

Microgravity Science Division

Glenn Research Center

Space Directorate

Discussion of Priorities

NASA/TM-2003-212598

Microgravity Science Division

Glenn Research Center

Space Directorate

Prioritization Scheme

-

Priority Ratings

- **Critical:** enabling technology if not solved, don't or can't go.
- Severely Limiting: enabling technology but other systems can be used, but a steep price
- Enhancements
 - safety and reliability
 - weight savings
 - cost savings
- Communication: Analysis, modeling, existing resource awareness can overcome difficulties.

Method of Testing

- space-flight experiment (SF)
- ground-based reduced gravity testing (GB)
- normal gravity testing,
- analysis/modeling
- review of existing space-flight / groundbased data for its appropriateness.

13-May-2003

Fluid Stability and Dynamics Workshop

Microgravity Science Division

Glenn Research Center

Space Directorate

Critical Issues

Reduced Gravity Instabilities

- Flow/phase splitting through Parallel flow paths (system level)
- Phase Accumulation and release within Flow System Components Transient Operations
 - Startup/Shutdown
 - Changes in Set Point Operation
 - Variable gravity over sustained time periods
 - 1 g prior to launch & after landing
 - 1g during launch / landing
 - μg, Martian, and Lunar
 - Variable gravity sloshing

Fluid Stability and Dynamics Workshop

Microgravity Science Division

Space Directorate

Critical

- Phase separation, distribution and control
 - Control-- pick components, get in game
 - (not phase change part)
 - Take <u>best</u> tool, <u>best</u> data, design experiment to test (evaporator/condenser system) (one really pertinent example!)
- Critical heat flux in transient and oscillating flows (recovery)
 - Take <u>best</u> tool, <u>best</u> data, design experiment to test) (one really **pertinent** example!) Run transients Evaporator/(not a system)

Density wave oscillations in multiphase systems

- Take <u>best</u> tool, <u>best</u> data, design experiment to test (evaporator/condenser system) (one really **pertinent** example!)
- Gravitationally insensitive evaporators/condensers
 - (same system)

Microgravity Science Division

Glenn Research Center

Space Directorate

Critical

- Scale-up
 - Do other scales (same idea)
 - Components

Fluid Stability and Dynamics Workshop

Microgravity Science Division

Glenn Research Center

Space Directorate

Severely Limiting Phase Separation

- Active Separators based on Centrifugal concept. Unstable operations at flooding conditions
- Multiphase (gas-liquid ?) pump

Microgravity Science Division

Glenn Research Center

Space Directorate

Severely-Limiting Phase Change

- CHF is not a problem unless some other instability initiates a flow interruption.
 - Recovery from dryout by quenching hot surface because of
 - Exceeding CHF due to other flow instability
 - Hydrodynamic rupture of liquid film at slow slugging/wave frequencies
 - High power density: Spray cooling.

Fluid Stability and Dynamics Workshop

Microgravity Science Division

Glenn Research Center

Space Directorate

Severely Limiting Flow Through Components

- Flow Splitting and Combining
- Packed Beds
 - Mass and Heat transfer coefficients
 - Phase Distribution and accumulation
- Mass transfer in various systems

Microgravity Science Division

Glenn Research Center

Space Directorate

Severely Limiting

Noncondensibles

Microgravity Science Division

Glenn Research Center

Space Directorate

Enhancements

Passive Phase Separation

- Inertial Driven
 - Cyclonic devices
 - Tees/manifolds

Phase Change

- Surface Enhancements
- Surfactants & Engineered Fluids

NASA/TM-2003-212598

Microgravity Science Division

Glenn Research Center

Space Directorate

Awareness Instabilities

Likely Problems in reduced gravity – Solve through Analysis and Awareness. Maybe look at existing data

- Ledinegg/Pumped Loop Instability
- Pressure Drop Oscillations
- Density Wave Oscillations

Microgravity Science Division

Glenn Research Center

Space Directorate

Awareness

Phase Separation

 Bubble removal from rotating tanks through Needle suction

Flow Through Components

- Valves
- Pumps
 - Single phase avoid cavitation

Microgravity Science Division

Glenn Research Center

Space Directorate

Methods of Resolution

- ISS
 - Fluids Integrated Rack
 - Microgravity Science Glovebox
 - Express rack
 - other
- Ground-based Reduced Gravity Facilities
- Normal Gravity Testing and Modeling
- Long duration partial/micro gravity

Fluid Stability and Dynamics Workshop

Microgravity Science Division

Glenn Research Center

Space Directorate

Comment: Elements of ANY Two Phase Flow Experiment

- Liquid Supply
- Means of supplying vapor or gas
- Plumbing consisting of valves, tubing, accumulators, etc.
- Test article (s)
- Sensors pressure, temperature, flowrate, *flow regime*
- Data Acquisition and Control System
- Ability to remotely change operational settings.
- Highly desired are Flow Visualization Sections, preferably high speed camera
- Power, heat sink
- Ground control

Fluid Stability and Dynamics Workshop

Microgravity Science Division

Glenn Research Center

Space Directorate

2008 <u>Space Flight</u>

- Parallel flow channels with multiple evaporaters.
 - Flow through splitting manifold into the parallel channels
 - Parallel channels could focus on different aspects of boiling, namely critical heat flux and quenching,
- Assess slugging phenomena on active separation device(s)
- Packed Bed hydrodynamic characterization

Fluid Stability and Dynamics Workshop

Microgravity Science Division

Glenn Research Center

Space Directorate

2003 – 2008

Ground – Based µG Facilities

- Flow splitting and mixing tees and manifolds(airplane)
- Component separation (air-water, e.g., fuel cells)
- Cryogenic (??)
- Phase Change
 - determine wetting characteristics of solid-liquid combinations and strategies (additives) to modify/control the wetting and spreading.
 - Conduct testing for rewetting/quenching of hot surfaces
 - Investigate the effects of wetting characteristics of a condensing surface
- Passive two phase flow separation techniques
 - Drainage of condensate with refrigerators from their "cold plates. "
 - drainage of waste water, including urine from rat cages
 - continue bubble removal schemes for bioreactor
 - Propellants
- Initiate investigations of the effectiveness of techniques using acoustic, 13-Maeleotric field, surfactants and surface enhancement for 1-g and low-g 17
 - (To alleviate CHF problems)

Microgravity Science Division

Glenn Research Center

Space Directorate

2003 – 2008 Other

- Evaluate current two-phase system designs for known and appropriate normal gravity instability mechanisms.
- Continue and complete development of mechanistic models for nucleate pool boiling
- Design tools/handbook
- Flow boiling

Fluid Stability and Dynamics Workshop

Microgravity Science Division

Glenn Research Center

Space Directorate

2009 – 2015 Space Flight

- Continue parallel channel instability tests
- Demonstration/validation of scaling
- Conduct phase change experiments for CHF, Quenching & Spray cooling
- Conduct phase change experiments on condensation to determine condensation heat transfer coefficient in microgravity
- Conduct ISS experiments on liquid-gas flows in packed beds (mass transfer, reactions)

Fluid Stability and Dynamics Workshop

Microgravity Science Division

Glenn Research Center

Space Directorate

2009 – 2015

<u>Ground – Based µG Facilities</u>

- Conduct experiments for pool and flow boiling for the effect of boiling enhancement techniques.
- Conduct advanced phase separator tests for a wide variety of concepts, including passive methods.
- Exotic materials and fluids,
- Nuclear power components
- Setting up for the next grand and glorious project
- Electrical and electroacoustic manipulation of interfaces and fluids

Fluid Stability and Dynamics Workshop

Microgravity Science Division

Glenn Research Center

Space Directorate

2009 – 2015 Other

- Bio power sources
- Nano-scale prototypes for power/etc
- Designed surfaces for heat transfer
- Combined comprehensive modeling effort for multiphase heat transfer and flow leading to user design code.

Fluid Stability and Dynamics Workshop

Microgravity Science Division

Glenn Research Center

Space Directorate

2016 ++ Space Flight

- Phase change and heat transfer with exotic materials
- High and low pressure and temperature experiments
- Large scale system demonstrations

Fluid Stability and Dynamics Workshop

Microgravity Science Division

Glenn Research Center

Space Directorate

2016 ++

Ground – Based µG Facilities

• Detailed verification of the comprehensive computation package.

Fluid Stability and Dynamics Workshop

Microgravity Science Division

Glenn Research Center

Space Directorate

- two phase design and operations manuals
- software package development?.