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New type of the interface evolution in the
Richtmyer-Meshkov instability

By S. I. Abarzhi and M. Herrmann

1. Motivation and objectives

When a shock wave passes an interface between two fluids with different values of the
acoustic impedance, the misalignment of the pressure and density gradients results in
a growth of the interface perturbations and causes the development of the Richtmyer-
Meshkov instability (RMI) (Richtmyer 1960; Meshkov 1969). The instability produces
with time the turbulent mixing of the fluids, which controls many physical and techno-
logical processes, such as inertial confinement fusion, supernova explosion, and impact
dynamics of liquids (Kull 1991). Reliable description of the turbulent mixing is the basic
objective of studies of RMI (Kull 1991; Schneider et al. 1998).

Observations report the following evolution of the Richtmyer-Meshkov instability. In
the linear regime, the light fluid accelerates impulsively the heavy fluid, and a small
amplitude perturbation of the fluid interface grows linearly with time (Richtmyer 1960;
Meshkov 1969). The acceleration value is determined by the shock-interface interaction,
which is essentially non-local and results in a baroclinic production of vorticity (Haan
1991; Velikovich & Dimonte 1996; Vandenboomgaerde et al. 1998; Wouchuk 2001). In
the non-linear regime, a structure of bubbles and spikes appear (Pavlenko et al. 2000;
Chebotareva et al. 1999; Jacobs & Sheeley 1996; Bonazza & Sturtevant 1996). The light
(heavy) fluid penetrates the heavy (light) fluid in bubbles (spikes). The bubbles decelerate
and the spikes move steadily. Small-scale structures appear on the side of evolving spikes
due to shear, and the direct cascade of the fluid energy may occur (Matsuoka et al. 2003).
For a finite-amplitude perturbation, the fluid energy may be transferred also to larger
scales (Alon et al. 1995; Oron et al. 2001). Eventually, a mixing zone develops. In the
chaotic regime, the bubbles and spikes decelerate, and their positions are described by
power-law time-dependencies with exponents determined by the density ratio (Schneider
et al. 1998; Dimonte 2000).

The dynamics of the Richtmyer-Meshkov instability is far from being completely un-
derstood. For a long time, the theoretical models and numerical simulations failed to
predict the growth-rate in the linear RMI observed in experiments (Holmes et al. 1999).
Only recently, a rigorous theory has accounted for the non-local character of the inter-
face dynamics in the case of strong and weak shocks and provided therefore for impulsive
models the correct value of the acceleration (Wouchuk 2001). To describe the nonlin-
ear RMI, several models have applied a single-mode approximation, which presumed
locality of the bubble (spike) dynamics (Alon et al. 1995; Goncharov 2002). Some other
models have used an empiric equation with adjustable parameters to balance “drag”
and “inertia” in the flow (Oron et al. 2001; Dimonte 2000). All these models however
cannot explain the observations and remain subjects for controversy (Dimonte 2000).
There is a strong need in a formal theoretical approach and in experiments and simula-
tions with systematic variation of parameters and improved diagnostics. In this work we
suggest analytical and numerical solutions describing the nonlinear coherent dynamics
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Figure 1. Interface definition.

of two-dimensional Richtmyer-Meshkov instability for fluids with a finite density ratio.
Our results predict new properties of the nonlinear evolution of RMI, explain existing
experiments, and identify new sensitive diagnostic parameters.

2. Governing equations

The dynamics of the Richtmyer-Meshkov instability are governed by a system of con-
servation laws, which are compressible two-dimensional Navier-Stokes with the initial
conditions and the boundary conditions at the fluid interface,

∂ρ

∂t
+∇ · (ρv) = 0 (2.1)

∂ρv

∂t
+∇ · (ρvv) +∇p+∇ · τ = 0 (2.2)

∂ρE

∂t
+∇ · ([ρE + p]v) +∇ · q + τ : ∇v = 0 . (2.3)

Here, ρ denotes the density, v the velocity vector, p the pressure, τ the stress tensor, E
the total energy, and q the heat flux vector. All quantities are either in the heavy gas,
denoted by the subscript h in the following, or in the light gas, denoted by the subscript
l. The above system of equations is closed by the ideal gas law,

p = ρΦT , (2.4)

with Φ the gas constant and T the temperature.
The interface Γ located at z∗(x, t) separating heavy from light gas, is described by a

level set scalar G, see Fig. 1. Defining

G(x, t)
∣

∣

∣

Γ
= G0 = const , (2.5)

with G(x, t) < G0 in the light gas and G(x, t) > G0 in the heavy gas, compare Fig. 1,
an evolution equation for the scalar G can be derived by simply differentiating Eq. (2.5)
with respect to time,

∂G

∂t
+ v · ∇G = 0 . (2.6)

This equation is called the level set equation (Osher & Sethian 1988). It is easy to see
that Eq. (2.6) is independent of the choice of G away from the interface. However, to
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facilitate the numerical solution of Eq. (2.6), G is chosen to be a distance function away
from the interface,

|∇G|
∣

∣

∣

G6=G0

= 1 . (2.7)

Using the level set scalar, geometrical properties of the interface, like its normal vector
n or curvature ζ, can be easily calculated,

n =
∇G

|∇G|
, κ = ∇ · n . (2.8)

There is no mass flow across the moving interface, and the normal component of
velocity, pressure and temperature are continuous at the fluid interface:

vn,h

∣

∣

Γ
= vn,l

∣

∣

Γ
(2.9)

vt,h

∣

∣

Γ
= vt,l

∣

∣

Γ
(2.10)

ph

∣

∣

Γ
= pl

∣

∣

Γ
(2.11)

Th

∣

∣

Γ
= Tl

∣

∣

Γ
. (2.12)

The flow has no mass sources, and the boundary conditions at the infinity close the
set of the governing equations

vh

∣

∣

z=+∞
= vl

∣

∣

z=−∞
= 0 . (2.13)

Initially, the fluid interface is slightly disturbed with a small amplitude co-sinusoidal
perturbation, z∗(x, t = 0) ∼ (1/k) cos(kx), where k = 2π/λ is the wave-vector, and λ
is the spatial period in the x-direction. The perturbation should be symmetric, in order
a stable coherent structure of the bubbles and spikes to occur. The density ratio or the
Atwood number A = (ρh − ρl)/(ρh + ρl) is a determining factor of RMI dynamics.

3. Non-local theoretical solutions

Based on the observations, we divide the fluid interface into active regions (small scales)
with intensive vorticity, and passive regions (large scales) which are simply advected. If
the energy cascades are not extensive (i.e., the fluid densities are not very similar, the
perturbation amplitude is small, and the initial shock is weak), then, a considerable part
of the fluid energy concentrates in the large-scale coherent motion with ∇ · vh(l) = 0
and ∇ × vh(l) = 0. To find the nonlinear solutions, describing the dynamics of the
bubble front in a vicinity of its tip, we reduce the Eqs. (2.1), (2.2), (2.9), and (2.11) to a
local dynamical system. All calculations are performed in the frame of reference moving
with velocity v(t) in the z-direction, where v(t) is the velocity at the bubble tip in the
laboratory frame of reference. For the large-scale motion vh(l) = ∇Φh(l), and we expand
the potential Φh(l) as a Fourier series,

Φh =

∞
∑

m=1

Φm(t)
(

cos(mkx) exp(−mkz)/mk + z
)

(3.1)

Φl =

∞
∑

m=1

Φ̃m(t)
(

cos(mkx) exp(mkz)/m− z
)

(3.2)

For x ≈ 0 the interface has the form z∗ =
∑∞

N=1 ζN (t)x2N , where ζ1(t) < 1 is the
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principal curvature at the bubble tip, and N is the order of approximation. Substituting
these expressions in the governing equations, taking the first integral of Eq. (2.2), and
re-expanding Eqs. (2.9) and (2.11) for x ≈ 0, we derive a system of ordinary differential
equations for the surface variables ζN (t), and the moments Mn(t) =

∑∞
m=1 Φm(t)(km)n

and M̃n(t) =
∑∞

m=1 Φ̃m(t)(km)n where n is integer. For N = 1, one has from Eqs. (2.9)-
(2.13) respectively

ζ̇1 = 3ζ1M1 +M2/2 = 3ζ1M̃1 − M̃2/2, (3.3)
(

Ṁ1/2 + ζ1Ṁ0 −M2
1 /2− ζ1

)

ρh =
( ˙̃M1/2− ζ1

˙̃M0 − M̃2
1 /2− ζ1

)

ρl, (3.4)

M0(t) = −M̃0(t) = −v(t) . (3.5)

The system (3.3)-(3.5) describes the local dynamics of the bubble as long as the period
of the structure is invariable, and the energy cascades are not extensive. The presentation
in terms of moments allows one to account for the effect of higher-order correlations. The
time-scale in Eqs. (3.3)-(3.5) is τ = 1/kv0, where v0 is the absolute value of the initial
velocity. For t/τ ¿ 1, the dynamical system (3.3)-(3.5) has regular asymptotic solutions
with time independent surface variables ζN and with velocity v and moments Mn, M̃n

decaying as 1/t.
It is easy to see that the local system (3.3)-(3.5) cannot be satisfied in a single-mode

approximation. One may derive, for example, a single-mode solution of the Layzer-
type, which conserve mass, momentum and has no mass sources. For this bubble ζ1 =
ζL = −Ak/6 and velocity v = vL = (1 − A2/3)/Ak, however the solution does not
satisfy Eqs. (2.9) and (3.3) and requires mass flux across the interface. To reproduce
the parameters of the drag model (Oron et al. 2001) with ζ1 = ζD = −k/6 and
v = vD = (1 + A/3)/k(1 + A), one should violate Eqs. (2.13) and (3.5) and intro-
duce a source of mass of the light fluid (Goncharov 2002). Obviously, these solutions are
unphysical, because they violate the conservation laws.

To obtain regular asymptotic solutions describing the nonlinear dynamics of the bubble
front, one should account for the non-local properties of the flow that has singularities.
The singularities determine the interplay of harmonics in the global flow and the local
dynamical system, and affect therefore the shape of the regular bubble. We find a con-
tinuous family of regular asymptotic solutions for Eqs. (3.3)-(3.5), parameterized by the
principal curvature at the bubble tip, and choose the fastest solution in the family as the
physically significant one. For N = 1 the bubble velocity as the function of the bubble
curvature is

v =
3

2kt

(

1 +A(ζ1/k)− 12A(ζ1/k)
3
)

(

A− 4(ζ1/k) + 4A(ζ1/k)2
)

(

1− 4(ζ1/k)
2
)

, (3.6)

where ζcr < ζ < 0. For the family solutions (3.6), the interplay of harmonics is well
captured, the higher order corrections for the velocity and lowest-order amplitudes are
small, the solutions converge, yet, most of them are unstable. The fastest stable solution
in the family (3.6) is the solution with

ζ1 = ζA,= 0 v = vA = 3/2Akt (3.7)

The foregoing theoretical results suggest the following evolution of the bubble front in
the Richtmyer-Meshkov instability. In the linear regime of RMI, the bubble curvature and
velocity change as ∼ t; in the weakly non-linear regime, the curvature reaches an extreme
value, dependent on the initial conditions and the Atwood number; asymptotically, the
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bubble flattens and decelerates. For A < 1 the bubbles move faster than those for A = 1,
and for all A the bubbles flatten asymptotically. The flattening of the bubble front is
a distinct feature of RMI universal for all A. It follows from the fact that RM bubbles
decelerate. As A ∼ 0, the velocity v ∼ ∞ and this suggests that for fluids with similar
densities the bubble velocity has a much faster time-dependence, such as ta where −1 <
a < 0, in a qualitative agreement with experiments of Jacobs & Sheeley (1996), where
for A ∼ 0 the dependence 1/t was shown to underestimate the velocity data.

4. Numerical method

In our numerical simulations, the Navier-Stokes equations (2.1)-(2.3) are solved using
a hybrid capturing-tracking scheme, originally proposed by Smiljanovski et al. (1997) for
deflagration waves. When applying this scheme to the RMI, its key idea is to explicitly
track the location and motion of the interface between the light and the heavy gas by
the level set equation (2.6), whereas all other fluid phenomena like shocks and expansion
fans are captured. The main advantage of this approach is that while the simplicity
and robustness of standard capturing schemes can be retained, the interfacial processes
are described with accuracy comparable to standard tracking schemes. In the following
two sections, the hybrid capturing-tracking scheme is summarized briefly. The interested
reader is referred to Smiljanovski et al. (1997) for a more detailed description.

4.1. In-cell-reconstruction

In finite volume schemes, the cell value of a conserved quantity U i,j is defined as the
volume average of that quantity,

U i,j =
1

V i,j

∫

V i,j

U(x′)dx′ , (4.1)

averaged over the cell volume V i,j . Assuming piecewise constant distributions of U for
each fluid within each cell, Eq. (4.1) reduces to

U i,j = αU
i,j
h + (1− α)U i,j

l , (4.2)

where α is the heavy gas cell volume fraction that can easily be calculated from the level
set scalar G,

α =
1

V i,j

∫

V i,j

H(G(x′)−G0)dx
′ , (4.3)

with H the Heavyside function.
The key idea of the in-cell-reconstruction scheme is to reconstruct both U

i,j
h and U

i,j
l

from U i,j , see Fig. 2, and to use only the reconstructed two states to calculate cell face
fluxes in cells containing part of the interface. Combining the jump conditions of U across
the interface, Eqs. (2.9) - (2.12), with (4.2) and Eqs. (4.3), the cell values U

i,j
h and U

i,j
l

in each cell containing part of the interface can be reconstructed from U i,j .

4.2. Cell update

The numerical solution is evolved in time using an operator splitting technique (Strang
1967),

Un+1 = Cx
∆t/2C

z
∆t/2D∆tC

z
∆t/2C

x
∆t/2Un , (4.4)

where C denotes the convection operator, D the diffusion operator, U n the cell volume
averaged solution at time tn, and Un+1 the cell volume averaged solution at tn+1 =
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Figure 3. Flux update in cells containing part of the interface.

tn +∆t. In order to calculate the correct update, all gradients in the individual operator
steps must be calculated using only cell values of the same fluid type.

In the diffusion operator D, we calculate all gradients using 2nd order central differ-
ences. The corresponding stencils across the interface thus involve the reconstructed cell
values Uh respectively U l plus one additional adjacent cell value on the opposite side of
the interface. This cell has to be first transformed into the corresponding matching state
using Eqs. (2.9)-(2.12) before the gradients are evaluated. In this operation, our method
resembles the ghost fluid approach (Fedkiw et al. 1999).

Since the convection operator C is split into each spatial direction, we will only focus on
the x-direction operator in the following. If a cell (i, j) and its directly adjacent neighbors
do not contain part of the interface, Un,i,j is advanced in time by

Un+1,i,j = Un,i,j +
∆t

∆x

(

F i−1/2,j − F i+1/2,j
)

. (4.5)

In our numerical method we solve cell face Riemann problems using a 2nd order wave
distribution algorithm due to LeVeque (1990) and formally recast the individual wave

contributions in the form of cell face fluxes F i−1/2,j and F i+1/2,j . However, special care
must be taken, if (i, j) contains part of the interface at tn or tn+1, as shown in Fig. 3.

To ensure the correct flux calculation, individual cell face fluxes for both the heavy and
the light gas must be calculated using only (reconstructed) quantities of the respective
fluid,

F
i−1/2,j
h = F

i−1/2,j
h

(

U
i−1/2,j
h− ,U

i−1/2,j
h+

)

(4.6)

F
i−1/2,j
l = F

i−1/2,j
l

(

U
i−1/2,j
l− ,U

i−1/2,j
l+

)

. (4.7)
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Here, the subscripts − and + denote the left-hand side respectively right-hand side

approximation of U
i−1/2,j
h,l . Then, the average cell face flux F i−1/2,j is

F i−1/2,j = βi−1/2,jF
i−1/2,j
h + (1− βi−1/2,j)F

i−1/2,j
l , (4.8)

with β the heavy gas cell face fraction, see Fig. 3. Note that because our convection
operator is based upon a wave distribution scheme, F i−1/2,j only takes those wave con-
tributions into account that arise from the cell face Riemann problem. Since the interface
itself constitutes a separate wave, its contribution to the change of U i,j has to be taken
into account additionally,

∆U i,j = ∆αC
(

U
i,j
h −U

i,j
l

)

+

∆αL
(

U
i−1,j
h −U

i−1,j
l

)

+∆αR
(

U
i+1,j
h −U

i+1,j
l

)

. (4.9)

Here, ∆αC is the change of the heavy gas cell volume fraction due to the movement of
the interface within the cell (i, j) itself, and ∆αL and ∆αR are the contributions due to
movement from adjacent cells to the left respectively right, see Fig. 3. Note that Eq. (4.9)
implies that the global conservation property of the numerical scheme is now dependent
on the accuracy with which the individual ∆α are calculated and hence relies on the
accuracy of the level set method.

Finally, combining Eq. (4.8) and Eq. (4.9) yields the update for U i,j in cells that
contain part of the interface

Un+1,i,j = Un,i,j +
∆t

∆x

{(

βi−1/2,jF
i−1/2,j
h + (1− βi−1/2,j)F

i−1/2,j
l

)

−
(

βi+1/2,jF
i+1/2,j
h + (1− βi+1/2,j)F

i+1/2,j
l

)

+

∆αC
(

U
i,j
h −U

i,j
l

)

+∆αL
(

U
i−1,j
h −U

i−1,j
l

)

+

∆αR
(

U
i+1,j
h −U

i+1,j
l

)}

(4.10)

One of the major advantages of using Eq. (4.10) is the fact that the CFL-condition can
be based on the grid size ∆x of the underlying grid, because cell updates are performed
only on the cell volume averaged quantities.

5. Results

We present the numerical results of the RMI calculated for a shock Mach number of
Ma = 1.2 and two different Atwood and Reynolds numbers. The fist case corresponds
to the SF6/Air experiment of Benjamin et al. (1993) with A = 0.67 and Re = 11442,
whereas in the second case A = 0.9 and Re = 6977. The Reynolds numbers are calculated
using the bubble velocity V in the laboratory frame of reference and the wave length λ.
The initial interface of wave length λ = 0.0375m and amplitude a0 = 0.0024m is located
at z = 0m. All simulations are performed in a [−1.1m, 0.3m]× [−0.01875m, 0.01875m]
box resolved by 2352× 63 equidistant cartesian grid cells.

Figure 4 depicts the temporal evolution of the interface shape for A = 0.67, whereas
Fig. 5 shows the interface shapes for A = 0.9. In both cases, a spike of heavy gas is
formed that penetrates ever further into the light gas. In the A = 0.67 case, the spike
takes on the typical mushroom-like shape, whereas in the A = 0.9 the spike simply bulges
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Figure 4. Temporal evolution of the interface for A=0.67.
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Figure 5. Temporal evolution of the interface for A=0.9.
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Figure 6. Shape of the bubble front for A=0.67 (left) and A=0.9 (right) plotted every
∆t/τ = 10. Each interface is shifted by ∆z = −0.05.

at the end. This difference is most likely due to the employed numerical resolution that
is not sufficient to resolve the apparently smaller scale spike mushroom structure in the
A = 0.9 case.

Figure 6 shows the temporal evolution of the bubble front for both cases. The flattening
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Figure 7. Bubble velocity V in the laboratory frame of reference for A = 0.67 (left) and
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Figure 8. Bubble curvature ζ for A = 0.67 (left) and A = 0.9 (right).

of the bubble front that is predicted by non-local theory is clearly visible in both cases,
but is more pronounced in the A = 0.67 case. Also, the A = 0.67 case exhibits some tiny
oscillations of the bubble front at later times that are not visible in the A = 0.9 case.

The bubble velocity V in the laboratory frame of reference is depicted in Fig. 7. Initially
being at rest, both bubbles are impulsively accelerated by the passing shock. As predicted
by non-local theoretical analysis, the bubble velocity reaches a local maximum in the
weakly non-linear regime and then asymptotically decelerates to a constant velocity. In
the laboratory frame of reference the asymptotic bubble velocity is V = 66.8 m/s for
A = 0.67 and V = 40.7 m/s for A = 0.9.

Figure 8 shows the evolution of the bubble curvature ζ. Here, ζ is calculated using a
least squares fit of a circle of radius 1/|ζ| to all intersection points of the interface with
the cell face within |x|/λ ≤ 0.12. As predicted by non-local theoretical analysis, in the
linear regime, the bubble curvature changes linear with time. Then, in the weakly non-
linear regime, the curvature reaches an extremum followed by an asymptotic flattening
of the bubble, i.e. a decrease in curvature for both values of A.

Finally, Figure 9 depicts the calculated bubble velocity v as a function of the absolute
bubble curvature |ζ|. Initially, the bubble exhibits an abrupt acceleration that is due
to the interaction with the passing shock, whereas the curvature remains roughly un-
changed. In the linear regime, the bubble curvature increases with only gradual changes
in the bubble velocity. This result is consistent with linear theory, Eqs. (3.3)-(3.5). In
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Figure 9. Bubble velocity v as function of absolute bubble curvature |ζ| for A = 0.67 (left)
and A = 0.9 (right).

the weakly non-linear regime, the bubble velocity reaches a local maximum and then
starts to decrease with almost constant curvature. Finally, the bubble curvature asymp-
totically tends to zero while the bubble continues to decelerate, as predicted by non-local
theory. However, depending on the case, a slightly different bubble behavior is evident.
For A = 0.67, the bubble both flattens and decelerates simultaneously. For A = 0.9,
the bubble deceleration occurs prior to any significant decrease of ζ, thus leading to a
flattening of the bubble front with only gradual changes in the bubble velocity.

In summary, these numerical results affirm the bubble behavior predicted by the non-
local theory.

6. Conclusion

We performed systematic theoretical and numerical studies of the nonlinear large-scale
coherent dynamics in the Richtmyer-Meshkov instability for fluids with contrast densi-
ties. Our simulations modeled the interface dynamics for compressible and viscous fluids.
For a two-fluid system we observed that in the nonlinear regime of the instability the
bubble velocity decays and its surface flattens, and the flattening is accompanied by
slight oscillations. We found the theoretical solution for the system of conservation laws,
describing the principal influence of the density ratio on the motion of the nonlinear
bubble. The solution has no adjustable parameters, and shows that the flattening of the
bubble front is a distinct property universal for all values of the density ratio. This prop-
erty follows from the fact that the RM bubbles decelerate. The theoretical and numerical
results validate each other, describe the new type of the bubble front evolution in RMI,
and identify the bubble curvature as important and sensitive diagnostic parameter.
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