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The effect of the density ratio on the nonlinear
dynamics of the unstable fluid interface

By S.I. Abarzhi

1. Motivation and objectives

When a light fluid accelerates a heavy fluid, the misalignment of the pressure and
density gradients gives rise to the instability of the interface, and produces eventually
the turbulent mixing of the fluids (Rayleigh 1892; Davies & Taylor 1950; Richtmyer 1960;
Meshkov 1969). This phenomenon is called the Rayleigh-Taylor instability (RTI) if the
acceleration is sustained, and the Richtmyer-Meshkov instability (RMI) if the acceleration
is driven by a shock or if it is impulsive. The RT/RM turbulent mixing is of extreme
importance in astrophysics, inertial confinement fusion, and many other applications
(Sharp 1984). To obtain a reliable description of the mixing process, the evolution of a
large-scale coherent structure, the dynamics of small-scale structures, and the cascades
of energy should be understood.
The large-scale coherent structure is an array of bubbles and spikes periodic in the plane

normal to the direction of gravity or the initial shock (Rayleigh 1892; Davies & Taylor
1950; Meshkov 1969; Schneider et al. 1998). It appears in the nonlinear regime of RTI and
RMI and has a spatial period determined by the mode of fastest growth (Chandrasekhar
1961). The light (heavy) fluid penetrates the heavy (light) fluid in bubbles (spikes). The
density ratio is a determining factor of the instability dynamics (Sharp 1984; Schneider
et al. 1998). Singular aspects of the interface evolution (such as the generation of vorticity
and secondary instabilities, resulting in the direct and inverse cascades of energy, a finite
contrast of the fluid densities and the non-linearity of the dynamics) cause theoretical
difficulties and preclude elementary methods of solution (Dalziel et al. 1999; He et al.
1999; Gardner et al. 1988; Jacobs & Sheeley 1996; Kucherenko et al. 2000; Holmes et al.
1999; Volkov et al. 2001).
For fluids with highly contrasting densities (fluid-vacuum), the effect of singularities

on the interplay of harmonics and on the nonlinear motion in RTI/RMI has been studied
intensively over the decades (Layzer 1955; Garabedian 1957; Tanveer 1993). A new ap-
proach based on group theory has been developed recently by Abarzhi (1998, 2002). The
asymptotic theories of Layzer (1955); Garabedian (1957); Abarzhi (1998, 2002) agreed
with experiments and simulations. For fluids with a finite density contrast, the influ-
ence of singularities on the cascades of energy and the large-scale coherent dynamics
in RTI/RMI has yet to be elucidated (Baker et al. 1982; Moore 1979; Hou et al. 1997;
Cowley et al. 1999; Matsuoka et al. 2003). The empiric models proposed by Sharp (1984)
and Oron et al. (2001) could not explain observations completely and were a subject
for controversy. These models disregarded the conservation of mass and introduced ad-
justable parameters to balance drag, buoyancy, and inertia in the flow, (Dimonte 2000).
In a recent attempt of Goncharov (2002) to reproduce the results of the drag model
of Oron et al. (2001) in a single-mode approximation, a complete set of the boundary
conditions were not satisfied (see below), and the conservation laws were thus violated.
Here we report multiple harmonic theoretical solutions for a complete system of conser-
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vation laws, which describe the large-scale coherent dynamics in RTI and RMI for fluids
with a finite density ratio in the general three-dimensional case. The analysis yields new
properties of the bubble front dynamics. In either RTI or RMI, the obtained dependen-
cies of the bubble velocity and curvature on the density ratio differ qualitatively and
quantitatively from those suggested by the models of Sharp (1984), Oron et al. (2001),
and Goncharov (2002). We show explicitly that these models violate the conservation
laws. For the first time, our theory reveals an important qualitative distinction between
the dynamics of the RT and RM bubbles. Asymptotically, the RT bubble is curved, and
its curvature has a strong dependence on the density ratio, while the RM bubble flattens
independently of the density ratio. The velocity of the RT bubble depends has a power-
law dependence on the bubble curvature with exponent 3/2 and a universal coefficient
independent of the density ratio, while the RM bubble decelerates. The bubble curvature
and velocity depend mutually on one another, as do the differences between the RM and
RT cases for these quantities. Our theory explains existing data, formulates the univer-
sal properties of the RT and RM nonlinear dynamics, and identifies sensitive diagnostic
parameter for future observations.

2. Governing equations

Let t be time, (x, y, z) be the Cartesian coordinates, and θ(x, y, z, t) be the scalar
function with θ = 0 at the fluid interface. Locally, θ = z∗(x, y, t) − z where z∗(x, y, t)
is the position of the fluid interface. The fluid density and velocity have the form ρ =
ρhH(−θ)+ρlH(θ), and v = vhH(−θ)+vlH(θ), where H is the Heaviside step-function,
and ρh(l) and vh(l) are the density and velocity of the heavy (light) fluid located in the
region θ < 0 (θ > 0). For incompressible fluids, ∇ · v = 0, and the values of ρh(l) are
independent of the coordinates and time. The equation of continuity is reduced then to

(

θ̇ + vh · ∇θ
)

ρh
∣

∣

θ=0
=

(

θ̇ + vl · ∇θ
)

ρl
∣

∣

θ=0
(2.1)

where the dot indicates a partial time-derivative. If there is no mass flux across the
moving interface, the normal component of velocity is continuous at the interface and

vh · ∇θ
∣

∣

θ=0
= vl · ∇θ

∣

∣

θ=0
= −θ̇

∣

∣

θ=0
. (2.2)

With neglected terms for viscous stress and surface tension, the momentum equation
is transformed into the conditions

ρh (v̇h + (vh · ∇)vh + g) +∇ph
∣

∣

θ<0
= 0 , (2.3)

ρl (v̇l + (vl · ∇)vl + g) +∇pl
∣

∣

θ>0
= 0, (2.4)

ph − pl
∣

∣

θ=0
= 0, (2.5)

where ph(l) is the pressure of the heavy (light) fluid, and g is the gravity directed from
the heavy fluid to the light fluid with |g| = g. There are mass sources in the flow, and
the boundary conditions at the infinity close the set of the governing equations

vh

∣

∣

θ=−∞
= vl

∣

∣

θ=+∞
= 0. (2.6)

The spatial period, the time-scale, and the symmetry of the motion in (2.1-2.6) are
determined from the initial conditions. We choose the spatial period λ in a vicinity of
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the wavelength of the mode of fastest growth, λ ∼ λmax, where λmax is set by surface
tension and viscosity (Chandrasekhar 1961). For RTI, the time-scale is τRT ∼

√

λ/Ag,
where A = (ρh − ρl)/(ρh + ρl) is the Atwood number with 0 ≤ A ≤ 1. For RMI,
g = 0 and τRM ∼ λ/v0, where v0 is the initial velocity value. Based on the experimental
observations, we separate scales and divide the fluid interface into active and passive
regions, similarly to Aref & Tryggvason (1989). In the active regions (scales ¿ λ) the
vorticity is intensive, while the passive regions (scales ∼ λ) are simply advected. In order
to be stable under modulations with scales À λ, the large-scale coherent motion must
be invariant under one of symmorphic groups with inversion in the plane (Abarzhi 1998,
2002).
To describe the dynamics of the nonlinear bubble, we reduce (2.1-2.6) to a local dy-

namical system. All calculations are performed in the frame of reference moving with
velocity in the z-direction, where v(t) is the velocity at the bubble tip in the laboratory
frame of references. For the large-scale coherent motion, vh(l) = ∇Φh(l), and in the case
of a 3D flow with hexagonal symmetry

Φh =

∞
∑

m=1

Φm(t)
(

z +
(

exp(−mkz)/3mk
)

3
∑

i=1

cos(mkir)
)

+ cross terms + fh(t), (2.7)

Φl =

∞
∑

m=1

Φ̃m(t)
(

−z
(

exp(−mkz)/3mk
)

3
∑

i=1

cos(mkir)
)

+ cross terms + fl(t), (2.8)

where ki are the vectors of the reciprocal lattice, r = (x, y), and fh(l) are time-
dependent functions. For x ≈ 0 and y ≈ 0 the interface can be expanded as a power
series, z∗ =

∑∞
N=1 ζN (t)(x

2N+y2N ) + cross terms, where ζ1(t) is the principal curvature
at the bubble tip, and ζ1(t) < 0.
Substituting these expressions in (2.1-2.6), taking the first integral of (2.5), and re-

expanding (2.1-2.6) x, y ≈ 0, we derive a dynamical system of ordinary differential equa-
tions for the variables ζN and the moments Mn(t) =

∑∞
m=1 Φm(t)(km)

n+cross terms

and M̃n(t) =
∑∞

m=1 Φ̃m(t)(km)
n+cross terms, where n is an integer. The moments are

correlations functions by their physical meaning. For N = 1, the conditions in (2.2-2.6)
take respectively the form

ζ̇1 = 2ζ1M1 +M2/4 = 2ζ1M̃1 − M̃2/4, (2.9)
(

Ṁ1/4 + ζ1Ṁ0 −M2
1 /8− ζ1g

)

ρh =
( ˙̃M1/4− ζ1

˙̃M0 − M̃2
1 /8− ζ1g

)

ρl, (2.10)

M0(t) = −M̃0(t) = −v(t) . (2.11)

The local dynamical system (2.11) describes the dynamics of the bubble in a vicinity
of its tip as long as the spatial period λ of the coherent structure is invariable. The
presentation in terms of momentsMn and M̃n allows one to perform a multiple harmonic
analysis and find the regular asymptotic solutions with a desired accuracy.

3. Regular asymptotic solutions

Retaining only the first order amplitudes in the expressions for the moments, we derive
a nonlinear solution of the Layzer-type, which conserves mass, momentum, and has no
mass sources. In RTI, for t/τRT À 1 the curvature and velocity of the Layzer-type
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bubble are ζ1 = ζL = −Ak/8, and v = vL,RT =
√

Ag/k, in agreement with the empiric
approach of Sharp (1984). In RMI, for t/τ À 1, the curvature and velocity are ζ1 =
ζL = −Ak/8, and v = vL,RM = (2 − A2)/Akt. These single-mode solutions however
do not satisfy (2.2) and (2.9) and permits mass flux across the interface. To avoid this
difficulty Goncharov (2002) has violated the boundary conditions in (2.6) and (2.11), and
introduced an artificial time-dependent mass flux of the light fluid in the flow. For the
solutions of Goncharov (2002), ζ1 = ζD = −k/8, and v = vD,RT =

√

2Ag/(1 +A)k in
RTI, and ζ1 = ζD = −k/8, and v = vD,RM = 2/(1 + a)kt in RMI, in agreement with
drag model of Oron et al. (2001). We conclude that Layzer-type approach (either in our
version or in the models Oron et al. (2001) and Goncharov (2002)) does not satisfy the
complete set of the conservation laws, and the single-mode solutions are not therefore
physical. The reason for this difficulty lies in a non-local character of the non-linearity
in (2.1-2.6) and (2.9-2.11).
To find regular asymptotic solutions, describing the nonlinear evolution of the bubble

front in RTI or RMI, one should account for non-local properties of the flow that has
singularities (Abarzhi et al. 2003). The singularities determine the interplay of harmonics
in the global flow as well as in the local dynamics system. They transfer the fluid energy to
smaller and larger scales and generate higher order harmonics. If the energy transports
are not extensive, so the symmetry and the spatial period of the coherent structure
do not change, the singularities affect the shape and velocity of the regular bubble.
Assuming the bubble shape, parameterized by the principal curvature(s) at its tip, is
free, we find a continuous family of regular asymptotic solutions for the local system.
The family involves all solutions allows by the symmetry of the global flow. For the
regular asymptotic solutions the interplay of harmonics is well captured. We perform a
stability analysis and choose the fastest stable solution in the family as being physically
significant. The reader is referred to Abarzhi et al. (2003) for more details.
For the Rayleigh-Taylor instability, the bubble velocity is the function on the bubble

curvature and density ratio, v = v(
√

g/k,A, (ζ1/k)). In the interval ζcr < ζ ≤ 0, the
Fourier amplitudes Φm and Φ̃m decay exponentially with increase in their m, the lowest-
order amplitudes are dominant, and higher order corrections for family solutions are
small. For ζ ∼ ζcr the convergence is broken, where ζcr ≈ −k/6 for A ≈ 1 and ζcr ≈ 0
for A ≈ 0. For fluids with highly contrasting densities, A ∼ 1, the magnitudes of the
Fourier amplitudes of the light fluids are much larger that those of the heavy fluid, so
|Φm| ∼ |Φ̃m+1|. For fluids with similar densities, A ∼ 0, this difference is insignificant,
and |Φm| ∼ |Φ̃m|.
The fastest solution in the family has the curvature and velocity

ζ1 = ζA,RT , v = vA,RT (3.1)

Explicit analytical expressions for ζA,RT and vA,RT are cumbersome and not presented
here. Remarkably, the bubble velocity and the curvature obey a universal dependence

vA,RT =
√

g/k(8|ζA,RT |/k)3/2. (3.2)

In the limiting case of fluids with highly contrasting densities, A ≈ 1, the solution (3.1)
takes the form

ζA,RT ≈ −(k/8)
(

1− (1−A)/8
)

, vA,RT ≈
√

g/k
(

1− 3(1−A)/16
)

. (3.3)

In the other limiting case, A ≈ 0, it can be expanded as
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ζA,RT ≈ −(k/2)A1/3, vA,RT ≈ (3/2)3/2
√

Ag/3k, (3.4)

Stability analysis shows that solutions with ζ ∼ ζcr and ζ ∼ 0 are unstable, while
solutions with ζ ∼ ζA,RT are stable. Therefore, the physically significant solution in the
RT family is the solution (3.1).
For the Richtmyer-Meshkov instability, the multiple harmonic regular asymptotic so-

lutions in (2.9-2.11) with Mn ∼ 1/t, M̃n ∼ 1/t and v ∼ 1/t, and time-independent ζN
are found in a similar way. The RM and RT families have a number of common prop-
erties such as the dominance of the lowest order amplitudes, convergence, and critical
solutions. However the asymptotic dynamics of the bubble front in RMI appears quite
different from that in RTI. In the RM family, the fastest solution corresponds to a bubble
with a flattened shape:

ζ1 = ζA,RM ,= 0 v = vA,RM = 3/Akt (3.5)

Higher order corrections for the solution (3.5) are reasonably small. The stability anal-
ysis shows that solutions with a finite curvature ζ ∼ 1/λ are unstable, while flattened
bubbles with ζ = ζA,RM are stable. Therefore, the physically significant solution in the
RM family is the solution (3.5).
The foregoing analysis can be applied for 3D flows with other symmetries. In either

RTI or RMI, the nonlinear dynamics of 3D highly symmetric flows (Abarzhi 1998, 2002))
coincide except for the difference in the normalization factor k. A nearly isotropic shape
of the bubble is the reason of this universality. The 3D and 2D results are similar quali-
tatively. In main order, in RTI vA,RT,3D/vA,RT,2D ∼

√
3 and ζA,RT,3D/ζA,RT,2D ∼ 3/4,

while in RMI vA,RM,3D/vA,RM,2D ∼ 2 and ζA,RM,3D/ζA,RM,2D ∼ 1, similarly to Abarzhi
(1998) and Abarzhi (2002) for A = 1. For 3D low-symmetric flows, the asymptotic analy-
sis shows a tendency of 3D bubbles to conserve isotropy in the plane, and a discontinuity
of the 3D-2D dimensional crossover.

4. Discussion

Based on the foregoing results, we expect the following dynamics of the bubble front
in the Rayleigh-Taylor and Richtmyer-Meshkov instabilities for fluids with finite density
differences in the case of a small initial perturbation. In RTI, the bubble curvature ζ1

and velocity v grow as ∼ exp(t/τRT ) in the linear regime, t/τRT ¿ 1, and reach finite
values ζ1 ≈ ζA,RT and v ≈ vA,RT asymptotically for t/τRT À 1. The parameters ζA,RT

and vA,RT depend strongly on the Atwood number. However, the value v
2
A,RT /ζ

3
A,RT is a

parameter universal for all A. This universality suggests that the bubble front evolution
in RTI is quite complicated and cannot be approximated by the motion of a spherical
bubble, in contrast to suggestions of the drag models of Oron et al. (2001) and Goncharov
(2002). For A < 1 the bubbles are slower and less curved compared to the case of A = 1;
for A ≈ 0 the bubbles flatten and their velocity approaches zero.
In RMI, the bubble curvature and velocity change as ζ1 ∼ −kt/τRM and v(t) − v0 ∼

−v0t/τRM in the linear regime, t/τRM ¿ 1; for t ∼ τRM the curvature ζ1 reaches an
extreme value, dependent on the initial conditions; as t/τRM À 1 the bubble flattens,
ζ1 ∼ ζA,RM and decelerates v ∼ vA,RM . For A < 1 the bubbles move faster than those
for A = 1, and for A ≤ 1 the bubbles are flat. The flattening of the bubble front is a
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Figure 1. Dependence of the bubble curvature on the Atwood number A for 3D highly sym-
metric flows in the Rayleigh-Taylor and Richtmyer-Meshkov instabilities; k is the wavevector,
ζL = −Ak/8 is the Layzer-type solution, ζD = −k/8 is given by the drag models, ζA,RT and
ζA,RM are given by the non-local multiple harmonic solutions in RTI and RMI respectively.

distinct feature of RMI universal for all A. It follows from the fact that RM bubbles
decelerate. The equation (3.5) suggests that for for fluids with very similar densities,
A ∼ 0, the bubble velocity has a much faster time-dependence, as ta with −1 < a < 0,
in a qualitative agreement with experiments of Jacobs & Sheeley (1996).
Figures 1, 2 and 3 compare our multiple harmonic non-local solutions with the models

of Oron et al. (2001) and Goncharov (2002), and with the Layzer-type solution, which
agrees with Sharp (1984). For 0 < A ≤ 1 the asymptotic dynamics is different in RTI
and RMI: the bubble velocity reaches a constant value in RTI and decreases with time
in RMI. Therefore the distribution of pressure around the bubble is distinct in RTI and
RMI. This should lead to a different shape for the bubble front. Our theory adequately
describes the fact that in RTI the curvature ζA,RT has a strong dependence on the Atwood
number, while in RMI ζA,RM = 0 for all A, Figure 1. The models of Sharp (1984), Oron
et al. (2001), and Goncharov (2002) do not predict any difference between the shape of
the RT and RM bubbles. In RTI, for A = 1 the values of ζA,RT = ζL = ζD. However,
for finite A the difference among the values ζA,RT , ζL and ζD is significant, Fig. 1; in
the limit A → 0, ζA,RT /ζD → 0, while ζA,RT /ζL → ∞. We emphasize that for A = 0
the RT instability does not develop and the bubble curvature should remain zero for all
t, in agreement with (3.4). In RMI, the bubble in (3.5) flattens asymptotically for all A,
while the models of Oron et al. (2001) and Goncharov (2002) suggest an A-independent
finite value of the bubble curvature ζD = ζL

∣

∣

A=1
, Fig. 1.

We conclude that in either RTI or RMI the bubble curvature is sensitive diagnostic
parameter, which tracks the conservation of mass in the flow. The value λ|ζ1| defines
how flat or narrow the bubble is for a given lengths scale λ. This dimensionless shape
parameter is related to the bubble velocity and determines the flow drag. The value of
the drag force is still a subject for controversy in the chaotic RTI and RMI (Dimonte
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Figure 2. Dependence of bubble velocity v on the Atwood number A for 3D highly symmetric

flows in the Rayleigh-Taylor instability; k is the wavevector and g is gravity, vL,RT =
√

Ag/k

is the Layzer-type solution, vD,RT =
√

2Ag/(1 +A)k is given by the drag models, and vA,RT

is given by the RT multiple harmonic non-local solution.

2000). Our theory resolves this issue for highly nonlinear Rayleigh-Taylor and Richtmyer-
Meshkov instabilities. The foregoing analysis suggests that the empiric models of Sharp
(1984), Oron et al. (2001) and Goncharov (2002) may not be applicable in RTI and RMI.
Our results are in good agreement with available data (Kucherenko et al. 2000; He

et al. 1999; Gardner et al. 1988; Jacobs & Sheeley 1996; Holmes et al. 1995; Schneider
et al. 1998; Holmes et al. 1999; Dimonte 2000; Volkov et al. 2001). However, in most of
existing experiments, the measurement of the bubble curvature requires an improvement
of diagnostics of the interface dynamics. The major issues to check by future observations
are the following: Does the curvature of the RT bubble have a strong dependence on the
Atwood number or reach an A-independent value? Does the curvature of the RM bubble
vanish asymptotically or approach a finite value?
For the bubble velocity, in the case of A ∼ 1 the experiments and simulations have

been in a reasonable agreement with the dependencies vL,RT and vD,RT in RTI, and
with the dependence vD,RM in RMI. On the other hand, as evinced in the foregoing,
the single-mode solutions vL,RT and vD,RT as well as vL,RM and vD,RM violate the
conservation laws. This apparent paradox is easily explained. Figure 2 shows that in RTI
for finite A and for ζ1 ∼ 1/λ, the bubble velocity is relatively insensitive to details of the
interface dynamics, and the quantitative distinction among the values of vA,RT , vD,RT

and vL,RT is 10− 20%. In RMI, the velocities vL,RM and vD,RM differ significantly from
vA,RM , Figure 3. The difference is however hard to distinguish in experiments. Since
the velocity decays as 1/t, the bubble displacement, ∼ C log(t/τRM )/k, is comparable
with an experimental error, and the coefficient C is in this dependence is impossible to
evaluate. In contrast, the bubble curvature is a reliable diagnostic parameter as discussed
in the foregoing.
Our theory describes the principal influence of the density ratio on the large-scale



258 S.I. Abarzhi

Figure 3. Dependence of the bubble velocity v on the Atwood number A for 3D highly
symmetric flows in the Richtmyer-Meshkov instability; k is the wavevector, t is time,
vL,RM = (2 − A2)/Akt is the Layzer-type solution, vD,RM = 2/(1 + A)kt is given by the
drag models, vA,RM = 3/Akt is given by the RM multiple harmonic non-local solution.

nonlinear dynamics of the RT and RM bubbles. The analysis is based on the assumptions
that the flow dynamics is governed by a dominant mode, the transfers of energy to smaller
or larger scales are not extensive, and the vorticity does not change the time-dependence
of the large-scale coherent motion. If these conditions are broken (for example, for fluids
with similar densities, A ≈ 0), the potential approximation may not give a correct time-
dependence for the asymptotic bubble motion. We address these issues in the future.

5. Conclusion

We have found a multiple harmonic solution for a complete system of conservation laws
describing the large-scale coherent dynamics in RTI/RMI in general three-dimensional
case. The theory yields new dependencies of the bubble curvature and velocity on the
density ratio, formulates the universal properties of the nonlinear dynamics in RTI and
RMI, reveals an important difference between the dynamics of RT and RM bubbles, and
shows the significance of mass conservation for the buoyancy-drag balance.

REFERENCES

Abarzhi, S. I. 1998 Stable steady flows in Rayleigh-Taylor instability. Phys. Rev. Lett.
81 (2), 337–340.

Abarzhi, S. I. 2002 A new type of the evolution of the bubble front in the Richtmyer-
Meshkov instability. Physics Letters A 294 (2), 95–100.

Abarzhi, S. I., Nishihara, K. & Glimm, J. 2003 Rayleigh-Taylor and Richtmyer-
Meshkov instabilities for fluids with a finite density ratio. Phys Letters A 317, 470–
476.



The effect of the density ratio... 259

Aref, H. & Tryggvason, G. 1989 Model of Rayleigh-Taylor instability. Phys. Rev.
Lett. 62, 749–752.

Baker, G. R., Meiron, D. I. & Orszag, S. A. 1982 Generalized vortex methods for
free-surface flow problems. J. Fluid Mech. 123, 477–501.

Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability . London: Oxford
University Press.

Cowley, S., Baker, G. & Tanveer, S. 1999 On the formation of Moore curvature
singularities in vortex sheets. J. Fluid Mech. 378, 233–267.

Dalziel, S., Linden, P. & Youngs, D. 1999 Self-similarity and internal structure of
turbulence induced by the Rayleigh-Taylor instability. J. Fluid Mech. 399, 1–48.

Davies, R. & Taylor, G. 1950 The mechanics of large bubble rising through extended
liquids and through liquids in tubes. Proc. Roy Soc. A London 200, 375–390.

Dimonte, G. 2000 Spanwise homogeneous buoyancy-drag model for Rayleigh-Taylor
mixing and experimental evaluation. Phys. Plasmas 7, 2255–2269.

Garabedian, P. 1957 Proc. Roy. Soc. London A 241, 423–430.

Gardner, C., Glimm, J. & McBryan, O. 1988 The dynamics of bubble growth for
Rayleigh-Taylor instability. Phys. Fluids 31, 447–465.

Goncharov, V. N. 2002 Analytical model of nonlinear, single-mode, classical Rayleigh-
Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett. 88.

He, X., Xhang, R., Chen, S. & Doolen, G. 1999 On three-dimensional Rayleigh-
Taylor instability. Phys. Fluids 11, 1143–1152.

Holmes, R., Grove, J. & Sharp, D. 1995 J. Fluid Mech. 301, 51.

Holmes, R. L., Dimonte, G., Fryxell, B., Gittings, M. L., Grove, J. W.,

Schneider, M., Sharp, D. H., Velkovich, A. L., Weaver, R. P. & Zhang,

Q. 1999 Richtmyer-Meshkov instability growth: experiment, simulation and theory.
J. Fluid Mech. 389, 55–79.

Hou, T. Y., Lowengrub, J. S. & Shelley, M. J. 1997 The long-time motion of
vortex sheets with surface tension. Phys. Fluids 9 (7), 1933–1954.

Jacobs, J. & Sheeley, J. 1996 Experimental study of incompressible Richtmyer- .

Kucherenko, Y. A., Pylaev, A., Balabin, S., Murzakov, V., Ardashova, R.,

Popov, V., Komarov, O., Savel’ev, V., Kozelkov, O., Romanov, I., R,

R. C. & Haas, J. 2000 Behavior of turbulized mixtures at the stage of inertial
motion for different Atwood numbers. Laser Part. Beams 18, 163–169.

Layzer, D. 1955 Astrophys. Jour. 122, 1.

Matsuoka, C., Nishihara, K. & Fukuda, Y. 2003 Nonlinear evolution of an interface
in the Richtmyer-Meshkov instability. Phys. Rev. E 67 (art. 036301), 1–12.

Meshkov, E. 1969 Sov. Fluid Dyn. 4, 101–104.

Moore, D. 1979 Spontaneous appearance of a singularity in the shape of an evolving
vortex sheet. Proc. Roy. Soc. London A 365, 105–119.

Oron, D., Alon, U., Offer, D. & Shvarts, D. 2001 Dimensionality dependence
of the Rayleigh-Taylor and Richtmyer-Meshkov instability late-time scaling laws.
Phys. Plasmas 8, 2883–2889.

Rayleigh, L. 1892 On the instability of a cylinder of viscous liquid under capillary force.
Pilos. Mag. 34, 145.

Richtmyer, R. 1960 Taylor instability in shock acceleration of compressible fluids.
Commun. Pure Appl. Math. 13, 297–319.



260 S.I. Abarzhi

Schneider, M., Dimonte, G. & Remington, B. 1998 Large and small scale structure
in Rayleigh-Taylor mixing. Phys. Rev. Lett. 80, 3507–3510.

Sharp 1984 An overview of the Rayleigh-Taylor instability. Physica D 12, 3–18.

Tanveer, S. 1993 Singularities in the classical Rayleigh-Taylor flow - formation and
subsequent motion. Proc. Roy. Soc. London A 441, 501–525.

Volkov, N. V., Maier, A. E. & Yalovets, A. P. 2001 The nonlinear dynamics
of the interface between media possessing different densities and symmetries. Tech.
Phys. Lett. 27, 20–24.


