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AN ANALYSIS OF THE CORRIDOR AND GUIDANCE REQUIREMENTS FOR
SUPERCIRCULAR ENTRY INTO PLANETARY ATMOSPHERES

By DEax R. CHAPMAN

SUMMARY

An analysis is presented of supercircular entry
into a planet’s atmosphere giving particular attention
to the corridor through which spacecraft must be
guided in order to accomplish various maneuvers.
A dimensionless parameter based on conditions at
the conic perigee altitude is introduced for character-
izing supercircular entries and conveniently pre-
seribing corridor widths associated with elliptic,
parabolic, or hyperbolic approach irajectories. The
analysis applies to vehicles of arbitrary weight, shape,
and size. Illustrative calculations are made for
Venus, Earth, Mars, Jupiter, and Titan.

For nonlifting vehicles having fixred aerodynamic
coefficients, curves are presented of dimensionless
parameters from which can be calculated the maximum
deceleration, maximum rate of laminar convective
heating, and total laminar heat absorbed during
single-pass entry at velocities up to twice circular
velocity. For lifting vehicles, curves are presented of
the maximum deceleration and overshoot boundary
of an entry corridor; equations are presented for
estimating laminar aerodynamic heating from the
maximum deceleration. It is shown that the corridor
width is independent of vehicle weight, dimensions,
and drag coefficient, provided these are the same at
the overshoot boundary as at wundershoot. The
corridors of certain planets can be broadened mark-
edly by the application of aerodynamic lift; for
example, the 10-earth-g corridor width for single-
pass, nonlifting, parabolic entry 1is inecreased from
0 miles for Jupiter, 7 for Earth, and 8 for Venus,
to 62, 51, and 52 mules, respectively, by employing a
lift-drag ratio of 1. The use of aerodynamic lift
does not increase appreciably the corridors of Mars
and Titan. All corridor widths decrease rapidly
as the entry velocity is increased.

Terminal guidance requirements on accuracy of
velocity and flight path angle for successfully entering
various corridors are compared with analogous
requirements for putting a satellite into orbit, for
hitting the moon from the earth, and for achieving
ICBM accuracy. Consideration is given to the
terminal guidance problem involved in wusing a
planet’s atmosphere—rather than rocket fuel—to
effect orbital transfers from heliocentric to planeto-
centric motion, thereby converting a hyperbolic
approach trajectory to an elliptic orbit about the
target planet. This fuel saving maneuver appears
technologically feasible for certain planetary voyages,
and implies the possibility of achieving a large
reduction tn required Earth lift-off weight of chemical
propulsion systems.

INTRODUCTION

The motion and heating during entry into an
atmosphere at supercircular velocity has been
studied less extensively than that at circular
velocity. At present, entry at circular velocity
is of more immediate practical concern, since the
first manned space capsules are to be launched in
near-circular orbits. In the hopefully near future,
though, supercircular entry at essentially para-
bolic velocity (+/2 times circular velocity) will
be of practical concern upon return from the Moon.
In the more distant future, entry at hyperbolic
velocity (greater than +/2 times circular velocity)
will undoubtedly also be of practical interest,
especially in connection with interplanetary flight.
Hyperbolic entry with atmosphere braking can
effect an orbital transfer from heliocentric to
planetocentric motion without the expenditure of
fuel, thereby making possible large reductions in
Earth lift-off weight for many interplanetary
missions.
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An important problem for supercircular entries,
which is relatively unimportant for near-circular
entries, is that of the guidance accuracy required
in order to accomplish a desired entry maneuver,
such as completing entry on a single pass without
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encountering excessive deceleration or heating
conditions during entry. Terrestrial flight is
tolerant of guidance errors accompanying a land-
ing approach, since an undershoot is readily cor-
rected by a brief application of power, and an
overshoot by a return approach. Space flight, in
contradistinction, is unforgiving of guidance errors,
since undershoot may cause destruction of the
vehicle during entry, and, in a hyperbolic ap-
proach, overshoot may result in a homeless exit
into space. If the guidance error results in under-
shooting an intended trajectory too much, as
illustrated by the inner two dashed trajectories
in the adjacent sketch, the vehicle will enter the
atmosphere at an excessively steep angle, thereby
experiencing either too much deceleration for the
occupants and/or spacecraft, or perhaps too much
deceleration for the desired maneuver. If the
guidance error results in overshooting the in-
tended trajectory too much, as illustrated by the
outer two dashed trajectories, the vehicle will not
encounter enough atmosphere for slowing suffi-
ciently cither to complete entry in a single pass,
or to effcct a particular orbital transfer. Hence
the shaded portions representing excessive over-

shoot and undershoot in the sketch are excluded
as not representing the intended entry maneuver.
For some plancts, all that is left is a meagerly
narrow corridor through which the vehicle must
be guided. The outer and inner boundaries of
this entry corridor are referred to herein as the
overshoot and undershoot boundaries, respectively.

The object of the present report is to make a
general study of the entry corridor and its bound-
aries, giving consideration to aerodynamic heating
problems for various lift-drag ratios, entry veloci-
ties, and planets, and to the guidance problem
which the corridor imposes. A novel feature of
the present analysis is the introduction of a
dimensionless perigee parameter combining certain
characteristics of the vehicle with certain quanti-
ties associated with the conic perigee altitude.
By conic perigee is meant that fictitious perigee
point through which a drag-free entry trajectory
would pass (but the real trajectory may not).
This parameter provides a basis of characterizing
supercircular entries irrespective of the atmos-
phere or the vehicle weight, shape, or size.

After the present rescarch was well under way,
a recent publication of Lees, Hartwig, and Cohen
(ref. 1) became available in which they point out
the pronounced alleviation of guidance require-
ments made possible by the application of aero-
dynamic lift and, in particular, by lift modulated
in a certain fashion. They present results of
numerical calculations for a specific vehicle enter-
ing the earth’s atmosphere at a supercircular
velocity of 35,000 feet per second, which provide
a basis for comparison with the general results of
the present analysis. Their discussion of entry
with modulated lift stimulated the discussions
herein of this type of entry.

NOTATION
a resultant deceleration
A reference area for drag and lift, sq ft
. 2D

Cp drag coefficient, VA

C, coefficient the order of unity appearing
in equation (A15)

Co coefficient the order of unity appearing
in equation (A16)

D drag force, b

; . PV /B .

F, perizee parametoer ZU;‘//—L‘—NPD/[U » dimen
sionless
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local gravitational acceleration
earth sea-level gravitational accelera-
tion, 32.2 ft sec—?

deceleration in earth sea-level g,.’s, gﬂ

e

dimensionless normalized deceleration
(eq. (24))

characteristic length of vehicle, ft

lift force, 1b

average L/D during modulated-lift
entry

mass of vehicle, slugs

molecular weight of atmosphere

Prandtl number

convective heating rate per unit area,
Btu/sq ft sec

dimensionless heating rate, u*22%Y? for
laminar flow

total convective heat absorbed, Btu

dimensionless heat absorbed,
f w2Z~V2dy for shallow entries and

laminar flow

radius from planet center

radius of planet

radius of curvature of wall, ft, or
universal gas constant

Reynolds number, p—zl

circumferential distance from conic
perigee

surface area wetted by boundary layer,
sq ft

time

local temperature of ambient atmos-
phere

mean temperature of planet atmosphere

circumferential velocity component

dimensionless ratio, —

Vo

resultant velocity, Y
oS

dimensionless ratio, —
vgr

altitude, ft

corridor width between conic perigee
altitudes

altitude increment over which atmos-
phere density varies by factor of 10
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VA dimensionless function of % determined
from equation (3) and appropriate
boundary conditions

a angle of attack of lifting surface relative
to minimum-drag attitude

B atmospheric density decay parameter,
ft?

¥ flight-path angle relative to local hori-
zontal; positive for climb

] angle from planet center between
conic perigee and vehicle position

u coefficient of viscosity, slug ft~'sec™!

P atmosphere density, slug ft=°

SUBSCRIPTS

ex exit from atmosphere

f final value

7 initial value

0 surface of planet, or where #=0

ov overshoot boundary

conic perigee point

s stagnation point

un undershoot boundary

&) relative to earth

SUPERSCRIPT

differentiation with respect to @

ANALYSIS

OUTLINE OF APPROXIMATE ANALYTICAL METHOD AND
FORMULAS FOR ENTRY MOTION AND HEATING

The approximate analytical method of reference
2 for studying entry motion isemployed throughout
this report. Details of the method are not des-
cribed here; only an outline of the main equations
is presented. In essence, the method is based on
a single, nonlinear, differential equation (in dimen-
sionless transformed variables) which represents
the entry motion in an arbitrary planetary atmos-
phere. The full equation is given in appendix A
with a list of associated formulas for various
quantities relating to the motion and aerodynamic
heating. Without obtaining any solution to this
equation, but merely by examining its structure
and its boundary conditions for the special case
considered herein of shallow entries, we can
establish three dimensionless parameters upon
which entry motion and convective heating
depend. One of the parameters involves the
initial entry angle v, and arises because of mathe-
matical convenience in specifying initial condi-
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tions on the differential equation. In charac-
terizing shallow supercircular entries—and espe-
cially in describing the guidance requirements for
such entries—this initial-angle parameter is not as
convenient as a different parameter which is sub-
sequently introduced to replace the initial-angle
parameter.

Basic differential equation.—Proceeding now
with the mathematical outline, we select as an
independent variable the dimensioniess horizontal
velocity referred to local values of g and of distance
r from the plant center

/L_LE~71:L:: (1)
vgr
and as a dependent variable the function
L — L @)

~2(m/CpA) VB
In this coordinate system the pair of motion
equations for shallow entries (cos y=~1, Vi,
sin y=~+v) into a spherically svmmetric planet
reduced to a single, second order, nonlinear
equation for the dimensionless Z function (ref. 2).

_d*Z dz Z 1—u? — L
u J=3 —_— — == = ar——a —_ \/67' =
du di U uzZ D
vertical vertical gravity lift force
acceleration component minus
of drag force  centrifugal
force 3)

The physical significance of the various terms is as
indicated. It is to be noted that the molecular
weight A and the local temperature 7 of the
planet’s atmosphere enter only in the parameter
_ldp M_g
representing the local density gradient in the
atmosphere: in any real atmosphere, 8 would
vary moderately with altitude, and such variation

is admissible within the framework of equation
(3); equation (3) for Z(u#) is not restricted to
exponential atmospheres, as we will see shortly.
In the above form, though, it is restricted to small
flight-path angles v relative to the local horizontal
(powers of cos v appear on the right side of eq.
(3) if v is large as noted in appendix A), and to the
condition |(L/D) tan v|<1.

Inasmuch as the differential equation for Z(%) is
of second order, two initial conditions are required.
The two conditions selected at the initial entry
velocity %, will, for the time being, be written as

Z(u) =2, Z' () =2 ()

The dimensionless initial velocity, V;=./cos
v;~u,;, 1s employed to characterize the approach
trajectory as being circular if V=1, elliptic if
1<V <2, parabolic if V,=+/2, and hyperbolic
if V.>+/2. An entry is termed supercircular if
V:>1, and the local velocity is similarly termed
if V>1. It is to be noted that the values of
m/CpA and the initial altitude y; are not needed
in characterizing an entry motion by means of the
Z function and its two initial conditions. After a
Z function has been calculated, a number of quan-
tities of engineering interest can readily be ob-
tained from formulas listed in appendix A. Simple
formulas relating aerodynamic heating and de-
celeration also are developed in this appendix and
are shown to yield results for heating rates and
total heat absorbed in good agreement with certain
calculations for Earth entry presented by Lees,
et al., in reference 1.

The characteristics of the planet’s atmosphere
enter the above equations mainly in the dimen-
sionless parameter +/8r. Approximate values of
this parameter and other planetary constants
used in numerical examples presented later are
as follows (the subscript @ designates a value
relative to the earth):

PLANETARY CONSTANTS

M, | = Ay (for
T® ) Gases gm/mol] T, °K Ver | v Bre g1, ft pa/p1=10),
miles

Venus.. .. 1 0.97 | 0.87 | CO,N, 40 | 270 | 30 | 1.0 2% 104 9
Earth__._ . . 100 | 100 | Ny, 20 | 240 | 30 | 100 | 2.35%10¢ 10
Mars._ .. " 53 38 | N».CO, 28 | 200 | 14 Sa7 6% 104 26
Jupiter___ . ___ o110 2. 63 | HyCHy 31 170 | s0 | 20 6 104 26
Titan _____ _____ .33 .22 CH, 16 130 8 .27 10X 104 43
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The last two entries, Jupiter and Titan, are in-
cluded in numerical examples presented later in
order to illustrate the extreme variations en-
countered when entry into various atmospheres of
the solar system is considered.

Computation of Z functions.—Inasmuch as the
basic differential equation (3) for Z(%) is nonlinear,
it has been programed on an electronic computing
machine (IBM 704) in order to obtain a large
number of solutions for various values of the
dimensionless parameters which determine an
entry motion. Several hundred solutions were
obtained for the results of this report. In order
to start each solution, the first step from %, to
#;—0.001, was taken analytically. Over this
small interval v is essentially constant, so that the
equations given in reference 2 for constant v were
applied to the first small step.

It may appear at first that little is gained over
strictly numerical trajectory calculations as long
as Z functions must also be computed on a
machine. The gain, however, arises from in-
creased generality of the results. One Z function
can be applied to any planetary atmosphere and
to a vehicle with any value of m/CpA, whereas a
conventional trajectory calculation would apply
only to the specific atmosphere and specific value
of m/CpA employed.

Accuracy of Z function method.—The accuracy
of the approximate analytical method may be
judged from a comparison of several Z functions
with more exact numerical calculations. If we
first consider nonlifting vehicles, we see that with
L/D=0 the basic differential equation (3) for Z
would be independent of 8 and, hence, independent
of any variations in atmosphere temperature with
altitude as well as independent of m/CpA. Exact
calculations for a specific atmosphere and specific
m/OpA of the quantity pi~r/8/2(m/CpA) provide
a test of accuracy since this quantity as a function
of % would coincide with Z(%) if the approximate
method were exact. Excellent agreement is
exhibited in figure 1 between each of the two solid
curves (one entry at V,=1.25, and one at V,=1.4)
representing Z(u) as computed from cquation (3),
and the corresponding points representing
pAr[B/2(m|CprA) as computed from the pair of
“exact’” equations of motion with the same initial
conditions. As noted in the figure, Z(%) corre-
sponds to arbitrary m/CpbA and an arbitrary
atmosphere, while p7+7/8/2(m/CpA) corresponds

to m/CpA=1 slug ft-?, and to the ARDC (1956
model) atmosphere wherein the temperature
varies in a prescribed manner with altitude. The
latter calculations were obtained by use of the
computing-machine program of Nielsen, Goodwin,
and Mersman (ref. 3) applied to a spherically
symmetrie, nonrotating atmosphere. This close
agreement for both entries exemplifies the accuracy
of the approximate method and its applicability
to nonexponential as well as exponential atmos-
pheres.

If we now consider the case of a lifting vehicle,
we see from the differential equation (3) that, for
a fixzed L/D, the Z function would not be independ-
ent of local variations in g with altitude, as is the
case for L/D=0, since the parameter NBr(L/D)
would vary as 4/8r. An illustration of this may
be seen from the small differences evident in figure
2 between the curve representing the Z function
for constant +/8r(L/D)=232.5 and the correspond-
ing points representing the more exact calculations
of pu+7r/8/2(m/CpA) for constant L/D=1, and
VBr(L/D) fluctuating with altitude (between values
of about 28 and 33) according to the ARDC atmos-
phere. The small differences apparent in this
particular case do not reflect an inaccuracy of the
approximate Z function method, but merely
exhibit the importance of atmospheric altitude-
temperature variations for lifting vehicles. At
the very lowest velocities (©<(0.03), though, the
approximate theory breaks down because the
approximation |(L/D)tan y|<<1 is no longer a
good one.

PERIGEE PARAMETER FOR SPECIFYING AN ENTRY TRAJEC-
TORY AND CORRIDOR WIDTH

Development of perigee parameter—With con-
fidence now in the accuracy of the approximate
analytical method, we can examine the structure
of the basic differential equation together with its
boundary conditions in order to show that the
initial parameter Z’; can be replaced by one more
convenient for characterizing shallow supercircular
entries. From equation (A2) it follows that, for
shallow entries starting at a high altitude where
the initial values of p; and hence Z; are negligible
compared to their corresponding values during

entry, the second initial condition may be written
as

Z’fzwfﬁ"i Y1 (b)
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method ref.(3); ARDC atm.,
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Horizontal velocity, T

Ficure 1.-—Comparison of approximate Z function method with more exac
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Ficure 2.—Comparison of approximate Z function method with more exact calculations for a lifting vehicle.

532933—61

2




8 TECHNICAL REPORT R—55—NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

The initial flight-path angle v, should be taken at
the beginning of the “sensible atmosphere.” Tt
is not a fully satisfactory parameter from a con-
venience standpoint because, for very shallow
trajectories, such as grazing supercircular entries
which just pass through an edge of atmosphere,
the initial value of v, is cumbersome to define.
Considerable supplementary information is re-
quired in order to state at just what altitude the
sensible atmosphere begins for each particular
vehicle; the appropriate altitude depends on
m/CpA, v, and u;, as indicated in appendix B of
reference 2.

The conic perigee point is not complicated as
is the initial point for shallow entries; this may be
illustrated with the help of figure 3. Shown in

CONIC PERIGEE

Ficure 3.—Conic perigee.

the sketch is the hypothetical conic trajectory
(short dashed line) which the vehicle would have
followed had there been no atmosphere around the
planet. This conic has a perigee of distance r,
from the planet center, but the actual trajectory
may continuously descend and have no perigee.
The entry trajectory could be specified equally
well either through eonditions at point (1) by the
values of r,, Vi, and v, or at point (2) by an
entirely different set of values r,, V,, and ., or at
the initial entry point (¢) by a still different set
riy, Vi, andy,.  All of these points, however, corre-
spond to common values of radius r, and velocity
17, at the conic perigee point where v,=0.

The value of r, can be calculated readily from
Newton’s equations for a two-body drag-free
trajectory

(7

where
V= —.‘;—: v (8)
\/gr cos vy

Since we are considering only shallow entries for
which the flight-path angle is small, we employ
an approximate form of equation (7), evaluated at
the initial point (valid if siny,~y? and V?
(2— V) sin? v,/(V2—12<<1)

{7 24,2
ri—ry . Vivi

~ 9
e 2(Vi-1) )

The limitations resulting from this approximation
are discussed later.

The initial condition imposed on the differential
equation for the Z function can now be combined
with the relationship (9) just derived to show the
equivalence between vBr; v: and a certain perigee
parameter defined in terms of conditions at the
conic perigee (subscript p). We introduce a
perigee parameter defined by

— Pp r
szé_hn‘/Z‘@\/*g‘p (10)
For an atmosphere which is essentially exponen-
tial between the initial point and the conic perigee
point, we have p,/p;=e8—7). From the defini-
tion of Z (eq. (2)) we also have Z,=u,n/r./B/
2(m/CpA), so that

Z: [r.
p:a_i\/%esm—r,,) (11)

For shallow entries, y2 can be disregarded com-
pared to unity, yielding 2=V 2cos? y;~ V2, while
rp/r, in equation (11) can be set equal to unity
consistent with the approximation made in writing
equation (9). Thus, by combining (9) and (11),

V2(\Brivy?

Fp::i (4 2(‘71'2—1)
7

(12)

We see from this latter equation that for the case
of shallow entries, vBr; v; is a function only of
V, Z., and F,. Consequently, the two initial
conditions, Z; and Z’,=+/8r; v,, imposed at %, on
the basic differential equation can, if desired, be
replaced by the equivalent two, Z, and F,, im-
posed at V', (for shallow entries V=u); in effect,
then, F, replaces vBr; v; as one of the two initial
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conditions. Throughout the rest of this report
the perigee parameter Fp is used as the basic
parameter describing shallow supercircular en-
tries, rather than VBri vi. Its use conveniently
characterizes such entries because it is applicable
to any planet, and to a vehicle of any m/CpA.
The value of F, is easily calculated from two-body
trajectory equations without concern for where
the sensible atmosphere begins. It is noted that
in the earth’s atmosphere an increase in the perigee
parameter F, by a factor of 10, for example, means
that the re-entry trajectory would be “aiming”
at a conic perigee altitude about 10 miles lower,
since the density changes by a factor of 10 in 10
miles (see table, p. 4, for Ay of other planets).

Summarizing, we see that three dimensionless
parameters determine shallow entry motion: the
entry velocity V', the lift parameter +/gr(L/D)
which appears in the differential equation, and
the perigee parameter F,.

For later use, it is noted here that the angular
distance so/r from the conic perigee to the point of
impact (=0 as illustrated in fig. 4) can be shown

Ficure 4.—Range notation.

to depend on only the same three parameters as Z
depends on, V,, ¥B8r(L/D), and F,. To this end
we start with the defining equation,

So §:— 380

(13)

where 8, is the angle between the conic perigee and
the initial point. From equation (A5) for (s—s,)/r,
and the §—+ relationship for two-body trajectories

V2 sin 2y

R CHTTAES)

(14)

which, for small angles becomes

. Vi

at the initial conditions, we obtain the equation

\/B_SO V ( B”' 'Y‘l f du (16)

r V-1
Since all members on the right side of this latter
equation depend only on V', v/8r(L/D), and vBr v:
(or F,), the quantity +/Br(sy/r) is similarly de-
pendent. This relationship is utilized later to
specify the landing point of nonlifting vehicles
entering at supercircular velocity.

Some remarks are in order here about the as-
sumptions made in demonstrating the equivalence
of F, and VBr; v The development is restricted
to entries which are shallow (sin v,~v; and to
entry velocities not too near circular in order that
equation (9) be a good approximation. An exam-
ination of the higher order terms omitted from
equation (9) reveals that this equation is not a
good approximation if V2—1<y, which corre-
sponds to near-circular entries for which the angle
6; between the Keplerian perigee and the initial
point is greater than about 90°. Since v, is the
order of 0.1 (or less) near V=1 for most manned
entries that are deceleration-limited, the use of
F, as a correlating paramecter for similarity of
entries into different planetarv atmospheres is
restricted to about V,-2>1.1 or V;,>>1.05. For the
domain of planetary similarity in terms of I,
namely, for shallow supercircular entries at
V.>>1.05, it would make no appreciable difference
whether the full or the approximate equations
were emploved. The full equations are (7), (11),
(14), the full differential equation (A1) for Z, and
the associated equations which include cos v
factors. The corresponding approximate equa-
tions are (9), (12), (15), the approximate differen-
tial equation (3) for Z, and associated equations
which use cos y=1, sin y=v. For V. <1.05,
however, it would make a difference whether full
or approximate equations were employed. In
making all numerical computations the full equa-
tions were used (with y/Br=30), since these equa-
tions are only slightly more lengthy to program on
an IBM 704 than are the corresponding approxi-
mate equations, but in presenting all results, they
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are plotted in terms of the dimensionless param-
eters approprlato for planctary similarity. Con-
sequently, in the range 1<7,<1.05, the results
plotted in subsequent figures, stnctl; spealxlng,
would apply only to Earth (v/Br=30), but in the
range V,>1.05 they would apply to any planet.

It is noted also that, in the development of
equation (11) for F,, the value of 8 tacitly has been
assumed constant. Actually, 8 in equation (6)
would properly be 8; and in equation (11), some
mean value B, averaged between r, and ;. An
improvement in accuracy can be obtained by
regarding 48, in these equations as the “semi-
local” value (see ref. 2) averaged over a small
strip of altitude just above the conic perigee alti-
tude, rather than by regarding it as equal to the
average for the entire atmosphere (B, =30 for

Earth).
Definition of corridor width.—If we have two

trajectories bounding an entry corridor, the differ-
ence AY,=Y,,,—¥p,, between their two conic
perigee altitudes is defined as the corridor width,
as illustrated in figure 5. By employing the

Undershoot

Fieure 5.—Definition of corridor width.

exponential-atmosphere approximation between
Yp,, and Y, there results, from the defining
equation (10) for the perigee parameter,

1 Fom/(pA)
AypEypm,_yp,m _l/ —((Tw%//@l;—/l))‘; (17)

or, in terms of the altitude increment A,y over
which atmospheric density changes by a factor
of 10,

(Fpm/CDA) un

Ay =AY logio Fom]CpA) (18)

For the special case wherein m/CpA is the same
along the two boundaries,

Ay Aloy (lOgm DPun ™ IOngp”) (19)

It is to be noted from equation (18) that, in a
given exponential atmosphere (constant g), the
corridor width for any fixed m/CpbA depends only
on F, (F, ,and is independent of m/CpA. The

altitude of a corridor boundary, or of the corridor
center, however, depends on m/CpA since p,~
m/CpA (see eq. (10)). In the earth’s atmosphere
the corridor width would vary a small amount
(about =10 percent) because of the variation of 8
with altitude, latitude, and season.
DETERMINATION OF GUIDANCE REQUIREMENTS FROM
CORRIDOR WIDTH

Since the width of the entry corridor between
the conic perigee altitudes of overshoot and under-
shoot is independent of m/CrA, it provides a con-
venient basis for calculating and visualizing guid-
ance requirements. From a knowledge of the
corridor width Ay,=vy,,,—¥,,, between conic
perigees, the corresponding guidance requirements
on velocity and flight-path angle can be calculated
from equation (7) representing a conic trajectory
in terms of V and v:

x/l — V22— V?) cos?y
2—V?

L (V) =" (20)

_ V2 cos?y
1+\/1—I_/2(2— V2 cos?y

If the corridor width is relatively narrow, the
errors, AV, Ay, and Ar at any given distance r from

the planet are related to the change in conie

ige 1}
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perigee altitude Ay,=Ar, which they produce
through the derivatives of the above function.

ar, of of f
= DVAV+ Ay —I— Ar (21)

These derivatives become especially simple for the
case of parabolic entry (12=2 and 2r,=rV2cos%y).

(= T o

(22)

For narrow corridors r,~r,, so that the per-
missible velocity error AV/V for zero error in y and
r is simply Ar,/2ry, independent of r. The per-
missible Ay error for zero errors in r and V, how-
ever, would decrcase substantially as r increases.
Some examples of the calculated guidance require-
ments for entering the corridors of various planets
are presented later in terms of the plus-or-minus
tolerances about the corridor center-line trajectory
(e.g., EAy=Ay/2). It may suffice as a reference
point to note here that a 10-mile wide corridor in
the earth’s atmosphere (Ay,/ro=1/400) would
require, at a distance of 10 earth radii, a flight-
path angle accuracy of about +Ay=0.01° if there
were no errors in velocity or position.

RESULTS AND DISCUSSION

In what follows the simplest case of nonlifting
entry is discussed first, with attention being given
to the corridor boundaries, corridor width, and
acrodynamic heating problems. Lifting entry is
then discussed giving consideration to the inter-
dependence of Cp and /D, inasmuch as such con-
sideration is necessary in realistically evaluating
the net broadening of the entry corridor made
possible through the use of lift, as well as in
evaluating the acrodynamic heating penalty asso-
ciated with lifting vehicles. In the final section, a
brief discussion is presented of the guidance toler-
ances imposed by the corridor widths for super-
circular entry into various planets.

In the presentation of many results which follow
a normalization technique is used. Thus equation
(A4) for the resultant deceleration in earth ¢’s for
shallow entry

L O

is normalized with respect to the earth by a
dimensionless function @ defined by

— - 2
G=30 az\/ 1H V(B e —é] (24)
where . /(8r) g =+/8r/30. The normalized @

function, like the Z function, depends only on the
parameters v/8r(L/D), Y, and F,, and is appli-
cable to anv planet. For the earth, G is equal to
30 @Z+v/1+(L/D)2, the deceleration in earth sea-
level g’s (see eq. (23)). For other planets, the
deceleration G in earth ¢’s can readily be obtained
from @ and the planetary constants by combining
the above two ¢quations.

AN UWD)?
V1+[W(Br) o L/D}

The normalized distance from the conic perigee to

G=ge{Bra G 25)

the landing point is +/(87)e(so/r), which is equal to
so/r for the earth, and which also depends only on
the same three parameters that Z depends upon.
The dimensionless quantities § and Q (defined in
appendix A) pertaining to convective heating in a
planetary atmosphere arc not normalized with
respect to Earth,

SINGLE-PASS ENTRY OF NONLIFTING VEHICLES

The simple case L/D=0 will serve to illustrate
the gencrality of the perigee parameter, and its
convenience in deseribing corridor boundaries. A
plot of the maximum value of the normalized

deceleration (Gnq;) versus F, is presented in
figure 6 for various supercircular entry velocities.
As indicated on the ordinate scale, G is equal to
Glge (Br)e for nonlifting vehicles (see eq. (25)).
The circle points in this figure designate the
overshoot boundary for single-pass entries. Thus,
in a parabolic entry at essentially escape velocity

(Vi=1.4), the overshoot boundary occurs at a
perigee parameter of 0.06. If a parabolic approach
trajectory aims at F,<0.06 (at a higher perigee
having lower density and, hence, smaller F) the
vehicle will pass through the atmosphere, orbit,
and then return for at least a second pass before
entry is completed; but, if the vehicle aims at
F,>0.06, entry will be completed on the first pass.
It is to be noted that the overshoot boundaries in
terms of F, apply to any planet.
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FieureE 6.—Maximum deceleration during entry of nonlifting vehicles.

Undershoot boundaries and corridor widths can
also be obtained readily from the normalized
deceleration curves in figure 6 having log,F), as
the abscissa. If m/CpA 1s the same at overshoot
and undershoot, the corridor width on such a
plot is simply proportional to the spacing between
the two abscissa points representing these bound-
aries (see eq. (19)). We will consider first the
case of entry into Earth. If, for example, maxi-
mum deceleration is arbitrarily set at 10 G (ten
times the earth’s sea-level acceleration), the under-
shoot boundary for the carth would be at Grar=10
in figure 6, and at ¥, =0.31 for parabolic entry.
The ratio F,, (F, =0.31/0.06=5.1, corresponds
to 0.7 of alogy cyele. Since one logy, evele in F,
represents a corridor width equal to A,y for a
fixed m/CpA (see eq. (19)), the width of the entry
corridor between conic perigees in the present
example is 0.7A,0y, which amounts to 7 miles for
the earth. This corridor widith would be the
same for any fixed value of m/CprA. If m/CrA
were increased by a factor of 100, however, both

corridor boundaries (which correspond to fixed
values of F,) would be situated lower in altitude
where the density is 100 times greater (20 miles
lower for the earth), but the corridor width between
the two boundaries would still be 7 miles for
single-pass parabolic entries limited by 10 @
deceleration. It is clear that by specifying the
corridor width in terms of the width between conic
perigees, it 1s a simple matter to compute the
conventional plus-or-minus guidance tolerances at
any distance from a planet from the well-known
equations for two-body trajectories. Examples of
this are presented later.

Turning now to different objects in the solar
system, the entry corridor widths can be shown to
vary over wide limits, as might be anticipated.
The example value Gpq=10 of normalized decel-
eration would correspond in the case of Jupiter,
for instance, to a deceleration of 53 Earth ¢’s,
since gg+/(8rg is 5.3 for Jupiter (see eq. (25)).
Since one logyy cyele in F), corresponds to 26 miles
altitude on Jupiter (see table, p. 8, of planetary
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constants), this 53 G, corridor width for parabolic
entry would be 0.7X26=18 miles. The 10 G,
corridor width would be nonexistent, since the
smallest possible maximum deceleration for non-
lifting vehicles entering any planet corresponds to
Gruz=6.5 (this may be scen from fig. 6 or, more
clearly, from a cross plot presented later), which
corresponds to 6.5X5.3=34 G for Jupiter. On
the other extreme, this example value G, =10 in
the case of Titan (Jev (8r)e=0.06) would corre-
spond to a maximum deceleration of only 0.6 G,
and to a corridor width of 0.7 X43=30 miles for
this small value of maximum deceleration. Since
even normal entrv at parabolic velocity would
result in only 5.2 @ for Titan, the corridor width
for 10 Gpe: would actually be the full radius of
Titan (1300 miles) plus the conic perigee altitude
for overshoot (between about 50 and 250 miles,
depending on m/C'pA and the surface-level atmos-
phere density on Titan). Similar calculations
yield the following table of corridor widths for
nonlifting vehicles entering at parabolic velocity

13

(a value of 0 for the corridor width designates
nonexistence of a corridor in the sense that the
minimum possible G, is less than the value
arbitrarily selected for the undershoot boundary)

Corridor width in miles for L/D=:0,
Vi=14

5 Gmu: 10 (‘Ymaz 20 Gmaz 40 Gmaz
Venus_  ____. 0 8 23 80
Earth______. 0 7 20 70
Mars__ . __. 210 400 1250 2200
Jupiter. . ___. 0 0 0 10
Titan.___ .| 1300 1400 1400 1400

An approximate increment of 100 miles for the
overshoot altitude has been included in the esti-
mates for Titan. For Mars an increment of 80
miles has been included (corresponding to L/D=0,
m/CpA=1 slug/sq ft, and to a surface-level
atmosphere density of 0.0002 slug/cu ft).

An interesting, and possibly unexpected, result
for the entry of nonlifting vehicles is exhibited by
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FI1GURE 7.—Maximum laminar heating rate during entry of nonlifting vehicles.
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the curves for maximum deceleration in figure 6,
and also by the curves for maximum rate of lami-
nar heating in figure 7. The minimum values of
G oz 0d Gz dO 1OL OCcur at the lowest supereir-
cular entry velocity (circular velocity, V,=1), as
might be expected on first thought. These minima
occur for entry velocities that are substantially
supercircular. This is apparent from a cross plot
of the various minima, as presented in figure 8.

Single-poss entries
wmo—ma—e— Multiple-pass atm. braking

Minimum G max

Minimum g

ok 0 L 1 1 1 i
[Ke} 1.2 1.4 _ 18 1.8
Entry velocity, V;

Ficuore 8.—Cross plot of the minimum wvalues of the
maximum deceleration and maximum heating rate as a
function of entry velocity for nonlifting vehicles.

The least possible maximum deceleration would
be experienced by entering a planet at a hyperbolic
velocity of V,=1.48 and aiming at a perigee param-
eter of F,=0.12, resulting in Grraz=6.5 (as com-
pared to G,,,=8.3 for circular orbital decay).
The least possible maximum heating rate for non-
lifting vehicles occurs at V,=1.12 and at F,=
0.018, resulting in Gpn.:=0.19 as compared to Fpne=
0.22 for circular orbital decay.

The physical reason these minima occur at
supercircular rather than at circular entry velocity
is that supercircular velocity is accompanied by a
greater centrifugal lifting force than circular
velocity, and, hence, results beneficially in slower
rates of descent. If V;isnot too much greater than
unity, this beneficial effect of centrifugal lift

dominates over the detrimental effect of increased
velocity, whereas for very large V, the latter effect
dominates. The net result is a minimum at some
supercircular V.>1. In different terms, these
minima arise at V,>1 rather than at V,=1 be-
cause, by the time the local velocity for entry at
V.>1 has been reduced to T—/zl, the vehicle is in
essentially level flight (not necessarily in a slight
climb) at an altitude where the deceleration is
sizable; as a result, by the time the vehicle de-
scends to the relatively lower altitudes at which
Gz O qmez would be experienced if V; were unity,
the velocity has been reduced relatively much
more. Thus in supercircular entry, the maximum
conditions are experienced at higher altitudes
where they are less severe than in circular entry.

The normalized curves for the total heat ab-
sorbed during nonlifting entry are presented in
figure 9. They do not exhibit minima. For any
entry velocity the least possible total heat is ab-
sorbed by entering at the largest possible value of
F,, corresponding to the steepest possible descent
and to the greatest possible deceleration. This
result is to be anticipated from the general inverse
relationship between @ and deceleration previously
developed as equation (A14), and would apply
also for lifting vehicles. Near the overshoot
boundary, where the decelerations are the smallest,
Q is the largest. For parabolic entry §=4.3 at the
overshoot boundary (F,,=0.06), whereas at the
Graz=10 undershoot boundary (F,,,=0.31) the
corresponding value Q=2.1 is half that at over-
shoot. As will be seen later, the difference be-
tween () at the two boundaries for lifting vehicles
can be considerably greater.

Normalized curves giving the landing point rela-
tive to the conic perigee point are presented in
figure 10. As would be expected, the point of im-
pact for vehicles aiming at a given F, moves
around the planet in the direction of motion (from
positive toward negative sq) as the entry velocity
is increased. Except for entries near the overshoot
boundaries, though, the landing point is surpris-
ingly near the conic perigee point and is not greatly
affected by V.. Thus, in the range 1< F,<10, a
nonlifting vehicle would impact before the vehicle
passes under the conic perigee point, always land-
ing within a distance of about 0.25r of the conic
perigee for any V, between 1.05 and 2.0.

The various charis presented for nonlifting
vehicles cover only the range of shallow entries for
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Ficure 9.—Total laminar heat absorbed during entry for nonlifting vehicles.

7,<10. Beyond this value the entries become so
steep that the gravity and centrifugal forces are
small compared to the vertical components of
drag and deceleration. Under such circumstances
the solution of Allen and Eggers (ref. 4) for a con-
stant flight-path angle would apply. It is shown
in reference 2 that this particular solution corre-
sponds to a function Z; given by

Zy—Br sin vialn %‘-ﬂ 26)
and to
Qo= 3087¢ —sin v,) Ve @7)
2e
Uty =0.24T%3(—/Br sin v,)V/? (28)
Q=T — 2 (29)

" (—Brsin )2

These equations can be used for the steeper en-
tries. The use of v, for steep entries is not arbi-

trary, and is probably more convenient than the
use of F,. The conic perigee radius of a steep
entry, if desired, is readily calculated from equa-
tion (7), the corridor width would be simply
ro—ry,, and the landing point would be at an
angle 6, from perigee, where 6, is calculated from
the full equation (14) for 6.
OVERSHOOT BOUNDARY FOR LIFTING VEHICLES

Before discussing the influence of aerodynamic
lift on the corridor boundaries it is desirable to
note that such discussion considers the inter-
relationship between L/D and Cp. Any coupling
between L/D and C, takes on added significance
when aerodynamic heating is considered, since
corridor width and aerodynamic heating each
depends on both L/D and Cp, and in conflicting
ways. It is unfortunate that shapes cannot be
designed to have maximum L/D with simultane-
ously maximum Cjp. Large Cp is desirable in
order to minimize aerodynamic heating (see ref. 4,
{A14)), and large L/D is desir-

or eqs. (A13) and

Y “hi1 )
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lifting surfaces in hypersonic Newtonian flow.

Ficure 11.—Lift-drag polars for
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able in order to maximize the corridor width.
High /D values are obtained, however, only with
slender shapes having low Cj, whereas low L/D
values’can be obtained either with large Cp (blunt
shapes, or slender shapes at large angle of attack

a) or with small C, (slender shapes at small ).
The apprommate depcndence of L/D on Cp for
lifting surfaces in hypersonic Newionian flow is

developed in appendix B, and is illustrated by the
four curves in figure 11. As noted in this appen-
dix, the Cp-L/D coupling represented by the top
curve in figure 11 produces the largest Cp for a
given L/D of the several cases considered (as
illustrated by the curves in fig. 12), and, hence, is
employed herein to evaluate the net broadening in
corridor width which can be realized by employing
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Figure 13.—Overshoot boundaries tor single pass entries.

a lifting vehicle. This particular coupling also is
employed to help evaluate the trade-off between
guidance and heating problems.

Determination of overshoot boundary.—If a
vehicle entered along the overshoot boundary, it
would pass through barely enough atmosphere to
just reduce the velocity to local circular as the
vehicle is about to exit from the atmosphere.
The overshoot boundary has been determined by
plotting a curve of the exit velocity V. for
atmosphere braking passes as a function of F),
and then observing the intercept at V,;=1. The
results are presented in figure 13 in terms of the
parameter v (8r) 5 (L/D) (equal to L/D for Earth).
Sinee each curve corresponds to '\_/'wzl, the
domain above and to the left of each curve repre-
sents multiple-pass atmosphere braking, whereas
the domain below and to the right represents

single-pass entry. These curves apply to any
planet.

As might have been anticipated, the curves in
figure 13 show that, relative to the case of L/D=0,
the overshoot boundary can be extended upward
(to lower p, and lower F,) if negative lift is em-
ployed, that is, lift directed toward the planet cen-
ter. When the interdependence of L/D and (Y} is
considered, the actual extension in the conic perigee
atlitude for overshoot (Ay, is proportional to A
log F,, /Cp), would beless than the apparent exten-
sion in F, because Cp decreases as L/D increases.
Even the extension in ¥, is not impressively large,
and is of diminishing magnitude as L/D decreases,
because the higher the vehicle passes, the less mass
of atmosphere there is to deflect the trajectory
toward the planct center. For Earth (y(6r)g=1)
the curves plotted in figure 13 and the values
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tabulated in appendix B for the Cp-L/D relation-
ship yield the following results for the parabolic
(Vi=1.4) overshoot boundary expressed in terms
of the increase Ay, in the conic perigee altitude

at overshoot.

Extension
Extension upward of
upward of Yo,
Yo,, considering
assuming Cp-L/D
constant Cp, | dependence,
L/D miles miles
0 0 0
—. 25 5 4.8
—.5 7.5 6
-1 10 5
—2 12. 5 2
—4 15 -7

It is seen that when C,-L/D coupling is consid-
ered, the highest conic perigee altitude for over-
shoot would be obtained with L/D~—0.5 and
would be only 6 miles higher than that for L/D=0.
The overshoot altitude for L/D= —4 actually is
substantially lower than for L/D=0, illustrating

that too much negative L/D at overshoot would
result in a narrower corridor than if L/D were 0.

A more effective method of extending the over-
shoot boundary would be to deploy a large, light,
high-drag device. In this way it appears prac-
tical to increase CpA by a factor of about 1000.
The corresponding conic perigee altitude at over-
shoot would be raised by an amount 3 A,y (see
eq. (18)), which is equal to 30 miles for Earth.
This is 5 times the extension in overshoot attain-
able by the use of negative lift.

In addition to specifying the overshoot bound-
ary (Ve=1), it also is of interest for hyperbolic
entries to specify the nonreturn boundary (V,,=
+/2). Both boundaries are illustrated in figure 14
for V,=1.6 and V,=2.0. It is evident from the
less than pencil-line width between solid and
dashed curves that there is negligible difference
between these boundaries in the range of +/ (_67‘7(B
(L/D) less than about —0.5. Even for L/D=0
there is little difference, the overshoot boundary

l_/;f ! (overshoot boundary)

—— == {4,= /2 (nonreturn boundary}

Hyperbolic exit
Vx> V2

Eliptic exit
1<V < V2

.002 ol \)

1.6

20

Perigee parameter

2(—2—) /%7

CD A

Single-pass entry

Ficvre 14.—Nonreturn and overshoot boundaries for hyperbolic entries.
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for V,=2.0 being at F,=0.17 and the nonreturn
boundary at F,=0.10. This difference would
amount to 0.2 Ay, or to only 2 miles of altitude
for the earth’s atmosphere. It may perhaps be
surprising that the overshoot boundary is so
sharply delineated in the sense that an entry pass
slightly beyond it would result in a sizable super-
circular exit velocity, rather than in the comple-
tion of entry. This may be an important consid-
eration in prescribing the design boundaries for
the guidance and control system of a spacecraft.

The present calculations of the overshoot
boundary for arbitrary m/CpA and planetary
atmospheres are in good agreement with some
calculations made by Lees, Hartwig, and Cohen
(ref. 1) for a vehicle having m/CpA=3.1 slug ft~=2
and entering the earth’s atmosphere at 35,000
feet per second (V,=1.36). They presented
their results in terms of the flight-path angle at
an arbitrary altitude of 400,000 feet. According
to the present method, the radius to conic perigee
is determined by F,, m/CpA, and B from equation
(10); the angle at y=400,000 feet is determined
from equation (7) or (9). For their vehicle the
following results are obtained:

Present Lees, et al., v
method, yat | at 400,000
400,000 ft, ft, deg
L/D deg
0 52 5 4
—1 4.4 4.4
-2 | 4.2 4.2

The agreement is quite satisfactory.

UNDERSHOOT BOUNDARY FOR LIFTING VEHICLES

A deceleration-limited undershoot boundary is
affected not only by the maximum value of @
selected, but also by the particular way in which
the L/D is monitored. By ‘“‘constant L/D” is
meant an entry in which L/D is constant at least
until the flight path is essentially horizontal
(y==0, near where maximum horizontal decelera-
tion is reached) and is reduced thereafter in order
to complete entry in a single pass. By “modu-
lated L/D,” as introduced by Lees, Hartwig, and
Cohen (ref. 1), is meant an entry in which L/D is
monitored well before y=0 is reached in the
particular manner which maintains constant
resultant deceleration.

The beneficial effects of modulated lift on de-
celeration and/or guidance requirements have been
discussed by Lees, Hartwig, and Cohen under the

assumption that m/CpA is maintained constant
as L/D is varied. They show that by modulating
the L/D in a manner such that large L/D values
are employed in the first portion of the entry where
the longitudinal deceleration is small, the resultant
deceleration can build up to its maximum under
conditions where the transverse component ( ~ lift)
is dominant. Then, by maintaining constant
resultant G through decreasing the transverse
component (decreasing 1+ (L/D)?) andincreasing
the longitudinal component, the entry with
modulated lift can be completed without requiring
large negative L/D’s at any stage. In this way the
undershoot boundary for modulated L/D can”be
extended considerably from the value for constant
L/D, provided the value of L/D at entry is rela-
tively high. Modulation, however, is not effective
in extending the overshoot boundary. Overshoot
is extended the most, as noted above, by setting a
vehicle at L/D~—0.5 and then keeping this value
constant until V,,=1 is reached.

In the present research, a large number of
calculations have been made for the case of con-
stant L/D. These calculations can be applied also
to the case of modulated L/D by employing a
result of Lees, Hartwig, and Cohen. They found
that the ratio of G,,., for modulated lift to G,,., for
constant lift was essentially independent of v; and
V; and dependent only on the value of L/D at
entry. A curve showing their result is presented
in figure 15. Since they found this curve to be
independent of v,, it would be independent of the
parameter 4/8r v; and hence presumably can be
applied to any planetary atmosphere. It should
not be surprising that this curve varies almost as
[14+(L/D)?7'2, inasmuch as the benefits of modu-
lation in alleviating the resultant deceleration are
obtained primarily by working with the trans-
verse lift component. The curve in figure 15 is
used in this report for obtaining undershoot
boundaries for modulated L/D from curves calcu-
lated for constant L/D.

Curves are presented in figure 16 of the nor-
malized maximum dece_leration G,ro: 85 a function
of log;of", for various V; and constant L/D. The
abscissa extends to much higher values of #F),
(10* for V;=1.05 and 1.1, corresponding to 400
miles altitude increment for the earth) than
previously considered. The circle points repre-
sent the overshoot boundary for single-pass
entries. From these working curves a deceleration-
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G mgx for modulated lift
Gemgy for constant L/D

1 1 1 ]
0 I 2 3 4
L/D at entry
Ficure 15.—Effect of modulated lift in reducing peak
deceleration; from results of Lees, Hartwig, and Cohen
(ref. 1).

limited undershoot boundary can be determined
for a given G,z L/D, and atmosphere. A heating-
rate-limited undershoot boundary can be calcu-
lated approximately from the relationships de-
veloped in appendix A between @,,q; and convective
heating.

It is apparent from figure 16 that an increase in
L/D up to about 2 can extend considerably the
undershoot boundary for a given Grar.  The
magnitude of the extension in terms of log F,
would be proportional to the extension in altitude
only if (', were independent of L/D (the effect of
Cp-L/D coupling is considered later). In the
initial stages of entry into the atmosphere, the
transverse lift force deflects the trajectory upward
so that a lifting vehicle does not descend as rapidly
into the lower layers of dense air as does a non-
lifting vehicle. Hence, for a given F, a lifting
vehicle experiences less longitudinal deceleration
than a nonlifting one. This beneficial effect of
L/D increases only up to about L/D=2. Larger
values of L/D (for the case of constant L/D entry)
do not further extend the undershoot boundary
because the adverse effect of the lift force in pro-
ducing transverse deceleration dominates the
beneficial effect of the deflected trajectory in
reducing longitudinal deceleration. Over most of

the range of L/D and F, considered, a vehicle
would exit from the atmosphere if the L/D were
held constant during the entire entry. The vehicle
can easily avoid exiting by reducing L/D after
Gre: has been experienced near the point where
v=0.

The curves in figure 16 for lifting vehicles
represent the domain of shallow entries (y,<{10°
in most cases for the earth) and of L/D<4.
Steeper entries, or those with L/D>4, correspond
to conditions under which the gravity and centrif-
ugal forces are small compared to the lift and
vertical deceleration. Under such circumstances
the approximate solution of Eggers, Allen, and
Neice (ref. 5) for skip vehicles would apply. As
shown in reference 2, this particular solution
corresponds to a function Z,;; given by

1= "U+/Br (71 In % 3D In 7 (30)

and to
9o (Brv)*V, \/ <L 2 D
G, = 2(L/D) 14 e (31)
(=)
_Va 1/4 L/D 32
qur,, (Br)tte 2L/D (32)

Asin the case of steep nonlifting entries, the use of
v; for steep lifting entries is probably more con-
venient than the use of F,.

The present calculations of the undershoot
boundary, like those of the overshoot boundary,
can also be compared with calculations made by
Lees, Hartwig, and Cohen for their specific
conditions (m/CpA=3.1 slug ft=2, V,=1.36, earth’s
atmosphere, and v defined as that at 400,000 ft).
For this comparison the 10 @G,,. boundary is
selected, with the following results:

Present Lees, et
method v al., ¥ at
at 400,000 400,000
L/D ft, deg ft, deg
0 5 8 5 8
.5 7.4 7.9
2 82 8 5
2 modulated 9.8 10. 6

The agreement is regarded as satisfactory.

CORRIDOR WIDTH FOR LIFTING VEHICLES

Single-pass entries.—In figure 17 curves are
shown of both the overshoot and undershoot
boundaries for shallow entries into the earth as &
function of |L/Dj for G ez of 5, 10, and 20, and for
various V,. These two boundaries determine the
single-pass corridor width. For a given value of
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F1eurRE 16.—Normalized maximum deceleration for various lift-drag ratios and entry velocities.
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[L/D|, the overshoot boundary would represent
L/D<0, and the undershoot L/D>0. The solid
curves identified as constant L/D, as noted pre-
viously, correspond to L/D fixed during entry
only until y~0, and to L/D monitored in some
unspecified way thereafter in order to complete
entry in a single pass; the dashed curves identified
as modulated L/D), represent a fixed L/D only for a
much shorter portion of the entry, and to L/D
monitored well before the y=0 point is reached.
With a given G, the undershoot boundaries are
seen to be about the same for constant L/D as
for modulated L/D in the range of [L/D)| less than
about 0.5. At L/D greater than about 1, the
undershoot boundaries with modulated L/D are
considerably extended beyond those for constant
L/D.

27

For vehicles having a fixed Op independent of
L/D, the effect of L/D on corridor width can be
visualized from the spacing between overshoot
and undershoot boundaries, inasmuch as Ay,=
Ay (logieFy  ~logF,,) for such vehicles. In-
spection of the spacing between the log I, boun-
daries in figure 17 shows that the corridor width
for the case of constant L/D attains a maximum
at L/D between about 2 and 3, but for the case of
modulated L/D increases indefinitely as L/D in-
creases. The corridor width for modulated L/D
at (L/D)ey=3 (and Cp, independent of L/D),
for example, is essentially double that for con-
stant L/D over the entire range considered in
figure 17 (5<Gn<20 and 1.05<V,<2.0).
Some example values corresponding to Cp inde-
pendent of L/D are as follows:

Corridor width in miles for V;,—1.4
5 Gma: 10 Gmaz 20 Gmaz
L L L L L L L L L
=% | 5=t D™ =0 |57t p=' | =% | p~! 7=t
modulated modulated modulated

Venus._______._.____ 0 27 36 8 52 70 26 105 140
FEarth_______._.______ 0 27 34 7 51 65 20 100 130
Mars________.______ 210 300 370 400 550 720 1250 1240 1740
Jupiter_____________ 0 34 42 0 52 70 0 90 120

Corridor widths for Titan are not listed since they
correspond to such steep entries that aerodynamic
lift is ineffective in broadening the corridor width
beyond the values alrecady tabulated for L/D=0.
Even in the case of Mars, the parabolic entry
angle for 20 G,,, is sufficiently steep (47°) that
the reduction in longitudinal force brought about
by the deflected trajectory is overweighed by the
transverse lift force producing the deflection, so
that the net effect is a greater resultant decelera-
tion (and narrower corridor) for L/D=1 than for
L/D=0. Modulated L/D, though, still appears
to provide a moderate broadening of the Mars
corridor, but this is based on the untested assump-
tion that the curve of figure 15 applies to steep as
well as shallow entries. The figures for Mars in
the above table include a 100-mile increment for
the conic perigee altitude of overshoot. This
particular increment corresponds to (m/CpA),=1
slug/sq ft, (L/D),,=—0.5, and to a surface-level
atmosphere density on Mars of 0.0002 slug/cu ft.

Because of guidance errors, a spacecraft may
unavoidably enter either near overshoot or under-
shoot. A lifting vehicle could employ a different
I/D if entry occurred near overshoot than if it
occurred near undershoot, and could have greatly
different Cp at these two boundaries. It is of
interest, then, to consider the interdependence
of Cp and L/D in order to evaluate the practical
effectiveness of L/D in broadening the entry
corridor. We will assume that L/D=-—0.5 at
overshoot, since this value produces the highest
overshoot boundary when the Cp-L/D coupling
is considered. At undershoot we will assume that
any constant L/D equal to or less than 4 could
be employed. From equation (18) for the cor-
ridor width it follows that with m/A4 fixed,

F
AY,= Ay [loglo <—ZC%>> ~logu ( C:JZO)D>L/D——0 5:|
T T (33)

The values of F, can be obtained from figure 17,
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and Cp from values of Cp/Cp tabulated in
appendix B (taking Cp _=1.7, for example). In
making comparison with the case of Cpindependent
of L/D, we will consider two entries: (1) entry
with L/D at undershoot different from that at
overshoot, but with Op independent of L/D, and (2)
the same entry, only with C, dependent on L/D.
For convenience, the invariant C, of case (1)
will be taken as equal to the O of case (2). In
the case (2) with Cp-L/D coupling, the overshoot
boundary would be higher than in case (1) because
L/D=—0.5 produces the highest overshoot alti-
tude when the Cp-L/D coupling is considered.
In the range of (L/D),, between about 0.25 and
1, Cp is not greatly different than at L/D=—0.5;
for practical purposes, then, the corridor widths
in this range of (L/D),, are essentially the same

as those previously computed under the assump-
tion that Cp is independent of L/D. Because of
two compensating effects, the corridors tabulated
above for L/D=1 and C, independent of L/D
are also closely representative of those for Cp-L/D
coupling with (L/D),,=1 and (L/D)e(=—0.5.
Compensating effects occur because at (L/D),,=
—0.5, Cp is double that at (L/D),,=1, but log
F,  also is double. The corridors for higher
(L/D)un, however, can be considerably broader
than if calculated under the assumption of Cjp
independent of L/D. Calculations from equation
(33) of the 10 @,,. corridor width for parabolic
entry into various planets, including the influence
of Op-L/D coupling, and the assumption that
L/D=—0.5 at overshoot, yield the following
values:

Corridor width in miles, Vi—=1.4

(L/D) Venus Farth Mars Jupiter
Constant | Modulated | Constant | Modulated | Constant Modulated | Constant | Modulated
L/D L/D L/D . L/D L/D L/D L/D LD
1. 53 67 52 66 550 720 55 70
2 . 63 99 62 97 520 920 ‘ 77 110
4 . 71 149 71 146 480 1300 1l 93 160

The relatively broad corridors for (L/D)..=4,
unfortunately, are associated with severe heating
penalties, particularly in the case of modulated
L/D. 'This association is discussed later.

A pronounced trend of decreasing corridor width
with increasing entry velocity can be seen from
comparison of the various portions of figure 17,
but it is more apparent from the cross plot in
figure 18 where V, is employed as the ordinate.
Each plot is for various values of G,.,; and for a
different value of v/(8r)g(L/D), and can be applied
to any planet for V,>1.05 approximately. For
V', too near 1.0, the planetary similarity in terms
of I’ as the correlating parameter breaks down,
and the curves in the region 1.05>V,>1.0 are,
strictly speaking, those for Earth only (or Venus
with v/ (8r)e=~1) as previously pointed out. The
dashed curves representing modulated lift depend
on the individuﬂ values of both L/D and +/(6r)a
(L/D) for ali V, and apply only to +/8r=30
(Earth, Venus). Tt is evident, for example,
that the Earth 10 @,,, corridor width for non-

lifting vehicles decreases from about 180 miles
at V,=1 (circular entry) to 7 miles at V,=+2
(parabolic entry), to 0 miles at V,>1.8. For
constant /D=1, the corresponding widths are
about 560 miles at V,=1, 50 at V,=+/2, and 20
at V,=2.0. Clearly, any increase in entry
velocity not only increases the amount of heat to
be absorbed, but also increases the severity of the
guidance requirements to be met by a manned
spacecraft which is deceleration-limited.
Multiple-pass entries.—Thus far consideration
has been given only to the corridor for single-pass
entry. Multiple-pass atmosphere-braking entries
are of interest for several reasons, one of which is
that they provide a means of minimizing aero-
dynamie heating. For example, in an entry which
first makes a number of supercircular passes
through the outer edge of atmosphere until the
velocity is reduced to circular velocity, and then
completes the subcircular portion of entry with a
sizable positive L/D, the decelerations experi-
enced—and, hence, also the rates of aerodynamic
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Figure 18.—Concluded.

heating—can be kept relatively small throughout
the entry. It was shown in reference 2 that with
L/D=0 six supercircular passes would be required
to keep the maximum heating rates about the
same as that experienced during the terminal
subcircular portion of the entry. Since each pass
is followed by a substantial period wherein the
structure may cool as the vehicle orbits in prep-

aration for a subsequent pass, this provides an
attractive possibility for utilizing the combined
heat-sink-radiation capacity of a structure.

At least two important problems would arise
if multiple-pass atmosphere brakings were at-
tempted. First, they would require multiple
passes through the radiation belt around any
planet, and second, they can require a relatively
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accurate entry guidance system. The guidance
accuracy required may be deduced from the
following results for parabolic entry (approximate
F, boundaries have been determined by inter-
polation from a number of solutions of the entry-
motion differential eq. (3)):

Number of F, boundaries
passes to
complete
entry LiD=—1 L/D=0 L/D=1
<« ool <«
1
0. 006 0. 06 101
2
. 005 .03 102
3
. 0046 .02 1
4 {
— . 004 .013 0.2

It follows, for example, that the corridor width
for completion of parabolic entry without lift
on the third pass would be A,y log,,(0.03)/
(0.02)=0.18 Ay, which represents a 1.8 mile
wide corridor in the earth’s atmosphere. For
L/D=—1 the corresponding 3-pass Earth corridor
width would be 0.4 mile, and for L/D=1, 20 miles.
The corridor widths for 6-pass entries would be
considerably smaller. If one did not specify the
number of passes, but only that the maximum
heating ratec in the first pass not significantly
exceed the value for sub-circular orbital decay,
the resulting corridor widths also would be
correspondingly narrow. Thus, with L/D=0,
Gmaz 18 0.22 in orbital decay (see fig. 7), and for
0.22 <Gne:<0.24 the guidance requirement of a
parabolic approach would be 0.0056 <F,<
0.0080; this corresponds to an Earth corridor
width of about 1.6 miles. When the narrow
corridors are considered together with the possible
shielding weight penalty for protecting an occu-
pant during repeated passes through the radiation
belt, it would appear that multiple-pass atmos-
phere-braking entries which require a large
number of passes are of restricted attraction, at
least for parabolic entry into Earth. Two-pass
atmosphere, braking, however, corresponds to a
rather broad corridor (8 Ay, as may be deduced
from the above table) and may be of considerable
1HiveLrese.

A second reason why multiple passes are of
interest is that they offer a possible means of

achieving flexibility in selecting the time and the
area upon which a spacecraft lands. After a
hyperbolic or parabolic approach has been con-
verted to a slightly elliptic orbit of relatively
short period, a spacecraft could orbit until the
earth’s rotation turns a desirable landing area
into the proper position relative to the plane of
the orbit for making a landing. The apogee
altitude of the slightly elliptical orbit around the
earth would have to be less than about 1000
miles, however, if the inner radiation belt were
to be avoided; this restricts the exit velocity

from the first supercircular pass to V,,<1.05
approximately. At the same time the exit ve-
locity would have to be supercircular in order
to have at lecast one orbit before landing. The
resulting corridor, limited by 1.0<V,,<1.05 is
narrow, but not impossibly narrow if a lifting
vchicle possesses the capability of programing
L/D during entry in a number of different ways
(depending on the particular conic perigee of the
approach trajectory) and if it also possesses the
trajectory-intelligence capability of knowing upon
what trajectory it is approaching after the ter-
minal-guidance correction is made so as to thus
be able to select a proper mode of L/D modulation.
That this is so may be deduced from figure 19
showing dotted lines of constant V7, and solid
lines of constant G,,.. All curves apply to a
fixed L/D during entry. The parabolic corridor
undershoot boundary producing 1.0< V,,<1.05,
and also @,,,=10, is at log, F,—2.1, and at LD~
0.6. The corridor overshoot boundary limited
only by V,.,<1.05 is at logoF,=—1.9 if L/D=
—0.5 at overshoot. The resulting earth corridor
width is 40 miles. If a spacecraft enters near
undershoot with L/D=2 and rapidly reduces L/D
immediately after G .., is experienced in a special
program such that enough deceleration is en-
countered to produce V,,<(1.05, then the under-
shoot boundary could be extended to log,, F,=3.2,
which occurs at about 11 miles lower altitude
than for Z/D=0.6. The marked sensitivity of
V.. to small changes in F, at negative L/D, as
noted earlier, is also evident in figure 19,

At least two operational complications would
arise if a vehicle attempted to utilize these 40 or
51 mile corridor widths for the conversion from
parabolic approach to a tight elliptical orbit.
First, a small rocket thrust would have to be
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exerted when first reaching apogee after the If an appropriate L/D programing were not em-
initial grazing pass in order that the spacecraft  ployed for the particular F', of an approach tra-
have a reasonable lifetime as an orbiting satellite  jectory, the corridor would be much narrower.
(otherwise any entry near undershoot would be  From figure 19(a) we see, for example, that if a
completed on the second pass). Second, each  fixed L/D were maintained, it could be no greater
value of F, within the boundaries would require  than 0.45 for G,,,=10, and the corresponding
a different mode of L/D programing in_order to boundary would be 1.0<logF,<1.7, representing
always exit in the desired range 1.0<V,,<(1.05. an Earth corridor only 7 miles wide. To utilize
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the 40 or 51 mile corridor, then, would require
that the spacecraft know what trajectory it is
approaching on after the last terminal-guidance
rocket is fired, and that it have the capability
of variable L/D programing to suit; the L/D
program appropriate for log,l’, near 2 (near
undershoot) would be very different from that for
logF',=—2 (near overshoot.)

A different—and perhaps the most important—
reason for interest in multiple supercircular passes
is that they provide a possible method of reducing
markedly the required Earth lift-off weight for
interplanetary flights employing chemical pro-
pulsion. On a minimum-energy trip to Mars,
for example, the heliocentric velocity of Mars
would exceed that of the spaceship (when the
spaceship arrived at Mars) by about 9000 feet
per second. Without having to expend any fuel
(but perhaps having to ablate a very small mass),
this velocity increment could be achieved—dis-
regarding guidance problems for the moment—
by letting an edge of the Mars atmosphere “run
into”’ the spacecraft in a certain manner. Relative
to Mars, the spacecraft would enter the atmosphere
at a hyperbolic velocity of about V,=1.6, and, if
the spacecraft were guided toward the proper
conic perigee so as to exit from the atmosphere
somewhere in the elliptic range 1.0<V,, <1.3,
it would become a reasonable satellite of Mars.
A small rocket impulse upon first reaching the
ellipse apogee could then either induce entry if
fired as a retrorocket, or greatly lengthen the
lifetime of the spaceship as a Mars satellite if
fired as a thrust rocket. Conversely, after a
spacecraft returns to Earth from Mars the excess
heliocentric velocity as it overtakes the earth
(in this case, about 10,000 feet per second for a
minimum energy trajectory) could be eliminated
by guiding the spaceship toward the proper conic
perigee so as either to land or to convert its
hyperbolic entry velocity relative to earth
(Vi=1.46) to elliptic. By recalling that the
Earth lift-off weight for chemical propulsion
varies essentially exponentially with the over-all
velocity increment which must be produced, it
is not necessary to make numerical calculations
to realize that an over-all round-trip saving of
19,000 feet per second in velocity increment
would amount to a marked reduction in Earth
lift-off weight. This reduction is achieved with

only minor increases in the aerodynamic heating
since V;=1.46 is only slightly greater than for
parabolic entry. Similar comments apply, of
course, to Earth-Venus and other journeys.

For small celestial objects like Mars, the entry
guidance requirements to effect this desired
hyperbolic-elliptic orbital transfer are much less
severe than for Earth or Venus. Some numbers
illustrating this can be obtained from figure 19.
By employing |L/D|<2 in Mars (no more severe
heating than for L/D=1 in Earth) a Gp.. of 10
would correspond to Groe=44 for Mars (eq.(25)
with v(8r)e=0.47, go=0.38). With +8re(L/D)
=0.94 the inner corridor boundary for V,=1.6
would be deceleration-limited at logF,=12,
producing V,;=1.03. A reasonable outer bound-
ary with this fixed L/D=2 would be at log,oF,=2.5
producing Vee~1.3. Hence Ay,=Ay(9.5)=250
miles in the Mars atmosphere. If the spaceship
has the capability of programing L/D in a fashion
tailored to the particular F, it happens to be enter-
ing on, this corridor could be broadened about
100 miles more. Relative to the radius of Mars,
such corridors are much broader than the para-
bolic-entry corridor into Earth from a return
Moon journey (50 to 60 miles wide). Thus
hyperbolic-elliptic orbital transfer by the atmos-
phere of Mars appears quite practical. Upon
returning to Karth, though, the 10 G, corridor
width with fixed L/D=~0.4 for the analogous
hyperbolic-clliptic transfer would be only about
29 miles (at V,=1.46 as interpolated between
curves for V;=14 in fig. 19(a) and for V,=1.5
in fig. 19(b)), thereby imposing a guidance
requirement about one order of magnitude more
severe than in the case of Mars. The correspond-
ing corridor width with variable L/D programing
would be about 46 miles. Such corridors, how-
ever, may not impose impractically severe guidance
requirements.

If a vehicle returns from a voyage to a distant
point in the solar system, the relative hyperbolic
velocity of entry into the earth’s atmosphere
would correspond to about V,;~2. As may be
deduced from figure 19(d), and as would be an-
ticipated from results previously presented, the
guidance requirements in this case for using the
atmosphere to convert the spaceship to an orbit-
ing earth satellite in the range 1.0<V,<{1.3
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would be quite severe. Even by assuming that
the appropriate L/D programing could be achieved
for any F,, the 10 Gyq corridor width would be
only about 18 miles. The saving in Earth lift-
off weight would indeed be sizable, though, since
the excess heliocentric velocity, which need not be
compensated for by expending rocket fuel, is
about 40,000 feet per second in this case.
AERODYNAMIC HEATING AT CORRIDOR BOUNDARIES AND
HEATING PENALTY ASSOCIATED WITH LIFTING VEHICLES
Aerodynamic heating at overshoot boundary.—
Inasmuch as deceleration i1s at its minimum for
single-pass entries along the overshoot boundary,
the heating rate is also at its minimum (but the
total heat absorbed is at its maximum). Con-
sidering that the maximum wall temperature

varies as ¢mq:’* for a radiation-cooled vehicle, the
approximate relationship (A13) between heating
rate and deceleration should suffice for many
engineering purposes in calculating wall tempera-
tures of such vehicles. Curves of the dimension-
less quantity (4Z)n.. at the overshoot boundary
are presented in figure 20. This quantity 1s
proportional to (... At overshoot a good ap-
proximation for the constants developed in
appendix A would be C,=0.6 for positive lift,
C,=0.7 for zero lift, and C,=0.8 to 0.9 for nega-
tive lift, as may be deduced from the table fol-
lowing equation (A13). Actually, heating rates
are not relatively severe at overshoot, as may be
judged from the fact that most of the values of
(UZ) maz 10 figure 20 are considerably smaller than
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the value (#42)n:=—0.28 representing orbital decay
of a nonlifting satellite.

Near the overshoot boundary the total heat
absorbed can become rather large, especially if
negative lift is employed. The severity of this
problem may be judged by comparison of relative
values of the dimensionless quantity @, since the

total heat absorbed is proportional to @ for a
given planet and given vehicle (see eq. (A10)).
Some approximate reference values are, 7=0.29
for an ICBM entry (V;=0.9, v;=24°) and @=1.1
for nonlifting entry of a manned satellite (V,=1,
v:=2°). A vehicle with L/D=—1 entering at
parabolic velocity along the overshoot boundary
would absorb during the supercircular portion of
entry (l<17§ V) an increment AQi=4.7. To
this value must be added an increment AQ,~1.1
for the heat absorbed during the subecircular
portion of entry. By comparison it follows that,
for the same values of m/CpA and nose radius R,
the total heat absorbed along an overshoot-

boundary entry (Q=5.8) would be about 20 times
that for an ICBM-type entry, and about 5 times
that for a manned satellite-capsule entry.
Curves for various V; and L/D are included in
figure 20 representing the increment A®Q; of
laminar heat absorbed during the supercircular
portion of entry along the overshoot boundary.
For entry between the overshoot and undershoot
boundaries the approximation of equation (A16),

_ud (go~Br)Y2 (14 (L/D)4V*

¢ 40y~ Gz

(34)

is useful. This approximation would also apply
to the subcircular portion alone by setting u,=1.

Aerodynamic heating at undershoot boundary.—
Although the use of aerodynamic lift, particularly
modulated L/D, can increase markedly the single-
pass corridor width by lowering the undershoot
boundary, this potential benefit is not obtained
without a major penalty. Aerodynamic heating
becomes progressively more severe as L/D is in-
creased because of the low drag associated with
high L/D. Both the rate of heating (eq. (A13)) and
the total heat absorbed (eq. (A14)) vary inversely
with Cp, the variation being as C,%% for laminar
convection, and as ;%% for turbulent convection.
Thus, for a given deceleration at undershoot, an
entry with L/D maintained constant at 4 and

Co/Cp
laminar heating (0.0065)7°*=12 times as severe
as one with L/D=0 and Cp/Cp, . =1; the relative
turbulent heating would be (0.0065)7°%==56 times
as severe,

If a constant L/D=(L/D) .y is employed near
undershoot only until y=~0, corresponding to a
local minimum in altitude, and then L/D is re-
duced to 0 (or to small negative values) as the
altitude begins to increase, entry can be com-
pleted and the net heat absorbed would not be as
great as if the initial (L/D)ensry were employed
throughout. For parabolic entry, only about a
third or less of the total heat would be absorbed
up to the point where y=0. Most of the heat
would be absorbed during the subsequent moni-
toring phase wherein L/D is generally between 0
and (L/D)ery. In order to estimate the total
heat absorbed we will take for the average Cp
during entry that corresponding to an L/D of
(2/3) (L/D) entry, and will consider both the case of
operation in the high-drag portion of the drag
polar (where Cp increases as L/D decreases) and
operation in the low-drag portion (where Cp de-
creases as L/D decreases). Tabular values which
follow illustrate the relative heating for various

(L/D) eny-

=0.0065 (see fig. 11) would experience

maz

High-drag portion of
polar

Low-drag portion of
polar

(L/D)

¥ | YTaminar | Turbulent| Laminar | Turbulent

U @cy,__ |01 @cp |0/ @cy_ |QIQ)cy,

0 1.0 1.0 1.0 1.0
.5 1.2 1.3 1.8 2.6

1 1.3 1.5 2.9 5.5

2 2.2 3.6 6.9 22

3 3.4 7.0 12 52

4 50 13 18 100

As would be expected, the net heating penalities
for high-drag monitoring with (L/D)eywy=4, for
example, as represented by the factors of 5 for
laminar convection and 13 for turbulent, are un-
desirably large but stil much smaller than the
corresponding factors mentioned previously of 12
and 56 applicable if L/D were equal to 4 through-
out entry. These latter two factors, in turn, are
smaller than the corresponding factors of 18 and
100 applicable for low-drag monitoring with
(LID) casey=4-.
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An entry in which L/D is constant until y~0
and then is slowly reduced after the altitude be-
gins to increase can operate in the high drag por-
tion of the drag polar without further increasing
the maximum deceleration beyond that experi-
enced at y=~0. Tt would be necessary, though,
to decrease L/D slowly enough during the moni-
toring phase so that the accompanying increase
in G due to increasing () is no greater than the
ageregate effect of the decrease in @ due to decreas-
ing L/D and decreasing pV2.

It is unfortunate that the technique of modu-
lated lift, which is so effective in broadening the
entry corridor if a high (L/D) ..., is employed and
if C'p were maintained constant during modulation
(as in curve D, fig. 12), would have its basic pur-
pose defeated if the lifting vehicle attempted the
modulation by operating in the high-drag portion
of a polar (as in curve B, fig. 12). To see this,
we note that the differential of the resultant

deceleration G= CppV2A+1+(L/D)?/2mg, is

d@ _(L/D)Yd(L/D) | d(pV? , d0y

G 14D T LV TGO,
During the monitoring phase d(L/D) is negative,
so that the first term on the right side represents
the alleviation in @ due to the reduction in trans-
verse lifting force; the second term represents the
change in @ due to changing dynamic pressure;
the third term, which was not cousidered in ref
erence 1, represents the change in G due to chang-
ing Cp. For lifting surfaces operating in the
high drag portion of the polar (curve B in figure
12), the increase in @ due to increasing Cj, is, un-
fortunately, about 3 times the decrease in @ due
to the reduction in transverse lift, so that modu-
lation would result in a net loss, rather than a gain.
This may be illustrated by considering the change
in @ per unit reduction in L/D at L/D=1. The
change in ¢ due to lift modulation alone, as given
by the first term on the right side of equation
(35), would be

(35)

(A_Q) __ LD Ag)_ Lyt
G )it varasion 1+ (L/D)* \D/) 141 )= 2

which represents a reduction in deceleration. The
accompanying change in G due to drag variation
as given by the third term together with the top
curve in figure 11 would be

(_A_G_> _ACp_0.73-017_
G drag variation OD - 035 -

which represents an increase in deceleration due
to drag variation amounting to over three times
the decrease due to lift variation. It follows that
drag modulation through « variation of a lifting
vehicle would be more effective than lift modula-
tion through L/D variation in broadening the
entry corridor. Drag modulation of this type is
not investigated herein; drag modulation of non-
lifting vehicles has been studied recently by
Phillips and Cohen in reference 6.

If, rather than to change angle of attack of a
lifting surface, the aerodynamic technique of
deploying a drag device were employed to reduce
L/D (such as represented by curve C in fig. 12),
then the adverse effect of increasing drag would
still exceed the favorable effect of decreasing L/D.
The full benefits of modulated L/D can be realized,
however, by operating a lifting surface in the low
drag portion of the polar (such as represented
by curve A, in fig. 12), but then very large heating
penalties would result, as exemplified by the num-
bers listed in the right half of the above table.
The use of any modulation technique which re-
quires that the vehicle operate along the low drag
portion of its polar will necessarily be penalized
severely by aerodynamic heating in comparison
to the constant L/D technique which can be used
with the vehicle operating along the high drag
portion of the polar.

The complicated trade-off between guidance
benelits and aerodynamic heating penalties is
further slanted toward the use of only small or
moderate L/D, rather than higher L/D, by the
role which boundary-layer transition may play.
That transition may play an important role can be
seen from a comparison of two cases: (1) constant
L/D with (L/D)eniry=1, and (2) modulated L/D
with (L/D)ery=4. The guidance benefit associ-
ated with case (2) amounts to a parabolic entry
corridor about 3 times as broad as for case (1).
In assessing the accompanying heating penalty,
let us first estimate the Reynolds number of a
hypothetical manned spacecraft. For both cases
we take =50 feet, m/A=1 slug per square foot,
Graz=10, and V=1.2. From equation (A7) we
have, for the earth’s atmosphere

Re 7700 G/ m ) (36)

I A srinve v\ A
LR S R T2 0 R A

Hence, for case (1) with (L/D)guy=1 and Cp,,=1
(corresponding to operation in the high-drag por-
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tion of the polar with (L/D),,=(2/3) (L/D)emtry),
there results Re=3X10° at which value con-
siderable laminar flow would be expected; from
the above table the heating penalty would be 1.3
times that for laminar flow with L/D=0. For
case (2) with (L/D)guy=4 and modulation at
Cp=0.011 (corresponding to operation at a con-
stant Cp equal to that at L/D=4), there results
Re=100<10° at which value mostly turbulent
flow would be expected; the heating penalty
would be 100 times that for turbulent flow with
L/D=0. Since the Stanton number for turbulent
flow is at least several times that for laminar, the
net heating-penalty factor would be at least several
times 100/1.3, which would amount to well over
a factor of 100. This appears too great a heating
penalty to pay for the guidance benefits of a
tripled Earth corridor width. For entry into
Mars, though, a one-hundredfold increase in heat-
ing may be manageable, but in this case the cor-
ridor already is relatively broad even for nonlifting
vehicles.

As L/D is increased from 0, the increase in
heating penalty is slow at first for modes of entry
which utilize the high drag portion of a polar.
Up to about L/D=~1 the associated heating
penalty would not appear to limit appreciably the
usefulness of aerodynamic lift in broadening the
entry corridor. For entry at parabolic velocity,
the 10 ¢ Earth corridor for (L/D)epyry=1 is 7.6
times as wide as for /D=0, whereas the laminar
heat absorbed need be increased only about 30
percent. The trade-off between guidance benefit
and heating penalty would appear to favor the
lifting vehicle at least up to about L/D=1. In
this range of L/D, modulated L/D would not be
much more effective in widening the corridor than
constant L/D, and would have somewhat greater
heating. When both guidance and heating prob-
lems are considered, a compromise single-pass
entry technique would be to enter with a value
of L/D the order of unity until maximum decelera-
tion is experienced, then reduce L/D in the high-
drag attitude (increasing «) until intense heating
is over, and, finally, increase L/D again (decreas-
ing ) to achieve maximum maneuverability in
the terminal glide phase. As previously indi-
cated, the technique (not studied) of drag modu-
lation of a lifting vehicle by reducing a before
¥=0 and alleviating & through the decrease in
(' with increasing /D, could be more efficient

in broadening the corridor than the technique of
lift modulation; it is to be noted, however, that
this technique also would require operation in the
low drag portion of a polar with the accompanying
heating penalty (although the penalty would not
be so severe as for lift modulation).

Different heating problems at undershoot and
overshoot.—In relation to the status of current
technology, the rate of aerodynamic heating along
the undershoot boundary is quite high. For ex-
ample, if T=1.3, v8r=30, Gne;=10, and L/ D=
0.5, equation (A13) yields for the maximum
dimensionless heating rate ¢n..=0.92, which is
much higher than the corresponding value ¢me.=
0.22 for a satellite in orbital decay, and
considerable higher even than the value Qo=
0.62 for a typical ICBM entry. Since (qmq)!/* 18
proportional to the maximum wall temperatures,
this temperature for a vehicle that is entirely
radiation-cooled during parabolic entry at under-
shoot would be about 10 percent higher than in
an ICBM entry. Surface temperatures sufficient
for radiation cooling of an ICBM nose cone cur-
rently are not considered to be practically feasible,
and similarly are not considered feasible currently
for a spacecraft entering near the undershoot
boundary.

The total heat absorbed along the undershoot
boundary, however, is not excessively high. For
example, if L/D is monitored so as to decelerate at
an essentially constant value of 8 7, then equation
(34) yields (with %,=1.4, y8r=30, L/D=0.5, and

o= %) the value -Qunzl.g. This 1s not discour-
agingly larger than the value Q—=1.1 representa-
tive of a nonlifting manned satellite entering from
a near circular orbit, for which the technique of
absorption by ablation appears eminently prac-
tical at present. The value ¢,,=1.9 is, however,
only about % of the corresponding value @,,=5.8
for entry along the overshoot boundary.

In summary, then, we are faced with a situation
wherein at the deceleration-limited undershoot of
the Earth corridor, the heating rate is relatively
large, and pure radiation cooling currently appears
impractical, but the total heat absorbed is within
practical bounds of present heat-absorption tech-
niques; at overshoot, however, the heating rate is
relatively small, pure radiation cooling appears
practical, but the total heat absorbed is about 3
times that at undershoot. For an efficient design,

therefore, it is important to develop versatile
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protection shields which can radiate efficiently if a
spacecraft enters near overshoot, ablate efficiently
if it enters near undershoot, and blend these func-
tions efficiently if it enters anywhere in between.
EXAMPLE GUIDANCE REQUIREMENTS FOR ENTRY
CORRIDORS OF VARIOUS PLANETS

In order to determine the desired trajectory
which passes along the center of an entry corridor
it would be necessary to make precise three-
dimensional orbit calculations giving full con-
sideration to a number of perturbations such as
those due to planetary oblateness, the sun, moon,
and perhaps other planets. In calculating the
small deviations about this desired center-line
trajectory which are permissible from atmosphere
entry considerations, however, the secondary
effects of the perturbations on these small devia-
tions will be disregarded, and the entry guidance
tolerances calculated as those of a two-body
problem. This procedure appears reasonable inas-
much as the terminal-guidance correction to an
entry approach would presumably be made rela-
tively near the target planet where the trajectory
i1s mainly in one plane and is essentially a conic
trajectory. Results of such calculations should
be useful, for example, in making preliminary
estimates of what distance from a target planet
would be optimum for correcting a trajectory, how
much fuel would be expended in so doing, and
whether certain types of supercircular entry
maneuvers would be feasible from a viewpoint of
the guidance accuracy they impose.

By the use of equation (22) for narrow corridors
(Earth, Venus, Jupiter) and the full equation (20)
for relatively broad corridors (Mars, Titan), the
guidance requirements on + Ay (permissible devia-
tion from the flight-path angle of the trajectory
which passes through the center of the entry corri-
dor) for zero errors in V and 7 have been deter-
mined for the various 10 @, parabolic-entry
corridors previously considered. Values of 4 Ay
are plotted in figure 21 as a function of the dimen-
sionless distance r/ry. It is evident that the 4+ Ay
requirements vary by large amounts, from the
order of 10° for Titan to less than 0.01° for Jupiter.
For comparison, three other technological require-
ments (also computed for zero error in V) are
indicated for reference immediately to the right
of the r/ro=100 line. They are: +2° for injecting
a vehicle into orbit around the earth, 4-0.25° for
hitting the moon from the earth (ref. 7), and

+0.014° for 41 mile ICBM accurancy at 5000
miles range (this is the azimuthal angle require-
ment; the corresponding flight-path-angle require-
ments are less severe). At the far right of the
ficure are indicated three different approximate
guidance requirements which, though more mun-
dane, nevertheless are fully as illuminating and
nearly as stringent as the three technological
requirements. It is seen that, starting at r/ro=
100, it would require no better angular guidance
control (1) to enter the corridor of Titan than to
inject, a satellite into orbit or to pitch a baseball
strike; (2) to enter the corridor of Mars than to hit
the moon from the earth or to hit an apple from
60 feet (William Tell), or, (3) to enter the corridors
of Venus and Earth than to launch an ICBM
within azimuthal accuracy of 1/5000 of the range,
or to fire a rifle within bull’s-eye target accuracy
(accomplished essentially 100 percent of the time
by skilled individuals). To aline a trajectory for
entry into Jupiter, however, is another matter.
The corresponding requirements on velocity
control 4+AV/V for zero error in v and r also have
been calculated, with the following results (de-
scending vertically in order of increasing severity).

Parabolic entry Comnvarative technological
10 G corridor requirements
LAVIV +AVIV

Titan 1.
Mars 0.03

Orbit injection 0. 02
Venus . 003
Earth . 003

Moon shot . 001
Jupiter . 0003

ICBM . 00004

The parabolic entry requircments on 4+AV/V for
Earth and Venus are less severe than successful
Moon-shot requirements, and two orders of
magnitude less than ICBM requirements. In
fact, to put these requirements in perspective, the
velocity control required for Venus and Earth is
not much more severe than the velocity control
with which a skilled man can throw a ball. In
the Italian game of bocecie ball, for example, a
skilled player often throws a 4-inch wooden ball
about 30 feet to hit another similar ball (without
hitting nearly adjacent ones), and this requires

+AV/V=20.006, which is comparable to the




CORRIDOR AND GUIDANCE FOR SUPERCIRCULAR ENTRY INTO PLANETARY ATMOSPHERES 41

i Ar
Titan ( = p=|)
o
10
|
t Ay
deg
i
.0l
Ar,
Jupiter e . L
( 7 _.OOI,D-|)
001

| 10

Distance from planet, r/r,

Moon hit

ICBM ¢ 1mile

100

F1Gure 2i.—Guidance accuracy requirements on flight path angie for singie-pass 10
comparison with other guidance requirements.

undershoot ~_

overshoot~.

Baseball strike

wm. Tell

Rifle target

Bulls'eye

~

maz Parabolic entries, and



42 TECHNICAL REPORT R—55—NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

value +0.003 for parabolic entry into Venus or
Earth. In general the entry requirements for
velocity control do not appear as severe, relatively
speaking, as those for flight-path-angle control.

The permissible errors in distance from the planet
+ Ar/r for zero errors in V and v, are seen from
equation (22) to be equal to £2AV/V. Only in
the extreme case of Jupiter (4 Ar/r=0.0006)
would distance errors appear to impose any
really severe requirement or precise knowledge of
distance from the planet center.

RESUME OF RESULTS

A dimensionless, transformed, nonlinear differ-
ential equation previously developed for describ-
ing motion during entry into a planetary atmos-
phere has been combined with equations for
conic  trajectories to yield a parameter
(Fy=pnTrp/8/2(m/CpA)) based on conditions at
the conic perigee altitude which is convenient
for specifying the width and altitude of an entry
corridor. The width of a deceleration-limited
corridor in an exponential atmosphere is inde-
pendent of m/CpA, but the density p, at conic
perigee is proportional to m/CpA.

The corridor width decreases markedly as the
entry velocity increases. For example, the 10
Gra: corridor width for entry of nonlifting vehicles
into the earth’s atmosphere decreases from about
180 miles for circular entry (V,=1), to 7 miles for
parabolic entry (V,;=+/2), to 0 miles for hyperbolic
entrv at V,=1.8. As would be anticipated, the
corridor width for a given entry V, into various
objects in the solar system varies by large amounts,
ranging from a minute fraction of the radius for
Jupiter, to the full radius for Titan.

The overshoot boundary of an entry corridor
can be extended upward by the use of negative
lift, but only about one log,, cycle in F, (or in
density). Deployment of a large, light, drag

device appears to be a much more effective way
to raise the overshoot boundary.

The undershoot boundary of the entry corridor
can be lowered markedly by the use of aerody-

namic lift, and lowered more by modulated L/D
than by constant L/1). This is in agreement with
previous results of Lees, Hartwig, and Cohen
who did not consider any inherent C,-L/D

dependence. The benefits of modulated lift in

alleviating guidance requirements, however, are
sizable only for relatively large L/D ratios (greater
than about 1) which inherently require low Cp
and much more heat to be absorbed than for
small L/D. When the strong Cp-L/D interde-
pendence for lifting surfaces is considered, the
modulated L/D technique appears restricted to
operation in the low-drag portion of a drag polar
(where () decreases as L/D decreases), and thus
penalized by much higher heating rates than the
constant L/D technique which can utilize the
high-drag portion of a drag polar (where Cp
increases as L/D decreases). Because of the
strong Cp-L/D coupling of a lifting surface, the
decrease in Cp with decreasing angle of attack
can overshadow the accompanying variation in
resultant force with changing L/D, so that drag
modulation by variation in angle of attack of a
lifting vehicle would appear to be more effective
in lowering the undershoot boundary of a
deceleration-limited corridor than would be lift
modulation.

A compromise technique for single-pass super-
circular entry, considering both guidance and heat-
ing problems, is to employ initially a constant
L/D (of about 1 if entry is near undershoot, or less
if the conic perigee is higher) until slightly past
maximum deceleration, then reduce L/D to
essentially 0 (or to small negative values if entry
is near overshoot) by increasing the angle of
attack in the high-drag portion of the drag polar
until intense heating is over and single-pass entry
is assured, and finally to increase L/D again so
that maximum maneuverability is achieved during
the terminal glide phase.

Because of the opposite nature of the aero-
dynamic heating problems at overshoot (high
total heat absorbed, low heating rates) and under-
shoot (low total heat absorbed, high heating
rates), it is highly desirable to develop versatile
protection shields for spacecraft which can radiate
efficiently if entry happens to occur near over-
shoot, ablate efficiently if near undershoot, and
blend these characteristics if entry occurs in
between.

Compared to other technological guidance
requirements, such as those for successful Moon
shots from the Earth or for achieving an accuracy
in azimuthal angle for an ICBM of 1 part in 5000,
the entry-corridor requirements imposed on flight
path angle appear to be relatively more severe
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than those imposed on velocity. For parabolic
entry into the earth’s atmosphere, the limitations
on flight path angle are about the same as those
of the comparison ICBM requirement.

As far as terminal entry guidance is concerned,
it appears feasible to employ the atmosphere of
certain planets—rather than rocket fuel—to
effect orbital transfers wherein a spacecraft ap-
proaching a target planet at hyperbolic velocity
has its trajectory converted by atmosphere drag
to an elliptic orbit about that planet. The cor-
ridor width for such maneuvers is not impracti-
cally narrow if the vehicle possesses the intelli-
gence capability of accurately knowing which
trajectory within the corridor it is approaching
upon, together with the monitoring capability
of being able to program L/D (and Cp) in the
variety of ways required for different approaches
within the corridor boundaries. The apparent
feasibility of atmosphere braking for effecting
hyperbolic-elliptic orbital transfers implies the
possibility of very large reductions in Earth lift-
off weight for interplanetary voyages employing
chemical propulsion.

Some typical 10 G,.. entry corridor widths,
expressed as a fraction Ay,/r, of the planet radius,
are tabulated here for convenience. All corre-

spond to lifting vehicles with an L/D capability
of about 1, unless specifically noted otherwise.

Ayy/To
Parabolic entry into Titan (L/D=0)__._________ 1.
Mars (L/D=0)___________ .26
Venus. .. __.__ .. _.._____ . 015
Farth ___________________ . 013
Earth (L/D=0)___________ . 002
Jupiter_. . _ . ______________ . 001
Atmosphere braking for minimum heating rates
into Earth______ . .. . 0005
Atmosphere braking for converting Earth para-
bolic approach into elliptical orbit with apogee
altitude less than 1000 miles, and simultane-
ously not exceeding 10 Gzt
(variable L/D programing)____.____________ .01
(fixed L/D>~0.5)____ .. _____ . 002
Atmosphere braking for heliocentric-planeto-
centric orbital transfer:
Into Mars from Earth (variable L/D pro-
graming) - ____ . ______________________ .17
Into Mars from Earth (fixed L/D)_________ .12
Into Earth from Mars (variable L/D pro-
graming) - _ __ ___________ . __________ . 012
Into Earth from Mars (fixed L/D>~0.4)____ . 007
Into Earth from distant point in solar system
(variable L/D programing)___._.__._______ . 004

Asmes ReEsEarcH CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MorreTT FiELD, CaLIF., Aug. 5, 1959



APPENDIX A

FORMULAS FOR MOTION AND HEATING
QUANTITIES AND RELATIONSHIP
BETWEEN DECELERATION AND HEATING

FORMULAS FOR MOTION AND HEATING QUANTITIES
RELATED TO Z

The full form of the differential equation for Z
developed in reference 2 is:

_d*Z rdZ Z\ 1—¥
U ey <du u)— ucos—y—\Br—cos'y (A1)

Here, and in the equations which follow, the
appropriate form for shallow entries is obtained
by setting cos y=1, sin y=v, and by disregarding
L/D tan ~ and tan®*y compared to unity. Equa-
tions for various quantities of interest related to
Z are (their derivation may be found in ref. 2):

Flight-path angle
. dZ Z
+Br sin Y= (A2)
Horizontal deceleration
_du_gVBruz (A3)
dt cos vy

Resultant deceleration

_gNprus [6raZ
cos v

A @

Range between %; and %

B s—rsz-:fj cosZ7 du (A5)

1

Density-velocity relationship

p=2 (07:A> \/§ 7 (46)

Reynolds number per unit length

— 2vg8 < )Z (A7)

1 COS 7y

CpA

For either laminar or turbulent flow, a conven-
ient reference rate for convective heating into a

4

surface of radius of curvature R can be represented
by the equation

C
q:Rl_" anS (AS)

Approximate values of C for air, with p in slugs
per cubic foot, R in feet, and V in feet per second
are listed below together with the values of n for
laminar and turbulent flow.

For ¢ in Btu ft—2sec™!
Reference heating rate C
Laminar stagnation point (ref. 2) 2.0X 1078
Turbulent sonic point (ref. 8) 9.0X10-¢

Wl

By combining this equation with the density-
velocity relationship (A6) we have, for the case of
shallow entry:

heating rate

2nC n 3-n 3
q:Rl n(O A) (Bzr 2 g (A9)
where
q=us""Z" (A9a)
total heat absorbed per unit area
2n(]
S - n<0 A) <5 z 2 g (A10)
where
- s ndy
¢=) Gz (A10a)
At a laminar stagnation point in air, these two

equations become (with m/CpAR in slug ft°)

~m__ Btu

¢:=590 CpAR 1 Firsec (A11)
with
q="u®*Z* (Alla)
and
Qs \/ Btu
§=15,9004/ ARQ = (A12)
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with

~ (wwdn
Q”ﬁ N

The quantities § and @ are referred to as the
dimensionless heating rate and the dimensionless
total heat absorbed, respectively. In atmospheres
of planets other than Earth, additional factors
¢o and @@, not considered herein, appear on the
right sides of equations (A11) and (A12), respec-
tively, representing the relative aerodynamic heat-
ing compared to that in the earth’s atmosphere.
These factors for laminar convection are estimated
in reference 2 for Venus, Mars, and Jupiter.

(A128)

APPROXIMATE HEATING-DECELERATION RELATIONSHIPS

Approximate relationships developed below be-
tween convective heating and deceleration are em-
ployed later to assist in explaining certain qualita-
tive results, and in evaluating the aerodynamic
heating problem for different portions of the entry
corridor. By combining equations (A3) for de-
celeration and (A9) for rate of heating, there re-
sults a general qualitative relationship applicable
to a given planet (the constant of proportionality
depends onlthe planet).

1

QNW(%YW‘?" (deceleration)” (A13)
D%,

Type of entry

Orbital decay from V;=1 with L/D=0
1

foe)

Steep entry from any V; with L/D=0
Undershoot entry with L/D=0
1

[==]

{Overshoot-limit entry with}

L/D=0 1

2.

Overshoot-limit entry with] from V;=1.
{ L/D=—1 | 1.
2.

For the extreme case of negligible, but constant
horizontal deceleration (#Z=const—0), maximum
heating will occur at the initial point, so that
(C,—1 in this limiting case.

An analogous approximation can be established
for the dimensionless laminar heat absorbed AQ
during entry from %, to #,. By employing a mean
value approximation for integrals, we have from
equations (Al12a), (A3), and (A4),

from V;=1.2 to ;=1

4
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Through the use of a mean value approximation
for integrals, equations (A10) and (A10a) for total
heat absorbed from %; to %=0 yield

Q@ 1
S Rl—n

m n ,l'zi4~2n
(CDA,) (mean deceleration)!—"
(A14)

Except for the case n=1 (e.g., free-molecule flow)
these relationships show that the greater the de-
celeration the greater the heating rate, but the
smaller the total heat absorbed.

The qualitative heating-deceleration relation-
ships can be put on a quantitative basis. During
the supercircular portion of an entry, maximum
heating rate and maximum deceleration occur
reasonably close together. If # at maximum heat-
ing rate is written as C,%,, where C, is a constant
somewhat less than unity, then equations (Alla),
(A3), and (A4) yield an approximate—though
general—relationship for laminar convection.

(0,,17«1;) 2’\/5;;:

(goBr)V2[14-(L/D)**
(Al5)

Tmar= (Clh0) N (UZ) mar=

Values of C, for laminar heating fall in the range
0.6<C, <1, as indicated by the following values
determined from both analytical (when in paren-
theses) and numerical results of reference 2:

Cq

0. 64
.64

.62 (=2/3v3)
.76 (=3-1/4)

. 80

. 90

. 00

. 64

.67

.73

.78

_ (Wat-u)* (8, — )

B 40@ \/Gmaz

(govBr) 21+ (I/D)2* (A16)

Values of C, for laminar convection generally are
in the range 0.32 <{Cp<{1, as may be deduced
from the following results:
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Type of entry Co
Orbital decay from u;=1 to %;=0 with L/ D= 0.32 (=1/x).
Steep entry from %u; to 0 with L/D=0 46 (=ve/2vVT)
Shallow skip from %; to 4y, u, with L/D= = 64 (=2/7)
Overshoot-limit entry with L/D=0 from %;=2.0 to uy=1 .70
1.4 1 72
Overshoot-limit entry with L/D=—0.5 from u;=2.0 to u;=1 74
1.4 1 77
Constant horizontal deceleration with arbitrary 5
L/D from %u; to 0 o
for the limiting case of constant horizontal . -
deceleration during a negligible velocity decrement Max;"‘:t‘émB}tflatmg Total 1}13‘2'3 ;;E;Ofbed:
(the case when #Z is a Dirac function of %), L/D ft-25ec-!
Co=1. ex?ttrv
The approximate heating-deceleration relation- il U5 T s 0.8 Q./S
ships for complicated types of entry agree well E‘I?; ((,?1151)) Ref. 1 ESS ((&41162)) ef. 1
with more precise calculations, and illustrate )
t‘hut‘! in an entry whe'rem the deceleration is 025 890 780 41, 000 40, 000
monitored to be essentially constant, the aero- 5 840 800 41, 000 39, 000
dynamic heating with a fixed m/CpA does not 1 760 810 | 43,000 | 39,000

depend significantly on the lift-drag ratio. Luces,
Hartwig, and Cohen (ref. 1) have made machine
calculations of an entry wherein L/D is varied
continuously after reaching G,., in the particular
manner which maintains constant resultant decel-
eration and constant Cp. For this type of
modulated lift they used the numerical values
m/CpA=3.1 slugs per square foot, V,;=35,000
feet per second (7i=1.36), and G,..=10. Since
this corresponds to an undershoot type of entry,
we take €,=0.9 from the table preceding the one
above, and since the deceleration is constant for
most of the entry, Co="% from the above table.
By substitution of these numerical values into
equations (Al1l) and (A15) for ¢, and (A12) and
(A16) (using L/D=%(L/D)ery) for @, the
results obtained are found to be in approximate
agreement with the more accurate machine
calculations of Lecs, et al. The following table
fllustrates this for laminar stagnation heating
with R=1 foot:

It is noted here that the above tabular values,
which indicate only minor variations in heating
with (L/D)enery for essentially the same decelera-
tion history, assume that m/C,A is constant for
all values of L/D; calculations presented elsewhere
in this report counsider a variation of (', with L/D
and show a large dependence of heating on L/D.

RELATIONSHIP BETWEEN DECELERATION AND REYNOLDS
NUMBER

A useful equation relating Reynolds number per
unit length to deceleration is obtained by com-
bining equations (A4) and (A7)

Re 2g, < m > G
= P ) (A17)
L urg \CoA) a1+ (L/D)*

7700 < m ) G
= ————— (A18
peVrege \Cod/ U1+ (L/D)? )

This equation enables the maximum Reynolds
number to be calculated approximately from
Grar and an estimate of the value of % at which
G az is experienced.




APPENDIX B
INTERDEPENDENCE OF Cp AND L/D FOR LIFTING VEHICLES

The equations of Newtonian hypersonic flow
for the case where lift is obtained by varying o
of a surface enable a simple picture to be obtained
of the L/D-Cp, relationship. Let us designate
the minimum drag coefficient at 0° angle of attack
as C’Da’ and that at 90° as ODmaz- In accordance

with Newtonian flow, pressures are assumed to

vary as sin’a, so that Cp=0Cp,+(Cp,,.—Cb,)
sin®e; hence, this approximation yields
L sinacos @ (B1)

D™ btsinda

The quantity b=Cy,/Cp, .
maximum value of L/D and the « at which it
occurs. Even for a flat plate having zero leading-
edge radius, zero pressure drag at a=0, and lami-
nar skin friction, the (L/D)n.. in hypersonic
Newtonian flow is only about 6 at a Reynolds
number of 1 million. In view of this, and the
severe heating problems associated with lifting
surfaces having small leading-edge radii, we will
confine our attention to (/D). of 4 or less.
Four drag polars corresponding to values of b such
that (L/D)n.-=1, 2, 3, and 4, as determined by the
above equation, are shown in figure 11 with L/D
plotted versus Cp/Cp ~ (a value Cp  ~1.7

mar
would be reasonable for all of the polars). In
each case L/D increases from 0 at the minimum
drag attitude (@=0), passes through a maximum,
and then decrcases to 0 again at the maximum
drag attitude (@=90°). The low Cy’s associated
with high L/D are evident from this figure.

The interdependence of C, and L/D can be
varied widely by employing different aerody-
namic techniques, but we are most interested in
the technique which gives maximum drag for a
given L/D. A wide variation is illustrated in
figure 12 where four different curves are shown,
all starting from (L/D)y..=4. Curve A corre-
sponds to varying the angle of attack in the low-
drag portion of the drag polar of a lifting surface,
while curve B corresponds to the high-drag por-
tion of the polar. Curve C corresponds to vary-
ing the drag at constant lift, such as could be done
by deploying a variable-area drag device while
the lifting surface maintains a fixed C, (referred
to the fixed area of the lifting surface). Curve D
corresponds to varying the lift at constant Cp

—Cp,) determines the

(also referred to the same area) such as could be
done by simultaneously changing & and deploying
a variable-area drag device. Curve B, the high-
drag portion of the polar, yields the highest C)p
for a given L/D of the various curves considered
(including those in fig. 11), and, therefore, would
be best from the viewpoint of minimizing the
aerodynamic heating. The relationship between
L/D and €y, for this curve is:

L/D Co/Cp,,,
0 1. 00
.25 .92
.5 .73
.35
. 087
. 027
. 0065

CoNVEN SR

This particular interdependence of L/D and C)p
is used herein to evaluate the net broadening of
corridor width and the aerodynamic heating
penalty associated with the use of lifting vehicles.
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