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Abstract 

Designing and developing new aircraft systems is time-consuming and expensive. 

Computational simulation is a promising means for reducing design cycle times, but requires a 

flexible software environment capable of integrating advanced multidisciplinary and muitifidelity 

analysis methods, dynamically managing data across heterogeneous computing platforms, and 

distributing computationally complex tasks. Web-based simulation, with its emphasis on 

collaborative composition of simulation models, distributed heterogeneous execution, and 

dynamic multimedia documentation, has the potential to meet these requirements. This paper 

outlines the current aircraft design process, highlighting its problems and complexities, and 

presents our vision of an aircraft design process using Web-based modeling and simulation. 
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1 Introduction 

Intensive competition in the commercial aviation industry is placing increasing pressure on 

aircraft manufacturers to reduce the time, cost and risk of product development. To compete 

effectively in today’s global marketplace, innovative approaches to reducing aircraft design-cycle 

times are needed. Computational simulation, such as computational fluid dynamics (CFD) and 

finite element analysis (FEA), has the potential to compress design-cycle times due to the 

flexibility it provides for rapid and relatively inexpensive evaluation of alternative designs and 

because it can be used to integrate multidisciplinary analysis earlier in the design process [ 171. 

Unfortunately, bottlenecks caused by data handling, heterogeneous computing environments and 

geographically separated design teams, continue to restrict the use of these tools. In order to fully 

realize the potential of computational simulation, improved integration in the overall design 

process must be made. The opportunity now exists to take advantage of recent developments in 

information technology to streamline the design process so that information can flow seamlessly 

between applications, across heterogeneous operating systems, computing architectures 

programming languages, and data and process representations. 

The World Wide Web has emerged as a powerful mechanism for distributing information on a 

very large scale. In its current form, it provides a simple and effective means for users to search, 

browse, and retrieve information, as well as to publish their own information. The Web continues 

to evolve from its limited role as a provider of static document-based information to that of a 

platform for supporting complex services. Much of this transformation is due to the introduction 

of object technologies, such as Java and CORBA (Common Object Request Broker Architecture) 

[36] within the Web. The integration of object technology represents a fundamental (some would 

say, revolutionary) advancement in web-technology. The web is no longer simply a document 

access system supported by the somewhat limited protocols. Rather, it is a distributed object 

system with which one can build general, multi-tiered enterprise intranet and internet 

applications. 
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The integration of the Web and object technology enables a fbndamentally new approach to 

simulation: Meb-based simulation. A Web populated with digital objects - models of physical 

counterparts - will lead to model development by composition using collaborative Web-based 

environments [9 ] .  Model execution will occur across networks using Web-based technologies 

(e.g., Java) and distributed simulation techniques (e.g., COMA).  Finally, simulation execution, 

models, and other related data will be documented using forms of hypermedia (hypertext, video, 

virtual models, etc.). 

Web-based simulation has the potential to provide the necessary tools to improve the aircraft 

design process through integration and support for collaborative modeling and distributed model 

execution. In the remainder of this paper, we examine how this might be achieved. In Section 2, 

we provide a brief overview of the aircraft design process, drawing attention to the complexities 

of the process and its inherent problems. Section 3 provides a review of the area of Web-based 

simulation, and singles out several principles of Web-based simulation that we believe are 

important in the aircraft design process. In Section 4, we present an example scenario illustrating 

how Web-based modeling and simulation might be used in that process, and discuss aircraft 

model development and distribution using the Onyx simulation framework. Onyx's object- 

oriented component model, visual environment for model assembly, and support for both Web- 

based and distributed object execution are explained in context of the integration of a jet engine 

within the aircraft. Lastly, in Section 5 ,  the relationships to the Web-based simulation principles 

outlined in Section 3 are identified and discussed, as are general implications of Web-based 

simulation on the design process. 

2 The Aircraft Design Process 

The aircraft design process can be divided into three phases: conceptual design, preliminary 

design, and detailed design. The conceptual design phase identifies the various conditions of the 

mission, and synthesizes a set of initial aircraft configurations capable of performing the mission. 

For commercial aircraft, the mission is defined by airline company demands, which typically 
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include payload requirements, city-to-city distance along a proposed service route, traffic volume 

and frequency, and airport compatibility. If the conceptual design effort confirms the feasibility of 

the proposed mission. management may decide to proceed with one or more preliminary designs. 

In the preliminary design phase. more detail is added to the aircraft design definition. Here the 

aerodynamic shape, structural skeleton and propulsion system design are refined sufficiently so 

that detailed performance estimates can be made and guaranteed to potential customers. In the 

final design phase, the airframe structure and associated sub-systems, such as control systems, 

landing gear, electrical and hydraulic systems, and cabin layout, are defined in complete detail 

~ 7 1 .  

The design of an aircraft is an inherently complex process. Traditional preliminary design 

procedure decomposes the aircraft into isolated components (airframe, propulsion system, control 

system, etc.) and focuses attention on the individual disciplines (fluid dynamic, heat transfer, 

acoustics, etc.) which affect their performance. The normal approach is to perform disciplinary 

analysis in a sequential manner where one discipline uses the results of the preceding analysis 

(see Fig. 1). In the development of commercial aircraft, aerodynamic analysis of the airframe is 

the first step in the preliminary design process. Using the initial Computer-aided Design (CAD) 

geometry definitions resulting from the conceptual design studies, aerodynamic predictions of 

wing and fbselage lift and drag are computed. Key points in the flight envelope. including take-off 

and normal cruise, are evaluated to form a map of aerodynamic performance. Next, performance 

estimates of the aircraft’s propulsion system are made, including thrust and fuel consumption rate. 

The structural analysis uses estimates of aerodynamic loads to determine the airframe’s structural 

skeleton, which provides an estimate of the structure weight. 

Complicating the design process is the fact that each of the disciplines interacts to various 

degrees with the other disciplines in the minor analysis loop. For example, the thrust requirements 

of the propulsion system will be dependent on the aerodynamic drag estimates for take-off, climb 

and cruise. The values of aerodynamic lift and yaw moments affect the sizing of the horizontal 

and vertical tail, which in turn influence the design of the control system. For an efficient design 
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process, fully-updated data from one discipline must be made accessible to the other disciplines 

without loss of information. Failure to identify interactions between disciplines early in the minor 

design cycle can result in serious problems for highly integrated aircraft designs. If the coupling is 

not identified until the system has been built and tested experimentally. then the system must 

undergo another major cycle iteration, further increasing the time and expense of product 

development. 

There are many factors that can make the design process less efficient. These include: 

(1) Lack of interoperability. Numerous software packages - CAD, solid modeling, FEA, 

CFD, visualization, and optimization - are employed to synthesizs and evaluate designs. 

These tools are often use different, possibly proprietary, data formats. As a result, they 

generally do not interoperate, and require manual manipulation Lvha passing data 

between applications. Although in some cases, custom translation tools are available to 

“massage” the data into the appropriate format, users still spend considerable time and 

effort tracking data and results as well as preparing, submitting and running the computer 

applications [28]. 

( 2 )  Heterogeneous conzpriting environments. The aircraft design computing environment is 

extremely heterogeneous, with platforms ranging from personal computers, to Unix work- 

stations, to supercomputers. To use the various software required in the design process, 

users are forced to become familiar with different computer architectures, operating sys- 

tems and programming languages. 

(3) Geographically separated design groirps. Multidisciplinary design and analysis is fie- 

quently carried out by geographically dispersed engineering groups. In special cases, 

entire subsystems may be designed and developed by third-party contractors or compa- 

nies. The propulsion sub-system, for example, is designed and built separately by the pro- 

pulsion company, and delivered to the aircraft company for installation in the aircraft. In 

any case, geographic separation places pressure on the designers to maintain a high level 

of interaction during the design process so that loss of data is minimized. 
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Improving the design process. therefore, requires the development of an integrated software 

environment which provides interoperability standards so that information can flow seamlessly 

across heterogeneous machines, computing platforms, programming languages. and data and 

process representations. We believe that web-based simulation tools can provide such an 

environment. 

3 Principles of Web-based Simulation 

Since its inception in 1990, the World Wide Web (WWW or Web) has quickly emerged as a 

powerful tool for connecting people and information on a global scale. Built on broadly accepted 

protocols, the WWW removes incompatibilities between computer systems. resulting in an 

“explosion of accessibility” [2. 301. Within the simulation community this proliferation has led to 

the establishment of a new area of research - Web-based simulation - involving the exploration 

of the connections between the WWW and the field of simulation. Although the majority of work 

in web-based simulation to date has centered on re-implementation of existing distributed and 

standalone simulation software using Web-related technologies, there is growing 

acknowledgement that web-based simulation has the potential to fundamentally alter the practice 

of simulation [ 1 11. 

In one of the first papers to explore the topic of web-based simulation, Fishwick [8] identifies 

many potential effects of web-based simulation, with attention given to three key simulation 

areas: (1) education and training, (2) publications, and (3) simulation programs. He concludes that 

there is great uncertainty in the area of Web-based simulation, but advises simulation researchers 

and practitioners to move forward to incorporate Web-based technologies. Building on Fishwick’s 

observations, Page and Opper [25] present six principles of web-based simulation which capture 

the vision of future simulation practice: (1) digital object proliferation, (2) software standards 

proliferation, (3) model construction by composition, (4) increased use of -’mal and error” 

approaches, (5) proliferation of simulation use by non-experts, and (6) multi-tier architectures and 

multi-language systems. 
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In the remainder of this section, we briefly review several of these principles. In the following 

sections, we will examine in more detail how each apply to both the development of a simulation 

environment, and to the improvement of the aircraft design process. 

3.1 Digital Objects. 

In the mid 1960’s a pioneering simulation language called Simula-67 [3] was developed to 

more faithfully model objects in the physical world. Simula-67 introduced many of the core 

design concepts (e.g., classes and objects) which form the foundation for the object-oriented 

programming paradigm. Since that time, object-oriented technologies, such as object-oriented 

programming (OOP), design (OOD) and analysis (OOA), have had a major impact on the field of 

simulation. Today, the majority of simulation languages, as well as many of the most successful 

general purpose-languages, are object-oriented. 

The importance of objects in simulation applications naturally leads us to consider their use as 

part of the WWW infrastructure. The WWW, however, is currently based on documents. rather 

than objects. In the future, though, it is envisioned that the Web will be populated by digital 

objects, with documents being just one type of object. The objects, representing models and data 

for use in simulation environments, will be made available for use through publication on the 

WWW [9]. 

Indications of a transition to an object-based WWW are currently evident in the successful 

application of mobile code and distributed object technologies. Mobile code - programs which 

can be transmitted across a network and executed on the client’s computer - make it possible to 

deliver digital objects, in either executable or serialized form across the WWW. Several 

programming languages which can produce mobile code have been developed [3,32,33.34]; the 

most well known and widely supported is Java [ 11. Compiled Java code, known as byte-code, can 

be downloaded across the Web to the client where it is executed by a Java Virtual Machine. The 

Java run-time system, incorporated within the Java Virtual Machine, provides an extensive class 

library that can be accessed by the compiled code. 
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Component Object Model (COM) [29], and High Level Architecture (HLA) [2 11. Alternatively, a 

component architecture may be defined by the particular simulation application in which the 

objects are to operate. This is often the case in domain-specific simulation environments, where 

the component architecture must be crafted to meet specific requirements of the domain. The 

Onyx simulation environment, described in the following section, is such an example; it defines a 

component architecture which is oriented towards physical modeling of aerospace systems. 

3.4 Heterogeneous Modeling and Simulation 

The digital objects of our Web-based simulation future will populate a Web that is highly 

heterogeneous. Digital objects will certainly be developed using different programming languages 

and programming styles (e.g., object-oriented, procedural, functional, etc.). The digital objects 

will themselves be highly variable. Some will be based on mobile code which can move across the 

Web (e.g., agents), while others will form object busses which provide services from specific 

locations on the Web. Applications will become more complicated as a result, with complex 

multi-tier architectures becoming the standard. In order to operate effectively in such an 

environment, Web-based simulation will need extensive enabling technologies such as search 

engines to locate appropriate digital objects and models, translators to convert models and data to 

appropriate formats, and expert systems to guide non-experts in the use of Web-based simulation 

models. 

4 An Example Scenario 
In this section, we present a scenario illustrating how Web-based modeling and simulation can 

be used in the aircraft design process. Our goal is to discuss both the technical issues related to the 

design, development and publication of digital objects, as well as organizational issues 

concerning the roles engineers and programmers play in the Web-based design process. Although 

the discussion is oriented towards the aircraft design process, we believe that it is applicable to 

engineering processes used in many fields. 
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4.1 Onyx 
The modeling and simulation environment for our research is the Onyx simulation system [26. 

271. The major features of Onyx include the following. 

A set of object classes and interfaces for representing the physical attributes and topology of 

the aircraft system is included. These classes comprise an object-oriented component architec- 

ture capable of housing the analytical and geometric views of the various aircraft components 

employed in the design process. The architecture facilitates and ensures object interoperability 

among separately developed software components. 

A visual assembly irtrerface is included for graphical creation and manipulation of aircraft 

system models. It enables users to establish model design, control model execution and visu- 

alize simulation output. 

A dynamically-defined, run-time simzdation executive is included to control complex, multi- 

level simulations. 

A persistence engine capable of transparently accessing geometry and data stored in either 

relational or object database management systems is included. 

A connection service provides access to federated model and data repositories using standard 

internet protocols. r-arious connection strategies to access Web- and server-based distributed 

objects are included. 

Our goal in creating Onyx is to develop a simulation-based design system that promotes 

collaboration among aerospace designers and facilitates sharing of models, data and code. Special 

emphasis is placed on developing a distributed system which fosters reuse and extension in both 

the models and the simulation environment. To achieve these goals, we have made extensive use 

of object-oriented technologies such as object-oriented frameworks, sofnvare components, and 

design patterns. 

An object-oriented framework is a set of classes that embodies an abstract design for solutions 

to a family of related problems [ 191. Onyx is designed as a layered collection of frameworks, with 

individual frameworks for the visual assembly interface, persistence engine, connection services, 
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simulation executive and component architecture. The set of classes in each framework define a 

“semi-complete” structure that captures the general functionality of the application or domain. 

Specific functionality is added to Onyx by inheriting from, or composing with, framework 

components. In the example in the next section, we will illustrate this by denying new classes to 

represent the components in an aircraft engine, then assembling instances of those classes to form 

a complete engine model. 

A key characteristic of Onyx, and object-oriented frameworks in general. is its inverted control 

structure. In traditional software development, the application developer writes the main body of 

the application which defines a series of calls to various libraries of subroutines. These libraries 

provide reusable code, while the main body is customized by the application developer. In 

framework design, the control structure is defined by the framework, with predefined calls going 

to methods that the application developer writes. In this approach, the design or structure of the 

application - which is domain-specific - is reused, and the specific iunctionality of the 

application is provided by the developer. Using this approach, Onyx reduces the burden for 

aircraft engineers and modelers, allowing similar aircraft component mod& to be developed 

faster and more efficiently. The concept of reuse is best illustrated for modtij that are assembled 

from a library of components (i.e., composition), and for models that are made in several versions 

with minor differences (i.e., inheritance). 

A major product of object-oriented design is the identification of sofnvare components - self 

contained software elements which can be controlled dynamically and assembled to form 

applications. The central step in identifying them is recognizing rscumng fundamental 

abstractions in the domain. By identifLing these abstractions and standardizing their interfaces, 

these components become interchangeable. Such components are said to be ”plug-compatible” as 

they permit components to be “plugged” into frameworks without redesign. Onyx’s software 

components use a variant of the JavaBeans [7] component architecture to define standard 

interfaces and abstractions. These components represent the “plug-compatible, digital objects” 

with which the Web-based models of the aircraft and its subsystems are de\-eloped. 
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Throughout the Onyx environment, design patterns -recurring solutions to problems that arise 

when building software in various domains [ 131 - are used to achieve reuse. Patterns aid the 

development of reusable software components and frameworks by expressing the structure and 

collaboration of participants in a software architecture at a level higher than source code or object- 

oriented design models that focus on individual objects and classes [31]. Patterns also are 

particularly useful for documenting software architectures and design abstractions. They provide 

a common and concise vocabulary which is useful in conveying the purpose of a @\-en software 

design. 

The Onyx simulation environment is designed to be both multi-tiered and platform 

independent so as to provide the greatest flexibility when modeling complex aircraft systems. Java 

was chosen as the implementation language as it offers extensive class libraries. a distributed 

object model (Le., Java RMI), and byte-code interpreters on a wide range of computer 

architectures, among other benefits. As a result, the Onyx system is extremely portable and 

accessible. The visual assembly interface (described below), for example, can be run in the 

context of a Web browser, which are widely available, while computationally intensive 

components run on dedicated, distributed servers. 

Java is also the preferred language for programming Onyx software componenrs. as models 

written in Java are easily downloaded across a network and dynamically loaded into the Onyx 

environment. In cases where it is desirable or necessary to use a programming languagz other than 

Java, software components may be accessed from Onyx using COMA.  CORI3A’s ability to deal 

with the heterogeneous nature inherent in distributed computing environments makes it 

particularly suitable for leveraging legacy applications not written in Java. This is especially 

useful for simulation of aerospace systems in which the majority of existing analysis programs 

have been written in procedural languages, such as FORTRAN and C. The use of C O M A  adds 

flexibility to the Onyx system allowing it to “wrap” these existing programs, rather than having to 

replace or abandon them. 
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4.2 Engine-Aircraft Integration Scenario 
This scenario illustrates our vision of how Web-based modeling and simulation may be used in 

the process of development and integration of an aircraft subsystem within the complete aircraft. 

As stated earlier, the aircraft design process generally follows a hierarchical decomposition of the 

aircraft system (see Fig. 2a) into major airframe components, e.g., Fuselage, Rudder, Wing and 

Propulsion System (i.e., Engines). Individual engineering groups are responsible for establishing 

the conceptual and preliminary designs for each respective component. These teams work 

together, exchanging information as necessary, to develop the individual component designs, and 

as the process progresses, to integrate them into a final design. 

We have selected for our example the integration of the propulsion subsystem into the aircraft 

because it represents one of the more complex aspects of aircraft design. Propulsion system 

performance, size and weight are important factors in the overall aircraft design. Engine size and 

thrust, for examp!e, influence the number and placement of engines, which in turn affects aircraft 

safety, performance, drag, control and maintainability. Furthermore, because the engine is 

designed and developed by an external manufacturer - Le., an engine company -this example 

illustrates the challenges faced by designers separated both geographically and organizationally. 

We intend to show how Web-based modeling and simulation can address these and other issues. 

4.2.1 Model Authoring. As in the aircraft company, engineering design groups in the engine 

manufacturer are generally organized according to a physical decomposition of the engine, with 

individual teams responsible for developing the major engine components: Fan. Compressor, 

Combustor, Turbine, Mixer, etc. (see Fig. 2b). In each team, a model author, having expertise in 

the given design area, establishes a conceptual model of the component. During early phases of 

design, model resolution is kept relatively coarse to speed simulations and enable more complete 

exploration of the design space. Such a model typically consists of a set of algebraic andor 

linearized ordinary differential equations which describe the component’s gross behavior. At this 

stage in the design knowledge of component characteristics is incomplete, so empirical data 

gathered from rig-testing of previously developed components are scaled to approximate the 
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current model. These data, commonly referred to as “performance maps,” attempt to capture 

component characteristics within their operating range, and serve to provide closure to the 

equations. 

4.2.2 Component Authoring. Once a conceptual model is validated, a component author, 

working closely with the model author, maps the model to the computational domain, creating a 

software component which encapsulates the model abstraction. As pointed out in section 3, the 

mapping is largely dependent on the choice of component architecture being used. The Onyx 

component architecture used here is based upon a control volume abstraction. The use of control 

volumes is standard engineering practice, wherein the physical system is divided into discrete 

regions of space - control volumes - which are then analyzed by applying conservation laws 

(e.g., mass, momentum, energy) to yield a set of mathematical equations describing physical 

behavior (see Fig. 3). A component archtecture predicated on this approach provides a 

convenient and familiar mapping mechanism for modeling physical systems, and ensures that a 

simulation component resembles the conceptual model developed by the model author. A brief 

overview of the Onyx component architecture is presented below; a complete description can be 

found in ref. [26]. 

4.2.3 Overview of Onyx Component Architecture. There are four basic entities in the Onyx 

architecture: Element, Port, Connector and DomainModel (see Fig. 4). The Java interface 

Element represents a control volume, and defines the key behavior for all engineering 

component classes incorporated into Onyx. It declares the core methods needed to initialize, run 

and stop model execution, as well as methods for managing attached Port objects. Classes 

implementing this interface generally represent physical components, such as a compressor, 

turbine blade, or bearing, to name a few (see Fig. 3b). However, they may also represent purely 

mathematical abstractions such as a cell in a finite-volume mesh used in a CFD analysis. This 

flexibility permits the component architecture to model a variety of physical systems. 

Consider, for example, a component author in the Compressor design team wanting to develop 

a representative Compressor digital object for uie in simulations during preliminary design. The 
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author begins by defining a concrete implementation of the Element interface, such as 

Simplecompressor (see Fig. 4). Here the author extends the abstract class DefaultElement. 

which captures common implementation aspects of the Element interface, as well as maintaining 

a list of Port objects associated with its subclasses. Alternatively. the author could implement the 

interface directly, explicitly defining each interface method. This feature is used through the 

architecture to provide flexibility: the component author may select to utilize the default 

functionality of the common abstract class, or inherit from another class hierarchy and implement 

the interface directly. 

An Element may have zero or more Port objects associated with it. The interface Port 

represent a surface on a control volume (Le., Element) through which some entity (e.g., mass or 

energy) or information passes. Ports are generally classified by the entity being transported 

across the control surface. For example, the SimpleCompressor has two FluidPort objects - 

representing the fluid boundaries at the Compressor entrance and exit - and a StructuralPort 

object, representing the control surface on the Compressor through which mechanical energy is 

passed (Le., from a driving shaft). The Port interface defines t\vo methods to set and retrieve the 

data defined by the Port. These data may be stored in any type of Java Object, such as Hashtable 

or Vector. The common abstract class, Defaultport, defines default functionality for these 

methods, and maintains a reference to the Connector object currently connected to the Port. 

The common boundary between consecutive control volumes is represented by a Connector 

object. The interface Connector permits two Element objects to communicate by passing 

information between connected Port objects (see Fig. 3c). It is also responsible for data 

transformation and mapping in situations where the data being passed from Ports of different 

type. The need for such data transformation can range from simple situations. such as conversion 

of data units, to very complex ones involving a mismatch in model fidelity (e.g., connecting a 2-D 

fluid model to a 3-D fluid model) or disciplinary coupling (e.g, mapping structural analysis results 

from a finite-element mesh to a finite-volume mesh used for aerodynamic analysis). 
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For all but the simplest cases, the algorithms needed to perform the data transformation/’ 

mapping will tend to be very complex. To improve reusability. Connector delegates 

transformatiodmapping responsibilities to a separate Transform object (see Fig. 3c) which 

encapsulates the necessary intelligence to expand’contract data and map data across disciplines. 

The Transform interface (see Fig 4) defines a general method, transform, which is implemented 

by subclasses to carry out a particular transformation algorithm. 

A similar situation is found with the mathematical model used to define component behavior. 

As described above, the mathematical models used to describe Compressor (or any other 

component) behavior during preliminary design are relatively simple and may be solved 

analytically or using basic numerical methods. However, models used in latter phases of design 

can be quite complicated. In these cases, approximate solutions are obtained by discretization of 

the equations on a geometrical mesh and applying highly specialized numerical solvers. The 

presence of these complex mathematical models and the numerical tools needed to solve them 

suggest that it is desirable to encapsulate these features and remove them from the Element 

structure. This enhances the modularity of Element, allowing new Element classes to be added 

without regard to the mathematical model used. and conversely to add new models without 

affecting the Element class. To achieve this, Onyx utilizes the Strategy design pattern [13] to 

encapsulate the mathematical model in a separate type of object called DomainModel (see Fig. 

4). The benefit of this pattern is that families of similar algorithms become interchangeable. 

allowing the algorithm - in this case the DomainModel - to yary independently from the 

Elements that use it. This admits the possibility of run-time selection of an appropriate 

DomainModel for a given Element; however, this is currently not used in Onyx. Furthermore, 

encapsulating the DomainModel in a separate object also encourages the “wrapping” of pre- 

existing, external sofnvare packages. For example, the Fan DomainModel in Fig. 3d might 

“wrap” a three-dimensional (3-D) Navier-Stokes or Euler flow solver to provide steady-state 

aerodynamic analysis of fluid flow within the Fan. This approach allows proven functionality of 
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existing software analysis packages to be easily integrated within an Elsment. Some of the 

advantages of this concept is illustrated later in this section. 

The DomainModel interface is designed to be very general, due to the complicated nature of 

the various models which might be encapsulated in an Element.  The intent is not to restrict the 

use of any algorithm or the ”wrapping” of external software packages by overly defining the 

DomainModel interface. Consequently, the interface defines only two methods, execute and halt, 

which are used to start and stop the execution of the DomainModel code. Additional methods are 

obviously needed to access and make the data internal to the DomainModel available to the 

Element,  but because these are specific to the particular DomainModel structure, they are not 

included in the interface. For our example, the component author has defined a 

SimpleCompressorModel class (see Fig. 4) to encapsulate the set of ordinary differential 

equations and performance maps needed to model compressor behavior. 

After the Compressor class definitions (i.e., SimpleCompressor, Fluidport. StructuralPort 

and SimpleCompressorDomainModel) are established, the componsnr author compiles, 

verifies and tests their operation. When complete. the class’ byte-code files and any auxiliary data 

(e.g., performance maps) are combined to form a single Compressor sofmare component in the 

form of a Java Archive (JAR) file. The JAR file format is useful for encapsulating components as 

they can be compressed to reduce file size, digitally signed for added security, and easily 

transferred across the Web. 

4.2.4 Publishing the Component. The Compressor software component is “published” by 

deploying it on a Web sen-er where it can be accessed by others in the engine company. We 

envision that each engine component design team will maintain its own U b  server, hosting the 

software components it has developed (see Figure 5) .  However, it may be easier and more 

efficient to maintain all components on a single company-wide Web sener. In either case, 

publishing the software component is the responsibility of the component deployer, who has 

expertise in system and Web server administration. This expertise is necessary, since, in addition 
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to simply placing components on a Web server, the component deployer is responsible for 

addressing server configuration issues of component identification and security. 

42.5  Accessing Components. One of the problems facing a user of a Web-based simulation 

system is locating appropriate software components, objects or data, for use in a simulation. A 

text-based search engine, similar to those used on the Web today, is one possible method to find 

objects and components [9]. However, these tools suffer from the fact that they are oriented 

towards HTML documents, rather than objects. A more object-oriented approach is to use naming 

and directory services to catalog available simulation objects and components. Using a naming 

service, the component deployer associates names with objects, providing the means to look up an 

object given its name. CORBA and RMI are examples of distributed object systems that employ 

naming services. Directory services extend naming services by adding attributes, making it 

possible to search for objects given their attributes. These attributes may be used by the 

component deployer to describe and hierarchically organize each component. For example, the 

attributes may be specified which describe the component class name, model fidelity and 

discipline. model author, or version number, as well as the manufacturer’s name and component 

group, to name a few. Queries can be made to the directory service to find and return references to 

objects matching one or more attributes. Lightweight Directory Access Protocol (LDAP) [38] and 

NetWare Directory Service (NDS) [23] are examples of directory services which are used today. 

Another important responsibility of the component deployer is establishing and maintaining 

security policies controlling access to published software components. These components 

represent significant investments in both time and money for the manufacturer. To protect their 

intellectual property against theft through reverse engineering, it is important to ensure that 

relevant data and software components can only be accessed by authorized users. Protection is 

accomplished through the use of authentication and authorization mechanisms. Authentication 

refers to the presence of an authentication protocol (e.,.., password, Kerberos ticket [24],or public 

key certificate (X.509 [16], PGP [39], etc.) that identifies the requesting party (the principle), 

while authorization grants access only if the principles identity (credentials) is included in a 
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specific list (the access control list). or if the principle can assume a specific role (role-based 

authorization). Both authentication and authorization mechanisms are typically included as part of 

the naming and directory services, or as part of the Web server services. Using these mschanisms, 

the component deployer can control who gains access to the server. and what data can be read. 

Communication channels between a client and the Web server are also a source of security 

concern. If the communication channel is a dedicated network connection (Le., intranet or 

extranet), security problems are minimized due to physical isolation. If, hou wer, the 

communication channel is the Web, physical isolation is impossible, and encryption mechanisms, 

such as Secure Socket Layers (SSL) [ 151, must be used. 

4.2.6 Building the Engine. Once the engine component design teams publish their preliminary 

component objects, a system integrator, having expertise in system-level engine design. combines 

individual component objects to create a first-order engine model. The system-level engine model 

is developed using Onyx's visual assembly interface. Icons, representing individual engine 

components (i.e., Elements), are selected from a component browser, dragged into a ivorkspace 

window, and interconnected to form a schematic diagram (see Fig. 6). 

The component browser, as its name implies, is a tool for browsing the objects and data stored 

in a naming or directory service (see bottom-right comer of Fig. 6). Onyx current11 supports 

access to common naming and directory services, such as NDS, LDAP, CORBA Xaming Service 

(COS Naming), and Rh4I Registry, through the Java Naming and Directory Interface CJXDI) [ 181. 

JNDI is an API that provides an abstraction that represents elements common to the most widely 

available naming and directory services. JNDI also allows different services to be linked to 

together to form a single logical namespace called a federated naming senice. Using the 

component browser, Onyx users are ale to navigate across multiple naming and directory services 

to locate simulation data, objects and components. 

For security purposes, the component browser requires users to authenticate themselves before 

they can retrieve any information from a naming or directory service. Once authentication has 

been successfully completed, the user can browse or search (using attribute keywords) the entire 
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namespace (subject to any authorization restrictions). Authentication and authorization 

capabilities are provided through JN DI and the Java Authentication and Authorization Service 

(JAAS) [22] framework. These tools allow the component browser to remain independent from 

the underlying security services, which is an important concern when working in a heterogeneous 

computing environment such as the Web. 

Dragging an icon from the component browser to the workspace window causes the selected 

software component to be downloaded from the server to the client machine. Components 

comprised entirely of Java classes, such as the Compressor described above, are downloaded from 

a Web server to the local file system where the byte-codes are extracted from the JAR file, loaded 

into the Java Virtual Machine and instantiated for use in Onyx. Components developed in other 

programming languages are not downloaded, but remain on the server. Instead, a proxy object 

(stub), representing the component, is downloaded and used to connect to the remote Component 

using a distributed object service, such as RMI, Voyager [37], CORBA, or DCOM. The need to 

use remote components in the aircraft design process is discussed at the end of this section. 

Onyx supports the creation of hierarchical component models, and an icon can represent both a 

single component or an assembly of components. A component with subcomponents is called a 

composite or structzired component. Components that are not structured are called primitive 

components, since they are typically defined in terms of primitives such as variables and 

equations. Composite components are represented by the CompositeElement class, which is 

part of the Element hierarchy (see Fig. 4). The class structure, based on the Composite design 

pattern [ 131, effectively captures the part-whole hierarchical structure of the component models, 

and allows the uniform treatment of both individual objects and compositions of objects. Such 

treatment is essential for providing the object interoperability needed to perform Web-based 

model construction by composition. 

Figure 6 shows a composite model representing an aircraft turbofan engine. The icon labeled 

Core is a composite of components which are displayed in the lower schematic. Each icon has one 

or more small boxes on its perimeter to represent its Ports. Connecting lines are drawn between 
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the ports on different icons by dragging the mouse. A Connector object having the correct 

Transform object needed to connect the two ports is created automatically by Onyx. Each icon 

has a popup menu which can be used ”customize” the attributes of its Element, Port and 

DomainModel objects. When selected, a graphical Customizer object is displayed (see upper- 

right comer of Fig. 61, which can be used to view or edit the selected objects attributes. The visual 

assembly interface also provides tools for plotting (see the lower-left comer of Fig. 6), editing 

files, and browsing on-line documentation. More information on the design and implementation 

of the visual assembly interface can be found in ref. [ 2 6 ] .  

4.2.7 Engine-AircrajI Model Integration. The system integrator, working with the model and 

component authors, performs a series of simulations to evaluate and improve the performance of 

the first-order engine model. Component conceptual models are refined and new software 

components developed, deployed and integrated, until all preliminary engine design requirements 

are satisfied. The engine model is then “passed” to engineers in the aircraft design group for use in 

their design process. This is accomplished by publishing the engine model as a 

CompositeElement object in the same process as described above, except that the engine 

component is deployed on a Web server accessible from networked locations outside the engine 

company (i.e.. extranet). In the aircraft company, airframe designers use the preliminary engine 

component (now a sub-component in the airframe system model) to design the control system, 

size the airframe and design the planform (see Fig 5). An aircraft system integrator takes the 

engine component and, using the Onyx visual assembly interface, assembles an airframe model 

using components (e.g., rudder, fuselage, and wing) developed by aircraft design groups (see Fig. 

6) in a process similar to the one described for the Compressor component. This model can then 

be used to simulate gross aircraft performance. 

4.2.8 Hierarchical Models. While the preliminary engine component is being used by the 

aircraft design teams, the engine component teams continue to refine their designs. The 

refinement requires sophisticated models which give a detailed description of the underlying 

physical processes within the component. For instance, although the air flow through the 

Page 22 of 35 



Compressor might be adequately modeled as a quasi-one-dimensional, inviscid fluid in early 

phases of design, the actual fluid flow is unsteady. three-dimensional (3-D) and characterized by 

turbulence, boundap-layers and shocks. Similarly. at an early stage of design the Compressor 

blades can be modeled as rigid, but for more detailed investigations it may be necessary to 

account for blade deformation due to material elasticity and thermal loading. Thus, simulating the 

behavior of complex components requires the development of a hierarchy of models, or 

multimodel, which represent the component at differing levels of abstraction [ 101. These models 

may include: lumped-parameter models. such as the one used to model the Compressor 

component in preliminary design, or distributed parameter models such as fluid dynamics (CFD) 

or structural mechanics (FEA). Each model is implemented using a numerical method best suited 

to the application; s.g, an ordinary differential equation solver (ODE) for state-space models, 

finite-element solvers for structural mechanics or finite-volume solver for fluid dynamics. The 

specific numerical method implementation is encapsulated within the model. Figure 2c shows a 

multimodel representins the Compressor blade and flowfield at differing levels of fidelity. At the 

lowest level of fidelity. both the blade and flowfield are modeled using simple differential 

equations and empirical data. At higher fidelities, both are modeled using sophisticated numerical 

methods such as finits element analysis or computational fluid dynamics. 

4.2.9 High-fidelity Distributed Components. The use of multimodels in Web-based modeling 

and simulation is important because it allows designers to selectively refine the fidelity of their 

model given the constraints (i.e., level of detail needed, the objective, the available knowledge, 

given resources, etc.) of the simulation. However, digital objects containing higher-fidelity models 

cannot be deployed in the same manner as the simple models described previously. High-fidelity 

CFD and FEA software packages are (generally) not written in Java, and thus cannot be run in the 

clients Java virtual machine. Even if this were possible, the packages are computationally 

intensive, making them unsuitable for execution on the client computer. Therefore, high-fidelity 

models are deployed as remote objects using distributed object services such as CORBA. This 

approach offers several advantages: 

Page 23 of35 



( 1 ) Ability to distribute a computationally intensive process across a number of processors 

(2)  Ability to leverage legacy code limited to platforms offering specific programming andor 

operating systems by “wrapping” it in a remote object 

(3) Specialization of computer execution environment (i.e., placement of codes on appropriate 

computing platforms: such as visualization codes on high-end graphic workstations; com- 

putationally intensive codes on supercomputers, etc.). 

As with the preliminary component models, the high-fidelity component models can be integrated 

into a system-level engine model by the engine system integrator, and used to simulate engine 

operation. An engine simulation using a model composed of high-fidelity components would 

provide detailed knowledge of the interaction effects between its components. Although these 

interactions can be critical to engine performance, they are not currently quantifiable by engine 

designers and therefore are unknown until after expensive hardware testing [ 5 ,  141. Evaluation of 

these effects will allow engine engineers to make better design decisions earlier in the design 

process, before the principle design features have been frozen. Each high-fidelity component 

would perform its computations using a wrapped analysis package located on one or more remote 

computers. For example. in Fig. 5 ,  the Fan component is run on a supercomputer. while a parallel 

software package is used to simulate Compressor operation using a cluster of computers. 

The high-fidelity engine model is also a valuable resource to aircraft designers, and once the 

model is published, can be used in the aircraft model. The engine model allows aircraft designers 

to investigate the flowfield around aircraft nacelle (the cowling structure around the engine) and 

fbselage. Detailed descriptions of flow features at the engine exit (e.g.. shocks and expansion 

waves), could allow aircraft designers to better predict the drag caused by the jet exhaust flowing 

along the aircraft surface. Engine designers would also benefit from a high-fidelity, integrated 

engine-aircraft simulation. For example, an integrated simulation could allow engine designers to 

study distortions in the airflow entering the engine when the aircraft is at a high angle of attack. 

Evaluation of this operating condition is important because distortions can cause the compressor 

to stall and the engine to lose thrust. A detailed engine-aircraft integration study would provide 
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valuable information which engine and aircraft engineers could use to better and more quickly 

design the aircraft. 

5 Concluding Remarks 

The design of complex systems involves the work of many specialists in Lanous disciplines, 

each dependent on the work of other groups. When a single designer or core tzam is able to 

control the entire design process, difficulties in communication and organization are minimized. 

However, as design problems become more complex, the number and size of disciplinary groups 

increases, and it becomes more difficult for a central group to manage the process. As the design 

process becomes more decentralized. communications requirements become more severe. These 

difficulties are particularly evident in the design of aircraft, a process that in\ olves complex 

analyses, many disciplines, and a large design space [20]. The lack of enabling software 

supporting disciplinary analysis by geographically dispersed engineering groups further 

aggravates these problems. 

In this paper we have argued that Web-based simulation has the potential 10 improve the 

aircraft design process, allowing companies to become more competitive through condensed 

cycle times and better products. This improvement is due, in part, to the abilin. of the Web to 

support collaborative modeling and distributed model execution in a heterogenzous computing 

environment. A central focus of this strategy is the move towards a Web based on digital objects 

which can be published and reused to form new models. 

Using a component architecture such as the one defined in the Onyx environment, digital 

objects can be developed which represent the hierarchical topology of physical systems, making 

them ideal as models of aircraft systems. Furthermore, these objects can encapsulate multimodels, 

including geometry models, multidisciplinary models and models having multiple levels of 

fidelity. Such models are ideal for concurrent design environments, since all of the modeling 

information is available in one place. The component architecture class structure provides the 



Reed, J . A . ,  Follen, G. J. and.-lJeii. A. ‘-1 

capability to wrap existing software packages. This is extremely important in providing 

collaborative and integrative environment for the aircraft design process. 

A World-Wide Web populated with digital objects provides the foundation for modeling by 

composition. Onyx’s component architecture defines the standard interfaces needed to 

dynamically compose new objects and the visual assembly interface makes composition simple 

and easy. This promotes model reuse, as well as reducing new model development time. 

The Onyx environment supports the distribution of simulation models across the Web. Both 

Web-based model distribution (in the case of Java-based models) and distributed services 

approaches (e.g., CORBA, COM) are provided. Each of these increase Onyx’s usability, as 

models can be placed virtually anywhere. The C O M A  bindings make it possible to integrate non- 

Java language distributed objects and legacy code. Also, since Onyx is written entirely in Java, it 

is portable without modifications to any computing platform which supports the Java Virtual 

Machine. Heterogeneous computing support makes the Onyx Web-based simulation system 

extremely viable for use in the heterogeneous computing environments typical of aircraft 

companies. Most importantly, it allows access to existing legacy codes and access to codes which 

must operate on specific architectures or operating systems. 
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Figure 1: The Aircraft Design Process. The process 
involves conceptual, preliminary and detailed final design 
phases. The preliminary design phase includes both major 
and minor design loops. In the minor design loop, separate 
disciplinary analysis such as aerodynamic, propulsion, 
and structural analysis are  carried out. Additional 
disciplinary analysis, such as controls, loading, stability, 
acoustics, etc. have been omitted for clarity. Once a design 
is converged upon in the minor loop, i t  is experimentally 
tested in the major design loop. After convergence of the 
major design loop, the detailed final design phase is 
executed. 
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Figure 2: (a) Decomposition of aircraft into high-level components; (b) 
decomposition of engine component; and (c) collection of models (multimodels) at 
differing levels of fidelity and discipline for Compressor component. 

Page 3 1 of 35 



/ e Fan Control / 
Compressor 

\ 

'\ 
Control 

- .- - - Volume Volume I .  -. - - - - - J I '  - \ 
Conservation Equations 

continuity aP = -v.(pV) 

momentum -(pv) - v.(pvv) = - v ( p  - VOT) 

energy 

1 
at 
a 
at  
a ;Illpel = -v.(prv - q A n v)  

, 

: Fluid I 
Element : Port 

' .  : \  

/ 

Structural: 
Port 

. .  . 
- - -  - - - - - : ---:: @ Z?-.?:--. . 5..?C...,. r - -  --.- 

Figure 3: Mapping of engine physical domain to computational framework. 
(a) Engine is decomposed into separate components, such as the Fan and 
Compressor. Component control volumes are defined (b), with behavior 
defined by conservation laws. Components are represented in Onyx as 
Elements (c), whose Ports a r e  connected by Connectors. Component behavior 
is defined by a DomainModel (d) which may apply numerical discretization 
methods to solve the conservation equations. Data exchange at control volume 
boundaries is passed via Ports and Connectors, with multifidelity and 
interdisciplinary mapping handled by Transform objects. 
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Figure 5: Exchange of digital objects in a Web-based simulation environment. 
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Figure 6: Overview of Onyx Visual Assembly Interface. 
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