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Summary 

This report describes the progress made in the first two years (Sept. 1. 1999 to Aug. 31, 
2001) of work at The University of Toledo under the NASA Information Technology 
(IT) Program grant number NAG-1-2244. This research was aimed at developing a new 
and advanced simulation framework that will significantly improve the overall efficiency 
of aerospace systems design and development. The project was originally a three-year 
project with specific tasks to be completed in each of the three years. However, the 
project was funded only for two years and the third year‘s funding was thus unavailable 
to complete the tasks planned in the original proposal. At the end of each year, a progress 
report was sent to the Grant Monitor, Mr. Wayne Gerdes. The reports are reproduced in 
Appendix A. The work accomplished under the grant is already described in the progress 
reports and accordingly will not be repeated here. Four papers, two journal papers and 
two conference papers were published primarily based on the work done on this project. 
Three of these publications occurred after the second year report had been submitted; 
hence a copy of these papers is provided for completeness in Appendix B. The second 
journal paper entitled “On XML-based Integrated Database Model for Multidisciplinary 
Aircraft Design” is accepted for publication and is scheduled to appear in AIAA Journal 
of Aerospace Computing, Information, and Communication in 2004. 
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Summary 
This report describes the progress made in the first year (Sept. 1, 1999 LO Aug. 3 1,2000) of 
work at The University of Toledo under the NASA Information Technology (IT) Program 
grant number NAG-1-2244. This research is aimed at developing a neiv and advanced 
simulation framework that will significantly improve the overall efficiency of aerospace 
systems design and development. This objective will be accomplished through an 
innovative integration of object-oriented and Web-based technologies ivith both new 
and proven simulation methodologies. The basic approach involves Ihree major areas of 
research: 

Aerospace system and component representation using a hierarchical object-oriented 
component model which enables the use of multimodels and enforces component 
interoperability. 

Collaborative software environment that streamlines the process of developing, 
sharing and integrating aerospace design and analysis models. 

. Development of a distributed infrastructure which enables Web-based exchange of 
models to simplify the collaborative design process, and to support computationally 
intensive aerospace design and analysis processes. 

Research for the first year dealt with the design of the basic architecture and supporting 
infrastructure, an initial implementation of that design, and a demonstration of its 
application to an example aircraft engine system simulation. 
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Year 1 Accomplishments 
Work was begun in several areas during the first year of this three year grant. LIajor 
results are summarized below. A more comprehensive description of the methodology 
and initial accomplishments, along with an overall vision statement of our long term 
research goals, was published in Ref. 1. 

Common Model Framework 
An object-oriented domain framework for representing aerospace components. systems 
and subsystems has been developed. The framework, which we call the Common Model 
Framework (CMF) , provides the foundation for the Denali' aerospace simulation 
system. The framework formalizes an approach for abstracting aerospace domain 
physical structure and mapping it to the computational domain. As shown in Figure 1, 
aerospace systems, such as an aircraft, are hierarchically decomposed (Fig. lb) into 
subsystems and components (e.g., fuselage, engines, vertical stabilizer, etc.), Lvhich are 
then abstracted using a control volume approach (Fig. IC).  The control volumes provide 
both a physical geometry representation as well as a convenient mechanism for 
mathematical modeling. Each component can be further decomposed to identiify more 
basic components. The most basic components may be represented in the computational 
domain by an object class. Following the Denali CMF architecture, the more basic classes 
can be instantiated and the various objects combined to form more complex objects. This 
object composition provides a powerful and flexible mechanism for modeling and 
simulating aerospace systems, allowing complex aerospace systems to be composed in 
the same familiar manner as the physical system. 

There are four basic entities in the Denali architecture: Element, Port, Connector and 
DomainModel (see Fig. Id). The JavaTM interface Element represents a control \.olume, 
and defines the key behavior for all engineering component classes incorporated into 
Denali. It declares the core methods needed to initialize, run and stop model execution, as 
well as methods for managing attached Port objects. Classes implementing this interface 
generally represent physical components, such as a compressor, turbine blade. or 
bearing, to name a few. However, they may also represent purely mathematical 
abstractions such as a cell in a finite-volume mesh used in a CFD analysis. This flexibility 
permits the component architecture to model a variety of physical systems. 

An Element may have zero or more Port objects associated with it. The Port interface 
represent a surface on a control volume through which some entity (e.g., mass or energy) 
or information passes. Ports are generally classified by the entity being transported 
across the control surface. For example, a Compressor object might have two FluidPort 
objects-representing the fluid boundaries at the Compressor entrance and exit-and a 
StructuralPort object, representing the control surface on the Compressor through 
which mechanical energy is passed (from a driving shaft). 

1. Not an acronym. 
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Figure 1: Mapping of aerospace physical domain to computational framework. 
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The common boundary between consecutive control volumes is represented by a 
Connector object. The interface Connector permits two Element objects to 
communicate by passing information between connected Port objects (see Fig. ld).  It is 
also responsible for data transformation and mapping in situations where the data being 
passed from Ports is of different type. The need for such data transformation can range 
from simple situations, such as conversion of data units, to very complex ones involving 
a mismatch in model fidelity (e.g., connecting a 2-D fluid model to a 3-D fluid model) or 
disciplinary coupling (e.g. mapping structural analysis results from a finite-element 
mesh to a finite-volume mesh used for aerodynamic analysis). For all but the simplest 
cases, the algorithms needed to perform the data transformation or mapping will tend to 
be very complex. To improve reusability, Connector delegates transformation/mapping 
responsibilities to a separate Transform object (see Fig. Id) which encapsulates the 
necessary intelligence to expand/contract data and map data across disciplines. 

The DomainModel represents the mathematical model used to define component 
behavior. During component design and analysis, many different models (i.e., 
multimodels) are used. During preliminary design the models are relatively simple and 
may be solved analytically or using basic numerical methods. However, models used in 
latter phases of design can be quite complicated. In these cases, approximate solutions 
are obtained by discretization of the equations on a geometrical mesh and applying 
highly specialized numerical solvers. The presence of these complex mathematical 
models and the numerical tools needed to solve them suggest that it is desirable to 
encapsulate these features and remove them from the Element structure. This enhances 
the modularity of Element, allowing new Element classes to be added without regard to 
the mathematical model used, and conversely to add new models without affecting the 
Element class. To achieve this, Denali utilizes the Strategy design pattern-to encapsulate 
the mathematical model in a separate object. The benefit of this pattern is that families of 
similar algorithms become interchangeable, allowing the algorithm-in this case the 
DomainModel-to vary independently from the Elements that use it. This admits the 
possibility of run-time selection of an appropriate DomainModel for a given Element: 
however, this is currently not used in Denali. Furthermore, encapsulating the 
DomainModel in a separate object also encourages the “wrapping” of pre-existing, 
external software packages. For example, the Fan DomainModel in Fig. Id might “wrap” 
a pre-existing three-dimensional Navier-Stokes or Euler flow solver to provide steady- 
state aerodynamic analysis of fluid flow within the Fan. This approach allows proven 
functionality of existing software analysis packages to be easily integrated within an 
Element. 

The standard object interfaces of the Denali CMF ensure that each component object 
interoperates with other component objects. This is essential for providing a stable 
modeling environment which allows complex models to be developed using object 
composition and class inheritance. Furthermore, the standard interfaces of the CMF 
architecture provide a “pluggable” architecture wherein new components can be added 
at runtime. 
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As an example application of the CMF, a model of a the NASA/GE Energy Efficient 
Engine (EEE) gas turbine aircraft engine was created. Elements representing the inlet, 
fan, compressor, combustor, shafts, turbines, nozzle and ducts in a turbofan engine were 
developed. The DomainModel for each Element was developed using a zero- 
dimensional mathematical treatment. Furthermore, only an aerothermodynamic 
disciplinary analysis was used. At this level of fidelity and discipline, component 
behavior was defined by the unsteady, space-averaged forms of the aerothermodynamic 
conservation equations. Empirical data, in the form of performance maps, were used to 
define operating behavior for rotating components, such as Compressors and Turbines. 
The component objects were combined using appropriate zero-dimensional fluid and 
mechanical Port and Connector objects. A Newton-Raphson numerical execution 
scheme (also provided as part of the Denali system) was used to sole the model 
equations and simulate both steady and unsteady engine operation. Results of the tests 
were validated against other existing FORTRAN gas turbine engine simulation 
programs. 

Connection Services Frame work 
Aerospace design and analysis requires the interaction of many people at different 
geographic locations. Even if these individuals are part of the same company, today’s 
increasingly international business environment and corporate structures requires us to 
assume that the participants may not be at the same location. Moreover, strategic 
partnerships between companies (even those competing in the same business domain) 
are becoming more common place requiring additional interaction across company 
boundaries. As a result, it is important that our simulation framework enable users to 
collaborate by sharing models and data in a heterogeneous Lvork environment. 

Denali supports the exchange of models through the use of mobile code. Mobile code is 
defined as program code which can be transferred from one computer to another and 
executed (without recompilation) on the receiving computer. An example of this is the 
Java byte-code which is executed on the receiving machine by a Java Virtual Machine 
interpreter. Denali utilizes this feature to allow designers to create, compile, verify and 
share Java-based component models. Following the design guidelines specified by the 
CMF, aerospace components are created, placed on a Web-server and downloaded to a 
Denali client. Once loaded to the client, the model can be combined without additional 
programming effort to form a new model. 

In aerospace design and analysis, as in many other engineering domains, access to 
distributed resources is critical. The computationally intensive nature of higher fidelity 
analysis codes (such as Computational Fluid Dynamics) require access to high 
performance supercomputers or networks of workstations. Furthermore, the use of 
legacy code in aerospace design and analysis often require access to codes that are 
constrained to run on specific architectures or operating systems. As a result, it is 
important that our simulation framework enable users to access the appropriate 
computing resources for the target application. 
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The Denali Connection Services Framecvork (CSF) provides the necessary infrastructure 
to enable transparent access to distributed resources using both Web-based exchange of 
models, and distributed object service. Web-based models-models ivritten entirely in 
Java-are created, compiled, verified, tested and placed on an HT’TP web server where 
they can be accessed from a Denali client. Non-Java models, such as legacy FORTRAN 
software, which are fixed to a particular location due to code size, computing 
architecture or proprietary reasons, are placed on remote machines and wrapped by a 
Java object. This wrapper defines an interface to the legacy code and acts as a proxy, 
enabling the legacy code to be viewed as a local object. As with the ICeb-based models, 
the Java wrapper for the remote legacy code is placed on a Web sener so that it may be 
downloaded to the Denali client. 

The Denali client, positioned on a user’s workstation or personal computer, locates 
available Web-based and remote models by querying one or more n.ell-known naming 
or directory service. Using a Component Browser, a user can browse the objects and data 
stored in a naming or directory service (see bottom-right corner of Fig. 2). Denali 
currently supports access to common naming and directory services. such as NDS, 
LDAP, CORBA Naming Service (COS Naming), and RMI Registry. through the Java 
Naming and Directory Interface UNDI). JNDI is an API that provides an abstraction that 
represents elements common to the most widely available naming and directory 
services. JNDI also alloLvs different services to be linked to together to form a single 
logical namespace called a federated naming service. Using the Component Browser, 
Denali users are able to navigate across multiple naming and direcrory services to locate 
simulation data, objects and components. 

Currently, we mainly use an LDAP (Lightweight Directory Access Protocol) service 
which provides both naming (objects are referred by their name) and directory (objects 
are stored in hierarchies) access. We utilize the OpenLDAP software. an open-source 
implementation of the LDAP protocol, running on a UNIX workstation in our lab. 
Rather than storing the model objects in the LDAP service, we chose to store only 
attributes of the component. This reduces the need to store and transfer large objects 
from the LDAP, and allo\vs models to be located by searching for ke_ywords 
corresponding to certain attributes. For example, for each model component, we define 
the class name, the model author, model creation and expiration date, and the LRL of 
the model code, to name a few. When a component is selected from the LDAP, the Java 
byte-codes are downloaded from the Web server defined by the component’s LRL 
attribute. On the client machine, the byte-codes are dynamically loaded and used to 
create an instance of the model. 

For security purposes, the Component Browser requires users to authenticate 
themselves before they can retrieve any information from a naming or directory service. 
Once authentication has been successfully completed, the user can browse or search 
(using attribute keywords) the entire namespace (subject to any authorization 
restrictions). Authentication and authorization capabilities are provided through JNDI 
and the Java Authentication and Authorization Service UAAS) framework. These tools 
allow the Component Browser to remain independent from the underlying security 
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services, which is an important concern when working in a heterogeneous computing 
environment such as the Web. 

Access and utilization of both Web-based and remote legacy models ha\.e been tested 
successfully using the Denali CSF. Component models for the EEE gas [urbine engine 
model were placed on a Web server (rnimel) located in our lab. Each component model, 
with the exception of the Combustor, was defined as a Web-based model (i.e., written in 
Java). For this test, a FORTRAN Combustor model, representing non-Java legacy codes, 
was written, compiled and placed on a second machine (mime2). A Java ivrapper, acting 
as a proxy for the Combustor model, was written, compiled and placed on the Web 
server (mime 1). Deployment of each component also included registering component 
attributes with the LDAP service running on a third machine (mime3). A Denali client, 
operating on a fourth machine (mime4), was then used to access and construct the EEE 
engine system model using the Denali Visual Assembly Framework, Lvhich is described 
below. 

Visual Assembly Framework 
The Visual Assembly Frameic-ork (VAF) provides a configurable, extensible graphical 
interface for constructing and editing Denali component and system models. Aerospace 
component objects, placed on Web servers and registered in the LDAP service are 
graphically manipulated in the VAF to create new models, or edit existing models. Icons, 
representing individual engine components (i.e., Elements), are selected from the 
Component Browser, dragged into a workspace window, and interconnected to form a 
schematic diagram (see Fig. 2). Dragging an icon from the Component 3rowser to the 
workspace window causes the selected software component to be doimloaded from the 
Web server to the client machine. Components comprised entirely of Ja\.a classes are 
downloaded from a Web server to the local file system where the byte-codes are 
extracted from the JAR file, loaded into the Java Virtual Machine and insIantiated for use 
in Denali. Components developed in other programming languages are not 
downloaded, but remain on the server. Instead, the proxy object, representing the 
component, is downloaded and used to connect to the remote component using the Java 
Remote Method Invocation (RMI) substrate. 

Denali supports the creation of hierarchical component models, and an icon can 
represent both a single component or an assembly of components. A component with 
subcomponents is called a composite or structured component. Components that are not 
structured are called primitive components, since they are typically defined in terms of 
primitives such as variables and equations. Composite components are represented by a 
CompositeElement class, which is part of the Element hierarchy. The class structure, 
based on the Composite design pattern, effectively captures the part-ivhole hierarchical 
structure of the component models, and allows the uniform treatment of both individual 
objects and compositions of objects. Such treatment is essential for pro\-iding the object 
interoperability needed to perform Web-based model construction by composition. 
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Figure 2 shows a composite model representing an aircraft turbofan engine. The icon 
labeled Core is a composite of components which are displayed in the lower schematic. 
Each icon has one or more small boxes on its perimeter to represent its Ports. Connecting 
lines are drawn between the ports on different icons by dragging the mouse. A 
Connector object having the correct Transform object needed to connect the two ports is 
created automatically by Denali. Each icon has a popup menu which can be used 
“customize” the attributes of its Element, Port and DomainModel objects. LVhen 
selected, a graphical Customizer object is displayed (see upper-right corner of Fig. 2), 
which can be used to view or edit the selected objects attributes. The visual assembly 
interface also provides tools for plotting (see the lower-left corner of Fig. 2),  editing files, 
and browsing on-line documentation. 

Using the VAF interface, the EEE component models were successfully downloaded 
from the Web server (mimel),and combined graphically to form an EEE engine model in 
the VAF. A Newton-Raphson numerical execution scheme (provided as parr of the 
Denali system) was used to solve the system of equations and simulate both steady and 
unsteady engine operation. Results of the tests were validated against other exis[ing 
FORTRAN gas turbine engine simulation programs. 

Currently the VAF interface is implemented as a Java application rather than a Java 
applet. This was done for two reasons: 1) Java applications are easier to develop [han 
applets, since they do not require explicit security controls (i.e., signing) : and. 2) browser 
technology needed to run applets is not up-to-date. Also, a new product. called Java Web 
Start is now available (in beta form) which allows users to download Java applicarions 
which run on the desktop, in much the same manner as applets, but do not require a 
Web browser. We are currently experimenting with the Java Web Start to evaluate its use 
with Denali. 

Publications Resulting from Work Supported by This Grant 
[l] Reed, J. A., Follen, G. J., and Afjeh, A. A., “Improving the aircraft design process 

using Web-based modeling and simulation, “ ACM Transactions on Modeling and 
Computer Simulation, Vol. 10, No. 1,2000, pp. 58-83, (special issue on Web-based 
Modeling and Simulation). 

Plans for Year 2 

Common Model Framework 
The majority of work in year 2 will focus on the addition of geometry data to models. 
Specifically, we plan to work on providing direct access to CAD native geometry 
data. Our plan is to use a middleware layer being developed at MIT to alloiv us to 
access a variety of CAD packages using a common API. Access to CAD geometry 
will allow us to enhance our visualization capabilities. 
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We plan to test integration of several database management systems with Denali. 
This had been slated for yr. 1, but was postponed until yr. 2 to more fully explore the 
use of new approaches to saving models, such as using XML. 

We also plan to obtain existing airframe models for study. These will be integrated 
within the Denali simulation system in year 3. 

Connection Services Frame work 
We will continue to improve non-mobile code services. Specifically, we are working 
on developing generalized specifications for wrapping legacy codes common in the 
aerospace domain. These include CFD and FEA tools, as well as numerical solvers 
and optimizers. 

Visual Assembly Framework 
We will work on integration of CFD and geometry visualization. We will examine the 
possibility of integrating an existing visualization tool, or creating a new Java-based 
visualization tool to display geometry and flow data. 

We \vi11 continue to enhance and refine our VAF design to make it more intuitive and 
easier to use. We hope to provide a beta version of the Denali system to users at 
aerospace companies and NASA centers for evaluation. Feedback from these beta 
testers will be used to enhance the Denali VAF (and other parts of Denali). 
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Figure 2: Denali Visual Assembly interface showing integration of engine model. 
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Summary 
This report describes the progress made in the second year (Sept. 1,2000 to Aug. 31,2001) of work at The 
University of Toledo under the NASA Information Technology (IT) Program grant number NAG-1-2244. 
This research is aimed at developing a new and advanced simulation framework that will significantly 
improve the overall efficiency of aerospace systems design and development. This objective will be 
accomplished through an innovative integration of object-oriented and Web-based technologies with both 
new and proven simulation methodologies. The basic approach involves three major areas of research: 

Aerospace system and component representation using a hierarchical object-oriented component 
model which enables the use of multimodels and enforces component interoperability. 

Collaborative software environment that streamlines the process of developing, sharing and 
integrating aerospace design and analysis models. 

Development of a distributed infrastructure which enables Web-based exchange of models to simplify 
the collaborative design process, and to support computationally intensive aerospace design and 
analysis processes. 

Research for the second year focused on enabling models developed in the Dennli software environment to 
directly access CAD native geometry. Access to CAD geometry is essential to generate mesh for use in 
fluid and structural analysis of aerospace systems, as well as visualization of analysis results. Furthermore, 
a geometry-centric modeling approach, as employed in this work, simplifies use of these and other tools in a 
multidisciplinary design process. Finally, direct access to CAD native geometry, compared to geometry 
described in intermediate forms (e.g., IGES['I* STEP[*], STL13], etc.), is more robust. 

NAG-1-2244 2nd Year Report 1 September 7,2001 



Year 2 Accomplishments 

CAD 

In trod iiction 
Computational simulation plays an essential role in the aerospace design process. Computer-aided design 
(CAD) methods are the basic tool for definition and control of the configuration, ard CAD solid modeling 
capabilities enable designers to create virtual mockups of system to verify that no .nterferences exist in 
part layouts. Similarly, structural analysis is almost entirely performed using con;xtational tools 
employing finite element methods. Computational simulation is also employed :c model fluid dynamics. 
However, computation fluid dynamic (CFD) tools are not as widely applied in the zesign process as either 
CAD or structural analysis tools due, in part, to the long set-up times and high  COS:^ (both human and 
computational) associated with complex fluid flow.['] 

' * Meshing + Solving I + Iisualization 

The conventional steps for CFD, structural analysis, and other disciplines in the design process are: 1) 
surface generation, 2) mesh generation, 3) obtaining a solution, and 4) post-processing visualization. 
Surfaces of the domain to be analyzed (e.g., a turbine blade passage) are generated from a CAD system. 
These surfaces are used to create a domain (i.e., a closed volume) of interest which is discretized in one of 
many different manners to form a mesh. The mesh, along with boundary informZ?on, is used by a 
numerical solver to obtain a solution to the governing equations over the entire 1-c:ilme. This solution and 
mesh are then displayed graphically, allowing the user to examine the results ani: 2xtract the data needed 
to understand the domain physics. This process is illustrated in Fig. 1. Data are trznsmitted between these 
steps via files; for example, output from a CAD system might be in the form of I G E  file(s), which are read 
by the mesh generator. Similarly, the mesh generator, solvers and visualization took would each generate 
output and read input in a variev of formats. 

Mesh generation has long been recognized as a bottleneck in the CFD process.['; :?lule much research on 
automating the volume mesh generation process have been relatively successful. r5ese methods rely on 
appropriate initial surface triangulation to work properly. Surface discretization ;7'j been one of the least 
automated steps in computational simulation due to its dependence on implicitl:: iefined CAD surfaces 
and curves. Differences in CAD peometry engines manifest themselves in discrerzcies in their 
interpretation of the same entities. This lack of "good" geometry causes signific2.r.r ?roblems for mesh 
generators, requiring users to "repair" the CAD geometry before mesh generatior.. The problem is 
exacerbated when CAD geomem is translated to other forms (e.g., IGES which La not include important 
topological and construction information in addition to entity geometry. t61 

One technique to avoid these problems is to access the CAD geometry directly frcm the mesh generating 
software, rather than through files. By accessing the geometry model (not a discrefzed version) in its 
native environment, t h s  a proach avoids translation to a format which can deplere the model of 
topological information. [ 6 f  

Our approach to enable models developed in the Denali software environment to iirectly access CAD 
geometry and functions is through an Application Programming Interface (API) h o w n  as CAPRI.171 
CAPRI provides a layer of indirection through which CAD-specific data may be accessed by an 
application program using CAD-system neutral C and FORTRAN language funceon calls. CAPRI 
supports a general set of CAD operations such as truth testing, geometry construction and entity queries. 

- - - - Data transfer via files 

Figure 1: Conventional Analysis Process (Ref. [7]) 
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Figure 2: CAPRI-based Analysis Process (Ref. [7]) 

Meshing w Solving Visualization 

CAPRI isolates the top level applications (mesh generators, solvers, and visualization programs) from the 
geometry engine (see Fig. 2) .  It also allows the replacement of one geometry kernel with another, without 
affecting the top-level application. Additionally, CAPRI allows non-geometry information, such as 
material or condition information (e.g., temperature) to be attached to the geometry entities. 

i A 
I 

CAPRI API 
4 
7 
I - Geo. Kernel t * Geo. Database 

A geometry-centric approach, such as the one supported by CAPRI, is vital to foster concurrent 
engineering, especially in multidisciplinary aerospace design. This approach allows requisi:? information, 
both geometric and non-geometric, to be captured and used in the design process. For exam?le, a CFD 
solver, using the supplied mesh, would generate a solution consisting of fluid properties (e.g., 
temperature, pressure, etc.) for each volume. Ths  data is attached to appropriate mesh vol.;nes through 
CAPRI, and accessed by other applications through context-specific views of the CAPRI data. For example, 
a CFD visualization application program would obtain the geometry directly (through CAPRI) from the 
CAD geometry kernel while the CFD data would be supplied from CAPRI attachments. 

Implementation Details: Overviezo 
We have designed and implemented a basic object-oriented architecture to allow both Der.2-i models and 
external application programs to access geometry data through the CAPRI API. Figure 3 ii:,strates a 
simplified view of the architecture participants. The designer directs the Client, which is eiri.,er a Denali 
model or external application program, to generate a mesh for a specific CAD part. The MeshGenerator is 
responsible for generating an appropriate mesh given a CAD part, and is done in conjuncEcn with the 
CAPRI middleware and a CAD geometry kernel (such as UniGraphics Parasolid). The generated mesh is 
returned to the Client and passed to the Analysis Controller (it may also be viewed at this !me by a 
visualization tool). The Analysis Controller uses the mesh to perform an engineering analJ-sis, such as 
CFD. At the end of each time-step or the end of the analysis, CFD data is attached to geomerry via calls to 
CAPRI. The mesh, attached CFD information, and geometry boundary surfaces data are retrieved by a 
Visualizer which displays the simulation results to the designer. 

Mesh Generation 
A general class structure has been developed to frame the mesh generation process using C.\PRI (see Fig. 
4). The MeshGeneratorMgr class provides a single access point (implemented as a Singleton object) for 
clients to obtain a mesh from a CAD part. There are many different techniques for generating a mesh, so 
Denali allows users to specify a particular mesh generation technique as implemented by a lava class. 
These different classes can be dynamically plugged into the Denali framework so long as they subclass the 
abstract MeshGenerator class. In Fig. 4, the MeshGenerator class has been subclassed by the 
DenaliMeshGenerator class, which defines concrete implementations of MeshGenerator abstract methods 
(indicated by italics). MeshGenerator subclass’ can use whatever means they wish to generate a mesh; this 
allows the use of existing IGES- and STEP-based tools. In our research we have written a simple Java mesh 
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Figure 3: Global view of architecture 

generator based on constrained Delaunay triangulation. The generator, which is implemented in the 
DenaliMeshGenerator class, utilizes CAPRI to access native CAD geometry and generate a mesh. The 
Capri class is a Java wrapper which duplicates the CAPRI API function call list and accesses the CAPRI 
C-language function calls through the Java Native Interface (JNI). 

Using CAPRI, the DenaiMeshGenerator loads a CAD part, then retrieves a list of volumes from CAPRI. 
For each volume, CAPRI returns a simplical decomposition of each of the CAD face entities. Each of these 
triangulations are manifold with respect to their CAD edges. Typically, the triangulation is irregular and 
planar regions are decomposed into as few triangles as possible. A new mesh with higher quality is 
constructed by creating additional triangles using points on CAD faces obtained from CAPRI. 

Since it was not our intent to write a robust and guaranteed-quality mesh generation tool, lve developed 
the Delaunay triangulation mesh generator only to the point to demonstrate access to geometrl; through 
CAPRI. In the future, we may choose to continue this work and improve upon it using the work ot' 
Ruppert['I, Chew["] and Aftosmis.["]. 
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Visirdization 
As indicated above, visualization tools are essential to view solver solutions overlaid on geometry and 
mesh data. One visualization tool, called the Gcornctry Viezorr, is a stand-alone visual interface and 
debugging aid provided with CAPRI. It is similar to the Visual3 program[”] used for scientific 
visualization, but is limited to viewing meshes and geometry. We have loosely integrated the Geometry 
Viewer withn the Denali framework so as to demonstrate the ability to visualize geometry and mesh 
using the CAPRI library. 

One of the goals of the Denali framework was to provide a platform-independent system for aerospace 
design. Towards that end we have endeavored to use JavaTh’ as much as possible in developing the 
framework. However, in some cases, no Java-based tool were available; this is currently the case with 
visualization tools. It is sometimes possible to partition the non-Java software into a client-server 
architecture with the non-Java software located on a centralized machine made accessible via RMI or 
CORBX. However, it appears that this is not currently possible with existing visualization tools. 
Consequently we are exploring the possibility of developing a visualization tool similar to Visital3 or the 
Geometry Viewer using Java, and in particular, the Java3D 
users to install platform-specific visualization tools on each desktop using Denali in order to view 
geometry and/or simulation solutions. 

Alternatively, we will have to require 

Plans for Year 3 
The majority of work in year 3 will focus on the development of aircraft models for use in Denali. In 
anticipation of the year 3 work, we have licensed the Base of Aircraft Data (BADA) from the 
Eurocontrol Experimental Centre (EEC). The Base of Aircraft Data (BADA) provides a set of ASCII 
files containing performance and operating procedure coefficients for 186 different aircraft types. The 
coefficients include those used to calculate thrust, drag and fuel flow and those used to specify 
nominal cruise, climb and descent speeds. 
We will continue to work on implementing a database management system based on the Java Data 
Objects (JDO) specification.[’] The final JDO specification is expected to be released soon, and we will 
be evaluating different implementations of the specification to see which is best for supporting Denali. 
We will also be working on integrating more robust grid generator and visualization tools which 
utilize the CAPRI interface. 
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ABSTRACT 

Advances in computer capacity and speed together with 
increasing demands on efficiency of aircraft design 
process have intensified the use of simulation-based 
analysis tools to explore design alternatives both at the 
component and system levels. High fidelity engineering 
simulation, typically needed for aircraft design, will 
require extensive computational resources and database 
support for the purposes of design optimization as many 
disciplines are necessarily involved. Even relatively 
simplified models require exchange of large amounts of 
data among various disciplinary analyses. Crucial to an 
efficient aircraft simulation-based design therefore is a 
robust data modeling methodology for both recording 
the information and providing data transfer readily and 
reliably. To meet this goal, data modeling issues 
involved in the aircraft multidisciplinary design are first 
analyzed in this study. Next, an XML-based. extensible 
data object model for multidisciplinary aircraft design 
is constructed and implemented. The implementation of 
the model through aircraft databinding allows the 
design applications to access and manipulate any 
disciplinary data with a lightweight and easy-to-use 
API. In addition, language independent representation 
of aircraft disciplinary data in the model fosters 
interoperability amongst heterogeneous systems thereby 
facilitating data sharing and exchange between various 
design tools and systems. 

INTRODUCTION 

Improvement in aircraft design involves research 
into many distinct disciplines: aerodynamics, structures. 
propulsion, noise, controls, and others. Due to the 
inherent complexity and coupling of the disciplinary 
design issues, simulation-based analyses of aircraft 
design will naturally evolve to complex assemblies of 
dynamically interacting disciplines where each of the 
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disciplines interacts to various degrees x i th  the other 
disciplines (Figurel). The multidisciplinary couplings 
inherent in aircraft design not snly increase 
computational burden but also piesent additional 
challenges beyond those encountertd in a single- 
disciplinary simulation of aircraft. The increased 
computational burden simply reflects :it massive size 
of the problem, with enormous amounts zfanalysis data 
and design variables adding up with :ach additional 
discipline. As a result, designing and xplementing a 
new simulation methodology that jupports the 
multidisciplinary aircraft design prostjj can be an 
impractically expensive and timc-:r,vnsive task. 
Currently reasonably well-developed and validated 
software tools exist within ind iv icd  disciplines. 
Hence, a key requirement for the S U C C ' t - j  of a practical 
multidisciplinary aircraft simulation is :a provide the 
tools necessary to support efficient im=nt ion  of these 
computer simulation codes. This appr,-:sh demands a 
well-constructed data sharing xi validation 
environment, which includes a robusr iata modeling 
andlor the use of a data exchange standz-d. 

...I Geometry 1. 

Materials 

Acoustics 

Figurel. Typical disciplines in an xcraf t  design 

Traditional preliminary design 7rscedures often 
decompose the aircraft into isolated components (wing, 
fuselage, engine, etc.) and focus ancntion on the 
individual disciplines (geometry. propulsion, acoustics, 
etc.). The common approach is to perform disciplinary 
analysis in a sequential manner Lvhert one discipline 
may synthesize the results of the preceding analysis 
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during the simulation run-time. The current practice 
emphasizes the multidisciplinary nature of the design of 
an aircraft through the use of integrated product teams. 
However, integrated and sharable aircraft design 
databases arc not yet common in industry. One reason 
for this is because aircraft system simulation typically 
requires complex numerical algorithms and coupling 
models between dominant disciplines. Accordingly, 
developers can barely afford to build propriety data 
storage models around successful design applications. 
With the distinction, each discipline focuses on 
activities related to its own concerns. The designers 
typically provide each discipline with only those data 
which are required in performing the specific task of 
that discipline, and often, they spend 5040% of their 
time organizing data and moving it between 
applications [I] .  A very common problem with this 
kind of data exchange is data consistency. It is not 
uncommon to find that during the design phase, a 
particular discipline’s updated calculations have not 
been effectively communicated with other disciplines 
involved in the design effort. This breakdown in the 
data exchange process results in inconsistent 
predictions among the various disciplines and could 
cause, for example, an “optimal” aerodynamic design 
that can not contain a sufficient supportive structure. 

Other factors that can make the design process less 
efficient are data redundancy and the lack of a standard 
data format. To synthesize and evaluate aircraft designs, 
numerous software packages for analysis, post 
processing or data visualization are often employed. 
Because the aircraft simulation computing 
environments are typically heterogeneous, with 
platforms ranging from personal computers to UNIX 
workstations, to supercomputers, their internal data 
representations are normally not the same, these tools in 
general use different, possibly proprietary, data formats. 
Moreover, data are often duplicated in a slightly 
different format for the various disciplines’ use. This 
lack of portability of data in different file systems 
greatly hinders sharing and exchanging of 
interdisciplinary data. In addition, the multiplicity of 
representation of disciplinary datasets not only wastes 
storage media capacity and CPU time, but it also 
generates an enormous overhead in terms of data 
translator development, additional software and data 
management. Although in some cases, custom 
translation tools are available to “massage” the data into 
the appropriate format; users still spend considerable 
time and effort tracking and validating data. As the 
analysis and design tasks become more distributed, 
communications requirements become more severe. 
Advances in aircraft disciplinary analyses and the 
growing trend in the use of high fidelity models in the 
last two decades have only aggravated these problems, 
increasing the amount of shared information and 

outpacing developments in interdisciplinary 
communications and system design methods [ 2 ] .  

Improving the stmulation-based aircraft design 
process. therefore, requires the development of an 
integrated software environment which can provide 
interoperability standards so that information can flow 
seamlessly across heterogeneous machines. computing 
platforms, programming languages. and data and 
process representations [3]. In particular, emphasis 
should be placed on the generation of a database 
management system specifically crafted to facilitate 
multidisciplinary aircraft design. The subject of this 
paper is to provide a sharable and interchangeable 
database model for multidisciplinary aircraft design, 
with the intent to promote the interdisciplinary 
information sharing. 

DESIGN REOUIREMESTS 

The Multidisciplinary Optimization Branch 
(MDOB) at NASA Langley Research Cmter (LaRC) 
recently investigated frameworks for supporting 
multidisciplinary analysis and optimization research. 
The major goals of this program were to develop the 
interactions among disciplines and promote sharing of 
information. This section outlines several design 
requirements related to the data modeling that are 
particularly evident in the aircraft multidisciplinary 
analysis and optimization. based on the experience 
gained from the Framework for Multidisciplinary 
Design Optimization (MDO) project [-l.i]. 

Standards. Use of standards in a database model 
preserves investment, results in lower maintenance 
costs and also promotes information sharing. It 
ensures that there are no interoperability problems 
between design teams that use the open standard. 
Sharable. Data must be shared benveen disciplines 
and within disciplines with all the applicable 
quality, consistency and integrity checks [ 11. 
Information sharing can reduce discipline isolation 
and encourage the use of the most advanced 
techniques while increasing the awareness of the 
effects each discipline has upon other disciplines 
and for reduced design cycle time [ 6 ] .  
High-level interface. Database model should allow 
the user to use and modify aircraft data in complex 
MDO problem formulations easily without low- 
level programming. By raising the level of 
abstraction at which the user programs the MDO 
problems, they could be constructed faster and be 
less prone to error. 
Extensible. Advances in aircraft design will have 
new disciplines to appear, such as maintainability, 
productivity, etc., therefore database model should 
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be extensible and should provide support for 
developing the interfaces required to integrate new 
disciplinary information into the system easily. . is  
a result, the user a.ould svoid having to wait for the 
needed features to appear in new releases. 
Lurge data size. Since aircraft design involves a lot 
of disciplinary analysis variables, database model 
should be able to handle large problem sizes. 
Supporting techniques should allow database to 
grow and shrink dynamically, but do not degrade 
the database performance dramatically. 
Object-oriented. Database model should be 
designed using object-oriented principles. Object- 
oriented design [7] has several advantages in 
aircraft design. For example, object-oriented 
principles provide polvmorphisrn for analysis or 
optimization methods at run time. Object-oriented 
software design has been employed as a tool in 
providing a flexible. extensible, and robust 
multidisciplinary toolkit that establishes the 
protocol for interfacing optimization with 
computationally-intensive simulations [8]. 
Distributed. For large problems, the designers in 
different disciplinary teams need to be able to 
conveniently work together by collaborative design 
[9]. It is desirable that a database model could 
support disciplinary code execution distributed 
across a network of heterogeneous computers. 

The implementation of a database to meet all these 
requirements is a major challenge. In the following 
sections. we focus on the design and development of a 
XML-based database model as a first step toward 
meeting that challenge. 

XML FOR AIRCRAFT DATA 

XML [ I O ]  is a generic. robust syntax for developing 
specialized markup language. which adds identifiers, or 
tags, to certain data so that they may be recognized and 
acted upon during future processing. Several good 
features inherent within XML would make it well 
suited to the task for satiseing multidisciplinary data 
requirements. 

As indicated in the Design Requirements section, 
data sharing is an essential element in preventing design 
isolation between various aircraft disciplinary 
components. XML provides a hierarchical container 
that is platform-, language-. and vendor-independent 
and separates the content from any environment that 
may process it. It is normatively tied to an existing IS0 
standard, IS0 8879 (SGMLI [ 1 I], and is an acceptable 
candidate for full use within other IS0 standards 
without the need for further standardization effort. By 
accepting and sending aircraft data in plain text format, 

the requirement to hai.e a standard binary encoding or 
storage format is eliminated, allowing aircraft 
applications running on disparate platforms to readily 
communicate with each other. Aircraft design 
applications written in any other programming language 
that process XML can be reused on any tier in a multi- 
tiered client/server environment or distributed 
computing, offering an added level of reuse for aircraft 
data. The same cannot be said of any previous platform- 
specific binary executables. Because XML is or will be 
fully supported in Web browsers, it should be possible 
to use Web technology to communicate disciplinary 
data entities in a collaborative aircraft design 
environment. 

When using XML. it not only allows input of the 
data, but also permits one to define the structural 
relationships that exist inside the data. The hierarchical 
structure in XML combined with its linking capabilities 
[ l?,  131 can encode s wide variety of aircraft data 
structures. The element's name. attributes and content 
model are closely related to data class name, properties 
and composition associations in object-oriented aircraft 
simulation. By using XML to represent aircraft data, it 
is possible to faithfully model any structural aircraft 
data of a chosen component in their design context. 

In traditional aircraft multidisciplinary analyses, 
validating data format and ensuring content correctness 
is another major hurdles in achieving data exchanges of 
aircraft data. XML also provides facilities for the 
syntactic validation of documents against formal rules. 
This can be achieved through Document Type 
Declaration (DTD) [ I O ]  or XML-Schema [14], which 
defines the constraints and logical structures that an 
XML document should be constructed. A data file 
written in XML is considered valid when it follows the 
constraints that the DTD or XML-Schema lays out for 
the structures of XML data. XML Schema also offers a 
number of other significant advantages over DTD, such 
as more advanced data types and a very elaborate 
content model. Without XML. any validation of aircraft 
data has to be implemented at the expense of work by 
application developers. When using XML to encode 
aircraft design data, X4IL parser can be used readily to 
check the validity and integrity of the aircraft data 
stored in XML documents. This guarantees the data 
producer and consumer exchange the aircraft design 
data correctly. 

The various ad\-antages outlined above present 
compelling reasons to use XML for aircraft design data 
representation. However. the solution is not as easy as it 
might at first appear. IVhile XML is a useful technology, 
it is, ultimately. simply serialization syntax. In 
particular, just putting aircraft data into XML form does 
not make it any more interchangeable than it was before, 
because the recipient of the data must still have an 
understanding of what the design-specific data are 
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inside XML file .semuntical(v in order to process them 
correctly. Semantic interoperability is of vital 
importance between different aircraft disciplines and 
simulation components. as it  enables them to agree on 
how to use aircraft data and how to interpret application 
data for different disciplinary designs. In addition. there 
are still several other requirements (for example. large 
datasets, object-oriented, high-level interface, etc.) to 
meet in order to use XML to communicate aircraft 
design data between disciplines efficiently. 

In the next section. we will provide the design of an 
extensible aircraft data object model. This model will 
be used to interpret aircraft design data between design 
disciplines, and sene  as a foundation to implement a 
XML-based aircraft database to meet all the design 
requirements. 

DAT.4 OBJECT MODEL 

The aircraft design process [ 151 can be divided into 
three phases: conc2pptual design, preliminary design, 
and detailed design. Since aircraft design by its nature 
is a very complicated process and involves vast 
amounts of data, for the purposes of this paper, we will 
only demonstrate the data model in the aircraft 
conceptual design. Conceptual design involves the 
exploration of alternate concepts for satisfying aircraft 
design requirements. Trade-off studies between aircraft 
conceptual designs are made with system synthesis 
tools, which encompass most of aircraft components 
and a broad range of disciplinary interactions. 

In order to effectively represent aircraft design data 
using XML, a set of data object structures was first 
designed. Figure 2 shows an overall layout of a 
simplified data model. The designed database model is 
composed of aircraft components and other disciplinary 
data objects (Fig. ’ai. The overall model is organized in 
a strict hierarchical manner in accordance with the 
XML topology. Each node in the data structure shown 
here is represented as an Aircrafl Data Object (ADO). 
These objects hold no complex design logic, but they 
contain typed data and preserve the logical structure of 
the model. The ADO model precisely defines the 
intellectual content of aircraft-related data, including 
the organizational structure supporting such data and 
the conventions adopted to standardize the data 
exchange process. The functional model identifies a 
common process in order to ascertain what data are 
required for a typical aircraft design process. Figure 2 
also indicates (informally) what data, if any, are 
encapsulated within tach node object. 

Aircraft Components 
An aircraft component (AC-Component) object can 

be an engine, fuselage, landing gear, canard, horizontal 

stabilizer, vertical rudder, or wing (Figure 2b). Every 
component has a user-defined name and unique 
Component Qpe. which characterizes the nature of its 
usage. For practical purposes, a Component type is 
characterized as a set of possible values, such as WING. 
ENGINE. etc. There is a special data type. called object 
identification tComponent-ID), whose value is the 
unique identifiers of encapsulated objects to be 
referenced in the aircraft design. 

Each aircraft component itself may be made up of 
physically distinguishable subcomponents or parts. For 
example, an engine is made up of inlet, fan, compressor, 
combustor, turbine and nozzle subcomponents. 
Likewise, most landing gears have parts like wheel, tire, 
brake assembly, etc. Every subcomponent is 
represented by a data object, with member properties 
and subtypes (not shown here for simplicity) 
encapsulated in it. Each part is modeled as a component 
member object and encapsulated as a child in 
AC-Component. An important feature to note from 
Figure 2b is the local inclusion of several disciplinary 
data. Since each member object has its own materials 
requirements (e.g., modulus of rigidity, fatigue strength. 
etc), structure and loads characteristics (e.g., strain, 
stress, displacement, etc), these disciplinary data are 
naturally considered as parts of a member object. The 
local inclusion of component disciplines prevents 
design data isolation. and promotes data sharing and 
exchange during the design process. Aircraft propulsion 
system (not shown here) is considered as a member 
type for the engine components. A more detailed 
demonstration for aircraft propulsion model can be 
found in Ref. [ 161. 

Besides the hierarchical layer of the data objects 
structure, the designed model also encourages the use 
of data object abstraction, inheritance, and composition. 
Returning to Figure 2b, we can see that each of the 
specific aircraft components is patterned as an “is/u” 
relationship with AC-Component. therefore each 
specific component data model automatically inherits 
all the data member proprieties and subtypes (materials, 
structure and load) of its parent. In this sense, 
AC-Component provides a data abstraction for all its 
component children, allowing each single element to be 
treated the same way as the assemblies of elements in 
its internal data representation. For each specific 
aircraft component data modeling, we can represent the 
hierarchical structure of the data properties, 
substructure and their disciplinary data using recursive 
composition. For example, we can combine multiple 
sets of rotor and stator blade data objects to form a fan 
component data. This technique allows us to build 
increasingly complex aircraft data Components out of 
simple data object models. The designed database 
model gives us a convenient way to construct and use 
arbitrary complex aircraft data model and makes the 
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model totally cxtcnsible for future enhanccments. 

Geometrv Modeling 
Component geometry modeling is somewhat 

unique in aircraft design. All disciplines share the same 
geometry. Strong interactions benveen the disciplines 
are very common and complicated. For example. during 
operation, the geometry of a flexible structure (e.g.. 
wing) may change due to the aeroelastic effects. 
Geometry modeling must, therefore. be accurate and 
suitable for various disciplines (e.g. deflection and 
load). For a multidisciplinary optimization problem, the 
application must also use a consistent parameterization 
across all disciplines. Thus, an application requires a 
common geometry dataset that can be manipulated and 
shared among various disciplines [ 171. 

STEP Application Protocol AP 203 - 
Configuration Controlled 3D Designs of Mechanical 
Parts and Assemblies [18] - is a set of standards that 
defines the CAD geometry, topology. and configuration 
management data of solid models for mechanical parts. 
AP203 supports wireframe. surfaces, solids, 
configuration management, and assemblies. The STEP 
modelers have undertaken the very difficult job of 
defining mappings between the different 
representations of the same information. For example, a 
curve on the surface of fuselage can be represented as a 
B-spline, as a list of curve segments. or as NURBs. In 
our aircraft database, a placeholder has been designed 
to support various aircraft components’ geometry 
disciplinary data that conform to the STEP-based 
model. Because different components normally have 
very different geometry requirements. the geometry 
disciplinary data are considered local to every concrete 
component. Different fidelity geometry models can be 
chosen for use in the design process. 

Global DisciDlines 
Other disciplinary data, such as stability and 

control, aerodynamic, performance. cost, and weight 
data, are currently modeled as global objects (and 
grouped together as GlobalDisciplines) of the aircraft 
database (Figure 2c). This seems a little unnatural, 
however, these calculations have been traditionally 
grouped by discipline in aircraft design, and they 
probably will continue to be associated in this manner 
for some time to come. The relationship between these 
disciplinary data and aircraft database is also modeled 
as parent to child. For example. one of the relative 
important design parameters on the conceptual vehicle 
design is system performance. This disciplinary 
category in our design is currently made up of different 
criteria data objects, such as distance, speeds, limits, 
measures, etc., as shown in Figure 9c. The figure also 
gives the sampIe data that may be included in the 
discipline. New data will be added in as the data object 

model evolves in thc future. 

SCHEMA DESIGS 

Aircraft Schema establish25 a bridge between 
XML-based description of a k a 3  data and the ADO 
model. A set of aircraft Schemz has been designed in 
XML Schema language thar specifies how the 
constituents of the ADO objez are mapped to an 
underlying XML structure. It associates each piece of 
information defined in ADO to a ?recise location in the 
XML structure. 

Each aircraft data object 2efined in ADO is 
mapped to one or more nodes. For the most part, the 
aircraft Schema closely f 0 l l O t i - j  the ADO model. 
Aircraft-schema file must be ADO-compliant in order 
for other applications to be abk ;o properly interpret 
aircraft data. This is particularly nportant when trying 
to transfer data between difzent  disciplines and 
different storage models. as the:: must be agreed-upon 
data structure and syntax for iifferent systems to 
understand each other. The rules in ADO model will 
guarantee that the schema descr,srion of aircraft data is 
syntactically correct and follows :he grammar defined 
within it. An important feature of rhe ADO data model 
is the hierarchical structure. w k c h  allows the aircraft 
data file to be structured as a roord  directed graph, so it 
is necessary to map the directed s a p h  of aircraft data in 
XML onto a tree of aircraft da:: objects specified ic 
ADO. However, when a given 3:ece of information is 
listed as being “under” a node. :here are actually two 
possibilities: the information can be stored as data in 
the current node, or it can be srored as data under a 
separate child node. The aiicraft schema also 
determines which of these two possibilities are best for 
each situation. 

An example of aircrafi schema design is 
demonstrated in Figure 3. Based c7n the ADO model, an 
aircraft database model incluics several kinds of 
component data objects (such as b h g .  Fuselage etc.), 
which can be contained in an aircraft, and a 
GobalDisciplines data object. To create aircraft 
component constructs, we stan by creating a basic 

type7 aircraft component complex 
Aircraf tComponent-t, which contains a single 
AircraftMember ekment. An .l.:rzraftMember iS 

constrained by its complexType .l.:rzzaftMenber-t, 
where AircraftMember-: irjelf contains Name 
Totalweight, Materials, 2nd SzructureLoad 
elements, and in turn, are constrained by their 
corresponding built-in string ppe. double type and 
similarly-defined complexTypes separately. 

An aircraft component also contains a set of desired 
data attributes - componentType. name. identification - 
that are encapsulated in the AircrqfiCoinponent object. 
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c'k-i  :yrc.or=' '  ;-"> 
<xsd.scherna ir:c?.:-es;a: ;='http://mernst ni.utoledo eduiaircraft' 

1- -s='http.//rnemst ni.UtOied0 eddaircraft' 
w . w 3  org12001/XMLScherna' 

-='materials.xsd" .> 
=%uctureload.xsd" > 

<xsd.cornplexType -a~.d='AircraflComponent_t"> 
<xsd:sequence> 

<xsd:element -aTa="AircraflMember' .:pe='AircraflMember_t" 
laxCcc-ij='unbounded"is 

</xsd:sequence> 
<xsd:attributeGrouo ,4-"CornponentAttributes?s 

</xsd:complexType> 

<xsd:attnbuleGroup -3rE='ComponentAttnbules'> 
<wsd.attribute -arre='cornponentType" ,se='requred"> 

<xsd:sirnpleType> 

</xsd.simpleType> 
</xsd:aflribute> 
<xsd attribute -are='narne' -~e="xsd:stnng" 2j+="required'/s 
<xsd.attribute -~r='idetificabon" 'ipe='xsd:ID' .se="required'!> 

<ixsd:attributeGroup> 

<xsd:complexType . -are='  AircraflMember -I"> 

<xsd:element -a-+StructureLoad' ':.:e="StNCtureLoad-t" 9 
</xsd.sequence> 
<rsd:attribute -arc='rnernberlD" '!,pe="xsd:ID".'> 

</xsd:complexType> 

<xsd:complexType -aw= 'Wingt">  
<xsd:complexContent> 

<xsd:extension ~.3s.="AircraflComponent_t"> 

<lxsd:extension> 
<ixsd:cornpiexCon:en:> 

<xsd:element ?rre='Aircraft'> 

<!xsd.complexType> 

<xsd:complexType> 
< xsd:sequence> 

s are ;ei,:ec -era -> 
<xsd:element -a-.="GlobalDisciplines' 

.I :;.="GlobalDisciplines_t'i> 
<ixsd:sequence> 

</xsd:complexType> 
</xsd:element> 

</xsd:schema> 

Figure 3. A sample aircraft schema 

These attributes are grouped together, represented by 
ComponentAttribures, and referenced by name in 
the AircraftComponent's complexType declaration. 
For example, the componentType attribute is restricted 
to a set of predefined type values. such as WING, 
LANDINGGEAR, etc, these types are constrained by 
enumerations definition in the simpleType definition. 

Then a set of concrete aircraft components is built 
based on the AircraftComponent-t complexType. 
The technique here is to derive new (complex) aircraft 

componcnt types by extending an existing type. For 
example, when building data schema for the wing 
component. we define the content model for Wing 
element using new complex types. :I:.?-:. in the usual 
Lvay: in addition, we indicate that the concrete wing 
component (Wing) is extending the 
~ircraftcomponent-~ base type. When a complex 
F p e  is derived by extension, its effective content model 
is the content model of the base type plus the content 
model specified in the type derivation. In the case of 
x i n g  element, its content model 5~:r;-: is the content 
model of AircrafiComponenf plus the declarations for 
the wing's local data elements and attributes. 

Other aircraft component and disciplinary data 
schema can be designed in a similar manner. Finally, 
the whole aircraft schema is composed of different 
aircraft components and GlobalDisciplines data. Note 
that when designing aircraft schema. all the basic 
components and disciplinary schemas do not need to be 
coded in a single file during the design time. For 
example, Figure 3 does not explicitly show the 
disciplinary schema such as material. stmcmre and load, 
components other than wing, etc. instead. it uses 
‘include' element to indicate that these schemas exist 
outside the aircraft schema file. In this way, each 
schema can be designed separately by different 
disciplinary groups, and then "included" together 
during the run time. This kind of flexible design will 
allow for modular development and easy modification 
of aircraft schema as its data object model evolves in 
the future. 

Because of the important nature of aircraft 
geometry disciplinary data. our database model 
currently uses STEP AP203 standard to encode all the 
aircraft geometry data. STEP models are n-ritten using 
the EXPRESS language [19]. EXPRESS provides a rich 
collection of types and inheritance organizations to 
capture data structure and to describe information 
requirements and correctness conditions necessary for 
meaningful data exchange, therefore makss it easier to 
describe an accurate aircraft geometry model. However 
EXPRESS does not dictate how the models should be 
implemented using various database technologies. 
Implementers must convert an EXPRESS information 
model into schema definitions for the target database. 
This conversion requires a mapping from the 
EXPRESS language into the data model of the target 
database system. EXPRESS information models 
describe logical structures that must be mapped to a 
software technology before they can be used. 

Given an EXPRESS schema that specifies aircraft 
geometry information, it is possible to define a set of 
schema languages (such as DTD or XML-Schema) that 
are used to encode geometry information specified in 
EXPRESS schema. Several researches have been done 
to encode EXPRESS schema by DTDs. among which 
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the most important one is STEP Part 18 (XML 
representation of EXPRESS-driven data) [ZO], which 
includes a set of standard DTD declarations to represent 
any EXPRESS schemas in XML as well as data 
corresponding to an EXPRESS schema. Therefore, it IS 

convenient to take advantage of this standard to encode 
all aircraft geometry data. This is done by designing a 
STEP CAD Conventer, which can convert from a valid 
aircraft geometry STEP model constrained by DTD to 
XML-Schema. In this way, the general schema design 
techniques provided in this section can still be applied 
to aircraft geometry data. Moreover, by using XML- 
Schema to represent STEP CAD model, it can benefit 
the good features in XML-Schema, such as modular 
schema inclusion (xinclude), and also offer a uniform 
data schema formalism for database implementation. A 
simple illustration is given in Figure 4. 

<'-DTD for 3D point--> 
<[ELEMENT Cartesian_po~nr EUPTY, 
C'ATTLIST Canestan tom1 

x-ad ID #REQUIRED 
X CDATA :REQUIRED 
Y CDATA #REQUIRED 
2 CDATA $REQUIRED 

> 

<'-XMl Schema for 3D-point after convemon--> 
cxsd:schema <,- - 5  <jz=  h~p:/lwww.w3.org/200liXMLSchema > 

<xsd:element -..-?='Cattesian30int"> 
<xsd:complexType> 

<xsd:annbule " i - + X  'p='xsd:string 2ia='required''/> 
<xsd:aflnbule -a-?= 2 ',.;e='xsd:string .s?='required":> 
<xsd:aflnbute -'2-f= Y 'me= xsd:sb.ing ~a='required"'> 
<xsd:aflnbute -?-e= x-id .)pe='xsd:ID .sd= required :> 

<, xsd'compIex>fpe> 
<:xsd:element> 

<ixsd.schema> 

Figure 4. Example STEP CAD Converter for 3D point 

AIRCRAFT DATABINDING 

Multidisciplinary design of  aircraft systems is a 
complex, computationally intensive process that 
combines discipline analyses with intensive data 
exchange and decision making. The decision making is 
based on the overall design optimization but is greatly 
assisted by data sharing and automation [SI. Aircraft 
data encoded by XML provides a means to share 
disciplinary data between aircraft design teams, but 
their physical storage form on the external storage 
medium is still not intelligible or easily accessible. 
Aircraft databinding provides an implementation for 
the designed data object model. Meanwhile, it also 
encapsulates a convenient way for conversion between 
the aircraft data in XML file and their object 
representations automatically and provides a 
lightweight and easy-to-use API, which facilities the 
design applications to access, modify and store any 
aircraft data object using a high-level object interface. 

Aircraft Databinding includes tWo components: an 
uircruji schema conipiler and a tnur.shul1ing /runiework. 
I t  was written in Java: thus the software can be run on 
different design platforms. 

Schema Compiler 
The uircrujt .schemu compiler is designed to 

automatically translate the aircraft schema into a set of 
derived aircraft data class source codes. I t  maps 
instances of aircraft schemas into their data object 
models, and then generates a set of classes and types to 
represent those models (Figure 5) 

0 STEP DTD Converter I 
~ ___ ~~ 

Figure 5. Schema compiler in Aircraft databinding 

Let's consider how the data class is generated by 
schema compiler with input of the schema defined in 
previous section. With the "Aircraft" schema defined, 
attributes represent simple Java types. usually 
primitives. Thus, name and componenr~~pe attributes in 
the AircruftComponent's complexTye are compiled 
into Java type of String, and idenrjficarion attribute 
becomes Java primitive of type inr. respectively. All 
elements (along with its type information which 
specifies the content model), such as .4ircrajl, 
Aircl-ajKomponent etc, become Java Classes. which 
can then have class instance properties themselves, 
again represented by attributes. In this way. a recursion 
occurs: an element becomes a new class, and each 
property of it is examined. If the property is an 
attribute, a simple Java primitive member variable is 
created for the object; if the property is element. a new 
data object type is created, added as a member variable, 
and the process begins again on the new object type, 
until all classes are created. All other aircraft 
components and disciplinary data can be similarly 
created. A Unified Modeling Language (UML) diagram 
for generated Java class (only wing component is 
shown) is illustrated in Figure 6. The generated classes 
also ensure that all the hierarchical data object structure 
and their internal relationships are properly maintained. 
For example, the figure shows that LVing is a subclass 
that extends AircrajtCornponent, therefore. it inherits all 
states and behaviors from its ancestor. 

In addition, the generated classes provide methods 
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Figure 6.  LTfL for Data class structure generated by aircraft databixding 

to access and modify the properties defined in the 
aircraft Schema. These methods closely follow the 
JavaBean Design Pattern [21]. The main guideline for 
the design pattern is that all publicly accessible fields 
have proper getter (accessor) and setter (mutator) 
methods. For a given field. a gener method is quite 
simply a method that returns the value of that field, 
while a setter method is one that allows us to set the 
value of the field. Each method signature specifies the 
name of the operation, Lvhich is sufficient for design 
tools to obtain information about the fields of data 
classes by examining the method Signatures of a given 
class. This examination process is zalled Introspection. 

For each aircraft data class that is automatically 
generated (e.g. AircrafrComponent) , there is also 
included a set of marshal. zrnniarshal and validate 
methods, with their method signatures like: 

p ~ b l i c  boolean vali5ateO 

F.Jb;ic AircraftConFone:: ur,rsrsha? (Reader reader) 
F J b l l c  vold marshal (iJz::tr c 

The validate method is used to check whether the 
aircraft data contained in XML file is valid. i.e. 
conform to its corresponding data schema; marshal 
and unmarshal methods can be used to map directly to 
the data of elements and attributss within the XML 
document and also affect the underlying aircraft data. 
This is achieved through underlying Marshalling 
Framework design. 

Marshalling Framework 
The marshalling frameLvork supports the 

transportation (unmarshal) of aircraft data in XML files 
into graphs of interrelated instances of aircraft objects 

that are generated during <;:lema complier and also 
converts (marshal) such grz??.s back into XML file. For 
example, when XML-bas:: wing data is correctly 
unmarshaled into aircraft JL..-L codes. the Wing node in 
the XML file becomes ar, ::stance of the Wing class 
that was generated by a i r z 5  Schema Compiler, i.e. 
Wing Data Object. The a i r zx l  design system can then 
interfaces those objects. 2nd all interactions and 
manipulations of aircraft 2:s;iplinary data in a design 
system can be described as ::.vocations of operations on 
those objects. In partiz2L.r. the aircraft design 
application can use the corxqonding methods devised 
with a set of mutator and ai';?sor methods to work with 
the aircraft data in the urtkrlying design data file. 
Therefore, it provides a comenient way to access and 
modify the aircraft data n-tere all underlying files are 
transparent to the user. The end result is aircraft data 
binding. 

Distributed Access 
As the argument in ~.zr:?.a: is a general "writer" 

object, it can be piped to a; wrapped into many other 
different writers or streams. such as a network 
connection, or another progrzm. This means marshaling 
can be done remotely f r o r  iircraft disciplinary design 
team servers (Figure - 1 .  The same applies to 
unmarshaling process whe:: 3 general "Reader" is used. 
A set of sample disciplinap drivers have been written 
that use HTTP socket annection, Java Servlet, 
CORBA, RMI technology 13 allow the databinding to 
be called from different client working environments. 
These discipline drivers can serve as a 'plug-in' for 
aircraft disciplinary simulation codes and enables them 
to use XML-based aircraft data easily and remotely. 
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Graphic Tree Vie\+ 

Figure 7. Design teams use Marshal Framework to access aircraft data remotely 

According to the design requirements. more than one 
discipline data may need to be called by a driver. The 
interfaces between the discipline codes and their drivers 
must be accurately specified in order to provide proper 
communications. The disciplinary drivers can also 
serve as templates or examples for more complex 
problems. 

Dvnamicallv Schema .Add-in 
With advances in aircraft design process, there has 

been an increased realization that new disciplines, such 
as maintainability. productivity, etc., should be 
addressed in order to optimize the aircraft design 
process. Aircraft databinding also provides a service 
that can dynamically add-in new aircraft disciplinary 
schemas. These schernas can be either in XML-schema 
format or in DTD format, but they must conform to a 
set of newly designed disciplinary data object models. 
STEPConverter is an example of this service that 
provides a set of tools and libraries to read and w i t t  
STEP Part28 compatible DTD file and to be used for 
aircraft geometry modeling (Figure 5) .  By using add-in 
support to aircraft disciplinary schema, the databinding 
code itself is kept generic and does not need any special 
coding for a new problem. 

Performance 
Since XML description of aircraft data are by their 

nature potentially large in size, in order to improve 
aircraft database performance, the databinding 
internally integrates another service, through XInclude 
[ 121 and XLink [13]. that further allows users to split an 
arbitrary large aircraft data file into a sequence of 
sufficiently small subfiles during the marshalling 
process, and resemble all these pieces together when 
unmarshaling XML-based aircraft data to their data 
objects. This kind of flexibility allows an aircraft data 
file to span multiple physical files reside in different 
computers by referencing as URI, and also make 
possible a portion of one aircraft data file to be 
referenced by several other aircraft tiles. The individual 
files are more portable due to their reduced size, and 
make use of less memory to represent the whole 
necessary layered tree of the aircraft data nodes. In 

addition. a Ziptrchiver is included in the aircraft 
databinding, which will compress the aircraft data in 
XML subfiles into different Zip entities in an aircraft 
archive when transferring aircraft data objects to data 
tiles. By using text compression algorithms, the XML 
data file size can be much smaller than the original size 
and even smaller in size than binary representation of 
the same data. This reduces file I/O access times and 
improves performance required for large aircraft 
dataset. 

CONCLUSION 

In this work. a XML-based database model for use 
in multidisciplinary aircraft design has been designed. 
which meets design requirements of diverse disciplines. 
The database consists of data object models, database 
schemas. and data binding. .4ircraft Data Object (ADO) 
model encompasses most of common components 
involved in multidisciplinary aircraft design, as well as 
various pertinent disciplines. such as aerodynamics, 
structures, cost. materials, performance, stability and 
control and weights. STEP AP203 standard is used to 
describe each component’s geometry data. The ADO 
model precisely defines the organizational structure 
supporting aircraft design data and the conventions 
adopted to standardize the data exchange. This is 
particularly important when trying to transfer data 
between different disciplines and different storage 
models. as there must be agreed-upon data structure and 
syntax for different systems to understand each other. 

In order to store and validate XML-based aircraft 
data, a set of database schemas was designed based on 
ADO model. By using XML Schema to represent 
aircraft Schema, a set of constraints establishes how 
domain-specific data should be constructed, which can 
then be used to further schema-validate the aircraft 
data, ensuring that the contained data are valid. The 
database schema follows a modular design pattern such 
that it is extensible for future addition and/or 
modification. By using and developing focused aircraft 
disciplinary schema for specific aircraft component 
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object types, users can jenefit by an increase in 
application reusability. 

The  aircraft databinding provides an object interface 
to various aircraft disci?lines, allowing autotnated 
storage and  retrieval of XML-based aircraft design 
results within and across iisciplines. Most o f  the data 
manipulation services are transparent to the aircraft 
designer and simulation codes. This higher level 
database development Lvith automation support 
provides a common working environment, which would 
enhance the productivity of multidisciplinary projects. 

Since all disciplinary data in the binding process 
are stored in XML documents, they bypass the 
requirement to have a standard binary encoding or 
storage format. Additionally, the language independent 
representation of various aircraft component and 
disciplinary data can f0jt:r interoperability amongst 
heterogeneous systems, ar,d thereby greatly facilitates 
the multidisciplinary aircraft design. 
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INTERACTIVE, SECURE WEB-ENABLED AIRCRAFT ENGINE 
SIMULATION USING XML DATABINDING INTEGRATION 

Risheng Lin' and Xbdollah A. Afjeh' 
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ABSTRACT 

This paper discusses the detailed design of an XML 
databinding framework for aircraft engine simulation. 
The framework provides an object interface to access 
and use engine data. while at the same time preserving 
the meaning of the original data. The Language 
independent representation of engine component data 
enables users to move around XML data using HTTP 
through disparate networks. The application of this 
framework is demonstrated via a web-based turbofan 
propulsion system simulation using the World Wide 
Web (WWW). A Java Servlet based web component 
architecture is used for rendering XML engine data into 
HTML format and dealing with input events from the 
user, which allows users to interact with simulation data 
from a web browser. The simulation data can also be 
saved to a local disk for archiving or to restart the 
simulation at a later time. 

INTRODUCTION 

Computer programs capable of simulating the 
operation of aircraft engines are useful tools that can 
help reduce the time, cost and risk of product design 
and development and facilitate learning about the 
complex interactions between jet engine components. 
However, the strongly-coupled nature of the 
components' flow physics and the large number of 
operating and design parameters needed for simulation 
of the aircraft engine system present a challenge to 
developers who aim at designing an easy-to-use and 
effective engine simulation program for users. Most of 
the aircraft engine simulation software currently 
available have limitations primarily in the presentation 
of the simulation input and output data, due to the use 
of text-based interfaces, and the lack of data validation 
methods. As a result, engine simulation results could be 
overwhelming and difficult to interpret without a 
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significant effort. Moreover, traditional sirnulation data 
are, in general, stored in proprietary data formats and 
constrained by hardware and operating system platform 
differences. Thus, developers are hicdered in their 
efforts to synthesize simulation data in their design 
unless a clearly defined and interoperable data interface 
exists. The bottlenecks caused by iata handling, 
heterogeneous computing enviroments and 
geographically separated design teams. continue to 
restrict the use of these tools [ l ] .  

Web-based simulation, due to its accessibility, 
convenience and emphasis on collaborative 
composition of simulation models. distributed 
heterogeneous execution, and dynarr-ic multimedia 
documentation, has the potential to hriamentally alter 
the practice of simulation [ 2 ] .  Presentl?. :he majority of 
work in web-based simulation has xntzred on re- 
implementation of existing distributed 2nd standalone 
simulation logics within Java Applets :?.-!I. Applets are 
quite popular because they are suppocd by common 
browsers and are safe to execute on ciient computers. 
However. with the whole simulation c c 2  iight(v-bozind 
to an Applet, it may take a long time for the rich engine 
simulation code to load within a clierT's browser. In 
addition, it is often not efficient to execute complicated 
simulation logic at the client side. ivhere a high 
performance computer is generally not available. 
Applets' security model, arguably one si  its strengths, 
also creates obstacles for post-processiq of simulation 
data beyond what applets provide since it inhibits 
creation of data files on the host machine. 

This paper describes a web-based sircraft engine 
simulation system, called X-Jgrs. through dynamic 
XML databinding framework which permits data 
communication with ease. XML [ 5 ] .  due to its 
structured, platform and language independent, highly 
extensible and web-enabled nature. has rapidly become 
an emerging standard to represent data between diverse 
applications. XML can represent both structured and 
unstructured data, along with its rich descriptive 
delimiters. By using XML to represent engine data in 
high performance propulsion system simulation, it is 
possible to faithfully model the structural elements of a 
chosen component in an interoperable fashion that is 
natural in their simulation context. Since HTTP (Hyper 
Text Transfer Protocol) already s\pports transmission 
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of plain text, XML data can be moved around readily 
using the HTTP through firewalls and disparate 
networks. Engine databinding through XML also 
provides simulation designers with a higher and more 
user-friendly API to work with underlying engine 
components repository and thus enables the 
components to communicate with each other effectively. 

ENGINE MODELS 

This section provides an overview of engine analysis 
model that is used in our web-based simulation. Also 
presented is the designed engine data object model that 
will be used in engine databinding framework. 

Analysis Model 
The mathematical model used to describe the 

operation of the gas turbine system in the current work 
is patterned after that presented in [ 6 ] .  Here, the gas 
turbine system is decomposed into its individual basic 
components: inlet, compressor, combustor, turbine, 
nozzle, bleed duct connecting duct, and connecting 
shaft. Intercomponent mixing volumes are used to 
connect two successive components as well as define 
temperature and pressure at component boundaries. 
Operation of each of the components is described by 
the equations of aero-thermodynamics which are space- 
averaged to provide a lumped parameter model for each 
component. For dynamic (transient) gas turbine 
operation, the model includes the unsteady equations 
for fluid momentum in connecting ducts, inertia in 
rotating shafts, and mass and energy storage in 
intercomponent mixing volumes. A complete 
description of the model can be found in [7]. 

Data Obiect Model 
Based on the above engine analysis model, an 

"Engine Data Object" (EDO) model was designed to 
precisely define the intellectual content of engine 
component data, including a complete definition of 
engine data entities, attributes, relationships, and 
specification of local and global constraints on these 
entities. 

In order to effectively represent simulation data 
using XML, the engine system, shown in Figure l(a), 
was first decomposed into individual basic components 
in a strict hierarchical manner in accordance with the 
XML topology. A set of data structures is then built in 
parallel with each engine component. An overall layout 
of a simplified data model is summarized in Figure l(b). 
Each node in the model shown here is represented as an 
engine data object. The figure also indicates (informally) 
what data, if any, are encapsulated within each node 
object. For example, the N o d e  data object shown in 
Figure l(c) gives information about a particular 

converging-diverging or converging-only nozzle in an 
engine simulation. The user-defined parameters of a 
nozzle includc a set of nozzle design point data and 
nozzle initial operating data, such as mass flow rate, 
throat area, exit area. gross thrust. etc. Consequently, 
these data are designcd as subchildren data objects in 
Nozzle. In addition. the nozzle throat and exit areas may 
be adjusted during the transient by a user-defined 
schedule; ThroatAreaTransienrControllers and 
E.rit..lreaTransientControllers are designed for this 

ConholVoluen 

- Duct - EleedCwlCmp 

r Cornburtor - Tuhne  

L SloleduarrDuct 

- BleedOuct 
- BleedcwlT*rbloc 

- shin 
- Noule 

- RotorShri? 

(b) 
,i_. .......... 
:'Descriptor a .............. 

NozzleOesignPointDaia - 

. .  

4 ..................... i NozzleSolutionDais @ ..................... 
(C)  

Figure 1 (a) decomposition of engine component; (b) 
hierarchical engine data object model; (c) subchildren 
objects inside nozzle data object 
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purpose. Lh-IeSolution object is used to store the 
solution datasets after a simulation, which itself 
contains other children data objects that are not shown 
here. An optional Descriptor object can also be 
included to describe nozzle operating status. 

ESCINE DATABINDING FRAMEWORK 

Based on our data object model design. an Engine 
Data Binding (EDB) Framework has been implemented 
in Java to facilitate binding an engine data object into a 
data entity in XML-based engine data file. The 
framework makes it easy to convert between the engine 
data stored in XML file and their object representations, 
and facilitates the applications to access, modify and 
store any engine component data object. Figure 2 gives 
a schematic representation of all components in engine 
databinding framework. Engine databinding framework 
can also be run as a standalone application [8]. 

Engine Schema 
Engine schema establishes a bridge between XML- 

based engine data and its data object model. It 
associates each piece of the information defined in the 
data object model to a precise location in the XML 
structure. .A set of engine schemas have been designed 
using X\lL Schema language [9] that specifies how the 
constituents of the engine data objects are mapped to an 
underlying XML-based engine data structure. The rules 
in the data model will guarantee that the schema 
description of engine data is syntactically correct and 
also folloivs the grammar defined within it. 

Figure 3 shows a sample schema representation for 
the .Voz:!e and one of its children, TransientController, 
which is used to supply transient control parameters for 
throat and exit areas. Based on the Nozzle data model 

shown in Figure l(c), the “Nozzle” schema defines all 
the data elements that are contained in a single nozzle 
data object. These elements are constrained by their 
corresponding complexTypes and simpleTypes and 
encapsulated in the ~Vozzle object. For example. 
.VozzleDesi,SriPointDclltr defines all its permitted data 
variables. such as ,Clas.sFloivRuie, ThroatArea etc, and 
their corresponding data types. which are built-in 
double type. Also note that in the above Nozzle schema 
only ,VozleDesignPointData element is explicitly 
defined, the rest of its element definitions use the “ref’ 
attribute to tell the data parser in the engine simulation 
that the definition for these elements are defined in 
other schema files with the same target namespace (Le, 
the default “engine” namespace in Fig.3) as nozzle. 
These ‘ref ed schema will be automatically included by 
schema parser during the run time. This kind of flexible 
design will guarantee that all the basic schema types 
can be reused. Moreover. it will allow for modular 
development and easy modification of engine schema 
as engine data object model evolves in the future. 

Schema Compiler 
The engine schema compiler is designed to map an 

instance of an engine schema into the appropriate 
engine data object model. It  aziiomatically translates an 
engine-specific schema into a set of derived engine data 
object models (set of classes and types which represent 
the data) with appropriate access and mutation (Le., get 
and set) methods that can be used to affect the 
underlying engine data files. Figure 4 shows an 
example of how a generated class should correspond to 
the nozzle schema defined in the previous section. With 
the “Nozzle” schema defined. attributes are “compiled” 
into simple Java types, usually primitives; element 
(along with its type information which specifies the 
conten t  model)  becomes engine da ta  class,  with 

Engine Data Model 

Engine Schema 

I , 

Figure 2. Engine databinding framework 

3 
American Institute of Aeronautics and Astronautics 



' y -  , e r s G - j ' s  ;'-s 

sa scnema !arge!Naresoace= 

:.,eng ne' eie.rentForrrDefajl:="qr;ai,fiec' vemn:" 2') 
r = TransientController xsd":> cxsd include s 

<xsd-include s r =  'Descriptor.xsd":> 

Cxsd complexType name='Voule-t"> 
<xsd.sequence> 

<xsd element name='DescnptoC type="Descnptor-t" rninOccurs=*O"'> 
<xsd element name='NouleDesignPoinfData"> 

Cxsd cornplexT,pe> 
<xsd'aUr:cute name="MassFlowRate" type="xsd:double"P 
cxsd.an: cute name="ThroatArea" type="xsd:double" > 
cxsd anrcute name="ExitArea" type="xsd:double"i> 
Cxsd anntute name="DragCoefficient" type="xsd:double"b 
<xsd .an rn te  name="VelocityCoefcient" type="xsd:double"l> 
<xsd-anrcute name="GrossThrust" type="xsd:double"'> 

4 x s d  cornplexTjpe> 
<ixsd:element> 
<I-- NozzlelnitralC,-s~~ringDala element IS simiianly oesigned 

and ommilfez -$'e 'or simplicity--> 
<xsd'element name= ThroatAreaTransCntl" 

type='TransientCntI-t"b 
<xsd.element name='ExitAreaTransCntl" 

type='TransientCntl-t"l> 
<!-AN NorzieSc'; 7-Dara elements and ornmitted ior  s !~p l iC ! r j ' - -~  

</xsd'sequence> 
<xsd'attribute name='Vame" type="xsd.string" use="requiredl> 

<lxsd.complexType> 
lxsd schema> 

'xml version=": C"7s 
csd'schema xmlns xsd="hnp ."ww.w3.org/2001/XMLSchema" 

elementForrnDeiault="quairfied" version="l .O"> 

< I - -  TransierirCor:rroils~ r r -oexType --> 
<xsd:complexType narre= TransientCntl-t"> 

<xsdsequence> 
<xsd elemerr -ame="TimeArray" type="doubleDatalist"i> 
<xsd elemer l  -ame="ValueArray" type="doubIeDatalist":> 

4 x s d  sequence> 
<xsd:attribute nane='name' type="xsd:string" use="optional"i> 

<lxsd.complexType> 

<xsd,simpleType name='$oubleDatalist"> 

<Ixsd:simpleType> 
<xsd:list itemType='xsd:double'*l> 

xsd-schema> 

I- all the Java -,port statements here 

iublic class F:cu:e implements java.io Senalizable { 
private Str1r.G _lame; 
pnvate Cescrstor descriptor; 
private Ces,q?ointData _nouleDesignPointCa': 
pnvate In!tC:eratingData _noulelnit05eratingC3ia; 
pnvate Thrca~kaTransCntl -throatAreaTransCn:l: 
pnvate ExitAreaTransCntl _exitAreaTransCntl: 
pnvate NozzeSolutionData -nouleSolbtionData. 

public Nowe!)  ( 
super(); 

public StnnG setName() ( 
return this -name; 

1 

1 

public void serName(Stnng name) ( 
this.-nar;e =name; 

public ExitAreaTransCntl getExitAreaTransCntlli { 

i 
return in's -exiIAreaTransCntl; 

public doid setExitAreaTransCntl(ExitAreaTransCntl exitAreaTransCntl) ( 

1 
:his _exitAreaTransCntl = exitAreairansCntl, 

I / -  the same .wth ail other rypes and are ornineo here 

public woiean validate() 
throws ~ngineValidationExceprion { 
i 

'lalidator validator = new Validatori;: 
ialidator.validate(this); ) 

catch iE'SineValidationException vex) { 
rer.:n ialse: 

return :?de; 

1 
puolic VO!G -arshalfiava.io.Writer out) 

thrcws MarshalException, EngineValida:,onException ( 
Marsha,,er marshal(this. out); 

} 
public sta:c houle bnmarshalijava.~o.i?eader ?eader) 

!hrows LlarshalExcepfion. EngineVa1ida;onExceDtion { 
return i~uouie)Unmarshaller.unmarshal(Nou.e.class, xader): 

! 

Figure 3. Engine schema representation of Nozzle and 
TransientControl data object model 

Figure 4. Yozzle data class generated by schema 
compiler process 

generated data types and properties encapsulated in it. 
The generated class provides pairs of accessor (get) and 
mutator (set) methods for all the properties defined in 

objects automatically. These are achieved through an 
underlying Marshalling Framework design. 

engine schema, which closely follows the JavaBean 
Design Pattern [ 101. 

In addition, the engine schema compiler can 
generate the data 'validation' class code so as to 
enforce the constraints expressed in the schema. The 
code generated by the valid schema translation will 
check that incoming engine data files are 'legal' with 
respect to the constraints defined in schema, thereby 
ensuring that only valid XML-based engine data files 
are produced by the marshalling process. 

The generated Java classes also include a set of 
marshal, and iinmarshal methods that can be used to 
"translate" engine application data f r o d t o  engine data 

Marshalling Framework 
The marshalling framework supports the 

transportation (immarshal) of XML-based engine data 
into "graphs" of interrelated instances of objects that 
are generated by engine schema complier and, in 
addition, converting (marshal) such graphs back into 
engine data stored in XML documents. The marshal 
method works by taking a desired Writer object as 
argument and then returning an XML element 
representation of that object. If the object contains 
references to other engine data objects, then recursion 
can be used. using the same method. The same applies 
to unmarshaling process where a general Reader is 
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used. When the engine data are correctly unmarshakd, 
each element node in the XML file becomes an instance 
of the data class that was generated by engine schema 
compiler, i.e. engine data object. Then. the engine 
simulation components can use the corresporiding 
methods, along with a set of miitator and occesor 
methods, to work with the engine data in the underlying 
data file. The end result is engine data binding. 

SIMULATION ARCHITECTURE 

X-Jgts is a web-based. interactive, graphical, 
numerical gas turbine simulator which can be used for 
the quick, efficient construction and analysis of 
arbitrary gas turbine systems. It also provides a 
systematic, meaningful data presentation and secured 
data operation scheme with the support of a built-in 
data binding framework. Figure 5 illustrates the overall 
simulation architecture described in this paper, as well 
as its major components and the interactions between 
web client and simulation server. 

Web Client 
In X-Jgts system, the client user interface is 

delivered through a web browser. The web browser is a 
universal user interface that is responsible for 
presenting engine simulation data, issuing requests to 
the simulation web sener. and handling any results 
generated at the request of the user. X-Jgrs uses both 
dynamically generated HTML and Swing-based Java 
Applet to properly present user-friendly data; in 
particular, HTML is used to display simulation results, 

while Swing-based Applet is used for graphic data 
display. The platform-independent nature of HTML and 
Java Applet enables the mgine simulation to be widely 
conducted from heterogeneous, networked computers. 

A s  a general rule for web-based simulation, 
application logic should not be implemented on the 
browser. Complex simulation logics that are tightly 
built into Applets are normally inefficient to execute 
due to the fact that client side users generally lack 
powerful computing resource. In addition, it may take 
quite a long time for a client’s browser to load. 
Therefore, the browser. HTML, and Swing Applets 
designed in X-Jgts are used strictly for delivering the 
user interface and view into the engine simulation. The 
user requests are made either from the front-end Applet 
or HTML code to perform designate tasks remotely in 
the simulation web sener. 

Simulation Server 
Engine simulation sener is a dynamic extension of 

a Web server and the heart of any web interactions. It 
uses HTTP as protocol for communication and consists 
of static resources, such as the front end simulation 
Applet, as well as dynamic web pages (HTML) that are 
generated by different mgine web components hosted 
in the server. The wzb server listens for incoming 
requests and then senices the requests as they come in. 
Once the server receiles a simulation request, it then 
springs into action. Depending on the type of request, 
the web server might look for a web page, or execute a 
web component on the si!n er. Either lvay, it will return 
some kind of results to the web client. 

In X-Jgts, engine web components are sets o f  

Engine 
Simulation 
Computing 

Databinding I Engine I Result 

Conf. 

Downloa 
Data 

Figure 5. Web-based simulation architecture in X-Jgts 
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simulation task-related Servlets [ 1 11 or JavaSevsr Pages 
[ I ? ] .  ServletiJSP provides a platform-independent 
means of extending a web server’s capabilities. When a 
user issues a request for a specitic Servlet. the server 
will simply use a separate thread and then process the 
individual request. This has a positive impact on 
performance. 

Engine web components are running in the Tomcat 
[ I33 Web container to dynamically process various 
simulation requests and construct responses. The web 
container provides services such as request dispatching, 
security, concurrency, and life-cycle management. 
Based on different task-related services, engine web 
components may invoke other web resources directly 
through embedded URLs that point to other web 
components while it is executing. or indirectly by 
forwarding a request to another resource using 
RequestDispatcher. There are four main services 
currently available in the engine simulation server. 

Simulation Web Component 
Engine simulation service is a core web component 

that provides a transient, space-averaged. aero- and 
thermo-dynamic gas turbine analysis for a web client 
based on the engine analysis model. Besides that, the 
simulation web component includes the built-in engine 
databinding support and an underlying XML-based 
engine database repository to store simulation data 
(Figure 5). During the engine simulation, the 
verification logics that are automatically generated by 
engine schema compiler can be applied inside the 
simulation so that the users’ inputs and simulation 
outputs could be checked. Engine components can also 
conveniently manipulate the engine data with a set of 
accessor and mutator methods devised from 
databinding framework. When a simulation completes, 
engine components can readily marshal sets of engine 
object data into the underlying data repository for 
storage and unmarshal them back to engine data objects 
later when data manipulation is necessary. This feature 
gives a very useful and natural n-ay for the storage of 
any engine data object and provides the engine 
simulation with unambiguous. meaningful and 
interpretable representation of engine data sets. The 
engine simulation service can also generate simulation 
graphs and transcript data dynamically and send them 
to the front-end Applet for display. 

File Download Web Component 
X-Jgts allows users to save their simulation results 

to the local file system so that users can redisplay their 
simulation result or restart simulation at a later time. 
This is achieved internally by the file-download service. 
Due to security reasons. current web browsers prohibit 
the front-end simulation Applet from directly writing 
data files on the host that is executing it. Nevertheless, 

Applets can usually make nenvork connections to the 
host they came from. In X - J ~ K .  whenever a user wants 
to download a complete sixulation result or engine 
configuration file, the front-snd Applet will make a 
request to tile-download semice resided on the 
simulation web server, loczrc the corresponding case 
file from database repositon- and then generate a 
download response to the ujsr. By setting the HTTP 
Con t e n t  - Di s p o s  L t 1s” response header as 
attachment, Web browser at 2lient side will pop up a 
”save as” box to let user save simulation result. 

File Upload Feb Comuonent 
At times users have a requirement to upload a file 

from their local file system to the web server for display 
of engine simulation resulr in a more meaningful 
way. X-Jgts web components include a Servlet that can 
receive a file upload using its input stream. When a file 
is sent via a browser, it is exbedded in a single POST 
request with multipart/form-data [ 141 encoding type. 
The file upload Servlet .rsill rake in the part of this 
multipart data stream, reassexbled and encoded on the 
server, and then dispatch rhe processing results to 
display service, where dyczmically generated engine 
data file in HTML format a x  sent to client’s browser 
for display. 

Displav Web Component 
Since engine data are stored in XML file format. it is 

easier to apply certain transfarmation logic such that 
simulation results can be dis3layed in a more friendly 
way within the user’s bron 527.  XSLT [ I  j] provides a 
way to transform the engine Sata without cluttering up 
the web components code ivith HTML. When the 
simulation server receives ii Lisplay request, the build- 
in XSLT processor kno\\j how to parse engine 
component-specific XSLT style sheets and apply 
transformations. Best of all. 3. clean separation between 
engine data, presentation, acd simulation logic allows 
changes to be made to the look and feel of a web site 
without altering the simulation code. Because XML- 
based engine data can b t  transformed into many 
different formats, it can also achieve portability across a 
variety of browsers and other devices. 

DEMONSTR-\TTON 

Based on the designed data object model, 
databinding architecture. ana simulation architecture, a 
web-based engine simulation has been implemented 
that internally uses Onyx [ 161 as the engine simulation 
logic. Onyx is an objecr-oriented framework for 
propulsion system simulation. Figure 6 shows the 
XML-based Java Gas Turbine Simulator, X-Jgrs, being 
accessed from an Internet Explorer browser. 
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Figure 6 .  XML-based Java Gas Turbine Simulator accessed from a Web bro\vs:: 

For practical purposes, X-Jgts currently provides 
users with 3 different kinds of simulation services. A 
simulation identifier (ID) is required to perfom each 
service. 

Start a new simulation 
A user can use this choice to start a new engine 

simulation in interactive construction mode. After the 
user enters a simulation ID, and starts to perform the 
simulation, the Swing-based Applet interface (Figure 6) 
will appear. From there the user can access the various 
main windows of the simulation system: Engine 
Schematic Layout, System Control Dialog, Graphing, 
Transcript, or Save User Case. 

Before each simulation is run, the user must provide 
each individual engine component with initial 
simulation configuration data from the designed Engine 
Schematic Layout Dialog (see Figure 7). An engine 
model is developed by building an engine component 

schematic graphically as Icons (e.g.. BktdDuct, Nozzle, 
VariableCompressor. etc.) and connecting them 
together. In the diagram, the arrowhesded connecting 
lines represent both the directional t'lon- path for fluid 
through the engine, and the structural connections along 
which mechanical energy is transmitted. The user can 
define the operational characteristics for the component 
(i.e., the component name, design- and initial-operating 
point data, etc.) in the engine component's dialog 
window (Figure 8). The $.stern Contrai Dialog (Figure 
9) provides controls for the overall operation of the 
simulation. The steady-state numerical solver is used to 
balance the gas turbine equations at the initial operating 
point as was defined by the user: while transient solvers 
are used for dynamic engine perforniance analysis. 
When the necessary data input for simulation 
configuration is finished, the simulation can have the 
option to start simulation immediately or download the 
configuration file and run it later. 
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Figure 7. Engine schematic layout dialog 

Figure 8. Dialogs used to set engine component (Nozzle) operational characteristics 

Figure 9. Engine simulation system control dialog 
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Figure 10. Graphically display engine component parameters 

Once a simulation begins, the engine configuration 
data will be encoded in XML format and sent over the 
Internet to the web simulation server. When the server 
receives the engine configuration file, it then 
automatically dispatches the file to the simulation web 
component. where engine databinding and simulation 
logic are performed. At the same time, the user can 
select from Graph Control Dialog (Figure 10) to plot a 
number of specified parameters for any of the 
components currently displayed in the Engine 
Schematic Layout window. The user may also view 
simulation status reports, using the Transcript button 
shown in Figure 6, that are sent from simulation web 
server during the simulation. Once the simulation is 
completed, the simulation web component will marshal 
all engine data objects into an engine data file 
designated by its simulation ID, and store it into the 
database repository. Finally, the user can use Save 
User Case button to download the complete solution of 
the simulation case for later use. 

Rerun simulation from an existing file 
X-Jgts also provides a service for users to directly 

input engine simulation configurations from a file, 
which allows bypassing the engine construction 
procedures. Part of a sample configuration file is shown 
in Figure 11. When a user uploads the configuration file 
from a web browser (Figure 6), all the defined 
simulation parameters will be immediately available 
from Engine Schematic Layout Dialog and System 
Control Dialog. Users can then use User cases menu in 
Engine Schematic Layout to verify these configurations. 
Users can also edit these data using the above two 
dialogs. In this case, the updated configuration file will 
be sent to the server to run the simulation. 

Show existing simulation data results 
If a user has finished an engine simulation case and 

saved the simulation data using X-Jgts, heishe can later 
redisplay the simulation results in a web browser with a 
more meaningful data presentation scheme using this 

service. In this case, when the web simulation server 
receives an engine simulation case file uploaded from 
the user's web browser (Figure 6), it will internally use 
Displaj. Web Component (combined with sets of pre- 
designed XSLT style sheets) to dynamically generate 
HTML code for display within the user's browser. 
Figure 12 shows the nozzle data file from an example 
simulation case. The user can choose different engine 
components to display from the drop-down list at the 
top of the web page. 

<S:eaayStateSolver SioverNane. NewtoniiarisonSolve< 
ErorToierance- '5.OE-i ~Cswer~e*ceRate="0.7" 
literal1onToFa1lure="50 2eV':rsa: e-3 ze='O 25 
LowerPacfalLlr,:='O 001C' 1;me+-a L ~ I F " O  01"') 

ErrorToierance='5 OEd ' C~iv_e.gecceRale="O 7" 
In:erat,onToFali~re='50' 2e:al r e . :  2' 
FinaIT.,re='Z 0 Pend?a:oaSlze=': 25 
LowerPan8aiL.mli='0 001C LisxrFar afL,mlt="O.O1" :> 

<Connector :mm= Envimnmeni' :o= LPC' rieeaback="false',> 
<Connector frorr='LPC' :o='MVl3' sFeeoack="alse':> 
<Connector f,om="MV13" to= 'HPC' sFeemack="false'l> 
<I-. 3her connectors are defrreo 10 a s r a' vannar --> 

<TpansfeniSoiver S:overName= I-~ovecE. e' 

<Connec:on> 

<,Connec!on> 
I- Conf.guration, 
+qneMoaeP 

<Comwnents> 
<'-only Nozzle is illustrateo "ere the s3re wnh all other cornpnenrs -> 
<NonSource, 

CNonRatator, 
CNozzie Name=~Nozzle"> 

<NozzleDesignPointDala Masr i  owRa!e="195.0" 
TiroatArea-"430 0 Ex:Area='492.0" OragCoefheni="O 952 
VelocltyCoeffc ew'0.98' G~ossThrus1-''9400 O?> 

<'-lhe same with Noznelni!F-.~fDafa-~ 
<ThroatAreaTransienlontml,en qame=7hmat Area Transient Contmller" 

<T,meArray> 0 0 10 0 13 C < TmeArray, 
'VaiueAnay, 430 0 430 0 EiC 0 <,'ValueArray> 

<I- :he same Nifh ix ; tArea~a~~ientContmi lers -> 
'ThroatAreaTransienConuo eo> 

<,Nozzle> 
<,NonRatalw> 

<,NonSource> 
<.Comwnents 
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Figure 11. Engine simulation configuration file 
specified in XML file format 
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Figure 12. Nozzle simulation data displayed within a user’s web browser 

COXCLUSION 

In this work, an XML-based dynamic databinding 
framework for use in engine simulation has been 
discussed. By dynamic data binding, the framework 
provides an object interface to access and use engine 
data, transparently mapping simulation data in engine 
components as engine data objects. The framework also 
enables the separation of engine simulation logic from 
its persistence logic. such that the engine simulation 
codes and the underlying data persistence codes can be 
developed independently. 

Since engine component data in the binding process 
are stored in an XML document, they not only bypass 
the requirement to have a standard binary encoding or 
storage format, but also provide the meaning of the data 
through its tag representation. Furthermore, it is 
completely natural to move around XML engine data 
using HTTP through disparate networks. 

This paper also describes a Web-based engine 
simulation system, X-Jgfs, which internally uses engine 

databinding framework. The simulation system couples 
a front-end graphical user interface. developed using 
the Java Swing API, and various Java Servlet-based 
web components from engine simulation server to 
service user’s requests. The designed web components 
include remote simulation service, dynamic data 
display service in HTML format. and file download and 
upload services which allow a user to save data for later 
use in a more secure way. All these services are readily 
available via the built-in databinding framework 
support and the use of XML to describe engine data. 
The combined package provides analytical, graphical 
and data management tools which allow users to 
construct and control dynamic gas turbine simulations 
by manipulating graphical objects from a variety of 
heterogeneous computer platforms through the use of 
Java-enabled world-wide web browsers. 

The method developed in this paper is generic and 
may readily be used for other simulation applications 
requiring intensive data exchange. Using this approach, 
developers are enabled to design better aircraft engine 
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simulation codes via 
data representation 
validation method. 
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Abstract 

Designing and developing new aircraft systems is time-consuming and expensive. 

Computational simulation is a promising means for reducing design cycle times, but requires a 

flexible software environment capable of integrating advanced multidisciplinary and muitifidelity 

analysis methods, dynamically managing data across heterogeneous computing platforms, and 

distributing computationally complex tasks. Web-based simulation, with its emphasis on 

collaborative composition of simulation models, distributed heterogeneous execution, and 

dynamic multimedia documentation, has the potential to meet these requirements. This paper 

outlines the current aircraft design process, highlighting its problems and complexities, and 

presents our vision of an aircraft design process using Web-based modeling and simulation. 
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1 Introduction 

Intensive competition in the commercial aviation industry is placing increasing pressure on 

aircraft manufacturers to reduce the time, cost and risk of product development. To compete 

effectively in today’s global marketplace, innovative approaches to reducing aircraft design-cycle 

times are needed. Computational simulation, such as computational fluid dynamics (CFD) and 

finite element analysis (FEA), has the potential to compress design-cycle times due to the 

flexibility it provides for rapid and relatively inexpensive evaluation of alternative designs and 

because it can be used to integrate multidisciplinary analysis earlier in the design process [ 171. 

Unfortunately, bottlenecks caused by data handling, heterogeneous computing environments and 

geographically separated design teams, continue to restrict the use of these tools. In order to fully 

realize the potential of computational simulation, improved integration in the overall design 

process must be made. The opportunity now exists to take advantage of recent developments in 

information technology to streamline the design process so that information can flow seamlessly 

between applications, across heterogeneous operating systems, computing architectures 

programming languages, and data and process representations. 

The World Wide Web has emerged as a powerful mechanism for distributing information on a 

very large scale. In its current form, it provides a simple and effective means for users to search, 

browse, and retrieve information, as well as to publish their own information. The Web continues 

to evolve from its limited role as a provider of static document-based information to that of a 

platform for supporting complex services. Much of this transformation is due to the introduction 

of object technologies, such as Java and CORBA (Common Object Request Broker Architecture) 

[36] within the Web. The integration of object technology represents a fundamental (some would 

say, revolutionary) advancement in web-technology. The web is no longer simply a document 

access system supported by the somewhat limited protocols. Rather, it is a distributed object 

system with which one can build general, multi-tiered enterprise intranet and internet 

applications. 
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The integration of the Web and object technology enables a fbndamentally new approach to 

simulation: Meb-based simulation. A Web populated with digital objects - models of physical 

counterparts - will lead to model development by composition using collaborative Web-based 

environments [9 ] .  Model execution will occur across networks using Web-based technologies 

(e.g., Java) and distributed simulation techniques (e.g., COMA).  Finally, simulation execution, 

models, and other related data will be documented using forms of hypermedia (hypertext, video, 

virtual models, etc.). 

Web-based simulation has the potential to provide the necessary tools to improve the aircraft 

design process through integration and support for collaborative modeling and distributed model 

execution. In the remainder of this paper, we examine how this might be achieved. In Section 2, 

we provide a brief overview of the aircraft design process, drawing attention to the complexities 

of the process and its inherent problems. Section 3 provides a review of the area of Web-based 

simulation, and singles out several principles of Web-based simulation that we believe are 

important in the aircraft design process. In Section 4, we present an example scenario illustrating 

how Web-based modeling and simulation might be used in that process, and discuss aircraft 

model development and distribution using the Onyx simulation framework. Onyx's object- 

oriented component model, visual environment for model assembly, and support for both Web- 

based and distributed object execution are explained in context of the integration of a jet engine 

within the aircraft. Lastly, in Section 5 ,  the relationships to the Web-based simulation principles 

outlined in Section 3 are identified and discussed, as are general implications of Web-based 

simulation on the design process. 

2 The Aircraft Design Process 

The aircraft design process can be divided into three phases: conceptual design, preliminary 

design, and detailed design. The conceptual design phase identifies the various conditions of the 

mission, and synthesizes a set of initial aircraft configurations capable of performing the mission. 

For commercial aircraft, the mission is defined by airline company demands, which typically 
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include payload requirements, city-to-city distance along a proposed service route, traffic volume 

and frequency, and airport compatibility. If the conceptual design effort confirms the feasibility of 

the proposed mission. management may decide to proceed with one or more preliminary designs. 

In the preliminary design phase. more detail is added to the aircraft design definition. Here the 

aerodynamic shape, structural skeleton and propulsion system design are refined sufficiently so 

that detailed performance estimates can be made and guaranteed to potential customers. In the 

final design phase, the airframe structure and associated sub-systems, such as control systems, 

landing gear, electrical and hydraulic systems, and cabin layout, are defined in complete detail 

~ 7 1 .  

The design of an aircraft is an inherently complex process. Traditional preliminary design 

procedure decomposes the aircraft into isolated components (airframe, propulsion system, control 

system, etc.) and focuses attention on the individual disciplines (fluid dynamic, heat transfer, 

acoustics, etc.) which affect their performance. The normal approach is to perform disciplinary 

analysis in a sequential manner where one discipline uses the results of the preceding analysis 

(see Fig. 1). In the development of commercial aircraft, aerodynamic analysis of the airframe is 

the first step in the preliminary design process. Using the initial Computer-aided Design (CAD) 

geometry definitions resulting from the conceptual design studies, aerodynamic predictions of 

wing and fbselage lift and drag are computed. Key points in the flight envelope. including take-off 

and normal cruise, are evaluated to form a map of aerodynamic performance. Next, performance 

estimates of the aircraft’s propulsion system are made, including thrust and fuel consumption rate. 

The structural analysis uses estimates of aerodynamic loads to determine the airframe’s structural 

skeleton, which provides an estimate of the structure weight. 

Complicating the design process is the fact that each of the disciplines interacts to various 

degrees with the other disciplines in the minor analysis loop. For example, the thrust requirements 

of the propulsion system will be dependent on the aerodynamic drag estimates for take-off, climb 

and cruise. The values of aerodynamic lift and yaw moments affect the sizing of the horizontal 

and vertical tail, which in turn influence the design of the control system. For an efficient design 
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process, fully-updated data from one discipline must be made accessible to the other disciplines 

without loss of information. Failure to identify interactions between disciplines early in the minor 

design cycle can result in serious problems for highly integrated aircraft designs. If the coupling is 

not identified until the system has been built and tested experimentally. then the system must 

undergo another major cycle iteration, further increasing the time and expense of product 

development. 

There are many factors that can make the design process less efficient. These include: 

(1) Lack of interoperability. Numerous software packages - CAD, solid modeling, FEA, 

CFD, visualization, and optimization - are employed to synthesizs and evaluate designs. 

These tools are often use different, possibly proprietary, data formats. As a result, they 

generally do not interoperate, and require manual manipulation Lvha passing data 

between applications. Although in some cases, custom translation tools are available to 

“massage” the data into the appropriate format, users still spend considerable time and 

effort tracking data and results as well as preparing, submitting and running the computer 

applications [28]. 

( 2 )  Heterogeneous conzpriting environments. The aircraft design computing environment is 

extremely heterogeneous, with platforms ranging from personal computers, to Unix work- 

stations, to supercomputers. To use the various software required in the design process, 

users are forced to become familiar with different computer architectures, operating sys- 

tems and programming languages. 

(3) Geographically separated design groirps. Multidisciplinary design and analysis is fie- 

quently carried out by geographically dispersed engineering groups. In special cases, 

entire subsystems may be designed and developed by third-party contractors or compa- 

nies. The propulsion sub-system, for example, is designed and built separately by the pro- 

pulsion company, and delivered to the aircraft company for installation in the aircraft. In 

any case, geographic separation places pressure on the designers to maintain a high level 

of interaction during the design process so that loss of data is minimized. 
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Improving the design process. therefore, requires the development of an integrated software 

environment which provides interoperability standards so that information can flow seamlessly 

across heterogeneous machines, computing platforms, programming languages. and data and 

process representations. We believe that web-based simulation tools can provide such an 

environment. 

3 Principles of Web-based Simulation 

Since its inception in 1990, the World Wide Web (WWW or Web) has quickly emerged as a 

powerful tool for connecting people and information on a global scale. Built on broadly accepted 

protocols, the WWW removes incompatibilities between computer systems. resulting in an 

“explosion of accessibility” [2. 301. Within the simulation community this proliferation has led to 

the establishment of a new area of research - Web-based simulation - involving the exploration 

of the connections between the WWW and the field of simulation. Although the majority of work 

in web-based simulation to date has centered on re-implementation of existing distributed and 

standalone simulation software using Web-related technologies, there is growing 

acknowledgement that web-based simulation has the potential to fundamentally alter the practice 

of simulation [ 1 11. 

In one of the first papers to explore the topic of web-based simulation, Fishwick [8] identifies 

many potential effects of web-based simulation, with attention given to three key simulation 

areas: (1) education and training, (2) publications, and (3) simulation programs. He concludes that 

there is great uncertainty in the area of Web-based simulation, but advises simulation researchers 

and practitioners to move forward to incorporate Web-based technologies. Building on Fishwick’s 

observations, Page and Opper [25] present six principles of web-based simulation which capture 

the vision of future simulation practice: (1) digital object proliferation, (2) software standards 

proliferation, (3) model construction by composition, (4) increased use of -’mal and error” 

approaches, (5) proliferation of simulation use by non-experts, and (6) multi-tier architectures and 

multi-language systems. 
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In the remainder of this section, we briefly review several of these principles. In the following 

sections, we will examine in more detail how each apply to both the development of a simulation 

environment, and to the improvement of the aircraft design process. 

3.1 Digital Objects. 

In the mid 1960’s a pioneering simulation language called Simula-67 [3] was developed to 

more faithfully model objects in the physical world. Simula-67 introduced many of the core 

design concepts (e.g., classes and objects) which form the foundation for the object-oriented 

programming paradigm. Since that time, object-oriented technologies, such as object-oriented 

programming (OOP), design (OOD) and analysis (OOA), have had a major impact on the field of 

simulation. Today, the majority of simulation languages, as well as many of the most successful 

general purpose-languages, are object-oriented. 

The importance of objects in simulation applications naturally leads us to consider their use as 

part of the WWW infrastructure. The WWW, however, is currently based on documents. rather 

than objects. In the future, though, it is envisioned that the Web will be populated by digital 

objects, with documents being just one type of object. The objects, representing models and data 

for use in simulation environments, will be made available for use through publication on the 

WWW [9]. 

Indications of a transition to an object-based WWW are currently evident in the successful 

application of mobile code and distributed object technologies. Mobile code - programs which 

can be transmitted across a network and executed on the client’s computer - make it possible to 

deliver digital objects, in either executable or serialized form across the WWW. Several 

programming languages which can produce mobile code have been developed [3,32,33.34]; the 

most well known and widely supported is Java [ 11. Compiled Java code, known as byte-code, can 

be downloaded across the Web to the client where it is executed by a Java Virtual Machine. The 

Java run-time system, incorporated within the Java Virtual Machine, provides an extensive class 

library that can be accessed by the compiled code. 
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Component Object Model (COM) [29], and High Level Architecture (HLA) [2 11. Alternatively, a 

component architecture may be defined by the particular simulation application in which the 

objects are to operate. This is often the case in domain-specific simulation environments, where 

the component architecture must be crafted to meet specific requirements of the domain. The 

Onyx simulation environment, described in the following section, is such an example; it defines a 

component architecture which is oriented towards physical modeling of aerospace systems. 

3.4 Heterogeneous Modeling and Simulation 

The digital objects of our Web-based simulation future will populate a Web that is highly 

heterogeneous. Digital objects will certainly be developed using different programming languages 

and programming styles (e.g., object-oriented, procedural, functional, etc.). The digital objects 

will themselves be highly variable. Some will be based on mobile code which can move across the 

Web (e.g., agents), while others will form object busses which provide services from specific 

locations on the Web. Applications will become more complicated as a result, with complex 

multi-tier architectures becoming the standard. In order to operate effectively in such an 

environment, Web-based simulation will need extensive enabling technologies such as search 

engines to locate appropriate digital objects and models, translators to convert models and data to 

appropriate formats, and expert systems to guide non-experts in the use of Web-based simulation 

models. 

4 An Example Scenario 
In this section, we present a scenario illustrating how Web-based modeling and simulation can 

be used in the aircraft design process. Our goal is to discuss both the technical issues related to the 

design, development and publication of digital objects, as well as organizational issues 

concerning the roles engineers and programmers play in the Web-based design process. Although 

the discussion is oriented towards the aircraft design process, we believe that it is applicable to 

engineering processes used in many fields. 
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4.1 Onyx 
The modeling and simulation environment for our research is the Onyx simulation system [26. 

271. The major features of Onyx include the following. 

A set of object classes and interfaces for representing the physical attributes and topology of 

the aircraft system is included. These classes comprise an object-oriented component architec- 

ture capable of housing the analytical and geometric views of the various aircraft components 

employed in the design process. The architecture facilitates and ensures object interoperability 

among separately developed software components. 

A visual assembly irtrerface is included for graphical creation and manipulation of aircraft 

system models. It enables users to establish model design, control model execution and visu- 

alize simulation output. 

A dynamically-defined, run-time simzdation executive is included to control complex, multi- 

level simulations. 

A persistence engine capable of transparently accessing geometry and data stored in either 

relational or object database management systems is included. 

A connection service provides access to federated model and data repositories using standard 

internet protocols. r-arious connection strategies to access Web- and server-based distributed 

objects are included. 

Our goal in creating Onyx is to develop a simulation-based design system that promotes 

collaboration among aerospace designers and facilitates sharing of models, data and code. Special 

emphasis is placed on developing a distributed system which fosters reuse and extension in both 

the models and the simulation environment. To achieve these goals, we have made extensive use 

of object-oriented technologies such as object-oriented frameworks, sofnvare components, and 

design patterns. 

An object-oriented framework is a set of classes that embodies an abstract design for solutions 

to a family of related problems [ 191. Onyx is designed as a layered collection of frameworks, with 

individual frameworks for the visual assembly interface, persistence engine, connection services, 
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simulation executive and component architecture. The set of classes in each framework define a 

“semi-complete” structure that captures the general functionality of the application or domain. 

Specific functionality is added to Onyx by inheriting from, or composing with, framework 

components. In the example in the next section, we will illustrate this by denying new classes to 

represent the components in an aircraft engine, then assembling instances of those classes to form 

a complete engine model. 

A key characteristic of Onyx, and object-oriented frameworks in general. is its inverted control 

structure. In traditional software development, the application developer writes the main body of 

the application which defines a series of calls to various libraries of subroutines. These libraries 

provide reusable code, while the main body is customized by the application developer. In 

framework design, the control structure is defined by the framework, with predefined calls going 

to methods that the application developer writes. In this approach, the design or structure of the 

application - which is domain-specific - is reused, and the specific iunctionality of the 

application is provided by the developer. Using this approach, Onyx reduces the burden for 

aircraft engineers and modelers, allowing similar aircraft component mod& to be developed 

faster and more efficiently. The concept of reuse is best illustrated for modtij that are assembled 

from a library of components (i.e., composition), and for models that are made in several versions 

with minor differences (i.e., inheritance). 

A major product of object-oriented design is the identification of sofnvare components - self 

contained software elements which can be controlled dynamically and assembled to form 

applications. The central step in identifying them is recognizing rscumng fundamental 

abstractions in the domain. By identifLing these abstractions and standardizing their interfaces, 

these components become interchangeable. Such components are said to be ”plug-compatible” as 

they permit components to be “plugged” into frameworks without redesign. Onyx’s software 

components use a variant of the JavaBeans [7] component architecture to define standard 

interfaces and abstractions. These components represent the “plug-compatible, digital objects” 

with which the Web-based models of the aircraft and its subsystems are de\-eloped. 
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Throughout the Onyx environment, design patterns -recurring solutions to problems that arise 

when building software in various domains [ 131 - are used to achieve reuse. Patterns aid the 

development of reusable software components and frameworks by expressing the structure and 

collaboration of participants in a software architecture at a level higher than source code or object- 

oriented design models that focus on individual objects and classes [31]. Patterns also are 

particularly useful for documenting software architectures and design abstractions. They provide 

a common and concise vocabulary which is useful in conveying the purpose of a @\-en software 

design. 

The Onyx simulation environment is designed to be both multi-tiered and platform 

independent so as to provide the greatest flexibility when modeling complex aircraft systems. Java 

was chosen as the implementation language as it offers extensive class libraries. a distributed 

object model (Le., Java RMI), and byte-code interpreters on a wide range of computer 

architectures, among other benefits. As a result, the Onyx system is extremely portable and 

accessible. The visual assembly interface (described below), for example, can be run in the 

context of a Web browser, which are widely available, while computationally intensive 

components run on dedicated, distributed servers. 

Java is also the preferred language for programming Onyx software componenrs. as models 

written in Java are easily downloaded across a network and dynamically loaded into the Onyx 

environment. In cases where it is desirable or necessary to use a programming languagz other than 

Java, software components may be accessed from Onyx using COMA.  CORI3A’s ability to deal 

with the heterogeneous nature inherent in distributed computing environments makes it 

particularly suitable for leveraging legacy applications not written in Java. This is especially 

useful for simulation of aerospace systems in which the majority of existing analysis programs 

have been written in procedural languages, such as FORTRAN and C. The use of C O M A  adds 

flexibility to the Onyx system allowing it to “wrap” these existing programs, rather than having to 

replace or abandon them. 
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4.2 Engine-Aircraft Integration Scenario 
This scenario illustrates our vision of how Web-based modeling and simulation may be used in 

the process of development and integration of an aircraft subsystem within the complete aircraft. 

As stated earlier, the aircraft design process generally follows a hierarchical decomposition of the 

aircraft system (see Fig. 2a) into major airframe components, e.g., Fuselage, Rudder, Wing and 

Propulsion System (i.e., Engines). Individual engineering groups are responsible for establishing 

the conceptual and preliminary designs for each respective component. These teams work 

together, exchanging information as necessary, to develop the individual component designs, and 

as the process progresses, to integrate them into a final design. 

We have selected for our example the integration of the propulsion subsystem into the aircraft 

because it represents one of the more complex aspects of aircraft design. Propulsion system 

performance, size and weight are important factors in the overall aircraft design. Engine size and 

thrust, for examp!e, influence the number and placement of engines, which in turn affects aircraft 

safety, performance, drag, control and maintainability. Furthermore, because the engine is 

designed and developed by an external manufacturer - Le., an engine company -this example 

illustrates the challenges faced by designers separated both geographically and organizationally. 

We intend to show how Web-based modeling and simulation can address these and other issues. 

4.2.1 Model Authoring. As in the aircraft company, engineering design groups in the engine 

manufacturer are generally organized according to a physical decomposition of the engine, with 

individual teams responsible for developing the major engine components: Fan. Compressor, 

Combustor, Turbine, Mixer, etc. (see Fig. 2b). In each team, a model author, having expertise in 

the given design area, establishes a conceptual model of the component. During early phases of 

design, model resolution is kept relatively coarse to speed simulations and enable more complete 

exploration of the design space. Such a model typically consists of a set of algebraic andor 

linearized ordinary differential equations which describe the component’s gross behavior. At this 

stage in the design knowledge of component characteristics is incomplete, so empirical data 

gathered from rig-testing of previously developed components are scaled to approximate the 
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current model. These data, commonly referred to as “performance maps,” attempt to capture 

component characteristics within their operating range, and serve to provide closure to the 

equations. 

4.2.2 Component Authoring. Once a conceptual model is validated, a component author, 

working closely with the model author, maps the model to the computational domain, creating a 

software component which encapsulates the model abstraction. As pointed out in section 3, the 

mapping is largely dependent on the choice of component architecture being used. The Onyx 

component architecture used here is based upon a control volume abstraction. The use of control 

volumes is standard engineering practice, wherein the physical system is divided into discrete 

regions of space - control volumes - which are then analyzed by applying conservation laws 

(e.g., mass, momentum, energy) to yield a set of mathematical equations describing physical 

behavior (see Fig. 3). A component archtecture predicated on this approach provides a 

convenient and familiar mapping mechanism for modeling physical systems, and ensures that a 

simulation component resembles the conceptual model developed by the model author. A brief 

overview of the Onyx component architecture is presented below; a complete description can be 

found in ref. [26]. 

4.2.3 Overview of Onyx Component Architecture. There are four basic entities in the Onyx 

architecture: Element, Port, Connector and DomainModel (see Fig. 4). The Java interface 

Element represents a control volume, and defines the key behavior for all engineering 

component classes incorporated into Onyx. It declares the core methods needed to initialize, run 

and stop model execution, as well as methods for managing attached Port objects. Classes 

implementing this interface generally represent physical components, such as a compressor, 

turbine blade, or bearing, to name a few (see Fig. 3b). However, they may also represent purely 

mathematical abstractions such as a cell in a finite-volume mesh used in a CFD analysis. This 

flexibility permits the component architecture to model a variety of physical systems. 

Consider, for example, a component author in the Compressor design team wanting to develop 

a representative Compressor digital object for uie in simulations during preliminary design. The 
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author begins by defining a concrete implementation of the Element interface, such as 

Simplecompressor (see Fig. 4). Here the author extends the abstract class DefaultElement. 

which captures common implementation aspects of the Element interface, as well as maintaining 

a list of Port objects associated with its subclasses. Alternatively. the author could implement the 

interface directly, explicitly defining each interface method. This feature is used through the 

architecture to provide flexibility: the component author may select to utilize the default 

functionality of the common abstract class, or inherit from another class hierarchy and implement 

the interface directly. 

An Element may have zero or more Port objects associated with it. The interface Port 

represent a surface on a control volume (Le., Element) through which some entity (e.g., mass or 

energy) or information passes. Ports are generally classified by the entity being transported 

across the control surface. For example, the SimpleCompressor has two FluidPort objects - 

representing the fluid boundaries at the Compressor entrance and exit - and a StructuralPort 

object, representing the control surface on the Compressor through which mechanical energy is 

passed (Le., from a driving shaft). The Port interface defines t\vo methods to set and retrieve the 

data defined by the Port. These data may be stored in any type of Java Object, such as Hashtable 

or Vector. The common abstract class, Defaultport, defines default functionality for these 

methods, and maintains a reference to the Connector object currently connected to the Port. 

The common boundary between consecutive control volumes is represented by a Connector 

object. The interface Connector permits two Element objects to communicate by passing 

information between connected Port objects (see Fig. 3c). It is also responsible for data 

transformation and mapping in situations where the data being passed from Ports of different 

type. The need for such data transformation can range from simple situations. such as conversion 

of data units, to very complex ones involving a mismatch in model fidelity (e.g., connecting a 2-D 

fluid model to a 3-D fluid model) or disciplinary coupling (e.g, mapping structural analysis results 

from a finite-element mesh to a finite-volume mesh used for aerodynamic analysis). 
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For all but the simplest cases, the algorithms needed to perform the data transformation/’ 

mapping will tend to be very complex. To improve reusability. Connector delegates 

transformatiodmapping responsibilities to a separate Transform object (see Fig. 3c) which 

encapsulates the necessary intelligence to expand’contract data and map data across disciplines. 

The Transform interface (see Fig 4) defines a general method, transform, which is implemented 

by subclasses to carry out a particular transformation algorithm. 

A similar situation is found with the mathematical model used to define component behavior. 

As described above, the mathematical models used to describe Compressor (or any other 

component) behavior during preliminary design are relatively simple and may be solved 

analytically or using basic numerical methods. However, models used in latter phases of design 

can be quite complicated. In these cases, approximate solutions are obtained by discretization of 

the equations on a geometrical mesh and applying highly specialized numerical solvers. The 

presence of these complex mathematical models and the numerical tools needed to solve them 

suggest that it is desirable to encapsulate these features and remove them from the Element 

structure. This enhances the modularity of Element, allowing new Element classes to be added 

without regard to the mathematical model used. and conversely to add new models without 

affecting the Element class. To achieve this, Onyx utilizes the Strategy design pattern [13] to 

encapsulate the mathematical model in a separate type of object called DomainModel (see Fig. 

4). The benefit of this pattern is that families of similar algorithms become interchangeable. 

allowing the algorithm - in this case the DomainModel - to yary independently from the 

Elements that use it. This admits the possibility of run-time selection of an appropriate 

DomainModel for a given Element; however, this is currently not used in Onyx. Furthermore, 

encapsulating the DomainModel in a separate object also encourages the “wrapping” of pre- 

existing, external sofnvare packages. For example, the Fan DomainModel in Fig. 3d might 

“wrap” a three-dimensional (3-D) Navier-Stokes or Euler flow solver to provide steady-state 

aerodynamic analysis of fluid flow within the Fan. This approach allows proven functionality of 
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existing software analysis packages to be easily integrated within an Elsment. Some of the 

advantages of this concept is illustrated later in this section. 

The DomainModel interface is designed to be very general, due to the complicated nature of 

the various models which might be encapsulated in an Element.  The intent is not to restrict the 

use of any algorithm or the ”wrapping” of external software packages by overly defining the 

DomainModel interface. Consequently, the interface defines only two methods, execute and halt, 

which are used to start and stop the execution of the DomainModel code. Additional methods are 

obviously needed to access and make the data internal to the DomainModel available to the 

Element,  but because these are specific to the particular DomainModel structure, they are not 

included in the interface. For our example, the component author has defined a 

SimpleCompressorModel class (see Fig. 4) to encapsulate the set of ordinary differential 

equations and performance maps needed to model compressor behavior. 

After the Compressor class definitions (i.e., SimpleCompressor, Fluidport. StructuralPort 

and SimpleCompressorDomainModel) are established, the componsnr author compiles, 

verifies and tests their operation. When complete. the class’ byte-code files and any auxiliary data 

(e.g., performance maps) are combined to form a single Compressor sofmare component in the 

form of a Java Archive (JAR) file. The JAR file format is useful for encapsulating components as 

they can be compressed to reduce file size, digitally signed for added security, and easily 

transferred across the Web. 

4.2.4 Publishing the Component. The Compressor software component is “published” by 

deploying it on a Web sen-er where it can be accessed by others in the engine company. We 

envision that each engine component design team will maintain its own U b  server, hosting the 

software components it has developed (see Figure 5) .  However, it may be easier and more 

efficient to maintain all components on a single company-wide Web sener. In either case, 

publishing the software component is the responsibility of the component deployer, who has 

expertise in system and Web server administration. This expertise is necessary, since, in addition 
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to simply placing components on a Web server, the component deployer is responsible for 

addressing server configuration issues of component identification and security. 

42.5  Accessing Components. One of the problems facing a user of a Web-based simulation 

system is locating appropriate software components, objects or data, for use in a simulation. A 

text-based search engine, similar to those used on the Web today, is one possible method to find 

objects and components [9]. However, these tools suffer from the fact that they are oriented 

towards HTML documents, rather than objects. A more object-oriented approach is to use naming 

and directory services to catalog available simulation objects and components. Using a naming 

service, the component deployer associates names with objects, providing the means to look up an 

object given its name. CORBA and RMI are examples of distributed object systems that employ 

naming services. Directory services extend naming services by adding attributes, making it 

possible to search for objects given their attributes. These attributes may be used by the 

component deployer to describe and hierarchically organize each component. For example, the 

attributes may be specified which describe the component class name, model fidelity and 

discipline. model author, or version number, as well as the manufacturer’s name and component 

group, to name a few. Queries can be made to the directory service to find and return references to 

objects matching one or more attributes. Lightweight Directory Access Protocol (LDAP) [38] and 

NetWare Directory Service (NDS) [23] are examples of directory services which are used today. 

Another important responsibility of the component deployer is establishing and maintaining 

security policies controlling access to published software components. These components 

represent significant investments in both time and money for the manufacturer. To protect their 

intellectual property against theft through reverse engineering, it is important to ensure that 

relevant data and software components can only be accessed by authorized users. Protection is 

accomplished through the use of authentication and authorization mechanisms. Authentication 

refers to the presence of an authentication protocol (e.,.., password, Kerberos ticket [24],or public 

key certificate (X.509 [16], PGP [39], etc.) that identifies the requesting party (the principle), 

while authorization grants access only if the principles identity (credentials) is included in a 
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specific list (the access control list). or if the principle can assume a specific role (role-based 

authorization). Both authentication and authorization mechanisms are typically included as part of 

the naming and directory services, or as part of the Web server services. Using these mschanisms, 

the component deployer can control who gains access to the server. and what data can be read. 

Communication channels between a client and the Web server are also a source of security 

concern. If the communication channel is a dedicated network connection (Le., intranet or 

extranet), security problems are minimized due to physical isolation. If, hou wer, the 

communication channel is the Web, physical isolation is impossible, and encryption mechanisms, 

such as Secure Socket Layers (SSL) [ 151, must be used. 

4.2.6 Building the Engine. Once the engine component design teams publish their preliminary 

component objects, a system integrator, having expertise in system-level engine design. combines 

individual component objects to create a first-order engine model. The system-level engine model 

is developed using Onyx's visual assembly interface. Icons, representing individual engine 

components (i.e., Elements), are selected from a component browser, dragged into a ivorkspace 

window, and interconnected to form a schematic diagram (see Fig. 6). 

The component browser, as its name implies, is a tool for browsing the objects and data stored 

in a naming or directory service (see bottom-right comer of Fig. 6). Onyx current11 supports 

access to common naming and directory services, such as NDS, LDAP, CORBA Xaming Service 

(COS Naming), and Rh4I Registry, through the Java Naming and Directory Interface CJXDI) [ 181. 

JNDI is an API that provides an abstraction that represents elements common to the most widely 

available naming and directory services. JNDI also allows different services to be linked to 

together to form a single logical namespace called a federated naming senice. Using the 

component browser, Onyx users are ale to navigate across multiple naming and directory services 

to locate simulation data, objects and components. 

For security purposes, the component browser requires users to authenticate themselves before 

they can retrieve any information from a naming or directory service. Once authentication has 

been successfully completed, the user can browse or search (using attribute keywords) the entire 
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namespace (subject to any authorization restrictions). Authentication and authorization 

capabilities are provided through JN DI and the Java Authentication and Authorization Service 

(JAAS) [22] framework. These tools allow the component browser to remain independent from 

the underlying security services, which is an important concern when working in a heterogeneous 

computing environment such as the Web. 

Dragging an icon from the component browser to the workspace window causes the selected 

software component to be downloaded from the server to the client machine. Components 

comprised entirely of Java classes, such as the Compressor described above, are downloaded from 

a Web server to the local file system where the byte-codes are extracted from the JAR file, loaded 

into the Java Virtual Machine and instantiated for use in Onyx. Components developed in other 

programming languages are not downloaded, but remain on the server. Instead, a proxy object 

(stub), representing the component, is downloaded and used to connect to the remote Component 

using a distributed object service, such as RMI, Voyager [37], CORBA, or DCOM. The need to 

use remote components in the aircraft design process is discussed at the end of this section. 

Onyx supports the creation of hierarchical component models, and an icon can represent both a 

single component or an assembly of components. A component with subcomponents is called a 

composite or structzired component. Components that are not structured are called primitive 

components, since they are typically defined in terms of primitives such as variables and 

equations. Composite components are represented by the CompositeElement class, which is 

part of the Element hierarchy (see Fig. 4). The class structure, based on the Composite design 

pattern [ 131, effectively captures the part-whole hierarchical structure of the component models, 

and allows the uniform treatment of both individual objects and compositions of objects. Such 

treatment is essential for providing the object interoperability needed to perform Web-based 

model construction by composition. 

Figure 6 shows a composite model representing an aircraft turbofan engine. The icon labeled 

Core is a composite of components which are displayed in the lower schematic. Each icon has one 

or more small boxes on its perimeter to represent its Ports. Connecting lines are drawn between 
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the ports on different icons by dragging the mouse. A Connector object having the correct 

Transform object needed to connect the two ports is created automatically by Onyx. Each icon 

has a popup menu which can be used ”customize” the attributes of its Element, Port and 

DomainModel objects. When selected, a graphical Customizer object is displayed (see upper- 

right comer of Fig. 61, which can be used to view or edit the selected objects attributes. The visual 

assembly interface also provides tools for plotting (see the lower-left comer of Fig. 6), editing 

files, and browsing on-line documentation. More information on the design and implementation 

of the visual assembly interface can be found in ref. [ 2 6 ] .  

4.2.7 Engine-AircrajI Model Integration. The system integrator, working with the model and 

component authors, performs a series of simulations to evaluate and improve the performance of 

the first-order engine model. Component conceptual models are refined and new software 

components developed, deployed and integrated, until all preliminary engine design requirements 

are satisfied. The engine model is then “passed” to engineers in the aircraft design group for use in 

their design process. This is accomplished by publishing the engine model as a 

CompositeElement object in the same process as described above, except that the engine 

component is deployed on a Web server accessible from networked locations outside the engine 

company (i.e.. extranet). In the aircraft company, airframe designers use the preliminary engine 

component (now a sub-component in the airframe system model) to design the control system, 

size the airframe and design the planform (see Fig 5). An aircraft system integrator takes the 

engine component and, using the Onyx visual assembly interface, assembles an airframe model 

using components (e.g., rudder, fuselage, and wing) developed by aircraft design groups (see Fig. 

6) in a process similar to the one described for the Compressor component. This model can then 

be used to simulate gross aircraft performance. 

4.2.8 Hierarchical Models. While the preliminary engine component is being used by the 

aircraft design teams, the engine component teams continue to refine their designs. The 

refinement requires sophisticated models which give a detailed description of the underlying 

physical processes within the component. For instance, although the air flow through the 
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Compressor might be adequately modeled as a quasi-one-dimensional, inviscid fluid in early 

phases of design, the actual fluid flow is unsteady. three-dimensional (3-D) and characterized by 

turbulence, boundap-layers and shocks. Similarly. at an early stage of design the Compressor 

blades can be modeled as rigid, but for more detailed investigations it may be necessary to 

account for blade deformation due to material elasticity and thermal loading. Thus, simulating the 

behavior of complex components requires the development of a hierarchy of models, or 

multimodel, which represent the component at differing levels of abstraction [ 101. These models 

may include: lumped-parameter models. such as the one used to model the Compressor 

component in preliminary design, or distributed parameter models such as fluid dynamics (CFD) 

or structural mechanics (FEA). Each model is implemented using a numerical method best suited 

to the application; s.g, an ordinary differential equation solver (ODE) for state-space models, 

finite-element solvers for structural mechanics or finite-volume solver for fluid dynamics. The 

specific numerical method implementation is encapsulated within the model. Figure 2c shows a 

multimodel representins the Compressor blade and flowfield at differing levels of fidelity. At the 

lowest level of fidelity. both the blade and flowfield are modeled using simple differential 

equations and empirical data. At higher fidelities, both are modeled using sophisticated numerical 

methods such as finits element analysis or computational fluid dynamics. 

4.2.9 High-fidelity Distributed Components. The use of multimodels in Web-based modeling 

and simulation is important because it allows designers to selectively refine the fidelity of their 

model given the constraints (i.e., level of detail needed, the objective, the available knowledge, 

given resources, etc.) of the simulation. However, digital objects containing higher-fidelity models 

cannot be deployed in the same manner as the simple models described previously. High-fidelity 

CFD and FEA software packages are (generally) not written in Java, and thus cannot be run in the 

clients Java virtual machine. Even if this were possible, the packages are computationally 

intensive, making them unsuitable for execution on the client computer. Therefore, high-fidelity 

models are deployed as remote objects using distributed object services such as CORBA. This 

approach offers several advantages: 
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( 1 ) Ability to distribute a computationally intensive process across a number of processors 

(2)  Ability to leverage legacy code limited to platforms offering specific programming andor 

operating systems by “wrapping” it in a remote object 

(3) Specialization of computer execution environment (i.e., placement of codes on appropriate 

computing platforms: such as visualization codes on high-end graphic workstations; com- 

putationally intensive codes on supercomputers, etc.). 

As with the preliminary component models, the high-fidelity component models can be integrated 

into a system-level engine model by the engine system integrator, and used to simulate engine 

operation. An engine simulation using a model composed of high-fidelity components would 

provide detailed knowledge of the interaction effects between its components. Although these 

interactions can be critical to engine performance, they are not currently quantifiable by engine 

designers and therefore are unknown until after expensive hardware testing [ 5 ,  141. Evaluation of 

these effects will allow engine engineers to make better design decisions earlier in the design 

process, before the principle design features have been frozen. Each high-fidelity component 

would perform its computations using a wrapped analysis package located on one or more remote 

computers. For example. in Fig. 5 ,  the Fan component is run on a supercomputer. while a parallel 

software package is used to simulate Compressor operation using a cluster of computers. 

The high-fidelity engine model is also a valuable resource to aircraft designers, and once the 

model is published, can be used in the aircraft model. The engine model allows aircraft designers 

to investigate the flowfield around aircraft nacelle (the cowling structure around the engine) and 

fbselage. Detailed descriptions of flow features at the engine exit (e.g.. shocks and expansion 

waves), could allow aircraft designers to better predict the drag caused by the jet exhaust flowing 

along the aircraft surface. Engine designers would also benefit from a high-fidelity, integrated 

engine-aircraft simulation. For example, an integrated simulation could allow engine designers to 

study distortions in the airflow entering the engine when the aircraft is at a high angle of attack. 

Evaluation of this operating condition is important because distortions can cause the compressor 

to stall and the engine to lose thrust. A detailed engine-aircraft integration study would provide 
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valuable information which engine and aircraft engineers could use to better and more quickly 

design the aircraft. 

5 Concluding Remarks 

The design of complex systems involves the work of many specialists in Lanous disciplines, 

each dependent on the work of other groups. When a single designer or core tzam is able to 

control the entire design process, difficulties in communication and organization are minimized. 

However, as design problems become more complex, the number and size of disciplinary groups 

increases, and it becomes more difficult for a central group to manage the process. As the design 

process becomes more decentralized. communications requirements become more severe. These 

difficulties are particularly evident in the design of aircraft, a process that in\ olves complex 

analyses, many disciplines, and a large design space [20]. The lack of enabling software 

supporting disciplinary analysis by geographically dispersed engineering groups further 

aggravates these problems. 

In this paper we have argued that Web-based simulation has the potential 10 improve the 

aircraft design process, allowing companies to become more competitive through condensed 

cycle times and better products. This improvement is due, in part, to the abilin. of the Web to 

support collaborative modeling and distributed model execution in a heterogenzous computing 

environment. A central focus of this strategy is the move towards a Web based on digital objects 

which can be published and reused to form new models. 

Using a component architecture such as the one defined in the Onyx environment, digital 

objects can be developed which represent the hierarchical topology of physical systems, making 

them ideal as models of aircraft systems. Furthermore, these objects can encapsulate multimodels, 

including geometry models, multidisciplinary models and models having multiple levels of 

fidelity. Such models are ideal for concurrent design environments, since all of the modeling 

information is available in one place. The component architecture class structure provides the 
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capability to wrap existing software packages. This is extremely important in providing 

collaborative and integrative environment for the aircraft design process. 

A World-Wide Web populated with digital objects provides the foundation for modeling by 

composition. Onyx’s component architecture defines the standard interfaces needed to 

dynamically compose new objects and the visual assembly interface makes composition simple 

and easy. This promotes model reuse, as well as reducing new model development time. 

The Onyx environment supports the distribution of simulation models across the Web. Both 

Web-based model distribution (in the case of Java-based models) and distributed services 

approaches (e.g., CORBA, COM) are provided. Each of these increase Onyx’s usability, as 

models can be placed virtually anywhere. The C O M A  bindings make it possible to integrate non- 

Java language distributed objects and legacy code. Also, since Onyx is written entirely in Java, it 

is portable without modifications to any computing platform which supports the Java Virtual 

Machine. Heterogeneous computing support makes the Onyx Web-based simulation system 

extremely viable for use in the heterogeneous computing environments typical of aircraft 

companies. Most importantly, it allows access to existing legacy codes and access to codes which 

must operate on specific architectures or operating systems. 
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Figure 1: The Aircraft Design Process. The process 
involves conceptual, preliminary and detailed final design 
phases. The preliminary design phase includes both major 
and minor design loops. In the minor design loop, separate 
disciplinary analysis such as aerodynamic, propulsion, 
and structural analysis are  carried out. Additional 
disciplinary analysis, such as controls, loading, stability, 
acoustics, etc. have been omitted for clarity. Once a design 
is converged upon in the minor loop, i t  is experimentally 
tested in the major design loop. After convergence of the 
major design loop, the detailed final design phase is 
executed. 
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Figure 2: (a) Decomposition of aircraft into high-level components; (b) 
decomposition of engine component; and (c) collection of models (multimodels) at 
differing levels of fidelity and discipline for Compressor component. 
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Figure 3: Mapping of engine physical domain to computational framework. 
(a) Engine is decomposed into separate components, such as the Fan and 
Compressor. Component control volumes are defined (b), with behavior 
defined by conservation laws. Components are represented in Onyx as 
Elements (c), whose Ports a r e  connected by Connectors. Component behavior 
is defined by a DomainModel (d) which may apply numerical discretization 
methods to solve the conservation equations. Data exchange at control volume 
boundaries is passed via Ports and Connectors, with multifidelity and 
interdisciplinary mapping handled by Transform objects. 
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Figure 4: A portion of the Onyx component architecture class structure. 
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Figure 5: Exchange of digital objects in a Web-based simulation environment. 
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Figure 6: Overview of Onyx Visual Assembly Interface. 
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