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TECHNICAL REPORT R-55 

AN ANALYSIS OF THE CORRIDOR AND GUIDANCE REQUIREMENTS FOR 
SUPERCIRCULAR ENTRY INTO PLANETARY ATMOSPHERES 

By DEAN R. CHAPMAN 

SUMMARY Terminal guidance requirements o n  accuracy of 

An analysis i s  presented of supercircular entry 
into a planet’s atmosphere giving particular attention 
to the corridor through which spacecraft must be 
guided in order to accomplish various maneucers. 
A dimensionless parameter based o n  conditions at 
the conic perigee altitude i s  introduced for character- 
izing supercircular entries and conveniently pre- 
scribing corridor widths associated with elliptic, 
parabolic, or hyperbolic approach trajectories. The 
analysis applies to vehicles of arbitrary weight, shape, 
and size. Illustrative calculations are made for 
Venus ,  Earth, LMars, Jupiter,  and Titan. 

For nonlifting whicles having $xed aerodynamic 
coe#cients, curves are presented of dimensionless 
parameters f rom whichcan be calculated the maximum 
deceleration, max imum rate of laminar con cectice 
heating, and total laminar heat absorbed during 
single-pass entry at velocities u p  to twice circular 
velocity. For lifting vehicles, curves are presented of 
the max imum deceleration and overshoot boundary 
of a n  entry corridor; equations are presented for 
estimating laminar aerodynamic heating from the 
maximum deceleration. I t  i s  shown that the corrzdor 
width i s  independent of vehicle weight, dimensions, 
and drag coeficient, provided these are the same at 
the overshoot boundary as at undershoot. The 
corridors of certain planets can be broadened mark- 
edly by the application of aerodynamic lift; for 
example, the 10-earth-g corridor width for single- 
pass, nonlijting, parabolic entry i s  increased from 
0 miles for Jupiter,  7 for  Earth, and 8 for Venus,  
to 52, 51,  and 52 miles, respectively, by employing a 
lift-drag ratio of 1. The use of aerodynamic lift  
does not increase appreciably the corridors of Mars  
and Titan. A l l  corridor widths decrease rapidly 
as the entry velocity i s  increased. 

velocity andflight path angle for successfully entering 
various corridors are compared with analogous 
requirements for putting a satellite into orbit, for 
hitting the moon from the earth, and for achiecing 
ICBM accuracy. Consideration i s  given to the 
terminal guidance problem involved in using a 
planet’s atmosphere-rather than rocket juel-to 
effect orbital transfers from heliocentric to planeto- 
centric motion, thereby converting a hyperbolic 
approach trajectory to a n  elliptic orbit about the 
target planet. This  fuel saving maneuver appears 
technologically feasible for certain planetary voyages, 
and implies the possibility of achieving a large 
reduction in required Earth lift-o$ weight of chemical 
propulsion systems. 

INTRODUCTION 

The motion and heating during entry into an 
atmosphere at supercircular velocity has been 
studied less extensively than that at circular 
velocity. At present, entry at circular velocity 
is of more immediate practical concern, since the 
first manned space capsules are to be launched in 
near-circular orbits. I n  the hopefully near future, 
though, supercircular entry at essentially para- 
bolic velocity (%h- times circular velocity) will 
be of practical concern upon return from the Moon. 
In the more distant future, entry at hyperbolic 
velocity (greater than 42 times circular velocity) 
will undoubtedly also be of practical interest, 
especially in connection with interplanetary flight. 
Hyperbolic entry with atmosphere braking can 
effect an orbital transfer from heliocentric to 
planetocentric motion without the expenditure of 
fuel, thereby making possible large reductions in 
Earth lift-off weight for many interplanetary 
missions. 
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An important problem for supercircular entries, 
wliicli is relatively unimportant for near-circular 
entries, is that of the guidance accuracy required 
in order to accomplish a desired entry maneuver, 
such as completing entry on a single pass without 

Overshoct 
boundary 

.Undershoot 
boundary 

cncountering excessive deceleration or heating 
conditions during entry. Terrestrial flight is 
tolerant of guidance errors accompanying a land- 
ing approach, since an undershoot is readily cor- 
rected by a brief application of power, and an 
overshoot by a return approach. Space flight, in 
contradistinction, is unforgiving of guidance errors, 
since undershoot may cause destruction of the 
vehicle during entry, and, in a hyperbolic ap- 
proach, overshoot may result in a homeless exit 
into space. If the guidance error results in under- 
shooting an intended trajectory too much, as 
illustrated by the inner two dashed trajectories 
in the adjacent sketch, the vehicle will enter the 
atmosphere at an excessively steep angle, thereby 
experiencing either too much deceleration for the 
occupants andjor spacecraft, or perhaps too much 
deceleration for the desired maneuver. If the 
guidance error results in overshooting the in- 
tended trajectory too much, as illustrated by the 
outer two dashed trajectories, the vehicle will not 
encounter enough atmosphere for slowing suffi- 
i.iei:t!y either to complctc entry in a single pass, 
or to effect a particular orbital transfer. Henco 
the shaded portions representing excessive over- 

shoot and undershoot in the sketch are excluded 
as not representing the intended entry maneuver. 
For some planets, all that is left is a meagerly 
narrow corridor through which the vehicle must 
be guided. The outer and inner boundaries of 
this entry corridor are referred to herein as the 
overshoot and undershoot boundaries, respectively. 

The object of the present report is to make a 
general study of the entry corridor and its bound- 
aries, giving consideration to aerodynamic heating 
problems for various lift-drag ratios, entry veloci- 
tics, and planets, and to the guidance problem 
which the corridor imposes. A novel feature of 
the present analysis is the introduction of a 
dimensionless perigee parameter combining certain 
characteristics of the vehicle with certain quanti- 
ties associated with the conic perigee altitude. 
By conic perigee is meant that fictitious perigee 
point through which a drag-free entry trajectory 
would pass (but the real trajectory may not). 
This parameter provides a basis of characterizing 
supercircular entries irrespective of the atmos- 
phere or the vehicle weight, shape, or size. 

After the present research was well under way, 
a recent publication of Lees, Hartwig, and Cohen 
(ref. 1) became available in which they point out 
the pronounced alleviation of guidance require- 
ments made possible by the application of aero- 
dynamic lift and, in particular, by lift modulated 
in a certain fashion. They present results of 
numerical calculations for a specific vehicle enter- 
ing the earth’s atmosphere at a supercircular 
velocity of 35,000 feet per second, which provide 
a basis for comparison with the general results of 
the present analysis. Their discussion of entry 
with modulated lift stimulated the discussions 
herein of this type of entry. 

NOTATION 

a resultant deceleration 
A 

C D  

c, 
c42 

D drag force, Ib 

FP 

rcference area for drag and lift, sq ft 
2 0  drag coefficient, - 

p V2A 
coefficient the order of unity appearing 

in equation (A15) 
coefficient the order of unity appearing 

in equation (.816) 

perigee paramdm - ppJ.p,!p. 2 dimen z[mjCDAi) 
sionless 
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local gravitational acceleration 
earth sea-level gravitational accelera- 

a deceleration in earth sea-level gels, - 
Qe 

dimensionless normalized deceleration 

characteristic length of vehicle, ft 
lift force, lb 
average L / D  during modulated-lift 

mass of vehicle, slugs 
molecular weight of atmosphere 
Prandtl number 
convective heating rate per unit area, 

Btu/sq ft  see 
dimensionless heating rate, 7i5/2%1/2 for 

laminar flow 
total convective h a t  absorbed, Btu 
dimensionless heat absorbed, 

tion, 32.2 f t  sec-2 

(eq. (24)) 

entry 

sii3/2Z-11Zd7i for shallow entries and 

laminar flow 
radius from planet center 
radius of planet 
radius of curvature of wall, ft, or 

universal gas constant 
PV1 Reynolds number, ~ 

circumferential distance from conic 
IJ 

perigee 
surface area wetted by boundary layer, 

time 
local temperature of ambient atmos- 

mean temperature of planet atmosphere 
circumferential velocity component 

dimensionless ratio, - 

sq ft 

phere 

U 

G 
U resultant velocity, __ cos y 

V 
dimensionless ratio, -j= 

v gr 
altitude, ft 
corridor width between conic perigee 

altitudes 
altitude increment over which atmos- 

phere density varies by factor of 10 

i: dimensionless function of U determined 
from equation (3) and appropriate 
boundary conditions 

cy angle of attack of lifting surface relative 
to minimum-drag attitude 

P atmospheric density decay parameter, 
ft-1 

Y flight-path angle relative to local hori- 
zontal; positive for climb 

8 angle from planet center between 
conic perigee and vehicle position 

P coefficient of viscosity, slug ft-lscc-' 
P atmosphere density, slug ftp3 

ex exit from atmosphere 
"f final value 
i initial value 
0 

021 overshoot boundary 
P conic perigee point 
.r stagnation point 
un undershoot boundary 
63 relative to earth 

SUBSCRIPTS 

surface of planet, or where E=O 

SUPERSCRIPT 

I differentiation with respect to Ti 

ANALYSIS 

OUTLINE OF APPROXIMATE ANALYTICAL METHOD AND 
FORMULAS FOR ENTRY MOTION AND HEATING 

The approximate analytical method of reference 
2 for studying entry motion iseinployed throughout 
this report. Details of the method are not des- 
cribed here; only an outline of the main equations 
is presented. I n  essence, the method is based on 
a single, nonlinear, differential equation (in dimen- 
sionless transformed variables) which represents 
the entry motion in an arbitrary planetary atmos- 
phere. The full equation is given in appendix A 
with a list of associated formulas for various 
quantities relating to the motion and aerodynamic 
heating. Without obtaining any solution to this 
equation, but merely by examining its structure 
and its boundary conditions for the special case 
considered herein of shallow entries, we can 
establish three dimensionless parameters upon 
which entry motion and convective heating 
depend. One of the parameters involves the 
initial entry angle yr and arises because of mathe- 
matical convenience in specifying initial condi- 
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tions on the differential equation. In charac- 
terizing shallow supercircular entries-and espe- 
cially in describing the guidance requirements for 
such entries-this initial-angle parameter is not as 
convenient as a different parameter which is sub- 
sequently introduced to replace the initial-angle 
parameter. 

Basic differential equation.-Proceeding now 
with the mathematical outline, we select as an 
independent variable the dimensioriless horizontal 
velocity referred to local values of g and of distance 
r from the plant center 

and as a dependent variable the function 

In  this coordinate systeni the pair of motion 
equations for shallow entries (cos y r l ,  VEZ, 
sin y ~ y )  into a spherically symmetric planet 
reduced to  a single, second order, nonlinear 
equation for the dimensionless 2 function (ref. 2 ) .  

- d2Z dZ Z l - i i Z  - L  

- 

2'Pr D u- Y - 
dZ2 uz - - - - 

vertical vertical gravity lift force 
acceleration component minus 

of drag force centrifugal 

force ( 3 )  
The physical significance of the various terms is as 
indicated. It is to be noted that the molecular 
weight a and the local temperature T of the 
planet's atmosphere enter only in the parameter 

(4) 

representing the local density gradient in the 
atmosphere: in any real atmospliere, 0 would 
vary moderately with altitude, and such variation 

is admissible within the framework of equation 
( 3 ) ;  equation ( 3 )  for Z(i i)  is not restricted to 
exponential atmospheres, as we will see shortly. 
In  the above form, though, it is restricted to small 
flight-path angles y relative to the local horizontal 
(powers of cos y appear on the right side of eq. 
( 3 )  if is large as noted in appendix A), and to the 
condition I(L/D) tan yj<<l. 

Inasmuch as the differential equation for Z(G) is 
of second order, two initial conditions are required. 
The two conditions selected a t  the initial entry 
velocity ii, will, for tlie time being, be written as 

Z(Z,) =z, Z'(Z,) =Z',  ( 5 )  - 
The dimensionless initial velocity, V,=U,/cos 
* y , ~ u , ,  is employed to characterize the approach 
trajectory as being circular if vt=l, elliptic if 
1<v,<J2, parabolic if v,= 45, and hyperbolic 
if v,>@. An entry is termed supercircular if 
V,>1, and thc local velocity is similarly termed 
if v>1. I t  is to be noted that the values of 
m/CDA and the initial altitude y, are not needed 
in characterizing an entry motion by means of the 
Z function and its two initial conditions. After a 
Z function has been calculated, a number of quan- 
tities of engineering interest can readily be ob- 
tained from formulas listed in appendix A. Simple 
formulas relating aerodynamic heating and de- 
celeration also are developed in this appendix and 
are shown to yield results for heating rates and 
total heat absorbed in good agreement with certain 
calculations for Earth entry presented by Lees, 
et al., in reference 1.  

The characteristics of the planet's atmosphere 
enter the above equations mainly in the dimen- 
sionless parameter lip. Approximate values of 
this parameter and other planetary constants 
used in numerical examples presented later are 
as follows (the subscript designates a value 
relative to the earth) : 

- 

~ I 
1 
I 

g@ 

0. 87 
1. 00 
. 38 

2. ti8 
. 2 2  

PLANETARY CONSTANTS 

F', f t  

1. 0 2x104 
1. 00 1 2. 35x104 
. 4 7  6X 104 

2. 0 1 6x104 
lox 104 

AIOY (for 
PZ/Pl=lo), 

miles 

9 
10 
26 
26 
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The last two entries, Jupiter and Titan, are in- 
cluded in numerical examples presented later in 
order to illustrate the extreme variations en- 
countered when entry into various atmospheres of 
the solar system is considered. 

Computation of Z functions.-Inasmuch as the 
basic differential equation ( 3 )  for Z(Z) is nonlinear, 
i t  has been programed on an electronic computing 
machine (IBM 704) in order to obtain a large 
number of solutions for various values of the 
dimensionless parameters which determine an 
entrj- motion. Several hundred solutions were 
obtained for the results of this report. I n  order 
to start each solution, the first step from Z, to 
u,-0.001, was taken analytically. Over this 
small interval y is essentially constant, so that the 
equations given in reference 2 for constant y were 
applied to the first small step. 

It may appear a t  first that little is gained over 
strictly numerical trajectory calculations as long 
as Z functions must also be computed on a 
machine. The gain, however, arises from in- 
creased generality of the results. One Z function 
can be applied to any planetary atmosphere and 
to  a vehicle with any value of m/CDA, whereas a 
conventional trajectory calculation would apply 
only to  the specific atmosphere and specific value 
of m/CDA employed. 

Accuracy of Z function method.-The accuracy 
of the approximate analytical method may be 
judged from a comparison of several 2 functions 
with more exact numerical calculations. If we 
first consider nonlifting vehicles, we see that with 
L/D=O the basic differential equation (3) for Z 
would be independent of p and, hence, independent 
of any variations in atmosphere temperature with 
altitude as well as independent of m/CDA. Exact 
calculations for a specific atmosphere and specific 
m/CDA of the quantity ~ z & @ / ~ ( ~ I c , A )  provide 
a test of accuracy since this quantity as a function 
of ii would coincide with Z(G) if the approximate 
method were exact. Excellent agreement is 
exhibited in figure 1 between each of the two solid 
curves (one entry a t  vt= 1.25, and one a t  vz= 1.4) 
representing Z(U) as computed from equation (3), 
and the corresponding points representing 
p?$@/2(m/CDA) as computed from the pair of 
“exact” equations of motion with the same initial 
conditions. As noted in the figure, Z ( 5 )  corre- 
sponds to arbitrary mfC,A and an arbitrary 
atmosphere, while pT4%/2 (m IC,A) corrwponds 

- 

to  m/CDA=l slug ft-’, and to the ARDC (1956 
model) atmosphere wherein the temperature 
varies in a prescribed manner with altitude. The 
latter calculations were obtained by use of the 
computing-machine program of Nielsen, Goodwin, 
and Mersman (ref. 3 )  applied to a spherically 
symmetric, nonrotating atmosphere. This close 
agreement for both entries exemplifies the accuracy 
of the approximate method and its applicability 
to nonexponential as well as exponential atmos- 
pheres. 

If we now consider the case of a lifting vehicle, 
we see from the differential equation (3) that, for 
ajixed LID, the 2 function would not be independ- 
ent of local variations in p with altitude, as is the 
case for L/D=O, since the parameter JF(L/D) 
would vary as 4F. An illustration of this may 
be seen from the small differences evident in figure 
2 between the curve representing the Z function 
for constant ,IF(L/D) = 32.5 and the correspond- 
ing points representing the more exact calculations 
of p ’ i i J i $ / 2 ( r n / ~ ~ ~ )  for constant L/D=l, and 
-&(LID) fluctuating with altitude (between values 
of about 28 and 33) according to the ARDC atmos- 
phere. The small differences apparent in this 
particular case do not reflect an inaccuracy of the 
approximate 2 function method, but merely 
exhibit the importance of atmospheric altitude- 
temperature variations for lifting vehicles. At 
the very lowest velocities (Z<O.O3), though, the 
approximate theory breaks down because the 
approximation ((L/D)tan -yl<<l is no longer a 
good one. 

PERIGEE PARAMETER FOR SPECIFYING AN ENTRY TRAJEC- 
TORY AND CORRIDOR WIDTH 

Development of perigee parameter.-With con- 
fidence now in the accuracy of the approximate 
analytical method, we can examine the structure 
of the basic differential equation together with its 
boundary conditions in order to show that the 
initial parameter Z‘ can be replaced by one more 
convenient for characterizing shallow supercircular 
entries. From equation (A2) it follows that, for 
shallow entries starting a t  a high altitude where 
the initial values of p t  and hence 2, are negligible 
compared to their corresponding values during 
entry, the second initial condition may be written 
as 

(6) 7’ - i7 i-vwz Yr 
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4 

.O 

I 

Z-function for 
arbitrary otrn.. arbitrary m/CDA 

pii&/2(m/CDA) by exact 

method ref.(3):  ARDC atm., 
m/CDA=I s1ug/ft2 

0 2 .4 .6 .8 
Horizontal velocity, T 

10 12 4 

FIGURE 1 .-Comparison of approximate B function method with I I I U L ~ :  eriact ca!cr?!ztinr?q for nonlifting vehicles. 



CORRIDOR .4ND GUIDANCE FOR SUPERCIRCULAR E N T R Y  INWO PLANETARY ATMOSPHERES 7 

4 

2 

.I 

8 

6 

.01 

a 

6 

4 

2 

Z-function for -I &L/D=32.5,  orbitrary rn/CDA 

0 

.2 .4 .6 .8 I .o I .2 
Horizontal velocity, U 

FIGURE 2.-comparison of approximate is function method with more exact calculations for a lifting vehicle. 

532933--01-2 
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The initial flight-path angle y i  should be taken a t  
the beginning of the “sensible atmosphere.” It 
is not a fully satisfactory parameter from a con- 
venience standpoint because, for very shallow 
trajectories, such as grazing supercircular entries 
which just  pass through an edge of atmosphere, 
the initial value of yt  is cumbersome to define. 
Considerable supplementary information is re- 
quired in order to state a t  just what altitude the 
sensible atmosphere begins for each particular 
vehicle; the appropriate altitude depends on 
m/CDA, yi, and Oi, as indicated in appendix B of 
reference 2 .  

The conic perigee point is not complicated as 
is the initial point for shallow entries; this may be 
illustrated with the help of figure 3. Shown in 

CONIC PERIGEE 
I I 

FIGURE 3.-Coriic perigee. 

the sketch is the hypothetical conic trajectory 
(short dashed line) which the vehicle would have 
followed had there been no atmosphere around the 
planet. This conic has a perigee of distance r p  
from the planet center, but the actual trajectory 
may continuously descend and have no perigee. 
The entry trajectory could be specified equally 
well either through conditions at  point (1) by the 
values of r l ,  VI, and yl, or a t  point (2) by an 
entirely different set of values r2,  I:, and y2, or a t  
the initial entry point (i) by a still different set 
r , ,  Vz, andyi. All of these points, however, corre- 
spond to cornnion values of radius r ,  and velocity 
T’, a t  the conic perigee point where yp=O. 

The value of r,  can be calculated readily from 
Xewton’s equations for a two-body drag-free 
trajectory 

- - l/TY? ,\9 , T 7 2 f r )  

7 )  
r p - l - ~ ~ v - - ~ ~ - ~  l,’2)siz2y 
r 2 -  V2 

- -_ 

where 

Since we are considering only shallow entries for 
which the flight-path angle is small, we employ 
an approximate form of equat’ion (7) ,  evaluated - at 
the initial point (valid if sin2yi=y? and Vi” 
(2-V:) sin2 yi/(V?--1)2<<1) 

(9) 

The limitations resulting from this approximation 
are discussed later. 

The initial condition imposed on the differential 
equation for the Z function can now be combined 
with the relationship (9) just derived to show the 
equivalence between dFi y i  and a certain perigee 
parameter defined in terms of conditions a t  the 
conic perigee (subscript p). We introduce R, 

perigee parameter defined by 

For an atmosphere which is essentially exponen- 
tial between the initial point and the conic perigee 
point, we have p p / p i  = & ( r , - r d .  From the defini- 
tion of Z (eq. (2)) we also have Z , = i i , , , ~ ~ ~ /  
2 (m/CDA), so that 

For shallow entries, y12 can - bc disregarded - com- 
pared to unity, yielding u:= \ 12 cos2 y z g  b 12, while 
r p / r ,  in equation (11) can bc set equal to unity 
consistent with the approximation made in writing 
equation (9). Thus, by combining (9) and (11), 

- 

We see from this latter eqiiatioii that for thc case 
of s1ialIow entries, JF, y 1  is a function only of r,, Z,,  and F,. Consequently, the two initial 
conditions, 2, and ZfI=4E yz,  imposrd a t  5, on 
thc basic differential equation can, if dcsircd, be 
replaced ln- the equivalent two, 2, and F,, im- 
posed a t  7, (for sliallow- - entries r=Z); in effect, 
then, F, replac~s dPri y, as one of tile iwo k i t i d  
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conditions. Throughout the rest of this report 
the perigee parameter Fp is used as the basic 
parameter describing shallow supercircular en- 
tries, rather than JF, yi. Its  use conveniently 
characterizes such entries because it is applicable 
to any planet, and to a vehicle of any m/CDA. 
The value of F, is easily calculated from two-body 
trajectory equations without concern for where 
the sensible atmosphere begins. It is noted that 
in the earth’s atmosphere an increase in the perigee 
parameter F, by a factor of 10, for example, means 
that the re-entry trajectory would be “aiming” 
at a conic perigee altitude about 10 miles lower, 
since the density changes by a factor of 10 in 10 
miles (see table, p. 4, for Al0y of other planets). 

Summarizing, we see that three dimensionless 
parameters determine shallow entry motion : the 
entry velocity pi ,  the lift parameter 1/F(r(L/D) 
which appears in the differential equation, and 
the perigee paramcter F,. 

For later use, i t  is noted here that the angular 
distance so/r from the conic perigee to the point of 
impact (Z=O as illustrated in fig. 4) can be shown 

FIGURE 4.-Range notation. 

to depend on only the same three parameters as 2 
depends on, vf, dF(L /D) ,  and F,. To this end 
we start with the defining equation, 

where el is the angle between the conic perigce and 
the initial point. From equation (AS) for (s--S,)/r, 
and the e-y relationship for two-body trajectories 

V2 sin 2y 
2[V2(r/rp) - 11 

sin e= 

which, for small angles becomes 

at the initial conditions, we obt,ain the equation 

Since all members on the right side of this latter 
equation depend only on rt, .\iisr(J,/D), and f i r  y, 
(or F,), the quantity @(so/r) is similarly de- 
pendent. This relationship is utilized later to 
specify the landing point of nonlifting vehicles 
entering at supercircular velocity. 

Some remarks are in order here about the as- 
sumptions made in demonstrating the equivalence 
of F,  and 1 6 %  yr. The development is restricted 
to entries which are shallow (sin y l ~ y l )  and to 
entry velocities not too near circular in order that 
equation (9) be a good approximation. An exam- 
ination of the higher order terms omitted from 
equation (9) reveals that this equation is not a 
good approximation if v,Z- l<yl,  which corre- 
sponds to near-circular entries for which the angle 
ei between the Kepleriari perigee and the initial 
point is greater than about 90’. Since y r  is the 
order of 0.1 (or less) near r=1 for most manned 
entries that are deceleration-limited, the use of 
F, as a correlating parameter for similarity of 
entries into different, planetarv atmospheres is 
restricted to about v:>1.1 or r1>1.05.  For the 
domain of planetary similarity in terms of F,, 
namely, for shallow supercircular entries a t  
Vi>l  .05, i t  would make no appreciable difference 
whether the full or the approximate equations 
were employed. The full equations are (7), ( I l ) ,  
(14), the full differential equation (AI) for 2, and 
the associated equations which include cos y 
factors. The corresponding approximate equa- 
tions are (9), (12), (15)) the approximate diffcren- 
tial equation (3) for 2, and associated equations 
wliidi use cos y = l ,  sin y=y. For Fl<1.05, 
however, it would make a difference whether full 
or approximate equations were employed. I n  
making all numerical computations the full equa- 
tions were used (with dp=30), since these equa- 
tions are only slightly more lengthy to program on 
an IBM 704 than are the corresponding approxi- 
mate equations, but in presenting all results, they 

- 
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are plotted in terms of the dimensionless param- 
eters appropriate for planetary similarity. Con- 
sequently, in the rangr 15 vz< 1.05, the results 
plotted in subsequent figures, strictly speaking, 
would apply only to Earth (t /p=30),  but in the 
range Tt>1.05 thcy would applp to any planet. 

I t  is noted also that, in the development of 
equation (11) for F,, the value of p tacitly has been 
assumed constant. Actually, B in equation (6) 
would propcrly be and in equation ( I l ) ,  some 
mean value Pmran averaged between r p  and r t .  An 
improvement in accuracy can be obtained by 
regarding in thcsc cquations as the “semi- 
local” value (see ref. 2) averaged over a small 
strip of altitude just above the conic perigee alti- 
tude, rather tlian b~ regarding it as equal to  the 
average for the entire atmosphere ( ~ ’ E E ~ O  for 
Earth). 

Definition of corridor width.-If we have two 
trajectories bounding an entry corridor, the differ- 
ence Ayp=ypou- y p w n  bctwt.cn their two conic 
perigee altitudes is defined as the corridor width, 
as illustrated in figure 5 .  By cmployirig the 

/ 

AYp - 

FIGURE 5.-Definitiorl of corridor width. 

exponential-atmospherc approximation bet,ween 
yp,, and ypun there results, from the defining 
equation (10) for the perigee paramrter, 

or, in 
wliicli 
of 10, 

terms of the altitude increment Aloy over 
atmospheric density changes by a factor 

For the special case wherein m/CDA is the same 
along the two boundaries, 

AYp= AIOY (lOgioFp,,,,- lOgioFp,,) (19) 

It is to be noted from equation (18) that, in a 
given exponential atmosphere (constant p)  , the 
corridor width for any fixed mlCDA depends only 
on Fpu,/Fp,,, and is independent of m/CDA. The 
altitude of a corridor boundary, or of the corridor 
center, however, depends on m/CDA since pp-  
m/CDA (see eq. (10)). In  the earth’s atmosphere 
the corridor width would vary a small amount 
(about Z!Z 10 percent) because of the variation of 0 
with altitude, latitude, and season. 

DETERMINATION OF GUIDANCE REQUIREMENTS FROM 
CORRIDOR WIDTH 

Since the width of the entry corridor between 
the conic perigee altitudes of overshoot and undcr- 
shoot is independent of m/C&, it provides a con- 
venient basis for calculating and visualizing guid- 
ance requirements. From a knowledge of the 
corridor width Ayp= ypoz)-~pz(lz between conic 
perigees, the corresponding guidance requirements 
on velocity and flight-path angle can be calculated 
from eqiiation (7) representing a conic trajectory 
in tcrms of T and y :  

If the corridor width is relatively narrow, the 
errors, AT, Ay, and Ar at  any given distance r from 
the plariet are wlaied to  t h c  ~.hacge ifi conic 
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perigee altitude Ay,=Ar, which they produce is normalized with resDcct to the earth by a 
through the derivatives of the above function. dimensiorilcss function dcfined by 

These derivatives become especially simple for the 
case of parabolic entry (Fz=2 and 2r ,=r~2cos2y ) .  

(22)  

For narrow corridors r,Nra, so that the per- 
missible velocity error AV/Vfor zero error in y and 
r is simply Arp/2ro, independent of r .  The per- 
missible Ay error for zero errors in r and i-, how- 
ever, would decwase substantially as T increases. 
Some examples of the calculated guidance require- 
merits for entering the corridors of various planets 
are presented later in terms of the plus-or-minus 
tolerances about the corridor center-line trajectorg 
(c.g., -+Ay=Ay/2). It may suffice as a reference 
point to note here that a, 10-mile wide corridor in 
tlie earth’s atmosphere (Ay,/ro= 1/400) would 
require, a t  a distance of 10 earth radii, a flight- 
path angle accuracy of about iAy=O.O1° if there 
were no errors in velocity or position. 

RESULTS AND DISCUSSION 

-- 

In what follows the simplest case of nonlifting 
entry is discussed first, with attention being given 
to the corridor boundaries, corridor width, and 
aerodynamic heating problems. Lifting entry is 
then discussed giving consideration to the inter- 
dependence of CD and LID, inasmuch as such con- 
sideration is necessary in realistically evaluating 
the net broadening of the entry corridor made 
possible through the use of lift, as well as in 
evaluating the aerodynamic heating penalty asso- 
ciated with lifting vehicles. I n  the final section, a 
brief discussion is presented of the guidance toler- 
ances imposed by the corridor widths for super- 
circular entry into various planets. 

I n  the presentation of many results which follow 
a normalization technique is used. Thus equation 
(A4) for tlie resultant deceleration in earth g’s for 
shallow entry 

where ~ ~ - J ~ 3 0 ,  The normalized 
function, like thc 2 function, depends only on the 
parameters J p ( L / D ) ,  rt, and F,, and is appli- 
cable to anv planet. For the earth, is equal to 
30 ~ Z 4 1 f  (L/D)2, the deceleration in earth sea- 
lrvel s’s (see eq. ( 2 3 ) ) .  For other planets, tlie 
deceleration 0 in earth !J’S can readily be obtained 
from B and the planetary constants by combining 
tlic above two ( quations. 

The riormalizcd distancc from thc conic perigee to 
tIie landing point is - J m ( s o / r ) ,  wliich is equal to 
soir for the earth, and which also depends only on 
the same three parameters that 2 depends upon. 
The dimensionless quantities a and a (defined in 
appendix A) pertaining to convective heating in a 
planetary atmosphere arc riot normalized with 
respect to Earth. 

SINGLE-PASS ENTRY OF NONLIFTING VEHICLES 

The simple case L/D=O will serve to illustrate 
the grncrality of the perigee parameter, and its 
convenience in describing corridor boundaries. A 
plot of the maximum value of the normalized 
deceleration (amaz) versus F, is presented in 
figure 6 for various supercircular entry vclocities. 
As indicated on tlie ordinate scale, a is equal to 
G / g e J m  for nonlifting vchicles (see eq. ( 2 5 ) ) .  
The circle points in this figure designate the 
overshoot boundarj- for single-pass entries. Thus, 
in a parabolic entry- at essentially escape velocity 
( vt= 1.4), the overshoot boundary occurs at a 
perigee parameter of 0.06. If a parabolic approach 
trajectory aims a t  F,<0.06 (at a higher perigee 
having lower density and, hence, smaller F,) the 
vehicle will pass through the atmosphcre, orbit, 
and then return for at least a second pass before 
entry is completed; but, if the vchicle aims at 
F,>0.06, entry will be completed on the first pass. 
It is to be noted that the overshoot boundaries in 
terms of F, apply to any planet. 
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FIGURE 6.-Maximum deceleration during entry of nonliftirlg vehicles. 

Undershoot boundaries and corridor widths can 
also be obtained readily from the normalized 
deceleration curves in figure 6 having logloF, as 
the abscissa. If m/CbA is thc same a t  overshoot 
and undershoot, tlie corridor width on such a 
plot is simply proportional to the spacing between 
the two abscissa points representing these bound- 
aries (see eq. (19)). We will consider first the 
case of entry into Earth. If, for example, maxi- 
mum decelcratiori is arbitrarily set a t  10 G (ten 
times the earth's sea-level acceleration), the undrr- 
shoot boundary for the earth would be at Gmaz= 10 
in figure 6, and a t  FpUn=O.31 for parabolic entry. 
The ratio FP,,/Fpoo=O.31/0.06= 5.1, corresponds 
to  0.7 of a loglo cycle. Sincc one loglo cycle in F ,  
reprcscnts a corridor width equal to Al0y for a 
fixed m/CDA (src eg. (19)), the width of the entry 
corridor betwwri conic. pcrigecs in the present 
example is 0.7AlOy, which amounts to 7 miles for 
the earth. 'This corridor wiciiii wuuli: bc t h e  

wcrc increasrd by a factor of 100, however, both 
Same for any fixed value Of m1CD.A. If m/C'DA 

corridor boundaries (which correspond to fixed 
values of F,) would be situated lower in altitude 
where the density is 100 times greater (20 miles 
lower for the earth), but the corridor width between 
the two boundaries would still be 7 miles for 
single-pass parabolic entries limited by 10 G 
deceleration. It is clear that by specifying the 
corridor width in terms of the width between conic 
perigees, i t  is a simple matter to compute the 
convcntional plus-or-minus guidance tolerances a t  
any distance from a planct from the well-known 
equations for two-body trajectories. Examples of 
this are presented later. 

Turning now to diffcrcnt objects in the solar 
system, tlie entry corridor widths can be shown to 
vary over widc limits, as might be anticipated. 
The example value am,,= 10 of normalized decel- 
eration would correspond in the case of Jupiter, 
for instance, to a deceleration of 53 Earth g's, 
sicce yaJ!Rr!m is 5 .3  for Jupiter (see eq. (25)). 
Since one log10 cycle in F, corresponds to 26 miles 
altitude on Jupiter (see table, p. 8, of planetary 
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Vellus- . ~ ~ ~ ~ ~ 

Earth- - ~ -. ~. 

Mars- ~. ~ ~. ~. 

T i t a n _ _ _ - _ - - -  
Jupiter. ~ ~ ~. . 

constants), this 53 G,,,, corridor width for parabolic 
entry would be 0.7)<26=18 miles. The 10 G,,, 
corridor width would be nonexistent, since the 
smallest possible maximum deceleration for 11011- 

lifting - vehicles entering any planet corresponds to 
G‘,,,=6.5 (this map be seen from fig. 6 or, more 
clearly, from a cross plot presented later), which 
corresponds to 6.5)<5.3=34 G for Jupitcr. - On 
the other extreme, this example ~ value Urn,,= 10 in 
the case of Titan (ge4(/3r)e=0.06) would corre- 
spond to a maximum deceleration of only 0.6 G, 
and to a corridor width of 0.7)<43=30 miles for 
this small value of maximum deceleration. Since 
even normal eritrv at parabolic velocity would 
result in only 5.2 G for Titan, the corridor width 
for 10 G,,, would actually be the full radius of 
Titan (1300 miles) plus the conic perigee altitude 
for overshoot (bctwcen about 50 arid 250 miles, 
depending on m/(’DA and the siirface-1evc.l atmos- 
phere density on Titan). Similar calculations 
yield the following table of corridor widths for 
nonlifting ve1iic.l~~ elitering ut parabolic velocity 

0 8 23 80 
0 7 20 70 

210 400 1250 2200 
0 0 0 10 

1300 1400 1400 1400 

(a value of 0 for the corridor width designates 
nonexistence of a corridor in the sense that the 
minimum possible G,,, is less than the value 
arbitrarily selected for the undershoot boundary) 

Corridor width - in miles for L/D=O, 
I.,= 1.4 i 

-- I 5 c,,, I 10 C,,, 1 20 G,,, I 40 G,,, I 

An approximate increment of 100 miles for the 
ovcrslioot altitude has been included in the esti- 
mates for Titan. For Mars an increment of 80 
miles has been included (corresponding to L/D=O, 
m/CDA=l slug/sq ft, and to a surface-level 
atmosphere density of 0.0002 slug/cu ft). 

An interesting, and possibly unexpected, result 
for the entry of nonlifting vehicles is exhibited by 
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the curves for maximum deceleration in figure 6, 
and also by the curves for maximum rate of lami- 
nar heating in figure 7. The minimum values of am,, and Pmaz do not occur a t  the lowest-supercir- 
cular entry velocity (circular velocity, Vt= 1) , as 
might be expected on first thought. These minima 
occur for entry velocities that are substantially 
supercircular. This is apparent from a cross plot 
of the various minima, as presented in figure 8. 

- Single-pass entries ____ Multiple-pass atm. broking 

8 

x 

E .3-w 6 
i s  

- 4 

- 2 

c I I I 1 1 

1.0 1.2 1.4 I .6 1.8 
Entry velocity, c. 

FIGURE 8.-Cross plot of the minimum values of the 
maximum deceleration and maximum heating rate as a 
function of entry velocity for nonlifting vehicles. 

The least possible maximum deceleration would 
be experienced by entering a planet a t  a hyperbolic 
velocity of vi= 1.48 and aiming at  a perigee param- 
eter of F,20.12, resulting in flm,,=6.5 (as com- 
pared to G,,,=8.3 for circular orbital decay). 
The least possible maximum heating rate for non- 
lifting vehicles occurs a t  vr=1.12 and a t  F,= 
0.018, resulting in 7jm,,=0.19 as compared to Fmaz= 
0.22 for circular orbital decay. 

The physical reason these minima occur a t  
supercircular rather than at  circular entry velocity 
is that supercircular velocity is accompanied by a 
greater centrifugal lifting force than circular 
~ d ~ C i t j . ’ ,  a d ,  h e ~ c e ,  r e s u l k  heneficiallp in slower 
rates of descent. If 8, is not too much greater than 
unity, this beneficial effect of centrifugal lift 

dominates over the detrimental effect of increased 
velocity, whereas for very large vi the latter effect 
dominates. The net result is a minimum a t  some 
supercircular vf>l. In  different terms, these 
minima arise a t  vt>l rather than a t  vf=l be- 
cause, by the time the local velocity for entry at  vi>l has been reduced to v= 1,  the vehicle is in 
essentially level flight (not necessarily in a slight 
climb) a t  an altitude where the deceleration is 
sizable; as a result, by the time the vehicle de- 
scends to the relatively lower altitudes a t  which 
G,,, or qmaz would be experienced if vi were unity, 
the velocity has been reduced relatively much 
more. Thus in supercircular entry, the maximum 
conditions are experienced a t  higher altitudes 
where they are less severe than in circular entry. 

The normalized curves for the total heat ab- 
sorbed during nonlifting entry are presented in 
figure 9. They do not exhibit minima. For any 
entry velocity the least possible total heat is ab- 
sorbed by entering at  the largest possible value of 
F,, corresponding to the steepest possible descent 
and to the greatest possible deceleration. This 
result is to be anticipated from the general inverse 
relationship between a and deceleration previously 
developed as equation (A14), and would apply 
also for lifting vehicles. Near the overshoot 
boundary, - where the decelerations are the smallest, 
Q is the largest. For parabolic entry a=4 .3  a t  the 
overshoot - boundary (Fp,,=0.06) , whereas a t  the 
Gm,,= 10 undershoot boundary (Fp,,=0.31) the 
corresponding value Q=2.1 is half that a t  over- 
shoot. As will be seen later, the difference be- 
tween at  the two boundaries for lifting vehicles 
can be considerably greater. 

Normalized curves giving the landing point rela- 
tive to the conic perigee point are presented in 
figure 10. As would be expected, the point of im- 
pact for vehicles aiming at  a given F, moves 
around the planet in the direction of motion (from 
positive toward negative so) as the entry velocity 
is increased. Except for entries near the overshoot 
boundaries, though, the landing point is surpris- 
ingly near the conic perigee point and is not greatly 
affected by 7,. Thus, in the range 1 I F p I  10, a 
nonlifting vehicle would impact before the vehicle 
passes under the conic perigee point, always land- 
ing within a distance of about 0.25r of the conic 
perigee for any 8, between 1.05 and 2.0. 

The various charis yiusoiitei! for nd i f t ing  
vehicles cover only the range of shallow entries for 
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Perigee parameter, F - 

FIGURE 9.-Total laminar heat absorbed during entry for nonlifting vehicles. 

F,< 10. Beyond this value the entries become so 
steep that the gravity and centrifugal forces are 
small compared to the vertical components of 
drag and deceleration. Under such circumstances 
the solution of Allen and Eggers (ref. 4) for a con- 
stant flight-path angle would apply. I t  is shown 
in reference 2 that this particular solution corre- 
sponds to a function Z,  given by 

and to 

- 
U z,=& sin T i Z n  =- 
ut 

(27) 

These equations can be used for the steeper en- 
tries. The use of y i  for steep entries is not arbi- 

532933-61-3 

trary, and is probably morc convenient t l im the 
use of F,. The conic perigee radius of a steep 
entry, if desired, is readily calculated from equa- 
tion (7), the corridor width would be simply 
ro-r,, and the landing point would be at an 
angle 8, from perigee, where Bo is calculated from 
the full equation (14) for 8. 

OVERSHOOT BOUNDARY FOR LIFTING VEHICLES 

Before discussing the influence of aerodynamic 
lift on the corridor boundaries it is desirable to 
note that such discussion considers the inter- 
relationship between LID and CD. Any coupling 
between LID and CD takes on added significance 
when aerodynamic heating is considered, since 
corridor width arid aerodynamic heating each 
depends on both LID and CD, and in conflicting 
ways. It is unfortunate that shapes cannot be 
designed to have maximum LID with simultane- 
ously maximum CD. Large CD is desirable in 
order to minimize aerodynamic heating (see ref. 4, 
nr eqs. (913) ani: (.&14)), and iarge LID is desir- 
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Perigee parameter, Fp = ~ 

FIGLRE lO.-€Iori~ontnl distance from conic perigee to  landing point of lionlifting vehicles 
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FIGURE 11.-Lift-drag polars fof-lifting surfaces in hypersonic Irjewtonian flow. 
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I 

Decreosing n ,  l ow-drag  port ion of drog polor 

1.0 

lncreosing a ,  high-drag por t ion  of drog polor 

Deploytng drog dewce ot cons1onl C, 

E 

Simultaneous decreosing a ond deploying drog device to mointoin 
constant CD 

C 

0 

FIGL-RE 12.-Interdependence of CD and LID for four different methods of varying LID between 4 ana 0. 

able in order to masimize the corridor width. 
High LID values are obtained, however, only with 
slender shapes having low CD, whereas low LID 
valueslcan be obtained either with large CD (blunt 
shapes, or slender shapes at large angle of attack 
a)  or with small CD (slender shapes a t  small a). 
The approximate dependence of LID on CD for 
lifting sarfaces ic !;ypersonic N e w  ioriian fiow is 

developed in appendix B, and is illustrated by the 
four curves in figure 11. As noted in this appen- 
dix, thc  CD-LID coupling represented by. the top 
curve in figure 11 produces the largest CD for a 
given LID of the several cases considered (as 
illustrated by the curves in fig. 12), and, hence, is 
employed herein to evaluate the net broadening in 
corridor width which can be realized by employing 
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10-3 10-2 10-1 

Perigee parameter, Fp = 

FIGURE 13.-Overshoot8 boundaries for single pass entries. 

I 

a lifting vehicle. This particular coupling also is 
employed to help evaluate the trade-off between 
guidance and heating problems. 

Determination of overshoot boundary.-If a 
vehicle entered along the overshoot boundary, it 
would pass through barely enough atmosphere to 
just reduce the velocity to local circular as the 
vehicle is about to exit from the atmosphere. 
The overshoot boundary has been determined by 
plotting a curve of the exit velocity vez for 
atmosphere braking passes as a function of F,, 
and then observing the intercept at vez=l. The 
results are prcsented in figure 13 in terms of the 

single-pass entry. Thcse curves apply to any 
planet. 

As might have been anticipated, the curves in 
figure 13 show that, relative to the case of LID=O, 
the overshoot boundary can be extended upward 
(to lower pp and lower Fp)  if negative lift is em- 
ployed, that is, lift directed toward the planet cen- 
ter. When the interdependence of LID and GID is 
considered, the actual extension in the conic perigee 
atlitude for overshoot (Aypo, is proportional to A 
log FpOr/CD), would be less than the apparent exten- 
sion in Fp because CD decreases as LID increases. 
Even the extension in F, is not impressively large, 

the domain below and to the right -represents the curves plotted in figure 13 and the values 
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tabulated in appendix B for the CD-LID relation- 
ship yield the following results for the parabolic (vi= 1.4) overshoot boundary expressed in terms 
of the increase Aya,, in the conic perigee altitude 
at overshoot. 

0 
5 
7. 5 

10 
12. 5 
15 

Extension 
upward of 

assuming 
constant CD, 

miles 

Y D m ,  

Extension 
upward of 

YP.. 
considering 

CD-LID 
dependence, 

miles 

0 
4. 8 
6 
5 
2 

-7 

It is seen that when cD-L/D coupling is consid- 
ered, the highest conic perigee altitude for over- 
shoot would be obtained with LID=-0.5 and 
would be only 6 miles higher than that for L/D=O. 
The overshoot alt,itude for LID= -4 actually is 
substantially lower than for LID= 0, illustrating 

that too much negative LID a t  overshoot would 
result in a narrower corridor than if LID were 0. 

A more effective method of extending the over- 
shoot boundary would be to deploy a large, light, 
high-drag device. In  this way it appears prac- 
tical to increase CDA by a factor of about 1000. 
The corresponding conic perigee altitude a t  over- 
shoot would be raised by an amount 3 Aloy (see 
eq. (18)), which is equal to 30 miles for Earth. 
This is 5 times the extension in overshoot attain- 
able by the use of negative lift. 

In addition to specifying the overshoot bound- 
ary (vez=l), it also is of interest for hyperbolic 
entries to specify the nonreturn boundary ( zz= 
112). Both boundaries are illustrated in figure 14 
for v,=1.6 and i7,=2.0. It is evident from the 
less than pencil-line width between solid and 
dashed curves that there is negligible difference 
between these boundaries in the range of J ( p r ) ,  
(LID) less than about -0.5. Even for L/D=O 
there is little difference, the overshoot boundary 

- 

-2 - 

<;I (overshoot boundary) 

---- f i (nonreturn boundory) 
Hyperbolic exit 

Elliptic exit I -  
@ n 

Perigee porometer 

Single-pass entry 

FIGL-RE 14.--Sonretur1i aiid overshoot boundaries for hyperbolic entries. 
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for vd=2.0 being at Fp=0.17 and the nonreturn 
boundary at  Fp=O.lO. This difference would 
amount to 0.2 Aloy, or to only 2 miles of altitude 
for the earth’s atmosphere. It may perhaps be 
surprising that the overshoot boundary is so 
sharply delineated in the sense that an entry pass 
slightly beyond it would result in a sizable super- 
circular exit velocity, rather than in the comple- 
tion of entry. This may be an important consid- 
eration in prescribing the design boundaries for 
the guidance and control system of a spacecraft. 

The present calculations of the overshoot 
boundary for arbitrary m/CDA and planetary 
atmospheres are in good agreement with some 
calculations made by Lees, Hartwig, and Cohen 
(ref. 1) for a vehicle having m/CDA=3.1 slug ft-2 
and entering the earth’s atmosphere a t  35,000 
feet per second (v i=1 .36 ) .  They presented 
their results in terms of the flight-path angle at 
an arbitrary altitude of 400,000 feet. According 
to the present method, the radius to conic perigee 
is determined by F,, m/CDA, and P from equation 
(10); the angle at y=400,000 feet is determined 
from equation (7) or (9). For their vehicle the 
following results are obtained: 

Present 
method, y a t  
400,000 f t ,  

deg 

5. 2 
4. 4 
4. 2 

Lees, et al., y 
at  400,000 

ft, deg 

5. 4 
4. 4 
4. 2 

The agreement is quite satisfactory. 

UNDERSHOOT BOUNDARY FOR LIFTING VEHICLES 

A deceleration-limited undershoot boundary is 
affected not only by the maximum value of G 
selected, but also by the particular way in which 
the LID is monitored. By “constant LID” is 
meant ail entry in which LID is constant a t  least 
until the flight path is essentially horizontal 
(y E 0, near where maximum horizontal decelera- 
tion is reached) and is reduced thereafter in order 
to complete entry in a single pass. By “modu- 
lated LID,” as introduced by Lees, Hartwig, and 
Cohen (ref. l),  is meant an entry in which LID is 
monitored well before y=O is reached in the 
particular manner which maintains constant 
resii:iaiit deie!era:ion. 

The beneficial effects of modulated lift on de- 
celeration and/or guidance requirements have been 
discussed by Lees, Hartwig, and Cohen under the 

assumption that m/CDA is maintained constant 
as LID is varied. They show that by modulating 
the LID in a manner such that large LID values 
are employed in the first portion of the entry where 
the longitudinal deceleration is small, tlie resultant 
deceleration can build up to its maximum under 
conditions where the transverse component ( - lift) 
is dominant. Then, by maintaining constant 
resultant G through decreasing the transverse 
component (decreasing >/I+ (L/D)’) and increasing 
the longitudinal component, the entry with 
modulated lift can be completed without requiring 
large negative LID’S at any stage. In  this way the 
undershoot boundary for inodulated LID can‘be 
extended considerably froni the value forrconstant 
LID, provided the value of LID a t  entry is rela- 
tively high. Modulation, however, is not effective 
in extending the overshoot boundary. Overshoot 
is extended tlie most, as noted above, by setting ‘a 
vehicle a t  LID= -0.5 and then keeping this value 
constant until rex= 1 is reached. 

In  the present research, a large number of 
calculations have been made for the case of con- 
stant L/D.  These calculations can be applied also 
to the case of modulated LID by employing a 
result of Lees, Hartwig, and Cohen. They found 
that the ratio of G,,, for modulated lift to G,,, for 
constant lift was esscntially iridependent of yi and 
Vz and dcpcndent only on the value of LID at 
entry. A curve showing their result is presented 
in figure 15. Since they found this curve to be 
independent of yz, it would be independent of the 
parameter dF yi and hence presumably can be 
applied to any planetary atmosphere. It should 
not be surprising that this curve varies almost as 
[I + (L/D)z]-1’2, inasmuch as tlic benefits of modu- 
lation in alleviating the resultant deceleration are 
obtained primarily by working with the trans- 
verse lift component. The curve in figure 15 is 
used in this report for obtaining undershoot 
boundaries for modulated LID from curves calcu- 
lated for constant LID. 

Curves are presented in figure 16 of the nor- 
malizcd niaxiniuni deceleration &,= as a function 
of log,,Fp for various 7% and constant LID. The 
abscissa extends to much higher values of I’F, 
(1040 for vz=1.05 and 1.1, corresponding to 400 
m d ~ s  Rltitude increment for the earth) than 
prcvioiisly considered. The circle points repre- 
sent the overshoot boundary for single-pass 
entries. From tliese working cwrves a deceleration- 
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the range of LID and Fp considered, a vehicle 
would exit from the atmosphere if the LID were 
held constant during the entire entry. The vehicle 
can easily avoid exiting by reducing LID after 
G,,, has becn experienced near the point where 
r=O. 

The curves in figure 16 for lifting vehicles 
represent the domain of shallow entries (yi<lOo 
in most cases for the earth) and of L/D<4. 
Steeper entries, or those with L/D>4, correspond 
to conditions under which the gravity and centrif- 
ugal forces are small compared to the lift and 
vertical deceleration. Under such circumstances 
the approximate solution of Eggers, Allen, and 
Neice (ref. 5) for skip vehicles would apply. As 
shown in reference 2 ,  this particular solution 
corresponds to a function Z ,  given by 

0 I 2 3 4 
L /D  a t  entry 

FIGURE 15.--Effect of modulated lift in reducing peak 
deceleration; from results of Lees, Hartwig, and Cohen 
(ref. 1). 

limited undershoot boundary can be determined 
for a given G,,,, LID, and atmosphere. A heating- 
rate-limited undershoot boundary can be calcu- 
lated approximately from the relationships de- 
veloped in appcndix A between G,,, and convective 
heating. 

It is apparent from figure 16 that an increase in 
LID up to about 2 can extend considerably the 
undershoot boundary for a given G,,,. The 
magnitude of the extension in terms of log F, 
would be proportional to the extension in altitude 
only if CD were independent of LID (the effect of 
CD-L/D coupling is considered later). In  the 
initial stages of entry into the atmosphere, the 
transverse lift force deflects the trajectory upward 
so that a lifting vehicle does not descend as rapidly 
into the lower layers of dense air as does a non- 
lifting vehicle. Hence, for a given Fp a lifting 
vehicle experiences less longitudinal deceleration 
than a nonlifting one. This beneficial effect of 
LID increases only up to about L/D=2. Im-ger 
values of LID (for the case of constant LID ciitry) 
do not further extend the undershoot boundary 
because the adverse effect of the lift force in pro- 
ducing transverse deceleration dominates the 
beneficial effect of the deflected trajectory in 
reducing longitudinal deceleration. Over most of 

- 

and to 

As in the case of steep nonlifting entries, the use of 
y i  for steep lifting entries is probably more con- 
venient than the use of F,. 

The prcserit calculations of the undershoot 
boundary, like those of thc overshoot boundary, 
can also be comparcd with calculations made by 
Lees, Hartwig, and Cohen for their specific 
conditions (m/CDA=3.1 slugft-2, vz=1.36, earth's 
atmosphere, and y defined as that at 400,000 ft). 
For this comparison the 10 G,,, boundary is 
selected, with the following results: 

Present Lees, e t  
method y al., y at 
at 400,000 400,000 

f t ,  deg f t ,  deg 
-- LID 

0 5. 8 5. 8 
. 5  7 .  4 7 .  7 

2 8. 2 8. 5 
2 modulated 9. 8 10. 6 

___- 

The agreement is regarded as satisfactory. 

CORRIDOR WIDTH FOR LIFTING VEHICLES 

Single-pass entries.-In figure 17 curves are 
shown of both the overshoot and undershoot 
boundaries for shallow entries into the earth as a 
function of ]LID] for gm,, of 5 ,  10, and 20, and for 
various vt. These two boundaries determine the 
single-pass corridor width. For a given value of 
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_ _ _ _ _  

5 G,,, 10 G,,, 
_- -___- _-__ 

L L I, L L I, --1 

modulated 
u D u- u=l - = O  -=l 

D-o _- jj=l 

modulated 
______ _ ~ . - -  

0 27 36 8 52 70 
0 27 34 7 51 65 

210 300 370 400 550 720 
0 34 42 0 52 70 

- 

IL/D I , the overshoot boundary would represent 
L/D<O, and the unclerslioot L/D>O. The solid 
curves identified as constant LID, as noted pre- 
viously, correspond to LID fixed during entry 
only until r r 0 ,  and to LID monitored in some 
unspecified way thereafter in order to complete 
entry in a single pass; the dashed curves identified 
as modulated LID, represent a fixed LID only for a 
much shorter portion of the entry, and to  LID 
monitored well before the r=O point is reached. 
With a given Gma2 the undershoot boundaries are 
seen to be about the same for constant LID as 
for modulated LID in the range of [LID1 less than 
about 0.5. .At LID greater than about 1 ,  the 
undershoot boundaries with modulated LID are 
considerably extended beyond those for constant 
LID. 

I 

______- 

20 Gmoz 

I, 

- 

L -=I  
D 

modulated 
L O  D 

~ _ _ _  

26 105 140 
20 100 130 

1250 1240 1740 
0 90 120 

For vehicles having a fixed CD independent of 
LID, the effect of LID on corridor width can be 
visualized from the spacing between overshoot 
and undershoot boundaries, inasmuch as Ayp= 
Aloy(logl,Fpu,-logl~p,~) for such vehicles. In- 
spection of the spacing between the log Fp boun- 
daries in figure 17 shows that the corridor width 
for the rase of constant LID attains a maximum 
at LID between about 2 and 3, but for the case of 
modulated LID increases indefinitely as LID in- 
creases. The corridor width for modulated LID 
at (L/D)entw=3 (and CD independent of LID), 
for example, is essentially double that for con- 
stant LID over the entire range considered in 
figure 17 (5<Gm,,<2O and 1.05<vt<2.0). 
Some example values corresponding to CD inde- 
pendent of LID are as follows: 

Corridor widlhs for Titan are not listed since they 
correspond to such steep entries that aerodynamic 
lift is ineff ective in hrnadening the corridor width 
beyond the values already tabulated for L/D=O. 
Even in the case of Mars, the parabolic entry 
angle for 20 G,,, is sufficiently steep (47') that 
the reduction in longitudinal force brought about 
by the deflected trajectory is overweighed by the 
transverse lift force producing the deflection, so 
that the net effect is a greater resultant decelera- 
tion (and narrower corridor) for L/D=l than for 
L/D=O. Modulated LID, tliough, still appears 
to provide a moderate broadening of the Mars 
corridor, but this is based on the untested assump- 
tion that the curve of figure 15 applies to steep as 
well as shallow entries. The figures for Mars in 
the above table include a 100-mile increment for 
the conic perigee altitude of overshoot. This 
particular increment corresponds to (m/CDA)o,= 1 
sluglsq f t ,  (LID),,= -0.5, and to a surface-level 
atmosphere densit,y on Mars of 0.0002 sluglcu f t .  

Because of guidance errors, a spacecraft may 
unavoidably enter either near overshoot or under- 
Toot. A lifting vehicle could employ a different 
n D  if entry occurred near overshoot than if it 
occurred near und.ershoot, and could have greatly 
different CD at these two boundaries. It is of 
interest, then, to consider the interdependence 
of CD and LID in order to evaluate the practical 
effectiveness of LID in broadening the entry 
corridor. We will assume that L/D=-O.5 at 
overshoot, since this value prod.uces the highest 
overshoot boundary when the CD-L/D coupling 
is considered. At undershoot we will assume that 
any constant LID equal to or less than 4 could 
be employed. From equation (18 )  for the cor- 
ridor width it follows that with m/A fixed, 

(33) 
The values of F,  can be obtained from figure 17, 
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and cD from values of CD/c~,,, tabulated in 
appendix B (taking CDmaI=1.7, for example). I n  
making comparison with the case of CD independent 
of LID, we will consider two entries: (1) entry 
with LID at undershoot different from that at 
overshoot, but with CD independent of LID, and (2) 
the same entry, only with CD dependent on LID. 
For convenience, the invariant CD of case (1) 
will be taken as equal to the CDun of case (2). I n  
the case (2) with CD-LID coupling, the overshoot 
boundary would be higher than in case (1) because 
LID= -0.5 produces the highest overshoot alti- 
tude when the CD-L/D coupling is considered. 
In the range of (LID).. between about 0.25 and 
1, C D  is not greatly different than at LID=-O.5; 
for practical purposes, then, the corridor widths 

as those previously computed under the assump- 
tion that CD is independent of LID. Because of 
two compensating effects, the corridors tabulated 
above for L/D=l and CD independent of LID 
are also closely representative of those for CD-LID 
coupling with (L/D),,,= 1 and (LID).,= -0.5. 
Compensating effects occur because at (LID),,= 
-0.5, CD is double that a t  (L/D),,=l, but log 
Fa,, also is double. The corridors for higher 
(LID),,., however, can be considerably broader 
than if calculated under the assumption of CD 
independent of LID. Calculations from equation 
(33) of the 10 G,,, corridor width for parabolic 
entry into various planets, including the influence 
of (?,-LID coupling, and the assumption that 
LID= -0.5 a t  overshoot, yield tlie following 

in this range of are essentially the same values: 

I Corridor width in miles, vi=1.4 

Venus Ehrth Mars Jupiter I I I (L ID)  un 

Constant Modulated Constant Modulated Constant Modillatcd I Constant 1 L I D  1 L I D  1 LID ~ LID ! LID I L I D  I L I D  

I The relatively broad corridors for (L/D)u.=4, 
unfortunately, arc associated with scvere heating 
penalties, particularly in the case of modulated 
LID. 

A pronounced trend of decreasing corridor width 
with increasing entry velocity can be seen from 
comparison of the various portions of figure 17, 
but i t  is more apparent from the cross plot in 
figure 18 where vi is employed as the ordinate. 
Each plot is for various values of a,,, and for a 
different valuc of % ' m ( L / D ) ,  and can be applied 
to any planet for V,21.05 approx4matcly. For 
V ,  too m a r  1.0, the planetary similarity in terms 
of Fp as the correlating parameter breaks down, 
and the curves in the region 1.05>v121.0 are, 
strictly speaking, those for Earth only (or Tenus 
with $ / m ~ l )  us previously pointed out. The 
dashed curves representing modulated lift depend 
an  thr  indivitliinl vsliirs of both LID arid Jm 
(LID) for all T,, arid apply only to JF=30 
(Earth, Venus). It is evident, for esamplc, 
that the Earth 10 C,,,, corridor width for non- 

This association is discussed later. 

lifting vehicles decreases from about 180 miles 
a t  FZ=1 (circular entry) to 7 miles at Tt=d2 
(parabolic entry), to 0 miles a t  pt>1.8. For 
constant L/D= 1, the corresponding widths are 
about 560 miles at  v,=l, 50 at ~ l = & ,  and 20 
a t  i7%=2.0. Clearly, any increasc in entry 
velocity not only increases the amount of heat to 
be absorbed, but also increases tlie severity of the 
guidance requirements to be met by a manned 
spacecraft which is deceleration-limited. 

Multiple-pass entries.-Thus far consideration 
has been given only to the corridor for single-pass 
entry. Multiple-pass atmospherc-braking entries 
are of interest for several reasons, onc of which is 
that they provide a means of minimizing aero- 
dynamic heating. For example, in an entry which 
first makes a number of supcrcircular passes 
through the outer edge of atmosplicre until the 
velocity is reduced to circular velocity, and then 
completes the subcircular portion of entry with a 
sizable positive LID, the decelerations experi- 
enced-and, hence, also the rates of aerodynamic 

r 
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FIGURE 18.-Overshoot and iiiidershoot boiindnrirs as R function of entry velocity for various lift-drag ratioii and 
maximum deceleration. 
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heating-can be kept relatively small throughout 
the entry. It was shown in reference 2 that with 
LID= 0 six supercircular passes would be required 
to keep the maximum heating rates about the 
same as that experienced during the terminal 
subcircular portion of the entry. Since each pass 
is followed by a substantial period wherein the 
structure may cool as the vehicle orbits in prep- 

aration for a subsequent pass, this provides an 
attractive possibility for utilizing the combined 
heat-sink-radiation capacity of a structure. 

At least two important problems would arise 
if multiple-pass atmosphere brakings were at- 
tempted. First, they would require multiple 
passes through the radiation belt around any 
planet, and second, they can require a relatively 
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Sumber of 
passes to 
complete 

accurate entry guidance system. The guidance 
accuracy required may be deduced from the 
following results for parabolic entry (approximate 
F, boundaries have been determined by inter - 
polation from a number of solutions of the entry- 
motion differential eq. (3)): 

F ,  boundaries 
- 

m 

0.006 

. 005 

.0046 

. 004 

m 

0. 06 

. 0 3  

. 0 2  

.013 

m 

10'0 

102 

1 

0. 2 

It follows, for example, that the corridor width 
for completion of parabolic entry without lift 
on the third pass would be Aloy ~0g10(o.03)/ 
(0.02)=0.18 A,,y, which represents a 1.8 mile 
wide corridor in the earth's atmosphere. For 
LID= - 1 the corresponding 3-pass Earth corridor 
width would be 0.4 mile, and for L/D=l,  20 miles. 
The corridor widths for 6-pass entries would be 
considerably smaller. If one did not specify the 
number of passes, but only that the maximum 
heating ratc in ttic first pass not significantly 
exceed the value for sub-circular orbital decay, 
the resulting corridor widths also would be 
correspondingly narrow. Thus, with LID= 0, 
qmaz is 0.22 in orbital decay (see fig. 7), and for 
0.22 <~,,,<0.24 the guidance requirement of a 
parabolic approach would be 0.0056 <Fa< 
0.0080; this corresponds to an Earth corridor 
width of about 1.6 miles. When the narrow 
corridors are considered together with the possible 
shielding weight penalty for protecting an occu- 
pant during repeated passes through the radiation 
belt, it would appear that multiple-pass atmos- 
phere-braking entries which require a large 
number of passes are of restricted attraction, a t  
least for parabolic entry into Earth. Two-pass 
atmosphere* braking, however, corresponds to a 
rather broad corridor (8 Aloy, as may be deduced 
from the above table) and may be of considerable 

A second reason why multiple passes are of 
interest is that they offer a possible means of 

- 

iiiici.t.gt. 

achieving flexibility in selecting the time and the 
area upon whicli a spacecraft lands. After a 
hyperbolic or parabolic approach has been con- 
verted to a slightly elliptic orbit of relatively 
short period, a spacecraft could orbit until the 
earth's rotation turns a desirable landing area 
into the proper position relative to the plane of 
the orbit for making a landing. The apogee 
altitude of the slightly elliptical orbit around the 
earth would have to be less than about 1000 
miles, however, if the inner radiation belt were 
to be avoided; this restricts the exit velocity 
from the first supcrcircular pass to vez<1.05 
approximately. .At the same time the exit ve- 
locity would have to be supercircular in order 
to have at least one orbit before landing. The 
resulting corridor, limited by 1 .O< vez< 1.05 is 
narrow, but not impossibly narrow if a lifting 
vehicle posscsscs the capability of programing 
LID during entry in a number of different ways 
(depending on the particular conic perigee of the 
approach trajcctory) and if it also possesses the 
trajectory-intelligence capability of knowing upon 
what trajectory it is approaching after the ter- 
minal-guidance correction is made so as to thus 
be able to select a proper mode of LID modulation. 
That this is so may be deduced from figure 19 
sliowing dotted lines of constant Fez and solid 
lines of constant G,,,. All curves apply to a 
fixed LID during entry. The parabolic corridor 
undershoot boundary producing 1 .O< Fez< 1.05, 
and also G,,,=lO, is a t  logloFa=2.1, and a t  L / D r  
0.6. The corridor overshoot boundary limited 
only by Fe,,<1.05 is a t  logloFD=-l.9 if LID= 
-0.5 a t  overshoot. The resulting earth corridor 
width is 40 miles. If a spacecraft enters near 
undershoot with LID= 2 and rapidly reduces LID 
immediately after G,,, is experienced in a special 
program such that enough deceleration is en- 
countered to produce ve2<1.05, then the under- 
shoot boundary could be extended to loglo Fp=3.2, 
which occurs a t  about 11 miles lower altitude 
than for L/D=O.6. The m a r l d  sensitivity of 
V,, to small changes in Fa a t  negative LID, as 
noted earlier, is also evident in figure 19. 

At least two operational complications would 
arise if a vehicle attempted to utilize these 40 or 
S i  d e  corridor wid& for Liic conversion from 
parabolic approach to a tight elliptical orbit. 
First, a small rocket thrust would have to be 

- 

- 
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exerted when first reaching apogee after the 
initial grazing pass in order that the spacecraft 
have a reasonable lifetime as an orbiting satellite 
(otherwise any entry near undershoot would be 
completed on the second pass). Second, each 
value of F, within the boundaries would require 
a different mode of LID programing in order to 
always exit in the desired range l.0<~e:,,<1.05. 

If an appropriate LID programing were not cm- 
ployed for the particular F, of an approach tra- 
jectory, the corridor would be much narrower. 
From figure 19(a) we see, for cxample, that if a 
fixed LID were maintained, it could be no greater 
than 0.45 for cmaz=lO, and the corresponding 
boundary would be l.O<log,,$,<l.7, representing 
an Earth corridor only 7 miles wide. To utilize 

Loglo 5 
(a) E=1.4 

(b) Ti=1.5 

FIGURE 19.-Dirneiisionless exit velocity and maximum deceleration for atmosphere braking passes n t  hyperbolic and 
paraboiic entry veiocities. 
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FIGURE 19.--Concluded. 
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the 40 or 51 mile corridor, then, would require 
that the spacecraft know what trajectory it is 
approaching on after the last terminal-guidance 
rocket is fired, and that it have the capability 
of variable LID programing to suit; the LID 
program appropriate for loglOFp near 2 (near 
undershoot) would be very different from that for 
logloFp= -2 (near overshoot.) 

A different-and perhaps thc most important- 
reason for interest in multiple supercircular passes 
is that they provide a possible method of reducing 
markedly the required Earth lift-off weight for 
interplanetary flights employing chemical pro- 
pulsion. On a minimum-energy trip to Mars, 
for example, the heliocentric velocity of Mars 
would exceed that of the spaceship (when the 
spaceship arrived at  Mars) by about 9000 feet 
per second. Without having to expend any fuel 
(but perhaps having to ablate a very small mass), 
this velocity increment could be achieved-dis- 
regarding guidance problems for the moment- 
by letting an edge of the Mars atmosphere 'bin 
into” the spacecraft in a certain manner. Relative 
to Mars, the spacecraft would enter the atmosphere 
at  a hyperbolic velocity of about v i = l . 6 ,  and, if 
the spacecraft were guided toward the proper 
conic perigee so as to exit from the atmosphere 
somewhere in the elliptic range l.O<Ez <1.3, 
it would become a reasonable satellite of Mars. 
A small rocket impulse upon first reaching the 
ellipse apogee could then either induce entry if 
fired as a retrorocket, or greatly lengthen the 
lifetime of the spaceship as a Mars satellite if 
fired as a thrust rocket. Conversely, after a 
spacecraft returns to Earth from Mars the excess 
heliocentric velocity as it overtakes the earth 
(in this case, about 10,000 feet per second for a 
minimum energy trajectory) could be eliminated 
by guiding the spaceship toward the proper conic 
perigee so as either to land or to  convert its 
hyperbolic entry velocity relative to  earth 
(Vi=1.46) to elliptic. By recalling that the 
Earth lift-off weight for chemical propulsion 
varies essentially exponentially with the over-all 
velocity increment which must be produced, it 
is not necessary to  make numerical calculations 
to realize that an over-all round-trip saving of 
19,000 feet per second in velocity increment 
would amount to a marked reduction in Earth 
lift-off weight. This reduction is achieved with 

only minor increascs in the aerodynamic heating 
since 7‘,=1.46 is only slightly greater than for 
parabolic entry. Similar comments apply, of 
course, to Earth-Venus and other journeys, 

For small celestial objects like Mars, the entry 
guidance requirements to  effect this desired 
hyperbolic-elliptic orbital transfer are much less 
severe than for Earth or Venus. Some numbers 
illustrating this can be obtained from figure 19. 
By employing IL/DI 5 2 in Mars (no more severe 
heating than for L/D=l - in Earth) a G,,, of 1(! 
would correspond to Gm,,=44 for Mars (eq.(25) 
with 4@&=0.47, ge=0.38). With d K ( L / D )  
=0.94 the inner corridor boundary for Vi=1.6 
would be deceleration-limited at  logloFp= 12, 
producing Per= 1.03. A reasonable outer bound- 
ary with this fixed L/D=2 would be at  10g10Fp=2.5 
producing Vezz  1.3. Hence Ayp=Aloy(9.5) =250 
miles in the Mars atmosphere. If the spaceship 
has the capability of programing LID in a fashion 
tailored to the particular FP it happens to be enter- 
ing on, this corridor could be broadened about 
100 miles more. Relative to the radius of Mars, 
such corridors are much broader than the para- 
bolic-entry corridor into Earth from a return 
Moon journey (50 to 60 miles wide). Thus 
hyperbolic-elliptic orbital transfer by the atmos- 
phere of Mars appears quite practical. Upon 
returning to Earth, though, the 10 G,,, corridor 
width with fixed LIDgO.4 for the analogous 
hyperbolic-clliptic transfer would be only about 
29 miles (at vI=1.46  as  interpolated between 
curves for Vi=1.4 in fig. 19(a) and for Ti=1.5 
in fig. 19(b)), thereby imposing a guidance 
requirement about one order of magnitude more 
severe than in the case of Mars. The correspond- 
ing corridor width with variable LID programing 
would be about 46 miles. Such corridors, how- 
ever, may not impose impractically severe guidance 
requirements. 

If a vehicle returns from a voyage to a distant 
point in the soiar system, the relative hyperbolic 
velocity of entry into the earth’s atmosphere 
would correspond to about V i z 2 .  As may be 
deduced from figure 19(d), and as would be an- 
ticipated from results previously presented, the 
guidance requirements in this case for using the 
atmosphere to convert the spaceship to an orbit- 
ing earth satellite in the range 1.0<Ez<l.3 

- 
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would be quite severe. Even by assuming that 
the appropriate LID programing could be achieved 
for any F,, the 10 G,,, corridor width would be 
only about 18 miles. The saving in Earth lift- 
off weight would indeed be sizable, though, since 
the excess heliocentric velocity, which need not be 
compensated for by expending rocket fuel, is 
about 40,000 feet per second in this case. 

AERODYNAMIC HEATING AT CORRIDOR BOUNDARIES AND 
EEATING PENALTY ASSOCIATED WITH LIFTING VEHICLES 

Aerodynamic heating at overshoot boundary.- 
Inasmuch as deceleration is at its minimum for 
single-pass entries along the overshoot boundary, 
the heating rate is also at its minimum (but the 
total heat absorbed is at its maximum). Con- 
sidering that the maximum wall tempcrat,ure 

varies as qm,z1/4 for a radiation-cooled vehicle, the 
approximate relationship (A13) between heating 
rate and deceleration should suffice for many 
engineering purposes in calculating wall tempera- 
tures of such vehicles. Curves of the dimension- 
less quantity (ZZ),,, a t  the overshoot boundary 
are presented in figure 20. This quantity is 
proportional to G,,,. At overshoot a good ap- 
proximation for the constants developed in 
appendix A would be cq=0.6 for positive lift, 
Cq=0.7 for zero lift, and cq=Q.8 to 0.9 for nega- 
tive lift, as may be deduced from the table fol- 
lowing equation (A13). Actually, heating rates 
are not relatively severe a t  overshoot, as may be 
judged from the fact that most of the values of 
(ZZ),,, in figure 20 are considerably smaller than 
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FIQURE 20.-Dimensionless maximum deceleration and laminar h e a t  absorbed during supercircular portion of entry 
along overshoot boundary (V,,= 1). 
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the value ('iiZ),,,=0.28 representing orbital decay 
of a nonlifting satellite. 

Near the overshoot boundary the total heat 
absorbed can become rather large, especially if 
negative lift is employed. The severity of this 
problem may be judged by comparison of relative 
values of the dimensionless quantity g, since the 
total heat absorbed is proportional to  for a 
given planet and given vehicle (see eq. (Alo)). 
Some approximate reference values are, ($=0.29 
for an ICBM entry (Tt=0.9, yr=24') and Q = l . l  
for nonlifting entry of a manned satellite (vt=l, 
yI=20). A vehicle with LID=-1 entering a t  
parabolic velocity along the overshoot boundary 
would absorb during the supercircular portion of 
entry ( l<V<V,)  an increment Ag1=4.7. To 
this value must be added an increment A G 2 z l . l  
for the heat absorbed during the subcircular 
portion of entry. By comparison it follows that, 
for the same values of m / C d  and nose radius R, 
the total heat absorbed along an overshoot- 
boundary entry (G=5.8) would be about 20 times 
that for an ICBM-type entry, and about 5 times 
that for a manned satellite-capsule entry. 

Curves for various vt and LID are included in 
figure 20 representing the increment AVl of 
laminar heat absorbed during the supercircular 
portion of entry along the overshoot boundary. 
For entry between the overshoot and undershoot 
boundaries the approximation of equation (A16), 

4 - 

- -  

1 . 2  1. 3 1. 8 2. 6 

2. 2 3. 6 22 
3. 4 7. 0 
5. 0 1 3  

1. 3 1. 5 2. 9 1 5. 5 
is useful. This approximation would also apply 
to the subcircular portion alone by setting Ui= 1. 

Aerodynamic heating at undershoot boundary.- 
Although the use of aerodynamic lift, particularly 
modulated LID, can increase markedly the single- 
pass corridor width by lowering the undershoot 
boundary, this potential benefit is not obtained 
without a major penalty. Aerodynamic heating 
becomes progressively more severe as LID is in- 
creased because of the low drag associated with 
high LID. Both the rate of heating (eq. (A13)) and 
the total heat absorbed (eq. (A14)) vary inversely 
with C,, the variation being as C,-0.5 for laminar 
convection, and as CD-o.8 for turbulent convection. 
Thus, for a given deceleration a t  undershoot, an 
entry with LID maintained constant a t  4 and 

c~/cD,,,=0.0065 (see fig. 11) would experience 
laminar heating (0.0065)-0.5= 12 times as severe 
as one with L/D=O and CD/c,,,,= 1; the relative 
turbulent heating would be (0.0065)-0.s= 56 times 
as severe. 

If a constant L/D=(L/D)..,, is employed near 
undershoot only until ~ = 0 ,  corresponding to a 
local minimum in altitude, and then LID is re- 
duced to 0 (or to small negative values) as the 
altitude begins to  increase, entry can be com- 
pleted and the net heat absorbed would not be as 
great as if the initial (LID),,,,, were employed 
throughout. For parabolic entry, only about a 
third or less of the total heat would be absorbed 
up to the point where y=O. Most of the heat 
would be absorbed during the subsequent moni- 
toring phase wherein LID is generally between 0 
and In order to estimate the total 
heat absorbed we will take for the average C,, 
during entry that corresponding to an LID of 
(2/3) and will consider both the case of 
operation in the highdrag portion of the drag 
polar (where CD increases as LID decreases) and 
operation in the low-drag portion (where C, de- 
creases as LID decreases). Tabular values which 
follow illustrate the relative heating for various 
(LID) entry. 

High-drag portion of 
polar polar 

B s  would be expected, the net heating penalities 
for high-drag monitoring with (LID),,,=4, for 
example, as represented by the factors of 5 for 
laminar convection and 13 for turbulent, are un- 
desirably large but still much smaller than the 
corresponding factors mentioned previously of 12 
and 56 applicable if LID were equal to 4 through- 
out entry. These latter two factors, in turn, are 
smaller than the corresponding factors of 18 and 
100 applicable for low-drag monitoring with 
(LID)entry=4. 
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An entry in which LID is constant until y r O  
and then is slowly reduced after the altitude be- 
gins to increase can operate in the high drag por- 
tion of the drag polar without further increasing 
the maximum deceleration beyond that experi- 
enced a t  y r o .  I t  would be necessary, though, 
to decrease LID slowly enough during the moni- 
toring phase so that the accompanying increase 
in G due to increasing CD is no greater than the 
aggregate effect of the decrease in Gdue to decreas- 
ing LID and decreasing pV2. 

It is unfortunate that the technique of modu- 
lated lift, which is so effective in broadening the 
entry corridor if a high (LID) entry is employed and 
if CD were maintained constant during modulation 
(as in curve D, fig. 12), would have its basic pur- 
pose defeated if the lifting vehicle attempted the 
modulation by operating in the high-drag portion 
of a polar (as in curve B, fig. 12). To see this, 
we note that the differential of the resultant 
deceleration G= CDpV2AJ1 + (L/D)2/2mg, is 

During the monitoring phase d(L/D) is negative, 
so that the first term on the right side represents 
the alleviation In G due to the reduction in trans- 
verse lifting force; the second term represents the 
change in G due to changing dynamic pressure; 
the third term, which was not considered in ref 
erence 1 ,  represents the change in G due to chang- 
ing CD. For lifting surfaces operating in the 
high drag portion of the polar (curve B in figure 
12), the increase in G due to increasing CD is, un- 
fortunately, about 3 times the decrease in G due 
to the reduction in transverse lift, so that modu- 
lation would result in a net loss, rather than a gain. 
This may be illustrated by considering the change 
in G per unit reduction in LID at  L/D=l. The 
change in G due to lift modulation alone, as given 
by the first term on the right side of equation 
( 3 5 ) ,  would be 

which represents a reduction in deceleration. The 
accompanying change in G due to drag variation 
as given by the third term together with the top 
curve in figurc 11 wouid be 

0.35 

which represents an increase in deceleration due 
to  drag variation amounting to over three times 
the decrease due to lift variation. It follows that 
drag modulation through a variation of a lijting 
vehicle would be more effective than lift modula- 
tion through LID variation in broadening the 
entry corridor. Drag modulation of this type is 
not investigated herein; drag modulation of non- 
lifting vehicles has been studied recently by 
Phillips and Cohen in reference 6. 

If, rather than to change angle of attack of a 
lifting surface, the aerodynamic technique of 
deploying a drag device were employed to reduce 
LID (such as represented by curve C in fig. 12), 
then the adverse effect of increasing drag would 
still exceed the favorable effect of decreasing LID. 
The full benefits of modulated LID can be realized, 
however, by operating a lifting surface in the low 
drag portion of the polar (such as represented 
by curve A, in fig. 12) , but then very large heating 
penalties would result, as exemplified by the num- 
bers listed in the right half of the above table. 
The use of any modulation technique which re- 
quires that the vehicle operate along the low drag 
portion of its polar will necessarily be penalized 
severely by aerodynamic heating in comparison 
to the constant LID technique which can be used 
with the vehicle operating along the high drag 
portion of the polar. 

The complicated trade-off between guidance 
benefi~s and aerodynamic heating penalties is 
further slanted toward the use of only small or 
moderate LID, rather than higher LID, by the 
role which boundary-layer transition may play. 
That transition may play an important role can be 
seen from a comparison of two cases: (I)  constant 
LID with (L/D)entw=l,  and (2) modulated LID 
with (L/D),,,,=4. The guidance benefit associ- 
ated with case (2) amounts to a parabolic entry 
corridor about 3 times as broad as for case (1). 
In assessing the accompanying heating penalty, 
let us first estimate the Reynolds number of a 
hypothetical manned spacecraft. For both cases 
we take 1=50 feet, - m/A=l  slug per square foot, 
G,,,=lO, and V=1.2. From equation (A7) we 
have, for the earth’s atmosphere 

Hence, for case ( I )  with (LID)..,,,=1 and CD,,=l 
(corresponding to operation in the high-drag por- 
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tion of the polar with (LID),,= (213) 
there results Re=3 x IO6 at which value con- 
siderable laminar flow would be expected; from 
the above table the heating penalty would be 1.3 
times that for laminar flow with L/D=O. For 
case ( 2 )  with (L/D)entry=4 and modulation at 
C,=O.Oll (corresponding to operation a t  a con- 
stant CD equal to that at  L/D=4), there results 
Re= lOOX lo6  a t  which value mostly turbulent 
flow would be expected; the heating penalty 
would be 100 times that for turbulent flow with 
L/D=O. Since the Stanton number for turbulent 
flow is at  least several times that for laminar, the 
net heating-penalty factor would be a t  least several 
times 100I1.3, which would amount to well over 
a factor of 100. This appears too great a heating 
penalty to pay for the guidance benefits of a 
tripled Earth corridor width. For entry into 
Mars, though, a one-hundredfold increase in heat- 
ing may be manageable, but in this case the cor- 
ridor already is relatively broad even for nonlifting 
vehicles. 

.4s LID is increased from 0, the increase in 
heating penalty is slow a t  first for modes of entry 
which utilize the high drag portion of a polar. 
Up to about L I D r l  the associated heating 
penalty would not appear to limit appreciably the 
usefulness of aerodynamic lift in broadening the 
entry corridor. For mtry at parabolic velocity, 
the 10 G Earth corridor for (L/D)entw=l is 7.6 
times us wide as for /,/D=O, whereas the laminar 
heat absorbed need be increased only about 30 
percent. The trade-off between guidance benefit 
and hchating penalty would appear to favor the 
lifting vehicle a t  least up to about L/D=l. In 
this range of LID, modulated LID would not be 
much more effective in  widening the corridor than 
constant LID, and would have somewhat greater 
heating. When both guidance and lieating prob- 
lems are considered, a compromise single-pass 
entry technique would be to enter with a value 
of L/D the order of unity until maximum decelera- 
tion is experienced, then reduce LID in the high- 
drag attitude (increasing a )  until intense heating 
is over, and, finally, increase LID again (decreas- 
ing a )  to achieve maximum maneuverability in 
the terminal glide phase. .4s previously indi- 
cated, the technique (not studied) of drag modu- 
lation of a lifting vehicle by reducing a before 
r=O and alleviating 0 throiigh the drcrefiw in 
CD with increasing LID, could be more efficient 

in broadening the corridor than the technique of 
lift modulation; it is to be noted, however, that 
this technique also would require operation in the 
low drag portion of a polar with the accompanying 
heating penalty (although the penalty would not 
be so severe as for lift modulation). 

Different heating problems at undershoot and 
overshoot.-In relation to the status of current 
technology, the rate of aerodynamic heating along 
the undershoot boundary is quite high. For ex- 
ample, if Z=1.3, %’/3r=30, Gm,,=lO, and LID= 
0.5, equation (.413) yields for the maximum 
climensioriless heating rate Pma,=0.92, which is 
much higher than the corresponding value &,,= 
0.22 for a satellite in orbital decay, and 
considerable higher even than the value 
0.62 for a typical ICBM entry. Since (tmu,)1’4 is 
proportional to the maximum wall temperatures, 
this temperature for a vehicle that is entirely 
radiation-cooled during parabolic entry a t  under- 
shoot would be about 10 percent higher than in 
an ICBM entry. Surface temperatures sufficient 
for radiation cooling of an ICBM nose cone cur- 
rently are not considered to be practically feasible, 
and similarly are not considered feasible currently 
for a spacecraft entering near the undershoot 
boundary. 

The total heat absorbed along the undershoot 
boundary, however, is not excessively high. For 
example, if LID is monitored so as to decelerate at 
an essentially constant value of 8 G, then equation 
(34) yields (with U,=1.4, - .\iF=30, L 3 = 0 . 5 ,  and 
c 7  - 3/ ,4) the value &,=1.9. This is not discour- 
agingly larger than the value G= 1.1 representa- 
tive of a nonlifting manned satellite entering from 
a near circular orbit, for which the technique of 
absorption by ablation appears - eminently prac- 
tical a t  present. The value Qun= 1.9 is, however, 
only about )$ of the corresponding value Got =5 .8  
for cwtry along the overshoot boundary. 

In summary, then, we are faced with a situation 
wherein a t  the deceleration-limited undershoot of 
the Earth corridor, the heating rate is relatively 
large, and pure radiation cooling currently appears 
impractical, but the total heat absorbed is within 
practical bounds of present heat-absorption tech- 
niques; a t  overshoot, however, the heating rate is 
relatively small, pure radiation cooling appears 
practical, but the total heat absorbed is about 3 
t i m w  tlifit ~t i jndw4innt.  For an effikipnt dksign, 
therefore, it is important to develop versatile 

- 
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protection shields which can radiate efficiently if a 
spacecraft enters near overshoot, ablate efficiently 
if it enters near undershoot, and blend these func- 
tions efficiently if it enters anywhere in between. 

EXAMPLE GUIDANCE REQUIREMENTS FOR ENTRY 
CORRIDORS OF VARIOUS PLANETS 

In  order to determine the desired trajectory 
which passes along the center of an entry corridor 
it would be necessary to make precise three- 
dimensional orbit calculations giving full con- 
sideration to a number of perturbations such as 
those due to planetary oblateness, the sun, moon, 
and perhaps other planets. In  calculating the 
small deviations about this desired center-line 
trajectory which are permissible from atmosphere 
entry considerations, however, the secondary 
effects of the  perturbations on these small devia- 
tions will be disregarded, and the entry guidance 
tolerances calculated as those of a two-body 
problem. This procedure appears reasonable inas- 
much as the  terminal-guidance correction to an 
entry approach would presumably be made rela- 
tively near the target planet where the trajectory 
is mainly in one plane and is essentially a conic 
trajectory. Results of such calculations should 
be useful, for example, in making preliminary 
estimates of what distancr from a target planet 
would be optimum for correcting a trajectory, how 
much fuel would be expended in so doing, and 
whether certain types of supercircular entry 
maneuvers would be feasible from a viewpoint of 
the guidance accuracy they impose. 

By the use of equation (22) for narrow corridors 
(Earth, Venus, Jupiter) and the full equation (20) 
for relatively broad corridors (Mars, Titan), the 
guidance requirements on i Ay (permissible devia- 
tion from the flight-path angle of the trajectory 
which passes through the center of the entry corri- 
dor) for zero errors in 7 and r have been deter- 
mined for the various 10 G,,,, parabolic-entry 
corridors previously considered. Values of & AT 
are plotted in figure 21 as a function of the dimen- 
sionless distance r/ro. It is evident that the 3 A y  
requirements vary by large amounts, from the 
order of 10' for Titan to less than 0.01' for Jupiter. 
For comparison, three other technological require- 
ments (also computed for zero error in V )  are 

of the r/ro= 100 line. They are: * 2' for injecting 
a vehicle into orbit around the earth, 40.25O for 
hitting the moon from the earth (ref. 7), and 

iii&i&i& for referelice imniediately $0 the right 

+ 0 . 0 1 4 O  for 41 mile ICBM accurancy at 5000 
miles range (this is the azimuthal angle require- 
ment ; the corresponding flight-path-angle require- 
ments are less severe). At the far right of the 
figure are indicated three different approximate 
guidance requirements which, though more mun- 
dane, nevertheless are fully as illuminating and 
nearly as stringent as the three technological 
requirements. It is seen that, starting at r/ro= 
100, it would require no better angular guidance 
control (1) to enter the corridor of Titan than to 
inject a satellite into orbit or to pitch a baseball 
strike; (2) to enter the corridor of Mars than to hit 
the moon from the earth or to hit an apple from 
60 feet (William Tell), or, (3) to enter the corridors 
of Venus and Earth than to launch an ICBM 
within azimuthal accuracy of 1/5000 of the range, 
or to fire a rifle within bull's-eye target accuracy 
(accomplished essentially 100 percent of the time 
by skilled individuals). To aline a trajectory for 
entry into Jupiter, however, is another matter. 

The corresponding - -  requirements on velocity 
control &AV/J'  for zero error in y and T also have 
been calculated, with the following results (de- 
scending vertically in order of increasing severity). 

Parabolic entry 
10 G corridor 

Titan 1. 
Mars 0.03 

Venus . 003 
Earth . 003 

Jupiter .0003 

Comparative technological 
req uirernerits 

____ 

i A V / V  

Orbit injection 0. 02 

Moon shot . 001 

ICBM . 00004 

-- 
The parabolic entry requirements on &AV/V for 
Earth and Venus are less severe than successful 
Moon-shot requirements, and two orders of 
magnitudc less than ICBM requirements. I n  
fact, to put these requirements in perspective, the 
velocity control required for Venus and Earth is 
not much more sevcrp than the velocity control 
with which a skilled man can throw a ball. I n  
the Italian game of boccie ball, for example, a 
ski!!cd p!eyer of tm thrown n 4-inch woodrn ball 
about 30 feet to hit anothcr similar ball (without 
hitting nearly adjacent ones), and this requires 
&AV/VzO.006, which is comparable to the 
-- 
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Orbit injection ------- 

Baseball strike 

Moon hit ------- 
Wm. Tell 

ICBM f l m i l e  

I 10 100 
Dlstance from planet,  

FIGURE 2i.-Guidance accuracy requirements on flight path angie for singie-pass io G,,, paraboiic entries, and 
comparison with other guidance requirements. 
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value +0.003 for parabolic entry into Venus or 
Earth. I n  general the entry requirements for 
velocity control do not appear as severe, relatively 
speaking, as those for flight-path-angle control. 

The permissible errors in distance from the planet 
fAr./r for zero errors in and y, are seen from 
equation (22 )  to be equal to &2AV/V. Only in 
the extreme case of Jupiter (*Ar/r=0.0006) 
would distance errors appear to impose any 
really severe requirement or precise knowledge of 
distance from the planet center. 

-- 

RESUME OF RESULTS 

A dimensionless, transformed, nonlinear differ- 
ential equation previously developed for describ- 
ing motion during entry into a planetary atmos- 
phere has been combined with equations for 
conic trajectories to yield a parameter 
(F,= p,-\fgfi/2(m/CDA)) based on conditions at  
the conic perigee altitude which is convenient 
for specifying the width and altitude of an entry 
corridor. The width of a deceleration-limited 
corridor in an exponential atmosphere is inde- 
pendent of m/CDA, but the density p p  a t  conic 
perigee is proportional to m/CDA. 

The corridor width decreases markedly as the 
entry velocity increases. For example, the 10 
G,,, corridor width for entry of nonlifting vehicles 
into the earth’s atmosphere decreases from about 
180 miles for circular entry ( rL= 1), to 7 miles for 
parabolic entry (y,=-\’z), to 0 miles for hyperbolic 
entry a t  T7,=l.8. As would be anticipated, the 
corridor width for a given entry v, into various 
objects in the solar system varies by large amounts, 
ranging from a minute fraction of the radius for 
Jupiter, to the full radius for Titan. 

The overshoot boundary of an entry corridor 
can be extended upward by the use of negative 
lift, but only about one log,, cycle in F, (or in 
density). Deployment of a large, light, drag 
device appears to be a much more effective way 
to raise the overshoot boundary. 

The undershoot boundary of the entry corridor 
can be lowered marliedly by the use of aerody- 
namic lift, and lowered more by modulated LID 
tlrnn hy ronqtnnt I , /D. ‘!hie is ir, ag.-eeF,ent  wit!^ 
previous results of Lees, Hartwig, and Cohen 
who did not consider any inherent C,-L/D 
dependence. The benefits of modulated lift in 

- 

alleviating guidance requirements, however, are 
sizable only for relatively large LID ratios (greater 
than about 1) which inherently require low CD 
and much more heat to be absorbed than for 
small LID. When the strong c,-L/D interde- 
pendence for lifting surfaces is considered, the 
modulated LID technique appears restricted to 
operation in the low-drag portion of a drag polar 
(where CD decreases as LID decreases), and thus 
penalized by much higher heating rates than the 
constant LID technique which can utilize the 
high-drag portion of a drag polar (where CD 
increases as LID decreases). Because of the 
strong c,-L/D coupling of a lifting surface, the 
decrease in C, with decreasing angle of attack 
can overshadow the accompanying variation in 
resultant force with changing LID, so that drag 
modulation by variation in angle of attack of a 
lifting vehicle would appear to be more effective 
in lowering the undershoot boundary of a 
deceleration-limited corridor than would be lift 
modulation. 

A compromise technique for single-pass super- 
circular entry, considering both guidance and heat- 
ing problems, is to employ initially a constant 
LID (of about 1 if entry is near undershoot, or less 
if the conic perigee is higher) until slightly past 
maximum deceleration, then reduce LID to 
essentially 0 (or to small negative values if entry 
is near overshoot) by increasing the angle of 
attack in the high-drag portion of the drag polar 
until intense heating is over and single-pass entry 
is assured, and finally to increase LID again so 
that maximum maneuverability is achieved during 
the terminal glide phase. 

Because of the opposite nature of the aero- 
dynamic heating problems a t  overshoot (high 
total heat absorbed, low heating rates) and under- 
shoot (low total heat absorbed, high heating 
rates), it is highly desirable to develop versatile 
protection shields for spacecaraft which can radiate 
efficiently if entry happens to occur near over- 
shoot, ablate efficiently if near undershoot, and 
blend these characteristic8s if entry occurs in 
between. 

Compared to other technological guidance 
requirements, such as those for successful Moon 
shots fro= the Ezrt!?, or for achicvir?g ar? zccurucy 
in azimuthal angle for an ICBM of 1 part in 5000, 
the entry-corridor requirements imposed on flight 
path angle appear to be relatively more severe 
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than those imposed on velocity. For parabolic 
entry into the earth’s atmosphere, the limitations 
on flight path angle are about the same as those 
of the comparison ICBM requirement. 

As far as terminal entry guidance is concerned, 
it appears feasible to employ the atmosphere of 
certain planets-rather than rocket fuel-to 
effect orbital transfers wherein a spacecraft ap- 
proaching a target planet a t  hyperbolic velocity 
has its trajectory converted by atmosphere drag 
to an elliptic orbit about that planet. The cor- 
ridor width for such maneuvers is not impracti- 
cally narrow if the vehicle possesses the intelli- 
gence capability of accurately knowing which 
trajectory within the corridor it is approaching 
upon, together with the monitoring capability 
of being able to program LID (and C,) in the 
variety of ways required for different approaches 
within the corridor boundaries. The apparent 
feasibility of atmosphere braking for effecting 
hyperbolic-elliptic orbital transfers implies the 
possibility of very large reductions in Earth lift- 
off weight for interplanetary voyages employing 
chemical propulsion. 

Some typical 10 G,,, entry corridor widths, 
expressed as a fraction Ayp/r0 of the planet radius, 
are tabulated here for convenience. All corre- 

spond to lifting vehicles with an LID capability 
of about 1, unless specifically notsed otherwise. 

AY PITO 
1. 
. 26 
. 015 
. 013 
. 002 
. 001 

. 0005 
-4tmosphere braking for converting Earth para- 

bolic approach into elliptical orbit with apogee 
altitude less than 1000 miles, and simultane- 
ously not esceeding 10 G,,,: 

(variable LID programing) ._._ - - - - __. . - _ _  - 
(fised LIDE0.5)  __.________________ ~ _ _ _ _ _  

Atmosphere braking for heliocentric-planeto- 

Into Mars from Earth (variable I , /D pro- 

Into Mars from Earth (fised LID) _ _ _ _ _ _ _ _ _  
Into Earth from Mars (variable L / D  pro- 

Into Earth from Mars (fixed LIDz0.4)  - - - - 
Into Earth from distant point in solar system 

(variable LID programing) .___ - - - - - - - - - - 

. 01 

. 002 

centric orbital transfer: 

graming)_____________________________ . 17 
, 12 

graming) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  . 012 
. 007 

. 004 
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APPENDIX A 
FORMULAS FOR MOTION AND HEATING 

QUANTITIES AND RELATIONSHIP 
BETWEEN DECELERATION AND HEATING 

FORMULAS FOR MOTION AND HEATING QUANTITIES 
RELATED To z 

The full form of the differential equation for Z 
developed in reference 2 is: 

i- L 
D cos4?-- 1. pi- - c0s3y (A11 

Here, and in the equations w-hich follow, the 
appropriate form for shallow entries is obtained 
by setting cos y = l ,  sin y=y,  and by disregarding 
LID tan y and tan2y compared to unity. Equa- 
tions for various quantities of interest related to 
2 are (their derivation may be found in ref. 2): 

Flight-path angle 
J a .  d Z Z  r sin y=--- d7i 3 

Horizontal deceleration 

dt cosy 

Resultant deceleration 

Range between Z, and Z 

Density-velocity relationship 

Reynolds number per unit length 

For either laminar or turbulent flow, a conven- 
ient reference rate for convective heating into a 
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surface of radius of curvature R can be represented 
by the equation 

(A@ 
C p=- El-n p "V3 

Approximate values of C for air, with p in slugs 
per cubic foot, R in feet, and V in feet per second 
are listed below together with the values of n for 
laminar and turbulent flow. 

For q in Btu ft-*set-* 
C n  

Laminar stagnation point (ref. 3)  2.0x 10-8 $4 
Turbulent sonic point (ref. 8) 9.OX % 

By combining this equation with the density- 
velocity relationship (A6) we have, for the case of 
shallow entry: 

heating rate 

Reference heating rate - 

total heat absorbed per unit area 

Q- 2°C n-1 3-n 

S R-" (z)" C',A ( p~ r~ o) (AIO) 

where 

(A 1 Oa) 

At a laminar stagnation point in air, these two 
equations become (with mICDAR in slug ft-') 

with 
a= ;ii5/2zW (Allu) 

and 

%=1;,900 dmR m - B t u  Q ft2 S (A12) 
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with 

(A12a) 

The quantities ij and are referred to as the 
dimensionless heating rate and the dimensionless 
total heat absorbed, respectively. In  atmospheres 
of planets other than Earth, additional factors 
qe and Qe, not considered herein, appear on the 
right sides of equations (All)  and (A12), respec- 
tively, representing the relative aerodynamic heat- 
ing compared to that in the earth's atmosphere. 
These factors for laminar convection are estimated 
in reference 2 for Venus, Mars, and Jupiter. 

APPROXIMATE HEATING-DECELERATION RELATIONSHIPS 

Approximate relationships developed below be- 
tween convective heating and deceleration are em- 
ployed later to assist in explaining certain qualita- 
tive results, and in evaluating the aerodynamic 
heating problem for different portions of the entry 
corridor. By combining equations (A3) for de- 
celeration and (A9) for rate of heating, there re- 
sults a general qualitative relationship applicable 
to a given planet (the constant of proportionality 
depends onlthe planet). 

q--( 1 5 ) n ? i 3 - 2 n  (deceleration)" (A13) 
K 1 - n  CDL1 

T y p e  of e n t r y  

Orbital decay from v,= 1 with L/D=O 
1 
m 

Sterp entry from any 7, with LID=O 
Uiic!ershoot entry with L / D = O  

1 
m 

Through the use of a mean value approximation 
for integrals, equations (.A10) and (AlOa) for total 
heat absorbed from ,?it to Z=O yield 

Except for the case n = l  (e.g., free-molecule flow) 
these relationships show that the greater the de- 
celeration the greater the heating rate, but the 
smaller the total heat absorbed. 

The qualitative heating-deceleration relation- 
ships can be put on a quantitative basis. During 
the supercircular portion of an entry, maximum 
heating rate and maximum deceleration occur 
reasonably close together. If E at maximum heat- 
ing rate is written as CQEf, where C, is a constant 
somewhat less than unity, then equations (A1 la), 
(A3), and (.A4) yield an approximate-though 
general-relationship for laminar convection. 

(A15) 

Values of C, for laminar heating fall in the range 
O.S<C,<l, as indicated by the following values 
determined from both analytical (when in paren- 
theses) and numerical results of reference 2: 

c, 
0. 64 
. 64 
. 62 (=l/2/34%) 
. 76 ( = 3 - 1 ' 4 )  

. 80 

.go 
1. 00 

Overslioot-limit entry wit11 from E= 1. 2 to 1;= 1 . 64 
1. 4 1 . 67 
2. 0 1 . 73 

. 78 
1. 4 1 . 86 

1 . 92 2. 0 

{ L/D = 0 I 
{ Overshoot-limit entry with] from E= 1. 2 to F= 1 

LID= - 1 1 

For the extreme case of nrgligible, but constant 
horizontal deceleration ('iiZ=const-O), maximum 
heating will occur a t  the initial point, so that 

.An analogous approximation can be established 
for the dimensionless laminar heat absorbed AQ 
during entry from Z, to E p  By employing a mean 
value approximation for integrals, we have from 
equa tions (A12a) , (A3) , and (A4), 

Cq+l in this limiting rase. 
- - (zz+zf)z~-'f) (9~v~)l/2[1+(zID)2]1/J, (A16) 

4 c ~  J G m a z  

Values of Co for laminar convection generally are 
in the range 0.32 <CQ<l, as may be deduced 
from the following results: 
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41, 000 
41, 000 
43,000 

T y p e  of entry 

Orbital decay from Z z = l  t o  E f = O  with LID= m 

Steep entry from 5, to 0 with L/D=O 
Shallow skip from E ,  t o  til, U, with LID= m 

Overshoot-limit entry with L/D=O from Zi=2.0 to  zf=1 
1.4 1 

Overshoot-limit entry with LID= -0.5 from Zi=2.0 to  Z f =  1 
1.4 1 

Constant horizontal deceleration with arbitrary 

40, 000 
39, 000 
3 9 . 0 0 0  

for the limiting case of constant horizontal 
deceleration during a negligible velocity decrement 
(the case when ZZ is a Dirac function of Z), 

The approximate heating-deceleration relation- 
ships for complicated types of entry agree well 
with more precise calculations, and illustrate 
that, in an entry wlierein the deceleration is 
monitored to be essentially constant, the aero- 
dynamic heating with a fixed m/CDA does not 
depend significantly on the lift-drag ratio. Lees, 
Hartwig, and Cohen (ref. 1) have made machine 
calculations of an entry wherein LID is varied 
continuously after reaching G,,, in the particular 
manner which maintains constant resultant decel- 
eration and constant C,. For this type of 
modulated lift they used the numerical values 

feet per second (v,=1.36), and G,,,,,=lO. Since 
this corresponds to an undershoot type of entry, 
we take C,=o.9 from the table preceding the one 
above, and since the deceleration is constant for 
most of the entry, CQ=7< from the above table. 
By substitution of these numerical values into 
equations (All) and (A15) for p, and (Al2) and 
(A16) (using L/D=)h(L/D),,,,) for Q, the 
results obtained are found to be in approximate 
agreement with the more accurate machine 
calculations of Lees, et al. The following table 
illustrates this for laminar stagnation heating 
with R = l  foot: , 

cQ= 1. 

m/C,A=3.1 Slugs - per SqUarC! foot, Vt=35,000 

- 

I,/ D 
a t  

entry 

I 

i 0.25 

~ i 5  

CQ 
0.32 (=l/?r) 

.46 (=&/2&) 

.64 (=2/?r) 
. i O  
.72 
.71  -- 
.i i 

.75 

Maximum heating 
rate, Btii 
ft-2src-1 

_ _ ~ _ .  

q ~ m a ,  
Eqs. (.411) 
and (A15) 

890 
840 
760 

780 
800 
810 

-~ __ 

Total heat absorbed, 
Btu f t - 2  

and (A16) 

I-- 

I t  is notcd her(. that the abovc tabular values, 
which indicate only minor variations in heating 
with ( L j n )  entry for essent ially t l i c k  sanic decelera- 
tion history, assume that rn/(bA is constant for 
all values of LID; calculations prwcntcd elsewhere 
in this report consider a variation of PD with LID 
and show a large tlepcndcnce of heating on LID. 
RELATIONSHIP BETWEEN DECELERATION AND REYNOLDS 

NUMBER 

A useful equation relating Reynolds nilm1)c.r per 
unit length to deceleration is obtained by com- 
bining equations (A4) and (A7) 

This equation enables the maximum Reynolds 
number to be calculated approximately from 
G,,, and an estimate of the value of Z a t  which 
G,,, is experienced. 



APPENDIX B 
INTERDEPENDENCE OF CD AND L I D  FOR LIFTING VEHICLES 

The equations of Newtonian hypersonic flow 
for the case where lift is obtained by varying a 
of a surface enable a simple picture to be obtained 
of the LID-CD relationship. Let us designate 
the minimum drag coefficient at 0’ angle of attack 
as CD,, and that at 90’ as C D ~ ~ , .  I n  accordance 
with Newtonian flow, pressures are assumed to 
vary as sin2a, SO that CD=CD,+ ( C D m , , - C D o )  
sin3a; hence, this approximation yields 

(B 1) 
L sin2a cos a o= b+sin3 a 

The quantity b= CDo/CDma,- CDo) determines the 
maximum value of LID and the a a t  which it 
occurs. Even for a flat plate having zero leading- 
edge radius, zero pressure drag a t  a=O, and lami- 
nar skin friction, the (L/D)maz in hypersonic 
Kewtonian flow is only about 6 at a Reynolds 
number of 1 million. I n  view of this, and the 
severe heating problems associated with lifting 
surfaces having small leading-edge radii, we will 
confine our attention to (L/D)maz of 4 or less. 
Four drag polars corresponding to values of b such 
that (L/D)maz= 1, 2 , 3 ,  and 4 ,  as determined by the 
above equation, are shown in figure 11 with LID 
plotted versus C D / C D m a ,  (a value CDrnaz= 1.7 
would he reasonable for all of the polars). In  
each case L / D  increases from 0 at the minimum 
drag attitude (a=()), passes through a maximurn, 
and then decreases to 0 again at thc maximum 
drag attitude (a=90°). ‘The low C D ’ S  associated 
with high L / D  are evident from this figure. 

The interdependence of CD and LID can be 
varied widely by employing different aerody- 
namic techniques, but we are most interested in 
the technique which gives maximum drag for a 
given LID. .A wide variation is illustrated in 
figure 12 where four different curves are shown, 
all starting from (L/D),,,=4. Curve .A corre- 
sponds to varying the angle of attack in the low- 
drag portion of the drag polar of a lifting surface, 
while curve B corresponds to the high-drag por- 
tion of the polar. Curve C corresponds to vary- 
ing the drag a t  constant lift, such as could be done 
by deploying a variable-area drag device while 
the lifting surface maintains a fixed C, (referred 
to the fixed urea 01 i l ~  lifting surfncc). Curve D 
corresponds to varying the lift a t  constant CD 

(also referred to the same area) such as could be 
done by simultaneously changing a and deploying 
a variable-area drag device. Curve B, the high- 
drag portion of thc polar, yields the highest CD 
for a given LID of the various curves considered 
(inciuding those in fig. l l ) ,  and, therefore, would 
be best from the viewpoint of minimizing the 
aerodynamic heating. The relationship between 
LID and CD for this curve is: 

. 25 . 92 

. 5  . 73 
1 .35 
2 .087 
3 .027  
4 .0065 

This particular interdependence of LID and CD 
is used herein to evaluate the net broadening of 
corridor width and the aerodynamic heating 
penalty associated with the use of lifting vehicles. 
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