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Abstract 

There has been increasing effort in recent years to employ satellite remotely sensed data to 

identify and map vector habitat and malaria transmission risk in data sparse environments. 

In the current investigation, available satellite and other land surface climatology data 

products are employed in short-term forecasting of infection rates in the Mpumalanga 

Province of South Africa, using a multivariate autoregressive approach. The climatology 

variables include precipitation, air temperature and other land surface states computed by 

the Off-line Land-Surface Global Assimilation System (OLGA) including soil moisture 

and surface evaporation. Satellite data products include the Normalized Difference 

Vegetation Index (NDVI) and other forcing data used in the Goddard Earth Observing 

System (GEOS-1) model. Predictions are compared to long-term monthly records of 

clinical and microscopic diagnoses. The approach addresses the high degree of short-term 

autocorrelation in the disease and weather time series. The resulting model is able to 

predict 1 1 of the 13 months that were classified as high risk during the validation period, 

indicating the utility of applying antecedent climatic variables to the prediction of malaria 

incidence for the Mpumalanga Province. 



1. Introduction 

The last two decades have witnessed a global re-emergence of malaria in areas 

where infection rates had been low or not measurable (WHO, 1996). The predictability of 

infection rates is non trivial and it is based on numerous environmental and socio-economic 

factors. Environmental factors include those that affect the mosquito and parasite 

metabolic rates and life cycles such as rainfall and temperature, and the spatial and 

temporal extent of mosquito habitat. Socio-economic factors include demographic changes 

and the existence or effectiveness of control efforts or reporting methodologies. 

The purpose of the present study it to examine the environmental portion of the 

problem using a suite of currently available gridded satellite and climate data and data 

products. Associations are investigated between monthly malaria incidence and 

environmental conditions that influence development and reproduction rates of the parasite 

and vector. The immediate goal is to investigate the extent to which knowledge of 

antecedent land surface climatology can improve the efficacy of malaria prediction using a 

statistical model. The variables utilized consist not only of commonly employed quantities 

such as temperature and precipitation, but also soil moisture, specific humidity and 

evaporation rate that have recently become available through global data assimilation 

models. The approach is not to build a physical model of malaria transmission, but to 

conduct a reliable statistical analysis among the various environmental factors that have 

been reported in the literature to affect malaria transmission, focusing on the Mpumalanga 

Province of South Africa. 

1.1 Survey of Previous Studies 

The utility of using remotely sensed data to map mosquito habitat has been 

demonstrated in California (PITCAIRN, 1988), Mexico (REJMANKOVA et al., 1995; 

BECK et al., 1997), Belize (MONTGOMERY et al., 1998), The Gambia, (BFUZWSTER et 

at., 1993) India ( B O W  et al., 1996a), Pakistan (BOUMA et al., 1996b) and Kenya 

(PATZ et al., 1998; HAY et al., 1998). Most of the research applying time series analysis 
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of environmental factors to disease outcomes, relates air pollution levels to mortality rates. 

Some applications of time series analysis to infectious disease are described below. HAY et 

al., (1 998) found the Normalized Differential Vegetation Index (NDVI) to be a useful 

leading indicator of malaria admissions in Kenya. PATZ et al. (1 998) used modelled soil 

moisture, lagged 6 weeks, to predict 56% of the variability in the entomological inoculation 

rate in Kenya. Lastly, LINTHICUM et al. (1999) found that sea surface temperatures, 

when coupled with vegetation index data, could be used to forecast Rift Valley fever 

outbreaks five months in advance in East Africa. For a more thorough review of the use of 

satellite data to study malaria distribution and transmission, the reader is referred to HAY 

et aZ.(1996), HAY et al. (1997), THOMAS et aZ.(1997), CONNOR (1999), and HAY et aZ. 

(2000). 

While the above studies clearly have brought attention to the utility of satellite 

remote sensing technology for malaria transmission, they have also pointed out its current 

limitations. For instance, current satellite observations do not provide all the quantitative 

land-surface states needed to identify vector habitant, but only indicators of that habitat. 

For example, NDVI represents an indication of relative vegetation greenness or 

productivity, but not the extent, nor the duration of standing water in which mosquitoes 

breed. There is no singular relation between NDVI and surface wetness, as it depends on 

other factors such as soil moisture and mineral content, vegetation architecture, and pixel 

scale (Jasinski, 1990). This type of limitation suggests a need for a more detailed 

description of land surface conditions that might be met through the application of a land 

surface data assimilation model, that produces non-routine1 y observed quantities such as 

soil moisture and evapotranspiration. The problem is particularly acute in data sparse 

regions such as Africa. 

1.2 Environmental Efects on Vector Population Dynamics 

The high sensitivity of the mosquito and parasite lifecycles to abiotic factors makes 

it possible to study the effects of climate on malaria transmission. Of the environmental 

factors that influence mosquito population dynamics, rainfall and temperature have been 
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studied the most thoroughly. The amount of rainfall dictates the availability of habitat for 

the aquatic stages of the vector life cycle (oval, larval, and pupal). A secondary effect of 

increased rainfall is prolonged mosquito longevity due to high (above 60%) relative 

humidity (GILLES, 1993). The distribution of rainfall over time is also important. Periodic 

rain that corresponds to reproductive cycles, or about two weeks from egg to egg 

(MOLINEAUX, 1988), allows mosquitoes to breed in profusion (MUIR, 1988; GILLES, 

1993). The MARA/ARMA project estimated that 80 mm of precipitation during 3-5 

months was necessary for annual malaria transmission (MAWARMA, 1998). In addition, 

TEUSCHER (1 999) found that distance to permanent water bodies and persistence of 

standing water had a measurable effect on parasite ratios. 

Ambient temperature affects mosquito population dynamics by influencing vector 

and parasite metabolic rates. Increased metabolic rates cause increased feeding frequency, 

more rapid adult vector development, elevated extrinsic incubation rate, and decreased 

longevity (MOLINEAUX, 1988). Optimal temperatures for the sexual development of the 

parasite in the mosquito are: 30 "C for P. falcipamm and 22 "C for P. mulariae (WHO, 

1996). More generally, favourable temperatures for parasite and vector survival range from 

20 to 30 "C (GILLES, 1993). Parasite development reportedly stops below 16 "C and 

above 40 "C (GILLES, 1993; CRAIG et al., 1999). In addition, the sensitivity of mosquito 

survival rates to relative humidity increases at higher temperatures (WHO, 1996). Thus, the 

importance of temperature, and how it affects other land surface states, must be considered 

in combination in order to better understand the impact of the natural environment on 

vector populations. 

2. Study Area 

2.1 Physical Description 

The Mpumalanga Province, situated in the east of South Afi-ica, nestles between 

KwaZulu-Natal in the south, Swaziland and Mozambique in the east and other South 

African provinces in the north and in the west. The Province is served by 27 public 
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hospitals and 221 clinicshealth centres. The rainy season in the Region lasts from October 

to May with a mean annual rainfall of 650 mm. Mean summer (September - April) and 

mean winter (May - August) temperatures range between 17OC to 3OoC and 8OC to 17'C, 

respectively. Relative humidity in summer is fairly constant at 80%. 

2.2 Malaria Incidence and Control 

Malaria transmission is restricted to the Lowveld Region with 300,000 people 

living in the high-risk area defined by the National Department of Health (DEPT. OF 

HEALTH, 1996) and 470,274 in the low risk area. There are well-defined patterns of 

population movement that are of direct relevance to the distribution of malaria and other 

communicable diseases (DURRHEIM et al. 1998a). For example, labour intensive farming 

in the Lowveld Region attracts large numbers of workers from Mozambique where malaria 

is hyperendemic. Many of the migrants are parasite carriers (DURRHEIM, 1995). 

During 1996 to 1999, an average of approximately 8,000 malaria cases per year 

were reported in the Province with a fatality ratio of 0.7% (DURRHEIM et al., 1999). 

Anopheles arabiensis, a savannah species that favours temporary rain pools, is the major 

vector of malaria in the Province (SHARP and LE SUEUR, 1994; GOVERE et al., 2000). 

In elevated temperatures this vector exhibits a high rate of aquatic development that allows 

it to mature before pollution, predators, or competitors can compromise its breeding site 

(MOLINEAUX, 1988). Three Plasmodium species causing human malaria, P. falciparum, 

P. malariae and P. ovule, occur in Mpumalanga Province with an overall species 

prevalence of about 95% P. fakiparum, and 5% P. malariae and P. ovule. 

Malaria control in Mpumalanga is realized by a combination of residual 

intradomicillary spraying with synthetic pyrethroids and prompt effective therapy of cases 

at primary health care clinics. Indoor house spraying is carried out annually between 

September and December. The major challenges for malaria control in Mpumalanga 

Province include immigrants from uncontrolled bordering areas in Mozambique, changes 

in the biology and behaviour of the main vector, P. falciparum, resistance to antimalarial 
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drugs, and changes in climate and community practices of washing and replastering 

sprayed wall surfaces are (GOVERE et al., 2000). 

3. Climatology and Malaria Data 

3.1 Climate and Satellite Data Products 

Land surface quantities used in the present analysis are output of the Off-line Land- 

Surface Global Assimilation System (OLGA) (Bosilovich et al., 1999) for the period 

January 1987 through December 1995. OLGA computes a suite of land surface energy and 

moisture fluxes and states using the MOSAIC hydrology model (Koster and Suarez, 1996) 

forced by the Goddard Earth Observing System Multiyear Assimilated Dataset (GEOS-1). 

GEOS-1 is a global, gridded atmospheric data product set produced by assimilating 

rawindsonde reports, satellite retrievals of geopotential thickness, clou-motion winds, 

aircraft, ship and buoy reports with forecast employing the GEOS-1 atmospheric general 

circulation model (Schubert et al., 1993). GEOS-1 output quantities used to force 

MOSAIC include atmospheric temperature, solar radiation, atmospheric infrared radiation, 

surface pressure, precipitation, and specific humidity. OLGA outputs additional land 

surface quantities related to land surface energy and moisture fluxes and states. Those 

products have a large spatial resolution of 2" latitude by 2.5' longitude, but the scale is 

commensurate with the size of the Mpumalanga Province. 

The selection of the variables extracted from the OLGA database was made on the 

basis of associations between environmental conditions and malaria incidence established 

in prior studies. Mean values were calculated for the 2 x 2 degree gridbox array that best 

corresponded to the Mpumalonga Province study site (28.75-33.75"E, 23-27"s). The 

variables extracted included average available soil moisture (kg/m2), evaporation rate 

(&day), ground specific humidity (gkg), two-meter air temperature (K), surface skin 

temperature (K), large-scale (frontal, supersaturated) rainfall rate ( m m / s ) ,  and convective 

rainfall rate ( d s ) .  
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According to the climatology time series, the monthly rainfall was greatest between 

December and January. As expected, soil moisture peaks coincided with the periods of 

highest rainfall, and an overall decreasing trend in the amount of yearly rainfall was 

reflected in soil moisture quantities. The highest mean temperatures were observed 

between January and February. Overall, the climatology in very good agreement with the 

seasonal trends seen in meteorological station data from Nelspruit, South Africa. 

The satellite data include the 1 O by 1 O monthly NDVI computed using the 

Pathfmder Advanced Very High Resolution Radiometer (AVHRR) and corresponding to 

the Mpumalanga Province (3 1-32"E, 25-26"s). NDVI was obtained directly from the 

GSFC Earth Sciences Distributed Active Archive Center. 

The NDVI time series from 1987 through 1995 indicates a maximum usually 

around February. The number of reported malaria cases consistently reaches its yearly 

maximum around March. The increase in malaria cases seen at the end of the austral 

summer generally lags two to three months behind the beginning of the rainy season and 

one month behind the beginning of the 'greening' season. The times series of NDVI, 

climate and malaria incidence data are shown in Figure 1. 

3.2 Malaria Data 

The Mpumalanga Provincial Department of Health records two broad categories of 

malaria cases: active and passive. Malaria control personnel who regularly visit 

households in malaria areas detect active cases. This detection testing residents for malaria 

infection using blood smears and ICT. Active detection is essential to identify 

uncomplicated or mild malaria, particularly in areas where curative health services are not 

easily accessible. 

Detection of passive cases involves diagnosis and reporting of malaria cases by 

health personnel at curative facilities. It is important to note that the reported number of 

malaria cases is based on definitive diagnosis with ICT or blood smear in both active and 

passive case detection. For the current study, he malaria incidence data from the Tonga, 
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Nelspruit, Kabokweni, and Shongwe Districts that make up the Mpumalanga were 

aggregated to create a representative record of total malaria cases. 

The time series of malaria data are shown in Figure 1. Overall, the malaria data 

follow an annual cycle consistent with rainfall patterns. In 1988, 1989,1991 , 1993, and 

1996, the malaria incidence curve was bimodal, with a second lesser peak appearing in 

October or November. 
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Fig 1. Original time series, January 1987-June 1995; the dashed lines indicate trends. 
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Missing data points in the NDVI signal were removed due to instrument error. 

4. Multivariate analysis 

The analysis consisted of regressing climate and eco-epidemiological variables with 

malaria to determine significant correlation. The climate variables and their derivatives 

were first regressed on malaria to determine which of these independent variables exhibited 

the strongest association based on the 3 and F values. Bivariate analyses were performed 

to explore the structure of the association between each independent variable and malaria 

incidence lagged 0 to 13 months (See Figure 2). All data were transformed to achieve 

normality and stationarity using forward differencing and a Box-Cox transformation, when 

necessary. Three additional eco-epidemiological variables, vector survival rate, biting rate, 

and extrinsic incubation period were calculated using surface skin temperature based on 

MARTENS'S (1 998) formulas. Those the latter two did not yield significant correlations 

and were deleted from the analysis. For the sake of brevity, reported below are only those 

data that resulted in the strongest correlation. 

(a) Mnlnri. c.la - 
MnlnllsCana 

(e) NDVI - 
Malarhc. lu 

(f) Spsvlc Homidlty- 
Mplnri. Cam - 0.4 o'6 T 0.4 0.4 OA I (e) Mnld - 

Malaria Casu 
o'6 I (d) Temperature - 

MnlnriaCues 

-0.6 -0.6 1 -0.6 1 
0 I 2  3 4 I 6  7 8 9 l O I l l 2 1 3  0 1 2 3 4 S 6 7 8 9 l O 1 1 I 2 1 3  0 I 2  3 4 I( 6 7 I 9  1 0 1 1 1 2 1 3  Lag (momth) Lag (month) L.g (m-W F 

ig. 2. Cross-correlation between each climatological risk factor and malaria cases. The y- 

axis corresponds to the number of months that the malaria record is lagged behind the 

climate variable. The dashed line indicates statistical significance with P< 0.05. 
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The cross-correlation matrix, Table 1, indicates that even in the transformed time 

series there is a high correlation between the climatological variables such as soil moisture, 

rainfall, evaporation rate, and specific humidity. There is also a strong correlation, 3 = 

0.55, between survival rate and rainfall, and survival rate and soil moisture. 

MaI8ria Soil Moisturn NDVl Rainfar Survivel Rate 2m eirtemp evaporation sp. humidity 

Malaria 1 
Soil Moisturn 0.08 1 
NDW -0.03 0.12 1 
Rainfall -0.15 0.75 -0.17 1 
Survival Rate -0.02 0.55 0.05 0.55 1 
2m Air Temp -0.08 -0.03 -0.17 0.08 -0.24 1 
Evapmtion -0.09 0.83 -0.10 0.93 0.67 0.05 1 
Sp. Humidity -0.06 0.66 -0.07 0.72 0.35 0.40 0.72 1 

Table 1.Zero-lag correlation matrix of transformed time series 

Some variables, including evaporation rate, skin temperature, and biting rate were 

eliminated in pre-selection routines to reduce the computational effort of the aggregate 

multivariate analysis. The six remaining variables, NDVI, soil moisture, total rainfall, 

vector survival rate, specific humidity, and air temperature, were included in a forward 

stepwise discriminant analysis. Each environmental variable was time-lagged to produce a 

lead-time of 0 to 13 months with respect to the malaria record. The malaria record itself 

was lagged to produce a lead-time of 1 to 13 with respect to the original malaria record. 

This created a pool of 97 independent variables from which a subset of 9 variables was 

selected using ‘step-up’ stepwise multiple regression (see Table 2) on the ‘un-shifted’ 

malaria incidence time series (ZAR, 1973). Changes in the goodness of fit and significance 

of the model (measured by 3 and F value, respectively) as each variable was added are 

shown in Figure 3. 
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Table 2. Parameters of the multivariate regression equation 

The multivariate model is thus written: 

Where Y t  is the modelled or predicted malaria cases at time step t, i is the order in which 

the independent variables were incorporated into the multivariate model, X2 is the 

independent variable Xi at time t, and Pi is a regression coefficient for variable Xi, with the 

coefficients indicated in Table 2. 
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Fig. 3. Development of forward step-up multivariate autoregressive model. Variables 

were added from left to right. The numbers following the number of months of lead-time 

Variable names are abbreviated as follows: M=Malaria incidence, R=Rainfall, SM=Soil 

Moisture, and NDVI= Normalized Differential Vegetation Index 

The variable selection and the computation of the regression equation employed 

only the data recorded between January 1987 and April 1992. This period, which 

establishes the “dose-response” relationship between the environmental conditions and 

disease outcomes, is referred to as the calibration period. Estimqtes of malaria calculated 

during this period are referred to as ‘modelled malaria’ since the malaria data itself were 

used to define the regression equation. This algorithm was then applied to the data from the 

validation period (May 1992 to June 1995) in order to make one-month lead-time 

predictions of malaria incidence. 
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Fig. 4. 

Province, South Africa using an autoregressive multivariate regression analysis. 

Observed, modelled and predicted malaria cases in the Mpumalanga 

The model described in Equation (1) and Table 2 is shown graphically in Figure 4. 

Results indicate that the model accounts for 75% of the variation in the observed malaria 

cases during the calibration period and 33% of the variation in the observed record during 

the validation period. The relative mean absolute error (the mean of the residuals divided 

by the mean of the observed values) was 0.45 (LETTENMAIER and WOOD, 1993). In 

terms of systemic error, the bias of the predictions (difference of the mean of the 

predictions and the mean of the observed values) was 23.5 malaria cases. In order to 

determine the accuracy of predictions, the malaria record was divided into three groups of 

equal size consisting of: low risk months ( 4 6 0  cases), moderate risk months (>160 cases 

and <320 cases), and high risk months (>320 cases). With a lead-time of one month, the 

model predicted 1 1 of 13 months in the validation period that were classified as high risk. 

The model also classified 4 months as high risk that were actually moderate risk or low risk 

months (false positives). When the lead-time of predictions was increased to 2,3, and 4 

months, the predictive ability of the model decreased (see Table 3). 



lLead time (months) 1 2 3 4 1  
~~ ~~ ~ I? 0.34 0.10 0.08 0.061 

Standard Error 155 343 466 609 

Bias 24 70 93 107 

Correct predictions of 
high risk months (out 11 7 6 
of 13 possible) 

False Dositives 4 5 6 

Table 3 Measurements of forecast accuracy with 1 to 4 months of lead-time. 

5. Discussion 

The model presented here, which incorporates NDVI and derived climatic 

variables, is able to predict 11 of the 13 months that were classified as high risk during the 

validation period. It accounts for more of the variability in the malaria incidence data 

(75%) than an autoregressive model that includes malaria incidence alone (33%) or malaria 

incidence, rainfall and temperature (45%), each model using nine parameters. The results 

indicate that even with rather coarse resolution variables of the derived land surface 

climatology, the model performs fairly well in forecasting malaria incidence. 

There are several limitations to the current approach. First, its use as a prediction 

model based only on environmental conditions omits consideration of important 

demographic changes and socio-economic factors that influence the number of reported 

cases in the analysis and interpretation of results. Examples of such factors would include 

seasonal migration of infected workers, changes in control efforts or reporting 

methodology. Consequently, this model is probably best suited as one component of a 

multi-tiered early warning system. Such a system, as described in COX (1999), 

incorporates long-range forecasting based on climate cycles (such as ENS0 parameters), 

medium-range early warning based on monitoring environmental risk factors (such as 

climatological variables or vegetation density), and surveillance of malaria incidence at the 
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local level. A second limitation may be the current rather coarse resolution of the OLGA 

climatology variables. The 2" x 2.5" resolution is perhaps too coarse for making policy 

recommendations, even at Provincial level. However, despite the known limitations, this 

work can serve as a point of departure for future applications of finer scale resolution land- 

surface hydrological models to explore the dynamic relationships between climate, vector 

ecology, and disease outcomes. 

In future work it may be worthwhile to consider that the combination of climate 

variables that serve as the best leading indicators of malaria incidence may vary over the 

course of the phenological year. HAY et al. (1 998) hypothesized that malaria transmission 

is influenced by rainfall only during the drier part of the year until the onset of the rainy 

season. Once the rainy season has begun malaria transmission will show little sensitivity to 

fluctuations in rainfall. Future analyses may benefit from partitioning available data in 

order to detect relationships between climatic conditions and malaria incidence that are 

only discernable during part of the year. It is also worth noting that the generation time of 

malaria cases, the time between bite and manifestation of symptoms, decreases with 

increased temperature ( 4 5  days at 20 "C, -23 days at 30 "C; MOLINEAUX, 1988). 

Therefore, one would expect the lag between the occurrence of favourable environmental 

conditions and increased reporting of malaria to be shorter during the summer and longer 

during the winter 

Overall, however, the good results obtained using the multivariate model indicates 

the utility of applying antecedent climatic variables to the prediction of malaria incidence, 

at least for regions such as the Mpumalanga Province that possesses a sparse 

hydrometeorological observational network. As the spatial and temporal resolution of 

satellite based terrestrial products improve, together with more accurate data assimilation 

methods, it is reasonable to expect a corresponding improvement in predicting malaria 

using a similar multivariate approach. 
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