tasks and procs be the number of processors. The worst case
computational complexity is O((tasks x p r ~ c s) * ~ ~ ~ ~) . The average computational complexity
is usually better than this, because the branching factor is usually significantly less than the
total number of tasks. The removal of states that do not meet the user's requirements
further reduces the branching factor. A study of the performance of this algorithm on a
large number of imaging graphs is presented in Section 4. The study reports on the number
of states the algorithm generates.

3 SCE: The prototype

This section describes a prototype of the scientific computing environment SCE developed
in this research. The first subsection describes how the prototype supports computer-based
scientific experimentation. The second subsection describes how the user interacts with the
prototype and the outputs that are generated. The last subsection presents an overview of
the implementation of the prototype.

3.1 Computer-based Scientific Experimentation

Scientists are interested in experimenting with their programs. They make parameter and
coding changes to their programs and then analyze their results in order to understand the
effects of these changes. With automated support, scientists can focus more on analyzing
their experimental results than on how to generate these results. This section describes
how SCE supports computer-based scientific experimentation. An efficient algorithm for
automatically creating a computer-based experiment is presented. This is followed by a dis-
cussion of another environment which provides support for experimentation and the specific
advantages of the prototype's implementation.

An experiment specifies the controlled substitution of tasks, data or parameters in the pro-
gram graph. All possible combinations of substitutions may need to be tested. For
example, a geologist working on a remote sensing problem might be interested in testing

71n most data-flow based visual programming environments, parameters and data are not represent
explicitly in a program graph. Instead they are considered part of each task. For example, parameters and
data in Cantata/Khoros are specified as input values. Thus, to specify parameter and data substitutions a
corresponding task is specified with modified input values.

22

the quality of a set of edge detection tasks on a collection of satellite images. Using the
prototype’s visual programming environment, a program graph is created which consists of
nodes for an input image task, edge detection task and display-image task connected as a
sequence. The created program graph is shown in Figure 3.

In the experiment, the first task, Inputimageregion-a, which contains data for the northern
region of the Amazon river basin, is to be replaced with Inputimageregion-b, which contains
data for the southern region of the basin. The second task, the Sobel edge detector is to be
replaced with two different edge detection tasks: the Prewitt edge detector and the Canny
edge detector as shown in Figure 4. All possible combinations of substitutions of input
images and edge detection tasks are instantiated and executed as shown in Figure 5. The
output images are labeled and stored in the database for later analysis.

e) Display-image

Figure 3: A sequence of tasks in a program graph

Figure 4: Substitutions for the experiment

Figure 5: An instantiated experiment

23

A simple way to create an experiment is to replicate the original program graph for each
possible combination of substitutions and then make one set of substitutions to each repli-
cated graph. This method was used to create the experiment shown in Figure 3. This simple
method requires more task executions than are necessary. For example, in Figure 3 notice
that the Inputimageregion-a task is executed three times although it is only necessary to
execute it once. SCE uses a new experiment creation algorithm that avoids this problem
by reusing the results of executed tasks. Reusing task results helps to minimize experiment
execution time.

3.1.1 Discussion

A related environment which executes experiments on a collection of distributed workstations
in parallel was created by D. Abramson et ~(41. The environment, Nimrod, allows a user
to express a set of input parameters and data changes for a program. Nimrod creates
experiments in a similiar manner to the example shown in Figure 3.3. The cross-product of
user parameter changes is generated and elements from this set are input to copies of the
original programs. These copies are scheduled and executed on a collection of distributed
workst at ions.

Nimrod and SCE both provide a concise and useful interaction model. Experiments provide
a concise method for scientists to express a set of controlled changes to a program graph.
With this support, scientists can express what changes they want to experiment with, but not
how to implement these changes. Nimrod and SCE also both provide efficient experiment
executions. Experiments execute efficiently because their program graph representations
contain many independent execution paths which can be scheduled and executed in parallel.

In addition, SCE simplifies experimentation with task substitutions in a program. Nimrod
allows its users to experiment with different data and parameter inputs to their programs.
Nimrod has no knowledge about the inner workings of the program on which it is running
experiments. Thus, in order to make a task substitution in Nimrod, a scientist must modify
his program by hand, removing the code to be substituted for, replacing it with new code
and recompiling their program. After this process is complete he can use Nimrod to run
experiments. In SCE, programs are represented as a collection of communicating tasks. SCE
allows its users to experiment with program tasks. Thus, it is a simple matter to have the
user identify which task to replace and to automatically substitute the user’s new task in
its place. Specifying task substitution is useful when the user wants to experiment with a
collection of different t a k s which perform the same fcnctim, such a edge detection.

Furthermore, SCE reduces the total amount of work required to execute an experiment. SCE
uses an experiment creation algorithm which reuses task results whenever possible during an
experiment. This algorithm allows scientists to obtain their experimental results faster than

24

Nimrod’s experiment creation algorithm. Nimrod’s algorithm replicates the entire program
for each substitution. It cannot optimize the experiment creation process because it does not
have any knowledge of the inner workings of the program on which it is running experiments.

3.2 A Sample Session with SCE

A sample user session with SCE is now presented. This includes a description of the com-
ponents of SCE the user interacts with and the results of this interaction. This presentation
helps the reader become familiar with the interface provided by SCE.

3.2.1 User Inputs

Visual program environment The scientist uses the visual programming environment,
Cantata[23], to construct his programs. Figure 6 shows a Cantata workspace. The boxes
represent tasks and lines connecting the tasks represent dependencies. The user selects tasks
f rom the pull-down libraries at the top of the screen and connects the tasks together using
dependencies to form a program graph.

Scheduling directives interface The scientist uses a text editor to express his scheduling
directives. A set of default directives are supplied by the environment. Note that these
directives do not have to be utilized, they are provided as a suggestion. The goal of these
directives is to minimize program completion time. The default directives are described in
more detail in Section 4.

Resource interface The scientist uses a text editor to create a list of available processors.

Experiment interface The scientist currentiy defines an experiment using a text editor to
specify locations for task substitutions and sets of the tasks to substitute into the program
graph. Future work on the environment could consist of modifying Cantata’s interactive
graphical interface to allow the user to express experiments graphically. Another useful
feature would be to extend the experiment creation interface to allow the user to express
experiments which do not create the fuii cross product of task substitutions. This is usehfui
when the user is not interested in all experimental results. For example, in the example
shown in Figures 3-5 the user may only be interested in testing the Sobel edge detector on
Inputimageregiona and in testing the other edge detectors on both images.

25

Figure 6: The Cantata visual programming environment

26

3.2.2 Prototype Results

After the user creates his program graph, scheduling directives and resources, SCE uses this
data to create performance prediction information. This information is then passed to the
scheduler which creates a schedule. Once the schedule is created, the tasks axe executed on
the workstations and the program outputs are generated. SCE creates an information log
which records the details of each run. Details include the program graph and directives used,
the generated performance prediction information and schedule and the program execution
statistics. The log is written in HTML and the user can browse the information with a
browser such as Netscape Navigator. Figure 7 shows an example of the information log.
Scheduling information is stored graphically as part of the information log.

0 ---Information log---

Date: Thu-Jul-l8-15:40:58-PDT-1996

Program graph /proJects/3D/ahren~/DIP/one-operhit-slicelbit-slices.wk

Performance prediction tool:
Performance prediction results

User directives:
Assertions
Preferences

Scheduler:
Scheduling results

Processors used:
*oddvar
*puyallup
*chela
*manstash
*norge
*lutefisk

Executor:
Execution results

Figure 7: Information log

This completes Section 3. Section 4 presents results of a performance evaluation of the
environment which include results on the efficiency of the experiment creation algorithm
and the performance of the environment when executing experiments.

27

4 Results

This section reports the results of a performance evaluation of the environment and survey of
usefulness of the environment to scientists to support their computer-based scientific research
work. The performance evaluation consists of three different studies. The first study explores
the performance of the environment using the default scheduling directives on a diverse
collection of image processing program graphs. Results are presented on the performance of
the prediction tool, the scheduler and the executor. The second study investigates how well
the environment responds to the user’s scheduling directives. The third study examines the
performance of the environment on computer-based scientific experiments.

4.1 Testing Method

The environment was tested by scheduling and executing a collection of program graphs
which are a part of the Digital Image Processing (DIP) course for the cantata/Khoros vi-
sual programming environment. The course presents lessons on topics in image processing
and provides forty-seven example program graphs for students to modify and execute. Top-
ics include image representation, image manipulation, linear and non-linear operators and
pattern classification. The average number of tasks in the program graph is 18 and the
average number of dependencies is 18. This data shows that the program graphs have a
significant number of tasks and dependencies. All tests were executed on a collection of nine
ethernet-connected Sun SPARCstation-IPXs.

4.2 Performance Study 1 - Default Scheduling Directives

The first study explores the performance of the environment using the default scheduling
directives. The goal of these directives is to minimize program completion time. The default
directives and their purpose are now described.

The first default directive requires the scheduler to only use processors with utilizations
of less than or equal to three percent. This allows a program graph to execute efficiently
without interference from other user’s programs. The directive works by requiring that
all processors with utilizations greater than three percent have their task assignment list
be empty (Le. equal to TJNKNOWN). The second defa.1Ilt8 directive directs t,he scheduler
to prefer states with more scheduled tasks. This directive allows the search algorithm to
make efficient progress. The next three directives emulate Wu and Gajski’s task scheduling

‘The Digital Image Processing course can be found on the World Wide Web at
http://www .eece.unm.edu/dipcourse/.

28

algorithm[29]. The goal of their algorithm is to minimize program completion time. The
algorithm first determines an order in which to schedule the tasks. Then, as each task
is scheduled, the algorithm chooses the processor that allows its earliest start time. The
ordering is computed as follows: for each task, the length of the longest path between the
task and any output task is calculated. The path length is the sum of the execution times
and non-local communication times of the tasks and dependencies on the path. The tasks
are arranged in non-increasing order based on their calculated path lengths.

Using these scheduling directives, the environment executes the DIP course program graphs.
Results are presented on the performance of the scheduler, performance prediction tool, and
executor.

Figure 8 shows the number of states explored by the scheduler for the program graphs.
Notice that for most graphs the environment explores less than five hundred states. Thus,
the scheduler, when using the default directives, only needs to explore a small portion of the
search space.

Figure 9 presents the speedup achieved by the environment using the default directives for
the collection of program graphs. It is important to study the speedup achieved by
the environment to assess the performance of the default directives. During the scheduling
process, the utilization assertion selects the number of processors that have a utilization of 3
percent or less. From this set of selected processors, the scheduler then schedules tasks on a
subset of these processors. This subset is called the scheduled processors. When the number
of scheduled processors is equal to the number of selected processors, it is possible that the
scheduler could have used more processors to obtain better speedup. These instances are
identified in Figure 9 by a dot in front of the program graph name.

lo

The speedup data is grouped according to the number of scheduled processors (i.e. all
program graphs scheduled on one processor, all program graphs scheduled on two processors,
etc.). Within each group, the data is sorted from worst speedup to best speedup. The
average speedup achieved was 1.4 on an average of 2.8 scheduled processors. l1 Note that
the speedup the scheduler can obtain is limited by the existing data-flow parallelism in the
program graphs. It is also important to note that this speedup was achieved without user
intervention. The user provides a program graph to the environment, and it is automatically
scheduled and executed.

'A worst case estimate on the average number of states in the search state is 18 * 918 = 16218.
l0Note that the input data used by the program graphs in this test was expanded to be 36 times larger

(i.e. a factor of six expansion on the row and columns of the input images) in order to simulate the massive
data sizes used by scieriiisks such as geologists working on remote sensing problems.

l'The geometric mean is used to average normalized values such as speedups.

29

.

piecewise

contrast-hvs

contour

contrast-log scaling

dft-ad-from- 1 d

geo-transformations

detect-edges

pseudo-color

resolution-moon

correlation

window-level

build-logexp-gray-lut

contrast-exp

grid-on-zoom

combine-image-grid

fourier-square

convolution-fft

median-fiiiering

inverse

equalization

threshold

gradient

laplacian-sharp

mask-application-echo

combine-zoom-number

spatial-resolution

imagevisual

Shape

-
-
-
-

label-display-area

histogram-stretch

flip-ruler

contrast-log

convolution-teo

logo-color

rgb-split

dil-ero-open-close

sinusoids

bit-slices

dft-properties

i-sine-aliasing

wiener

gen-patterns

data-representation

fourier-square-filtering

interpolation

0 500 1000 1500 2000 2500 3000

Number of states

Figure 8: Number of states explored by the scheduler

30

piecewise

contrast-hvs

window-level

fourier-square

label-display-area

contrast-log-scaling

dft-2d-from-ld

correlation

image-visual

contrast-exp

convolution-teo

wiener

logo-color

mask-application-echo

pseudo-color

flip-ruler

geo-transformations

shape

convolution-fft

resolution-moon

contour

contrast-log

laplaclan-sharp

build-log-exp-gray-lut

inverse

rgb-split

combine-zoom-number

gradient

grid-on-zoom

combine-image-grid

histogram-stretch

equalization

threshold

median-filtering

detect-edges

spatial-resolution

dil-ero-open-close

F-sine-aliasing

d!!-properties

gen-patterns

fourier-square-filtering

bit-slices - sinusoids

data-representation

imerpolation

L
speedup

-

number of processors
used

1 I
- -

0 1 2 3 4 5 6 7

Figure 9: Speedup of the program graphs using default directives

31

4.3 Performance Study 2 - User Directed Scheduling

The second study investigates how well the environment responds to the user's scheduling
directives. Multiple tests were executed as part of this study:

1. A program completion time preference test

2. A processor finish time preference test

3. A task ordering preference test

4. A task-to-processor assignment preference test

4.3.1 A Program Completion Time Preference Test

The goal of this test is to minimize program completion time. The default directives fulfill
this goal. This is evidenced by the speedup of 1.4 obtained on the program graphs in
performance study 1. Additional speedups were also obtained using the default directives
on a set of computer-based scientific experiments. This data is presented in Section 4.4.

4.3.2 A Processor Finish Time Preference Test

The goal of this test is to prefer the finish time of one processor be at least twice the finish
time of another processor. The processor that finishes early can be used for other computing
tasks the user has in mind. For the test, two directives are used in addition to the second
through fifth default directives. The first new directive requires that the environment only
schedule tasks on the processors oddvar and norge. The second new directive requests that
the finish time of the processor oddvar be at least twice that of the processor norge.

Figure 10 shows the results of the test. Notice that the finish time of processor oddvar is
always at least twice the finish time of processor norge as the user requested.12

"Note that the reported results are execution times. Therefore they show the accuracy of the performance
prediction tool as well as the quality of the scheduler. That is, the scheduler might fulfill the user's directives,
but if its performance prediction information was incorrect, the execution results would most likely not fulfill
the user's directives.

32

c

re solution- moon

contrast-hvs

mask-application-echo

window-level

pseudo-color

piecewise

dft-2d-from-1 d

contour

contrast -exp

detect-edges Finish time of
grid-on-zoom processor oddvar

histogram-stretch 1 Finish time of
sinusoids processor norge

image-visual

build-log-exp-gray-iut

fourier-square

geo-transformations

laplaclan-sharp

threshold

gradient

shape

spatial-resolution

label-display-area

data-representation

rgb-split
combine-zoomnumber

median-fiilering

equalization

contrast-log

combine-image-grid

bil-slices

logo-color

flip-ruler

gen-patterns

contrast-log-scaling

inverse

F-sine-aliasing

correlation

convolution-teo

dit-ero-open-close

convolut ion-fft

shoe-classify

dlt-properties

barcode-filter

wiener

interpolation

fourier-square-filtering

0 5 0 100 150 200 250

Seconds

.
Figure 10: Processor finish time directive results

33

4.3.3 A Task Ordering Preference Test

The goal of this test is to prefer a particular ordering of task outputs. For the task ordering
preference test, multiple directives are added in addition to the default directives. Each
directive adds a dependency between a pair of output tasks to achieve this goal.

For the test, the output tasks of each DIP course program graph were identified, a random
ordering of the tasks was generated and this ordering was preferred. The environment ordered
the output tasks of all tested program graphs as requested. Table 1 presents a sample of
the results of the test. The first column of the table lists the name of the tested program
graph. The remaining columns lists the finish time in seconds of the tasks the user preferred
to be output first, second, third, etc. Notice that the tasks are output in the order the user
requested.

Table 1: Task ordering directive results

Program
Graph

combine-zoom-number
det ect-edges
label-display-area
spatial-resolution

Time Time Time
I I

20 sec. 1 29 sec. I 29 sec.

Time Time
I I

42 sec. I 43 sec. I

4.3.4 A Task-to-Processor Assignment Preference Test

The goal of this test is to prefer a particular task-to-processor assignment. For the test, a
single directive is added in addition to the default directives. The new directive prefers that
all “Display Image” tasks execute on the processor willow.

The DIP course program graphs were scheduled and executed using these directives and all
“Display Image” tasks of each program graph were scheduled on the processor willow. Figure
11 shows an example result schedule. Notice that all “Display Image” tasks are scheduled
on willow. Notice also that the default directives work in concert with the task-to-processor
assignment directive to cause the tasks to be scheduled on multiple processors in parallel,
reducing program coiiipleiioii iiiiie.

34

Processor
manastash Processor norge Processor

ddvar
Processor
willow

~~

h e r defined 35 User defined 1 17
User defined 3 1 User defined 3 User defined 83

~

User defined 39
Display Image 7

User defined 43

~~~ 

Animate 47 
Data Object Info 
11 

Data Object Info 23 Data Object Info 
55 Data Object Info 

125 

File Viewer 15 

File Viewer 129 File Viewer 59 

Display Image 
27 

File Viewer 19 Display Image 
51 

Display Image 
121 Data Object Info 

79 Data Object Info 
67 

Display Image 
63 

File Viewer 75 

File Viewer 7 1 

Figure 11: A schedule created using a directive which prefers all “Display Image” tasks be 
scheduled on the processor willow. 

35 



c 

4.4 Performance study 3 - Computer-Based Scientific Experi- 
mentation 

The third study explores the performance of the environment on a set of computer-based 
scientific experiments. Experiments are created using the program graphs of the DIP course. 
For each experiment, an input task and non-input task are randomly chosen. In the exper- 
iment, four different versions of both the input and non-input tasks were tested. Figure 12 
presents the speedup of computer-based scientific experiments. The result data is presented 
in the same manner as the speedup data in Figure 9. The average speedup is 3.4 on an av- 
erage of 5.5 scheduler processors. Notice the significant increase in speedup of these graphs. 
This is because experimentation creates many independent execution paths. 

Figure 13 presents a comparison of the experiment creation algorithm described in this 
report to the simple method of replicating the entire program graph for each experimental 
substitution used by Nimrod[4]. This graph shows the finish time of the experiment created 
with the experiment creation algorithm described in this report along with an estimate of the 
finish time of an experiment created with the simple method. The estimated finish time for 
the simple method is calculated by multiplying the time to run the original program graph 
on a single processor by the number of replications (i.e. in this case, 4 x 4 = 16 replications). 
This is the time required to execute the experiment on one processor. This time is divided 
by the number of scheduled processors used when scheduling the experiment created by the 
experiment creation algorithm described in this report. This provides the optimal finish 
time possible for the simple method. Notice that because the experiment creation algorithm 
described in this report reduces the workload required to create experimental results, its 
finish time is usually less than the optimal finish time of the simple method. 

4.5 User surveys 

A survey was given to potential users of the scientific computing environment in order to 
assess its usefulness. Three vision researchers and a geologist who works on remote sensing 
applications saw a demostration of the environment and completed a survey. In summary, 
the users felt the environment would be useful for their computer-based scientific research 
work. Specifically, in response to the question, “If you were running programs on a shared 
distributed network of workstations, is the scheduler a tool you would find useful for your 
scientific research work?” the geologist responded “Yes - this would be useful now in the 
remote sensing 1a.b as many users attempt, too sham a network of workstations.”. The survey 
also tried to assess how familiar the scientists were with the tools used in the environment. 
Most had used a visual programming environment but not the relational database language 
SQL. They did not think that this would be a hinderance to learning the scheduling language, 
however. In fact, in response to the question, “Is the scheduling language easy to learn and 

36 



F-sine-aliasing 

barcode-filter 

wiener 

histogram-stretch 

geo-transformations 

Speedup 

Number of scheduled 
combine-zoom-number I processors 

gradient 

window-level 

contour 

shape 

resolution-moon 

pseudo-color 

mask-application-echo 

sinusoids 

grid-on-zoom 

rgb-split 

image-visual 

threshold 

combine-image-grid 

interpolation 

build-log-exp-gray-lut 

inverse 

spatial-resolution 

piecewise 

label-display-area 

logo-color 

- laplaciamsharp 

0 1 2 3 4 5 6 7 8 

Figure 12: Speedup of experiments 

37 



r-- 

Thesis algorithm actual 
experiment completion time 

Nimrod algoriihm optimal 
experiment completion time 

I I I 

0 200 400 600 8 0 0  1000 1200 

Figure 13: Comparison of experiment creation techniques 



use?” all responded affirmatively. The users were also asked to order the usefulness of a 
collection of specific directives. The following list summarizes the user’s choices: 

0 Minimizing program completion time: 1 

0 Controlling task/processor assignments: 2 

0 Output ordering: 3 

0 Controlling processor utilization: 4 

0 Time-related directives (after 3:00, before 6:OO): 5 

Finally, the users were asked: “Is the support for computer-based scientific experimentation, 
a feature you would find useful for your scientific research work?” and most scientists 
responded positively with specific examples of research problems which would benefit from 
automatic experiment creation and execution. The full results of the geologist’s survey is 
presented in Appendix A. 

4.6 Summary 

This completes the performance study of the environment. In summary, the study has shown: 

0 Using the default directives, an average speedup of 1.4 on an average of 2.8 scheduled 
processors is achieved on the DIP course program graphs. 

0 The environment is responsive to the user’s scheduling directives. In a variety of 
tests including a processor finish time test, task ordering test and task-to-processor 
assignment test the environment fulfilled the user’s directives for all program graphs. 

0 The environment achieves very good performance on scientific experiments. An average 
speedup of 3.4 on an average of 5.5 scheduled processors is achieved. In addition, the 
experiment creation met hod presented in this report creates more efficient experiments 
than the simplemethod used by the Nimrod environment. On average, the experiments 
execute 2.1 times faster than an optimal execution of the experiments generated by 
the simple method. 

0 A survey was given to potential users of the scientific computing environment in order 
to assess its usefulness. In summary, the users felt the environment would be useful 
for their computer-based scientific research work. 

39 



5 Conclusions and Future Work 

This report describes a computing environment which supports computer-based scientific 
research work. Key features include support for automatic distributed scheduling and execu- 
tion and computer-based scientific experimentation. A new flexible and extensible scheduling 
technique that is responsive to a user’s scheduling directives, such as the ordering of pro- 
gram results and the specification of task assignments .and processor utilization levels, is 
presented. An easy-to-use constraint language for specifying scheduling directives, based on 
the relational database query language SQL, is described along with a search-based algorithm 
for fulfilling these directives. A set of performance studies show that the environment can 
schedule and execute program graphs on a network of workstations as the user requests. An 
algorithm for automatically generating scientific experiments is presented. Experiments pro- 
vide a concise method of specifying a large collection of parameterized program executions. 
The environment achieved significant speedups when executing experiments; for a large col- 
lection of scientific experiments an average speedup of 3.4 on an average of 5.5 scheduled 
processors was obtained. 

Future work on the environment could consist of a high-performance implementation of the 
scheduler and extensions to support other types of parallelism. A more efficient implementa- 
tion of the scheduler would allow the environment to quickly find solutions to very complex 
directives. Ideas for a more efficient implementation include using an imperative program- 
ming language, parallelism and incremental user directive calculations. Also, in addition 
to data-flow parallelism, the environment could be extended to support operator, pipeline 
and loop parallelism. The performance prediction tool would be extended to predict the 
performance of parallel and pipelined tasks. The scheduler and executor would need to be 
extended to handle these type of tasks as well. 

References 

[ 11 American national standard for information systems: Database language SQL. ANSI 
X3(135-1986), 1986. American National Standards Institute, New York. 

[2] CM/AVS User’s Guide. 1992. Thinking Machines Corporation, Cambridge, Mas- 
sachuset t s. 

131 _ -  A. Lansky and A. Philpot. AI-based planning for data analysis. IEEE Expert, 9( 1):21-7, 
February 1994. 

D. Abramson, R. Sosic, J. Giddy, and B. Hall. Nimrod: A tool for performing param- 
eterized simulations using distributed workstations. In Proceedings of the Fourth IEEE 

[4] 

40 



International Symposium on High Performance Distributed Computing, pages 112-121, 
August 1995. 

R. Arpaci, A. Dusseau, A. Vahdat, L. Liu, T. Anderson, and D. Patterson. The interac- 
tion of parallel and sequential workloads on a network of workstations. In Proceedings 
of the ACM SIGMETRICS Conference, pages 267-78, May 1995. 

A. Borning and R. Duisberg. Constraint-based tools for building user interfaces. ACM 
Transactions on Graphics, 5(4):21-70, October 1986. 

A, Borning, B. Freeman-Benson, and M. Wilson. Constraint hierarchies. Lisp and 
Symbolic Computation, 5:223-270, 1992. 

T. Casavant and J. Kuhl. A taxonomy of scheduling in general purpose ditributed 
computing systems. IEEE Transactions on Software Engineering., 14(2), 1988. 

R. Cigel, D. Carlson, and J. Maloney. Graphical executive language for engineering 
applications. In MacNeal Schwendler World User’s Conference, 1992. 

[lo] S. Cross and E. Walker. Applying knowledge based planning and scheduling to crisis 
action planning. In M. Zweben and M. Fox, editors, Intelligent Scheduling. Morgan 
Kaufmann Publishers, 1994. 

[ll] C. J. Date. A Guide to the SQL Standard. Addison-Wesley, second edition, 1989. 

[12] H. El-Rewini, T. Lewis, and H. Ali. Task scheduling in parallel and distributed systems. 
Prentice Hall, 1994. 

[13] M. Fox. Constraint-Directed Search: A Case Study of Job-Shop Scheduling. Morgan- 
Kaufmann, 1987. 

[14] E. Freuder and R. Wallace. Partial constraint satisfaction. Artificial Intelligence, 58:21- 
70, 1992. 

[15] Nabil I. Hachem, Ke Qiu, Michael Gennert, and Matthew Ward. Managing derived 
data in the Gaea scientific DBMS. In Proceeding of the Nineteenth Very Large Data 
Base Conference, 1993. 

[16] M. Jampel, E. Freuder, and M. Maher, editors. Over-Constrained Systems. Springer, 
1996. 

[17] M. Johnston. SPIKE: AI scheduling for NASA’s Hubble space telescope. In Proceedings 
6th IEEE Conference on AI  Applications, pages 184-190, 1990. 

[lS] N. M. Short Jr. and L. Dickens. Automatic generation of products from terabyte-size 
geographical information systems using planning and scheduling. International Journal 
of Geographical Information Systems, 9( 1):47-65, Jan.-FeE. 1995. 

41 



[19] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle workstations. In Pro- 
ceedings of the 8th IEEE International Conference on Distributed Computing Systems, 
pages 104-111, June 1988. 

[20] P. Ma, E. Lee, and M. Tsuchiya. A task allocation model for distributed computing 
systems. C-31( 1):41-7, January 1982. 

[21] B. Myers, D. Guise, R. Dannenberg, B.Vander Zanden, D. Kosbie, P. Marchal, and 
E. Pervin. Comperhensive support for graphical, highly interactive user-interfaces: The 
garnet user interface development environment. IEEE Computer, 23( 11):71-85, Novem- 
ber 1990. 

[22] G. Nelson. Juno, a constraint-based graphics system. In SIGGRAPH 1985 Conference 
Proceedings, pages 235-243, July 1985. 

[23] J. R. Rasure and C. S. Williams. An integrated data-flow visual language and software 
development environment. Journal of Visual Languages and Computing, 2(3):217-246, 
1991. 

[24] S. Ridlon. A software framework for enabling multidisciplinary analysis and optimiza- 
tion. In 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Opti- 
mization, September 1996. 

[25] L. Shapiro and R. Haralick. Structural descriptions and inexact matching. IEEE Trans- 
actions on Pattern Analysis and Machine Intelligence, 3:504-519, 1981. 

[26] Linda G. Shapiro, Steven L. Tanimoto, James F. Brinkley, James P. Ahrens, Rex M. 
Jakobovits, and Lara M. Lewis. A visual database system for data and experiment 
management in model-based computer vision. In Proceedings of the Second CAD-Based 
Vision Workshop, pages 64-72, February 1994. 

[27] Terence R. Smith, Jianwen Su, Divyakant Agrawal, and Amr El Abbadi. MDBS: A 
modeling and database system to support research in the earth sciences. In Proceedings 
of the Workshop on Advances in Data Management for the Scientist and Engineer, 
pages 90-99, February 1993. 

[28] C. Upson, T. Faulhaber Jr., D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz, 
and A. van Dam. The application visualization system: A computational environment 
for scientific visualization. IEEE Computer Graphics and Applications, 9(4):30-42, 1989. 

[29] M. Wu and D. Gajski. A programming aid for hypercube architectures. Journal of 
Supercomputing, 2(3):349-372, November 1988. 

[30] M. Zweben, E. Davis, B. Daun, and M. Deale. Iterative repair for scheduling and 
rescheduling. IEEE Systems, Man and Cybernetics, 23(6):1588-96, Nov.-Dec. 1993. 

42 



A A Survey of Users of the Scientific Computing En= 
vironrnent 

A.l  The survey results of Milton Smith, geologist, member of 
the University of Washington EOS Amazon project team 

A.l . l  Requirements 

Will a computing environment which fulfills the stated requirements (i.e. exploratory pro- 
gram creation, high-performance program execution, responsive to scheduling directives) be 
useful to you in your scientific research work? 

Yes - it will assist in utilizing the computing resources available in the Remote 
Sensing Lab. 

A.1.2 Test programs 

Are the Digital Image Processing course program graphs representive of the types of programs 
you use in your scientific research work? 

They are representative but not comprehensive. Research involves the continu- 
ous ingestion, evolution and development of new algorithms. 

A.1.3 Visual programming environment 

Is the visual program environment a tool you would find useful for expressing programs for 
your scientific research work? 

Visualization is very important to  communicating research results. 

A.1.4 Scheduler 

1. If you were running programs on a shared distributed network of workstations, is the 
scheduler a tool you would find useful for your scientific research work? 

Yes - this would be useful now in the remote sensing lab as many users 
attempt to  share a network of workstations. 

43 



t . 

2. If you were running programs on a shared distributed network of workstations, which 
of the following directives do you think would be of useful to you? 

0 Output ordering: 

0 Controlling task/processor assignments: 3 

0 Controlling processor utilization: 4 

0 Minimizing program completion time: 1 
0 Time-related directives (after 3:00, before 6:OO): 2 

0 Other directives you create: 

3. Are you familiar with the database query language SQL? 
Yes to a limited extent. 

4. Do you feel that the scheduling directive language would be easy to learn and use? 

Yes - no problem 

5. Any other comments you have about the scheduler? 

None 

A.1.5 Distributed program executor 

Is the distributed program executor a tool you would find useful for your scientific research 
work? 

Yes - it makes sense in terms of our distributed computing resources. 

A.1.6 Computer-based scientific experimentation 

1. Is the support for computer-based scientific experimentation, a feature you would find 
useful for your scientific research work? 

This is definitely the wave of the future. We are interested. 

2. Any other comments about the environment’s support for computer-based scientific 
experimentation? 

Make it easy for the user community to take responsibility for its evolution. 
Simple modular interfaces that allow expansion of capabilities. 

44 



A.1.7 Improvements 

Do you have any suggestions for improving any component of the environment so that it 
would be useful to you for your scientific research work? 

Actually use it. 

45 


