
Reed. J . ; I . . Fdiet7, G. .j. unci AJjeh. ‘-1. ,-I

Improving the Aircraft Design Process Using
Web-based Modeling and Simulation

John A. Reed?, Gregory J. Follenz, and Abdollah A. Afjeht

tThe University of Toledo

2801 West Bancroft Street

Toledo, Ohio 43606

:NASA John H. Glenn Research Center

2 1000 Brookpark Road

Cleveland, Ohio 44135

Keywords: Web-based simulation, aircraft design, distributed simulation, JavaTM, object-oriented

~~ ~ ~ ~~

Supported by the High Performance Computing and Communication
Project (HPCCP) at the NASA Glenn Research Center.

Page 1 of35

Abstract

Designing and developing new aircraft systems is time-consuming and expensive.

Computational simulation is a promising means for reducing design cycle times, but requires a

flexible software environment capable of integrating advanced multidisciplinary and muitifidelity

analysis methods, dynamically managing data across heterogeneous computing platforms, and

distributing computationally complex tasks. Web-based simulation, with its emphasis on

collaborative composition of simulation models, distributed heterogeneous execution, and

dynamic multimedia documentation, has the potential to meet these requirements. This paper

outlines the current aircraft design process, highlighting its problems and complexities, and

presents our vision of an aircraft design process using Web-based modeling and simulation.

Page 2 of 35

1 Introduction

Intensive competition in the commercial aviation industry is placing increasing pressure on

aircraft manufacturers to reduce the time, cost and risk of product development. To compete

effectively in today’s global marketplace, innovative approaches to reducing aircraft design-cycle

times are needed. Computational simulation, such as computational fluid dynamics (CFD) and

finite element analysis (FEA), has the potential to compress design-cycle times due to the

flexibility it provides for rapid and relatively inexpensive evaluation of alternative designs and

because it can be used to integrate multidisciplinary analysis earlier in the design process [171.

Unfortunately, bottlenecks caused by data handling, heterogeneous computing environments and

geographically separated design teams, continue to restrict the use of these tools. In order to fully

realize the potential of computational simulation, improved integration in the overall design

process must be made. The opportunity now exists to take advantage of recent developments in

information technology to streamline the design process so that information can flow seamlessly

between applications, across heterogeneous operating systems, computing architectures

programming languages, and data and process representations.

The World Wide Web has emerged as a powerful mechanism for distributing information on a

very large scale. In its current form, it provides a simple and effective means for users to search,

browse, and retrieve information, as well as to publish their own information. The Web continues

to evolve from its limited role as a provider of static document-based information to that of a

platform for supporting complex services. Much of this transformation is due to the introduction

of object technologies, such as Java and CORBA (Common Object Request Broker Architecture)

[36] within the Web. The integration of object technology represents a fundamental (some would

say, revolutionary) advancement in web-technology. The web is no longer simply a document

access system supported by the somewhat limited protocols. Rather, it is a distributed object

system with which one can build general, multi-tiered enterprise intranet and internet

applications.

Page 3 of 35

The integration of the Web and object technology enables a fbndamentally new approach to

simulation: Meb-based simulation. A Web populated with digital objects - models of physical

counterparts - will lead to model development by composition using collaborative Web-based

environments [9] . Model execution will occur across networks using Web-based technologies

(e.g., Java) and distributed simulation techniques (e.g., COMA). Finally, simulation execution,

models, and other related data will be documented using forms of hypermedia (hypertext, video,

virtual models, etc.).

Web-based simulation has the potential to provide the necessary tools to improve the aircraft

design process through integration and support for collaborative modeling and distributed model

execution. In the remainder of this paper, we examine how this might be achieved. In Section 2,

we provide a brief overview of the aircraft design process, drawing attention to the complexities

of the process and its inherent problems. Section 3 provides a review of the area of Web-based

simulation, and singles out several principles of Web-based simulation that we believe are

important in the aircraft design process. In Section 4, we present an example scenario illustrating

how Web-based modeling and simulation might be used in that process, and discuss aircraft

model development and distribution using the Onyx simulation framework. Onyx's object-

oriented component model, visual environment for model assembly, and support for both Web-

based and distributed object execution are explained in context of the integration of a jet engine

within the aircraft. Lastly, in Section 5 , the relationships to the Web-based simulation principles

outlined in Section 3 are identified and discussed, as are general implications of Web-based

simulation on the design process.

2 The Aircraft Design Process

The aircraft design process can be divided into three phases: conceptual design, preliminary

design, and detailed design. The conceptual design phase identifies the various conditions of the

mission, and synthesizes a set of initial aircraft configurations capable of performing the mission.

For commercial aircraft, the mission is defined by airline company demands, which typically

Page 4 of 35

include payload requirements, city-to-city distance along a proposed service route, traffic volume

and frequency, and airport compatibility. If the conceptual design effort confirms the feasibility of

the proposed mission. management may decide to proceed with one or more preliminary designs.

In the preliminary design phase. more detail is added to the aircraft design definition. Here the

aerodynamic shape, structural skeleton and propulsion system design are refined sufficiently so

that detailed performance estimates can be made and guaranteed to potential customers. In the

final design phase, the airframe structure and associated sub-systems, such as control systems,

landing gear, electrical and hydraulic systems, and cabin layout, are defined in complete detail

~ 7 1 .

The design of an aircraft is an inherently complex process. Traditional preliminary design

procedure decomposes the aircraft into isolated components (airframe, propulsion system, control

system, etc.) and focuses attention on the individual disciplines (fluid dynamic, heat transfer,

acoustics, etc.) which affect their performance. The normal approach is to perform disciplinary

analysis in a sequential manner where one discipline uses the results of the preceding analysis

(see Fig. 1). In the development of commercial aircraft, aerodynamic analysis of the airframe is

the first step in the preliminary design process. Using the initial Computer-aided Design (CAD)

geometry definitions resulting from the conceptual design studies, aerodynamic predictions of

wing and fbselage lift and drag are computed. Key points in the flight envelope. including take-off

and normal cruise, are evaluated to form a map of aerodynamic performance. Next, performance

estimates of the aircraft’s propulsion system are made, including thrust and fuel consumption rate.

The structural analysis uses estimates of aerodynamic loads to determine the airframe’s structural

skeleton, which provides an estimate of the structure weight.

Complicating the design process is the fact that each of the disciplines interacts to various

degrees with the other disciplines in the minor analysis loop. For example, the thrust requirements

of the propulsion system will be dependent on the aerodynamic drag estimates for take-off, climb

and cruise. The values of aerodynamic lift and yaw moments affect the sizing of the horizontal

and vertical tail, which in turn influence the design of the control system. For an efficient design

Page 5 of 35

process, fully-updated data from one discipline must be made accessible to the other disciplines

without loss of information. Failure to identify interactions between disciplines early in the minor

design cycle can result in serious problems for highly integrated aircraft designs. If the coupling is

not identified until the system has been built and tested experimentally. then the system must

undergo another major cycle iteration, further increasing the time and expense of product

development.

There are many factors that can make the design process less efficient. These include:

(1) Lack of interoperability. Numerous software packages - CAD, solid modeling, FEA,

CFD, visualization, and optimization - are employed to synthesizs and evaluate designs.

These tools are often use different, possibly proprietary, data formats. As a result, they

generally do not interoperate, and require manual manipulation Lvha passing data

between applications. Although in some cases, custom translation tools are available to

“massage” the data into the appropriate format, users still spend considerable time and

effort tracking data and results as well as preparing, submitting and running the computer

applications [28].

(2) Heterogeneous conzpriting environments. The aircraft design computing environment is

extremely heterogeneous, with platforms ranging from personal computers, to Unix work-

stations, to supercomputers. To use the various software required in the design process,

users are forced to become familiar with different computer architectures, operating sys-

tems and programming languages.

(3) Geographically separated design groirps. Multidisciplinary design and analysis is fie-

quently carried out by geographically dispersed engineering groups. In special cases,

entire subsystems may be designed and developed by third-party contractors or compa-

nies. The propulsion sub-system, for example, is designed and built separately by the pro-

pulsion company, and delivered to the aircraft company for installation in the aircraft. In

any case, geographic separation places pressure on the designers to maintain a high level

of interaction during the design process so that loss of data is minimized.

Page 6 of 35

Improving the design process. therefore, requires the development of an integrated software

environment which provides interoperability standards so that information can flow seamlessly

across heterogeneous machines, computing platforms, programming languages. and data and

process representations. We believe that web-based simulation tools can provide such an

environment.

3 Principles of Web-based Simulation

Since its inception in 1990, the World Wide Web (WWW or Web) has quickly emerged as a

powerful tool for connecting people and information on a global scale. Built on broadly accepted

protocols, the WWW removes incompatibilities between computer systems. resulting in an

“explosion of accessibility” [2. 301. Within the simulation community this proliferation has led to

the establishment of a new area of research - Web-based simulation - involving the exploration

of the connections between the WWW and the field of simulation. Although the majority of work

in web-based simulation to date has centered on re-implementation of existing distributed and

standalone simulation software using Web-related technologies, there is growing

acknowledgement that web-based simulation has the potential to fundamentally alter the practice

of simulation [1 11.

In one of the first papers to explore the topic of web-based simulation, Fishwick [8] identifies

many potential effects of web-based simulation, with attention given to three key simulation

areas: (1) education and training, (2) publications, and (3) simulation programs. He concludes that

there is great uncertainty in the area of Web-based simulation, but advises simulation researchers

and practitioners to move forward to incorporate Web-based technologies. Building on Fishwick’s

observations, Page and Opper [25] present six principles of web-based simulation which capture

the vision of future simulation practice: (1) digital object proliferation, (2) software standards

proliferation, (3) model construction by composition, (4) increased use of -’mal and error”

approaches, (5) proliferation of simulation use by non-experts, and (6) multi-tier architectures and

multi-language systems.

Page 7 of 35

In the remainder of this section, we briefly review several of these principles. In the following

sections, we will examine in more detail how each apply to both the development of a simulation

environment, and to the improvement of the aircraft design process.

3.1 Digital Objects.

In the mid 1960’s a pioneering simulation language called Simula-67 [3] was developed to

more faithfully model objects in the physical world. Simula-67 introduced many of the core

design concepts (e.g., classes and objects) which form the foundation for the object-oriented

programming paradigm. Since that time, object-oriented technologies, such as object-oriented

programming (OOP), design (OOD) and analysis (OOA), have had a major impact on the field of

simulation. Today, the majority of simulation languages, as well as many of the most successful

general purpose-languages, are object-oriented.

The importance of objects in simulation applications naturally leads us to consider their use as

part of the WWW infrastructure. The WWW, however, is currently based on documents. rather

than objects. In the future, though, it is envisioned that the Web will be populated by digital

objects, with documents being just one type of object. The objects, representing models and data

for use in simulation environments, will be made available for use through publication on the

WWW [9].

Indications of a transition to an object-based WWW are currently evident in the successful

application of mobile code and distributed object technologies. Mobile code - programs which

can be transmitted across a network and executed on the client’s computer - make it possible to

deliver digital objects, in either executable or serialized form across the WWW. Several

programming languages which can produce mobile code have been developed [3,32,33.34]; the

most well known and widely supported is Java [11. Compiled Java code, known as byte-code, can

be downloaded across the Web to the client where it is executed by a Java Virtual Machine. The

Java run-time system, incorporated within the Java Virtual Machine, provides an extensive class

library that can be accessed by the compiled code.

Page 8 of 35

Component Object Model (COM) [29], and High Level Architecture (HLA) [2 11. Alternatively, a

component architecture may be defined by the particular simulation application in which the

objects are to operate. This is often the case in domain-specific simulation environments, where

the component architecture must be crafted to meet specific requirements of the domain. The

Onyx simulation environment, described in the following section, is such an example; it defines a

component architecture which is oriented towards physical modeling of aerospace systems.

3.4 Heterogeneous Modeling and Simulation

The digital objects of our Web-based simulation future will populate a Web that is highly

heterogeneous. Digital objects will certainly be developed using different programming languages

and programming styles (e.g., object-oriented, procedural, functional, etc.). The digital objects

will themselves be highly variable. Some will be based on mobile code which can move across the

Web (e.g., agents), while others will form object busses which provide services from specific

locations on the Web. Applications will become more complicated as a result, with complex

multi-tier architectures becoming the standard. In order to operate effectively in such an

environment, Web-based simulation will need extensive enabling technologies such as search

engines to locate appropriate digital objects and models, translators to convert models and data to

appropriate formats, and expert systems to guide non-experts in the use of Web-based simulation

models.

4 An Example Scenario
In this section, we present a scenario illustrating how Web-based modeling and simulation can

be used in the aircraft design process. Our goal is to discuss both the technical issues related to the

design, development and publication of digital objects, as well as organizational issues

concerning the roles engineers and programmers play in the Web-based design process. Although

the discussion is oriented towards the aircraft design process, we believe that it is applicable to

engineering processes used in many fields.

Page 10 of35

4.1 Onyx
The modeling and simulation environment for our research is the Onyx simulation system [26.

271. The major features of Onyx include the following.

A set of object classes and interfaces for representing the physical attributes and topology of

the aircraft system is included. These classes comprise an object-oriented component architec-

ture capable of housing the analytical and geometric views of the various aircraft components

employed in the design process. The architecture facilitates and ensures object interoperability

among separately developed software components.

A visual assembly irtrerface is included for graphical creation and manipulation of aircraft

system models. It enables users to establish model design, control model execution and visu-

alize simulation output.

A dynamically-defined, run-time simzdation executive is included to control complex, multi-

level simulations.

A persistence engine capable of transparently accessing geometry and data stored in either

relational or object database management systems is included.

A connection service provides access to federated model and data repositories using standard

internet protocols. r-arious connection strategies to access Web- and server-based distributed

objects are included.

Our goal in creating Onyx is to develop a simulation-based design system that promotes

collaboration among aerospace designers and facilitates sharing of models, data and code. Special

emphasis is placed on developing a distributed system which fosters reuse and extension in both

the models and the simulation environment. To achieve these goals, we have made extensive use

of object-oriented technologies such as object-oriented frameworks, sofnvare components, and

design patterns.

An object-oriented framework is a set of classes that embodies an abstract design for solutions

to a family of related problems [191. Onyx is designed as a layered collection of frameworks, with

individual frameworks for the visual assembly interface, persistence engine, connection services,

Page 11 of 35

simulation executive and component architecture. The set of classes in each framework define a

“semi-complete” structure that captures the general functionality of the application or domain.

Specific functionality is added to Onyx by inheriting from, or composing with, framework

components. In the example in the next section, we will illustrate this by denying new classes to

represent the components in an aircraft engine, then assembling instances of those classes to form

a complete engine model.

A key characteristic of Onyx, and object-oriented frameworks in general. is its inverted control

structure. In traditional software development, the application developer writes the main body of

the application which defines a series of calls to various libraries of subroutines. These libraries

provide reusable code, while the main body is customized by the application developer. In

framework design, the control structure is defined by the framework, with predefined calls going

to methods that the application developer writes. In this approach, the design or structure of the

application - which is domain-specific - is reused, and the specific iunctionality of the

application is provided by the developer. Using this approach, Onyx reduces the burden for

aircraft engineers and modelers, allowing similar aircraft component mod& to be developed

faster and more efficiently. The concept of reuse is best illustrated for modtij that are assembled

from a library of components (i.e., composition), and for models that are made in several versions

with minor differences (i.e., inheritance).

A major product of object-oriented design is the identification of sofnvare components - self

contained software elements which can be controlled dynamically and assembled to form

applications. The central step in identifying them is recognizing rscumng fundamental

abstractions in the domain. By identifLing these abstractions and standardizing their interfaces,

these components become interchangeable. Such components are said to be ”plug-compatible” as

they permit components to be “plugged” into frameworks without redesign. Onyx’s software

components use a variant of the JavaBeans [7] component architecture to define standard

interfaces and abstractions. These components represent the “plug-compatible, digital objects”

with which the Web-based models of the aircraft and its subsystems are de\-eloped.

Page 12 of 35

Throughout the Onyx environment, design patterns -recurring solutions to problems that arise

when building software in various domains [131 - are used to achieve reuse. Patterns aid the

development of reusable software components and frameworks by expressing the structure and

collaboration of participants in a software architecture at a level higher than source code or object-

oriented design models that focus on individual objects and classes [31]. Patterns also are

particularly useful for documenting software architectures and design abstractions. They provide

a common and concise vocabulary which is useful in conveying the purpose of a @\-en software

design.

The Onyx simulation environment is designed to be both multi-tiered and platform

independent so as to provide the greatest flexibility when modeling complex aircraft systems. Java

was chosen as the implementation language as it offers extensive class libraries. a distributed

object model (Le., Java RMI), and byte-code interpreters on a wide range of computer

architectures, among other benefits. As a result, the Onyx system is extremely portable and

accessible. The visual assembly interface (described below), for example, can be run in the

context of a Web browser, which are widely available, while computationally intensive

components run on dedicated, distributed servers.

Java is also the preferred language for programming Onyx software componenrs. as models

written in Java are easily downloaded across a network and dynamically loaded into the Onyx

environment. In cases where it is desirable or necessary to use a programming languagz other than

Java, software components may be accessed from Onyx using COMA. CORI3A’s ability to deal

with the heterogeneous nature inherent in distributed computing environments makes it

particularly suitable for leveraging legacy applications not written in Java. This is especially

useful for simulation of aerospace systems in which the majority of existing analysis programs

have been written in procedural languages, such as FORTRAN and C. The use of C O M A adds

flexibility to the Onyx system allowing it to “wrap” these existing programs, rather than having to

replace or abandon them.

Page 13 of35

Reed. J . . I . , Foiien, G J: und Ajjeh. A. .-i.

4.2 Engine-Aircraft Integration Scenario
This scenario illustrates our vision of how Web-based modeling and simulation may be used in

the process of development and integration of an aircraft subsystem within the complete aircraft.

As stated earlier, the aircraft design process generally follows a hierarchical decomposition of the

aircraft system (see Fig. 2a) into major airframe components, e.g., Fuselage, Rudder, Wing and

Propulsion System (i.e., Engines). Individual engineering groups are responsible for establishing

the conceptual and preliminary designs for each respective component. These teams work

together, exchanging information as necessary, to develop the individual component designs, and

as the process progresses, to integrate them into a final design.

We have selected for our example the integration of the propulsion subsystem into the aircraft

because it represents one of the more complex aspects of aircraft design. Propulsion system

performance, size and weight are important factors in the overall aircraft design. Engine size and

thrust, for examp!e, influence the number and placement of engines, which in turn affects aircraft

safety, performance, drag, control and maintainability. Furthermore, because the engine is

designed and developed by an external manufacturer - Le., an engine company -this example

illustrates the challenges faced by designers separated both geographically and organizationally.

We intend to show how Web-based modeling and simulation can address these and other issues.

4.2.1 Model Authoring. As in the aircraft company, engineering design groups in the engine

manufacturer are generally organized according to a physical decomposition of the engine, with

individual teams responsible for developing the major engine components: Fan. Compressor,

Combustor, Turbine, Mixer, etc. (see Fig. 2b). In each team, a model author, having expertise in

the given design area, establishes a conceptual model of the component. During early phases of

design, model resolution is kept relatively coarse to speed simulations and enable more complete

exploration of the design space. Such a model typically consists of a set of algebraic andor

linearized ordinary differential equations which describe the component’s gross behavior. At this

stage in the design knowledge of component characteristics is incomplete, so empirical data

gathered from rig-testing of previously developed components are scaled to approximate the

Page 14 of 35

current model. These data, commonly referred to as “performance maps,” attempt to capture

component characteristics within their operating range, and serve to provide closure to the

equations.

4.2.2 Component Authoring. Once a conceptual model is validated, a component author,

working closely with the model author, maps the model to the computational domain, creating a

software component which encapsulates the model abstraction. As pointed out in section 3, the

mapping is largely dependent on the choice of component architecture being used. The Onyx

component architecture used here is based upon a control volume abstraction. The use of control

volumes is standard engineering practice, wherein the physical system is divided into discrete

regions of space - control volumes - which are then analyzed by applying conservation laws

(e.g., mass, momentum, energy) to yield a set of mathematical equations describing physical

behavior (see Fig. 3). A component archtecture predicated on this approach provides a

convenient and familiar mapping mechanism for modeling physical systems, and ensures that a

simulation component resembles the conceptual model developed by the model author. A brief

overview of the Onyx component architecture is presented below; a complete description can be

found in ref. [26].

4.2.3 Overview of Onyx Component Architecture. There are four basic entities in the Onyx

architecture: Element, Port, Connector and DomainModel (see Fig. 4). The Java interface

Element represents a control volume, and defines the key behavior for all engineering

component classes incorporated into Onyx. It declares the core methods needed to initialize, run

and stop model execution, as well as methods for managing attached Port objects. Classes

implementing this interface generally represent physical components, such as a compressor,

turbine blade, or bearing, to name a few (see Fig. 3b). However, they may also represent purely

mathematical abstractions such as a cell in a finite-volume mesh used in a CFD analysis. This

flexibility permits the component architecture to model a variety of physical systems.

Consider, for example, a component author in the Compressor design team wanting to develop

a representative Compressor digital object for uie in simulations during preliminary design. The

Page 15 of 35

Reed. J A . . Folleri. G. J. and Ajjeh. .,I. .4.

author begins by defining a concrete implementation of the Element interface, such as

Simplecompressor (see Fig. 4). Here the author extends the abstract class DefaultElement.

which captures common implementation aspects of the Element interface, as well as maintaining

a list of Port objects associated with its subclasses. Alternatively. the author could implement the

interface directly, explicitly defining each interface method. This feature is used through the

architecture to provide flexibility: the component author may select to utilize the default

functionality of the common abstract class, or inherit from another class hierarchy and implement

the interface directly.

An Element may have zero or more Port objects associated with it. The interface Port

represent a surface on a control volume (Le., Element) through which some entity (e.g., mass or

energy) or information passes. Ports are generally classified by the entity being transported

across the control surface. For example, the SimpleCompressor has two FluidPort objects -

representing the fluid boundaries at the Compressor entrance and exit - and a StructuralPort

object, representing the control surface on the Compressor through which mechanical energy is

passed (Le., from a driving shaft). The Port interface defines t\vo methods to set and retrieve the

data defined by the Port. These data may be stored in any type of Java Object, such as Hashtable

or Vector. The common abstract class, Defaultport, defines default functionality for these

methods, and maintains a reference to the Connector object currently connected to the Port.

The common boundary between consecutive control volumes is represented by a Connector

object. The interface Connector permits two Element objects to communicate by passing

information between connected Port objects (see Fig. 3c). It is also responsible for data

transformation and mapping in situations where the data being passed from Ports of different

type. The need for such data transformation can range from simple situations. such as conversion

of data units, to very complex ones involving a mismatch in model fidelity (e.g., connecting a 2-D

fluid model to a 3-D fluid model) or disciplinary coupling (e.g, mapping structural analysis results

from a finite-element mesh to a finite-volume mesh used for aerodynamic analysis).

Page 16 of35

For all but the simplest cases, the algorithms needed to perform the data transformation/’

mapping will tend to be very complex. To improve reusability. Connector delegates

transformatiodmapping responsibilities to a separate Transform object (see Fig. 3c) which

encapsulates the necessary intelligence to expand’contract data and map data across disciplines.

The Transform interface (see Fig 4) defines a general method, transform, which is implemented

by subclasses to carry out a particular transformation algorithm.

A similar situation is found with the mathematical model used to define component behavior.

As described above, the mathematical models used to describe Compressor (or any other

component) behavior during preliminary design are relatively simple and may be solved

analytically or using basic numerical methods. However, models used in latter phases of design

can be quite complicated. In these cases, approximate solutions are obtained by discretization of

the equations on a geometrical mesh and applying highly specialized numerical solvers. The

presence of these complex mathematical models and the numerical tools needed to solve them

suggest that it is desirable to encapsulate these features and remove them from the Element

structure. This enhances the modularity of Element, allowing new Element classes to be added

without regard to the mathematical model used. and conversely to add new models without

affecting the Element class. To achieve this, Onyx utilizes the Strategy design pattern [13] to

encapsulate the mathematical model in a separate type of object called DomainModel (see Fig.

4). The benefit of this pattern is that families of similar algorithms become interchangeable.

allowing the algorithm - in this case the DomainModel - to yary independently from the

Elements that use it. This admits the possibility of run-time selection of an appropriate

DomainModel for a given Element; however, this is currently not used in Onyx. Furthermore,

encapsulating the DomainModel in a separate object also encourages the “wrapping” of pre-

existing, external sofnvare packages. For example, the Fan DomainModel in Fig. 3d might

“wrap” a three-dimensional (3-D) Navier-Stokes or Euler flow solver to provide steady-state

aerodynamic analysis of fluid flow within the Fan. This approach allows proven functionality of

Page 17 of 35

existing software analysis packages to be easily integrated within an Elsment. Some of the

advantages of this concept is illustrated later in this section.

The DomainModel interface is designed to be very general, due to the complicated nature of

the various models which might be encapsulated in an Element. The intent is not to restrict the

use of any algorithm or the ”wrapping” of external software packages by overly defining the

DomainModel interface. Consequently, the interface defines only two methods, execute and halt,

which are used to start and stop the execution of the DomainModel code. Additional methods are

obviously needed to access and make the data internal to the DomainModel available to the

Element, but because these are specific to the particular DomainModel structure, they are not

included in the interface. For our example, the component author has defined a

SimpleCompressorModel class (see Fig. 4) to encapsulate the set of ordinary differential

equations and performance maps needed to model compressor behavior.

After the Compressor class definitions (i.e., SimpleCompressor, Fluidport. StructuralPort

and SimpleCompressorDomainModel) are established, the componsnr author compiles,

verifies and tests their operation. When complete. the class’ byte-code files and any auxiliary data

(e.g., performance maps) are combined to form a single Compressor sofmare component in the

form of a Java Archive (JAR) file. The JAR file format is useful for encapsulating components as

they can be compressed to reduce file size, digitally signed for added security, and easily

transferred across the Web.

4.2.4 Publishing the Component. The Compressor software component is “published” by

deploying it on a Web sen-er where it can be accessed by others in the engine company. We

envision that each engine component design team will maintain its own U b server, hosting the

software components it has developed (see Figure 5) . However, it may be easier and more

efficient to maintain all components on a single company-wide Web sener. In either case,

publishing the software component is the responsibility of the component deployer, who has

expertise in system and Web server administration. This expertise is necessary, since, in addition

Page 18 of 35

to simply placing components on a Web server, the component deployer is responsible for

addressing server configuration issues of component identification and security.

42.5 Accessing Components. One of the problems facing a user of a Web-based simulation

system is locating appropriate software components, objects or data, for use in a simulation. A

text-based search engine, similar to those used on the Web today, is one possible method to find

objects and components [9]. However, these tools suffer from the fact that they are oriented

towards HTML documents, rather than objects. A more object-oriented approach is to use naming

and directory services to catalog available simulation objects and components. Using a naming

service, the component deployer associates names with objects, providing the means to look up an

object given its name. CORBA and RMI are examples of distributed object systems that employ

naming services. Directory services extend naming services by adding attributes, making it

possible to search for objects given their attributes. These attributes may be used by the

component deployer to describe and hierarchically organize each component. For example, the

attributes may be specified which describe the component class name, model fidelity and

discipline. model author, or version number, as well as the manufacturer’s name and component

group, to name a few. Queries can be made to the directory service to find and return references to

objects matching one or more attributes. Lightweight Directory Access Protocol (LDAP) [38] and

NetWare Directory Service (NDS) [23] are examples of directory services which are used today.

Another important responsibility of the component deployer is establishing and maintaining

security policies controlling access to published software components. These components

represent significant investments in both time and money for the manufacturer. To protect their

intellectual property against theft through reverse engineering, it is important to ensure that

relevant data and software components can only be accessed by authorized users. Protection is

accomplished through the use of authentication and authorization mechanisms. Authentication

refers to the presence of an authentication protocol (e.,.., password, Kerberos ticket [24],or public

key certificate (X.509 [16], PGP [39], etc.) that identifies the requesting party (the principle),

while authorization grants access only if the principles identity (credentials) is included in a

Page 19 of 35

specific list (the access control list). or if the principle can assume a specific role (role-based

authorization). Both authentication and authorization mechanisms are typically included as part of

the naming and directory services, or as part of the Web server services. Using these mschanisms,

the component deployer can control who gains access to the server. and what data can be read.

Communication channels between a client and the Web server are also a source of security

concern. If the communication channel is a dedicated network connection (Le., intranet or

extranet), security problems are minimized due to physical isolation. If, hou wer, the

communication channel is the Web, physical isolation is impossible, and encryption mechanisms,

such as Secure Socket Layers (SSL) [151, must be used.

4.2.6 Building the Engine. Once the engine component design teams publish their preliminary

component objects, a system integrator, having expertise in system-level engine design. combines

individual component objects to create a first-order engine model. The system-level engine model

is developed using Onyx's visual assembly interface. Icons, representing individual engine

components (i.e., Elements), are selected from a component browser, dragged into a ivorkspace

window, and interconnected to form a schematic diagram (see Fig. 6).

The component browser, as its name implies, is a tool for browsing the objects and data stored

in a naming or directory service (see bottom-right comer of Fig. 6). Onyx current11 supports

access to common naming and directory services, such as NDS, LDAP, CORBA Xaming Service

(COS Naming), and Rh4I Registry, through the Java Naming and Directory Interface CJXDI) [181.

JNDI is an API that provides an abstraction that represents elements common to the most widely

available naming and directory services. JNDI also allows different services to be linked to

together to form a single logical namespace called a federated naming senice. Using the

component browser, Onyx users are ale to navigate across multiple naming and directory services

to locate simulation data, objects and components.

For security purposes, the component browser requires users to authenticate themselves before

they can retrieve any information from a naming or directory service. Once authentication has

been successfully completed, the user can browse or search (using attribute keywords) the entire

Page 20 of35

Reed. .j,.i., Foiiar. G. J'. unci djjch. :i. .'i.

namespace (subject to any authorization restrictions). Authentication and authorization

capabilities are provided through JN DI and the Java Authentication and Authorization Service

(JAAS) [22] framework. These tools allow the component browser to remain independent from

the underlying security services, which is an important concern when working in a heterogeneous

computing environment such as the Web.

Dragging an icon from the component browser to the workspace window causes the selected

software component to be downloaded from the server to the client machine. Components

comprised entirely of Java classes, such as the Compressor described above, are downloaded from

a Web server to the local file system where the byte-codes are extracted from the JAR file, loaded

into the Java Virtual Machine and instantiated for use in Onyx. Components developed in other

programming languages are not downloaded, but remain on the server. Instead, a proxy object

(stub), representing the component, is downloaded and used to connect to the remote Component

using a distributed object service, such as RMI, Voyager [37], CORBA, or DCOM. The need to

use remote components in the aircraft design process is discussed at the end of this section.

Onyx supports the creation of hierarchical component models, and an icon can represent both a

single component or an assembly of components. A component with subcomponents is called a

composite or structzired component. Components that are not structured are called primitive

components, since they are typically defined in terms of primitives such as variables and

equations. Composite components are represented by the CompositeElement class, which is

part of the Element hierarchy (see Fig. 4). The class structure, based on the Composite design

pattern [131, effectively captures the part-whole hierarchical structure of the component models,

and allows the uniform treatment of both individual objects and compositions of objects. Such

treatment is essential for providing the object interoperability needed to perform Web-based

model construction by composition.

Figure 6 shows a composite model representing an aircraft turbofan engine. The icon labeled

Core is a composite of components which are displayed in the lower schematic. Each icon has one

or more small boxes on its perimeter to represent its Ports. Connecting lines are drawn between

Page 21 of 35

the ports on different icons by dragging the mouse. A Connector object having the correct

Transform object needed to connect the two ports is created automatically by Onyx. Each icon

has a popup menu which can be used ”customize” the attributes of its Element, Port and

DomainModel objects. When selected, a graphical Customizer object is displayed (see upper-

right comer of Fig. 61, which can be used to view or edit the selected objects attributes. The visual

assembly interface also provides tools for plotting (see the lower-left comer of Fig. 6), editing

files, and browsing on-line documentation. More information on the design and implementation

of the visual assembly interface can be found in ref. [2 6] .

4.2.7 Engine-AircrajI Model Integration. The system integrator, working with the model and

component authors, performs a series of simulations to evaluate and improve the performance of

the first-order engine model. Component conceptual models are refined and new software

components developed, deployed and integrated, until all preliminary engine design requirements

are satisfied. The engine model is then “passed” to engineers in the aircraft design group for use in

their design process. This is accomplished by publishing the engine model as a

CompositeElement object in the same process as described above, except that the engine

component is deployed on a Web server accessible from networked locations outside the engine

company (i.e.. extranet). In the aircraft company, airframe designers use the preliminary engine

component (now a sub-component in the airframe system model) to design the control system,

size the airframe and design the planform (see Fig 5). An aircraft system integrator takes the

engine component and, using the Onyx visual assembly interface, assembles an airframe model

using components (e.g., rudder, fuselage, and wing) developed by aircraft design groups (see Fig.

6) in a process similar to the one described for the Compressor component. This model can then

be used to simulate gross aircraft performance.

4.2.8 Hierarchical Models. While the preliminary engine component is being used by the

aircraft design teams, the engine component teams continue to refine their designs. The

refinement requires sophisticated models which give a detailed description of the underlying

physical processes within the component. For instance, although the air flow through the

Page 22 of 35

Compressor might be adequately modeled as a quasi-one-dimensional, inviscid fluid in early

phases of design, the actual fluid flow is unsteady. three-dimensional (3-D) and characterized by

turbulence, boundap-layers and shocks. Similarly. at an early stage of design the Compressor

blades can be modeled as rigid, but for more detailed investigations it may be necessary to

account for blade deformation due to material elasticity and thermal loading. Thus, simulating the

behavior of complex components requires the development of a hierarchy of models, or

multimodel, which represent the component at differing levels of abstraction [101. These models

may include: lumped-parameter models. such as the one used to model the Compressor

component in preliminary design, or distributed parameter models such as fluid dynamics (CFD)

or structural mechanics (FEA). Each model is implemented using a numerical method best suited

to the application; s.g, an ordinary differential equation solver (ODE) for state-space models,

finite-element solvers for structural mechanics or finite-volume solver for fluid dynamics. The

specific numerical method implementation is encapsulated within the model. Figure 2c shows a

multimodel representins the Compressor blade and flowfield at differing levels of fidelity. At the

lowest level of fidelity. both the blade and flowfield are modeled using simple differential

equations and empirical data. At higher fidelities, both are modeled using sophisticated numerical

methods such as finits element analysis or computational fluid dynamics.

4.2.9 High-fidelity Distributed Components. The use of multimodels in Web-based modeling

and simulation is important because it allows designers to selectively refine the fidelity of their

model given the constraints (i.e., level of detail needed, the objective, the available knowledge,

given resources, etc.) of the simulation. However, digital objects containing higher-fidelity models

cannot be deployed in the same manner as the simple models described previously. High-fidelity

CFD and FEA software packages are (generally) not written in Java, and thus cannot be run in the

clients Java virtual machine. Even if this were possible, the packages are computationally

intensive, making them unsuitable for execution on the client computer. Therefore, high-fidelity

models are deployed as remote objects using distributed object services such as CORBA. This

approach offers several advantages:

Page 23 of35

(1) Ability to distribute a computationally intensive process across a number of processors

(2) Ability to leverage legacy code limited to platforms offering specific programming andor

operating systems by “wrapping” it in a remote object

(3) Specialization of computer execution environment (i.e., placement of codes on appropriate

computing platforms: such as visualization codes on high-end graphic workstations; com-

putationally intensive codes on supercomputers, etc.).

As with the preliminary component models, the high-fidelity component models can be integrated

into a system-level engine model by the engine system integrator, and used to simulate engine

operation. An engine simulation using a model composed of high-fidelity components would

provide detailed knowledge of the interaction effects between its components. Although these

interactions can be critical to engine performance, they are not currently quantifiable by engine

designers and therefore are unknown until after expensive hardware testing [5 , 141. Evaluation of

these effects will allow engine engineers to make better design decisions earlier in the design

process, before the principle design features have been frozen. Each high-fidelity component

would perform its computations using a wrapped analysis package located on one or more remote

computers. For example. in Fig. 5 , the Fan component is run on a supercomputer. while a parallel

software package is used to simulate Compressor operation using a cluster of computers.

The high-fidelity engine model is also a valuable resource to aircraft designers, and once the

model is published, can be used in the aircraft model. The engine model allows aircraft designers

to investigate the flowfield around aircraft nacelle (the cowling structure around the engine) and

fbselage. Detailed descriptions of flow features at the engine exit (e.g.. shocks and expansion

waves), could allow aircraft designers to better predict the drag caused by the jet exhaust flowing

along the aircraft surface. Engine designers would also benefit from a high-fidelity, integrated

engine-aircraft simulation. For example, an integrated simulation could allow engine designers to

study distortions in the airflow entering the engine when the aircraft is at a high angle of attack.

Evaluation of this operating condition is important because distortions can cause the compressor

to stall and the engine to lose thrust. A detailed engine-aircraft integration study would provide

Page 24 of 35

valuable information which engine and aircraft engineers could use to better and more quickly

design the aircraft.

5 Concluding Remarks

The design of complex systems involves the work of many specialists in Lanous disciplines,

each dependent on the work of other groups. When a single designer or core tzam is able to

control the entire design process, difficulties in communication and organization are minimized.

However, as design problems become more complex, the number and size of disciplinary groups

increases, and it becomes more difficult for a central group to manage the process. As the design

process becomes more decentralized. communications requirements become more severe. These

difficulties are particularly evident in the design of aircraft, a process that in\ olves complex

analyses, many disciplines, and a large design space [20]. The lack of enabling software

supporting disciplinary analysis by geographically dispersed engineering groups further

aggravates these problems.

In this paper we have argued that Web-based simulation has the potential 10 improve the

aircraft design process, allowing companies to become more competitive through condensed

cycle times and better products. This improvement is due, in part, to the abilin. of the Web to

support collaborative modeling and distributed model execution in a heterogenzous computing

environment. A central focus of this strategy is the move towards a Web based on digital objects

which can be published and reused to form new models.

Using a component architecture such as the one defined in the Onyx environment, digital

objects can be developed which represent the hierarchical topology of physical systems, making

them ideal as models of aircraft systems. Furthermore, these objects can encapsulate multimodels,

including geometry models, multidisciplinary models and models having multiple levels of

fidelity. Such models are ideal for concurrent design environments, since all of the modeling

information is available in one place. The component architecture class structure provides the

Reed, J . A . , Follen, G. J. and.-lJeii. A. ‘-1

capability to wrap existing software packages. This is extremely important in providing

collaborative and integrative environment for the aircraft design process.

A World-Wide Web populated with digital objects provides the foundation for modeling by

composition. Onyx’s component architecture defines the standard interfaces needed to

dynamically compose new objects and the visual assembly interface makes composition simple

and easy. This promotes model reuse, as well as reducing new model development time.

The Onyx environment supports the distribution of simulation models across the Web. Both

Web-based model distribution (in the case of Java-based models) and distributed services

approaches (e.g., CORBA, COM) are provided. Each of these increase Onyx’s usability, as

models can be placed virtually anywhere. The C O M A bindings make it possible to integrate non-

Java language distributed objects and legacy code. Also, since Onyx is written entirely in Java, it

is portable without modifications to any computing platform which supports the Java Virtual

Machine. Heterogeneous computing support makes the Onyx Web-based simulation system

extremely viable for use in the heterogeneous computing environments typical of aircraft

companies. Most importantly, it allows access to existing legacy codes and access to codes which

must operate on specific architectures or operating systems.

References

Arnold, K. and Gosling, J., 1996, The Java Programming Language, Addison Wesley

Publishing Company, Inc., Reading, MA.

Berners-Lee, T., 1996, “WWW: Past, Present, and Future,” Computer, 29(10) p. 69.

Birtwistle, G., Dahl, O., Myhrhaug, B. and Nygaard, K., 1973, Simula begin. Petrocelli

Charter, New York.

Cardelli, L., 1994, “Obliq: A Language with Distributed Scope,” Research Report 122,

Digital Equipment Corporation Systems Research Center, Palo Alto, C.4. On-line

document. Available at http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-

122. html.

Claus, R. W., Evans, A. L., Lytle, J. K., and Nichols, L. D., 1991, “Numerical Propulsion

Page 26 of35

Reed, j . 4 . . Foiien. G. .I. und.-ijjeh, .i. A

System Simulation,” Computing Systems in Engineering, Vol. 2, pp. 357-364

Eddon, G. and Eddon, H., 1998, Inside Distributed COiLl, Microsoft Press, Redmond,

Washington.

Englander, R., 1997, Developing Java Beans, O’Reilly & Associates, Inc., Sebastopol, CA.

Fishwick, P.A., 1996, “Web-Based Simulation: Some Personal Observations,” Proceedings

of the 1996 Winter Simulation Conjerence, J.M. Charnes, D.J. Momce, D.T. Brunner and

J.J. Swaim (eds.), pp. 772-779, Coronado, CA.

Fishwick, P.A., 1998, “Issues with Web-Publishable Digital Objects,” Proceedings of SPIE:

Enabling Technologies for Simulation Science II, pp. 136-142, Orlando, FL, April 14-16.

[101 Fishwick P. A. and Zeigler, B. P., 1992, “A Multimode1 Methodology for Qualitative Model

Engineering,” ACM Transactions on Modeling and Computer Simulation, Vol. 12, pp. 52-

81.

[6]

[7]

[8]

[9]

[l l] Fishwick, P.A., Hill, D.R.C. and Smith, R., Eds., 1998, Proceedings of the 1998

International Conference on Web-Based Modeling and Simulation. SCS Simulation Series

30(1).

[12] Freeman, E., Hupfer, S., and Arnold, K., 1999, JavaSpaces*“ Principles, Patterns, and

Practice, Addison- Wesley.

[13] Gamma, E., Helm, R, Johnson, R., and Vlissides, J., 1995, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison Wesley Publishing Company, Inc., Reading,

MA.

[14] Hall, E.J., Delaney, R.A., Lynn, S.R. and Veres, J.P., 1998, “Energy Efficient Engine Low

Pressure Subsystem Aerodynamic Analysis,” AIAA Paper No. 98-3 1 19.

[151 Hickman, K.E.B., 1995, The SSL Protocol. Available at http://home.netscape.com/eng/security/
SSL-2.html.

[16] Housley, R., Ford, W., Polk, T., and Solo, D., 1999, “Internet X.509 Public Key

Infrastructure Certificate and CRL Profile. Request for Comments 2459,” Internet

Engineering Task Force. Available at http://www.imc.org/rfc2459 .
[171 Jameson, A., 1997, “Re-Engineering the Design Process through Computation,” AIAA

Paper No. 97-0641.

[181 Java Naming and Directory Interface. Available at http:/ljava.sun.com/productsljndi/index.html.

[19] Johnson R. E. and Foote, B., 1988, “Designing Reusable Classes, The Journal Of Object-

Page 27 of 35

Oriented Programming,” 1(2), pp. 22-35.

[20] Kroo. I., Alms, S., Braun, R.. Gage, P., and Sobieski, I., 1994. “Multidisciplinary

Optimization Methods for Aircraft Preliminary Design,” AIAA Paper No. 94-4325.

[21] Kuhl, F., Weatherly, R. and Dahmann. J., 1999, Creating Computer Simulation Systems: An

Introduction to the High Level Architecture, Prentice Hall.

[22] Lai, C., Gong, L., Koved, L., Nadalin, A. and Schemers, R. 1999, “User Authentication And

Authorization In The JavaTM Platform,” To appear in Proceedings of the 15th Annual

Computer Security Applications Conference, Phoenix, AZ.

[23] Lindberg, K.J.P., 1998, Novell’s iVetware 5 Administrator’s Handbook, IDG Books

Worldwide.

[24] Neuman, B.C. and Ts’o, T., 1994, “Kerberos: An Authentication Service for Computer

Networks,” IEEE Communications, 32(9), pp.33-38.

[25] Page. E.H. and Opper, J.M., 1999, “Investigating the Application of Web-Based Simulation

Principles within the Architecture for a Next-Generation Computer Generated Forces

Model.” Future Generation Computer Svstems, to appear.

[26] Reed. J.A., 1998, “Onyx: An Object-Oriented Framework for Computational Simulation of

Gas Turbine Systems,” Ph.D. dissertation, The University of Toledo, Toledo, Ohio.

[27] Reed. J.A., and Afjeh, A.A., 1998, “An Object-Oriented Framework for Distributed

Computational Simulation of Aerospace Propulsion Systems,” Proceedings of the 4th

USE-YIX Conference on Object-Oriented Technologies and S,vstems (COOTS), Santa Fe,

New Mexico.

[28] Ridlon, S. A., 1996, “A Software Framework for Enabling Multidisciplinary Analysis and

Optimization,” AIAA Paper No. 96-4133.

[29] Rogerson, D., 1996, h i d e COM, Microsoft Press, Redmond, Washington.

[30] Schatz. B.R., and Hardin, J.B., 1994, “NCSA Mosaic and the World Wide Web: Global

Hypermedia Protocols for the Internet,” Science, 265, p. 895.

[31] Schmidt, D. C., 1997, “Applying Design Patterns and Frameworks to Develop Object-

Oriented Communications Software,” Handbook of Programming Languages, Volume I, P.

Salus, ed., MacMillian Computer Publishing.

[32] Smith. R.B., and Ungar, D., 1995, “Programming as an Experience: The Inspiration for

Self,” Proceedings of ECOOP’95.

Page 28 of35

Reed. J..4.. Foiien. G. J-. ann“.ijjen, i. .d

[33] Watters, A., van Rossum, G.. and Xhlstrom, J., 1996, Internet Programming with Python,

MIS PressiHenry Holt Publishers.

[34] Wirth, N. and Gutknecht, J., 1989, ”The Oberon System,” Software: Updated Practice and

Experience, 19(9), p. 857.

[35] Wollrath, A., kggs, R. and Waldo. J., 1996, “‘A Distributed Object Model for the JavaTM

System,” Proceedings of the Second USENIX Conference on Object-Oriented Technology

and Systems (COOTS), pp. 2 19-23 1.

[36] Vinoski, S, 1997, “CORBA: Integrating Diverse Applications Within Distributed

Heterogeneous Environments,” I€€€ Communications, 35(2), pp. 46-55.

[37] Voyager, 1997, “Voyager: The Agent ORB for Java” Online document. Available at http://

w,objectspace.com/.

[38] Yeong, W., Howes, T., and S. Kille, “Lightweight Directory Access Protocol”, Request For

Comments 1777.” Internet Engineering Task Force. Available at http://www.ietf.org/rfc/

rfcl777.txt.

[39] Zimmerman. P. 1994, PGP User’s Guide, MIT Press, Cambridge, 1994.

Page 29 of 35

t h
Aerodynamic

f

Structural
Analysis

Additional
Disciplines +-

I Concepal
Design

FI Deht ion

I Detailed Final
Design

I Model k Fabrication
Experimental

Testing

Figure 1: The Aircraft Design Process. The process
involves conceptual, preliminary and detailed final design
phases. The preliminary design phase includes both major
and minor design loops. In the minor design loop, separate
disciplinary analysis such as aerodynamic, propulsion,
and structural analysis are carried out. Additional
disciplinary analysis, such as controls, loading, stability,
acoustics, etc. have been omitted for clarity. Once a design
is converged upon in the minor loop, i t is experimentally
tested in the major design loop. After convergence of the
major design loop, the detailed final design phase is
executed.

Page 30 of 35

0-D

1-D

h
a 2-D
Y
.II I

3-D

I I

, I .,

I

I I Velocity : m l m l I : I Diagram

Beam Model
I
I
I
I
I

I
I
I
I
I

I
I
I
I

I 1 2-D Grid ' 1
I 1
I I

FEA Disk Model

Figure 2: (a) Decomposition of aircraft into high-level components; (b)
decomposition of engine component; and (c) collection of models (multimodels) at
differing levels of fidelity and discipline for Compressor component.

Page 3 1 of 35

/ e Fan Control /
Compressor

\

'\
Control

- .- - - Volume Volume I . -. - - - - - J I ' - \
Conservation Equations

continuity aP = -v.(pV)

momentum -(pv) - v.(pvv) = - v (p - VOT)

energy

1
at
a
at
a ;Illpel = -v.(prv - q A n v)

,

: Fluid I
Element : Port

' . : \

/

Structural:
Port

. . .
- - - - - - - - : ---:: @ Z?-.?:--. . 5..?C...,. r - - --.-

Figure 3: Mapping of engine physical domain to computational framework.
(a) Engine is decomposed into separate components, such as the Fan and
Compressor. Component control volumes are defined (b), with behavior
defined by conservation laws. Components are represented in Onyx as
Elements (c), whose Ports a r e connected by Connectors. Component behavior
is defined by a DomainModel (d) which may apply numerical discretization
methods to solve the conservation equations. Data exchange at control volume
boundaries is passed via Ports and Connectors, with multifidelity and
interdisciplinary mapping handled by Transform objects.

Page 32 of 35

interface
E l m m I

+ init0
+ run0
+ stopo
+ add0
+ remove0
+ addFtxrO
+ remreR~rf0
+ ger&uO
+ gerElemen/lnfoO

I

4

I

171

I*l po r t s I
+ In#o

t rum
+ stop0
i add0
i remove0
t addPofl0
+ remotePortO
t getPons0

+ gecDataSal:

h- n-
ch i ld ren

model

t gerElemenIlnfo0
t inn0
truno o interface I Conneaw 1- + runQ o

t stopo ;

forall c in children 1 model.execute0; L F L , Lj I

4
interface

DanuiHodcl
t getDataSet0

interface Lm
I t execute0 I + hait0

CwressorDoMnModd -h- I + execute0 I t haHO

Figure 4: A portion of the Onyx component architecture class structure.

Page 33 of35

Rudder Design
Team Server

Naming/

bind Wing Server - - - - - 4- - - - 1 bu7dFuselage - - - - - - - - - - - - - - - - - -

Engine
Company
Server 4

I

Deployer

Engine
Component 4

I

Supercomputer L

r - -

Design Team
Compressor

Server

bind Compressor

I
-

I Naming/
I lookup Directory
I - - - - - - - - - - - - - - - - _ _

I
I

I : I 1

Mixer Design I 1 0 FanDesign
Team Server I I I Team Server

4 A
e

Figure 5: Exchange of digital objects in a Web-based simulation environment.

Page 34 of35

~~ ~~~

Figure 6: Overview of Onyx Visual Assembly Interface.

Page 35 of35

