

Human Support Technology Research to Enable Exploration

Jitendra Joshi, Ph. D. Deputy Manager, NASA AHST Program NASA NASA

National Aeronautics and Space Administration

Acknowledgements

- Michael Flynn
- Dr. Donald Henninger
- Dr. Darrell Jan
- Dr. Mark Kliss
- Dr. Raymond Wheeler

Advanced Life Support

- Duplicate the functions of the Earth in terms of human life support
- Without the benefit of the Earth's large buffers --- oceans, atmosphere, and land masses
- Question is one of how small can the requisite buffers be and yet maintain extremely high reliability over long periods of time in a hostile environment
- Space-based systems must be small, therefore must exercise high degree of control

Advanced Life Support

- Enabling technology for human exploration and development of space
- Long-duration missions dictate regenerative systems ---- minimize re-supply
- Minimize mass, volume, power, thermal requirements
- Such systems will be replete with physicochemical and biological components

Systems Integration, Modeling, and Analysis

- Mission objectives drive the functional requirements of Advanced Life Support technology development.
 - Systems Engineering enables R&TD efforts to meet the functional requirements the best way possible.
 - Identification and evaluation of feasible designs
 - Performance of technology/configuration trade studies
 - Optimization of operational strategies
 - Provide guidance for future R&TD efforts

Progressive Capabilities

Accessible Planetary Surface Capability

- ETO \$/kg (under review) Payload: ~100mt
- In-space propulsion, Isp>3000 sec, high thrust
- Power systems, >500 w/kg
- Robotic aggregation/assembly
- Crew countermeasures for 1-3 years
- Complete closure of air/water; options for food
- Materials, factor of 20
- Micro-/Nano- avionics

Sustainable Planetary Surface Capability

- ETO \$/kg (under review) Payload: 100+mt
- In-space propulsion, Isp>3000 sec, high thrust
- Sustainable power systems
- Intelligent systems, orbital and planetary
- Crew countermeasures for indefinite duration
- Closure of life support, including food
- ISRU for consumables & spares
- Materials, factor of 40
- Automated reasoning and smart sensing

Now

NASA/TM-2003-212598

Water Processing

- Goal is to develop a processing system that is capable of generating potable water.
- Current baseline recycles only a fraction of the water at the cost of expendables and power.
- Future technologies (VPCAR, biological processors) have to be optimized for microgravity compatibility.

07/09/92 STS050-20-012

NASA

National Aeronautics and Space Administration

Why Advanced CO₂ Removal Technologies?

- The ISS CO₂ removal subsystem has the highest power penalty of any ISS life support subsystem (~ 3200 W-hr/kg CO₂). Current technology has a thermodynamic efficiency of about 3%.
- Current CO_2 removal & reduction technology in closed-loop mode (with Sabatier/oxygen recovery) will require ~ 5400W-hr/kg CO_2 .
- Life scientists are calling for lower CO₂ levels on International Space Station.
 - ISS requirement is 7000 ppm, compared to ~ 400 ppm Earth-normal
 - Achieving lower concentrations translates directly into more energy consumption.
 - Power will be an extremely critical resource for a Mars transit vehicle.
 - The Mars Reference Mission would use a solar-powered transit vehicle with total estimated available power of 30 kW; 12 kW for ECLS
- Develop CO₂ removal technology that consumes 10x less power than current Space Station technology for same performance. (or maintains substantially lower concentrations of CO₂ for no increase in power)

Solid Waste Resource Recovery Systems: Lyophilization

- Low pressure, low temperature process (potential for low power operation).
- Complex solids pumping or handling techniques are not required.
- The technique should not produce CO₂, NO_x, SO_x, or any other undesirable oxidation byproducts (gases generated are primarily water vapor).
- The final product is a stable dried material with 1 to 3% H₂O.
- The approach is fully regenerable, meaning that the process requires no consumables, only energy.

NASA

National Aeronautics and Space Administration

Atmospheric Resources of Mars

• Dusty, windy

Mars Pathfinder, 1997

Integrated Test beds

Why do we need integrated test beds?

- Allows for validating a subsystem in a relevant environment
- Subsystems get exposed to off-nominal loads which allows for testing the limits that the system can effectively tolerate
- Effect of the test article on the optimal functioning of other subsystems
- Subsystems get exposed to real streams which can not be simulated in laboratory studies

National Aeronautics and Sparle Advinigrating G-R------

Integrated Human Exploration Mission Simulation Facil<u>ity</u>

SUMMARY

- Human exploration missions are very complex and risky – duration and distance from Earth
- Integration issues are difficult to identify
- Individual technologies & systems have inherent risk
- Integration of all systems & procedures on the ground will allow risk to be more effectively managed
- Integrated procedures can be developed and validated

- Definition of "missions" provides focus for R&D
- INTEGRITY is a cost-effective way to prepare for future human exploration missions beyond low earth orbit
- * INTEGRITY will facilitate:
 - Development of improved management techniques, including cost & risk estimation
 - ✓ International, Commercial, Academic partnering
 - ✓ Education & Public involvement
 - Re-invigorate NASA workforce
 Recruiting tool

24 April 2003

Advanced Life Support Lunar - Mars Life Support Project

Phase I: 15-day, 1-Person Test March 1995

Phase II:30-day, 4-Person Test - June 1996Phase IIA ISS:60-day, 4-Person Test - January 1997Phase III:90-day, 4-Person Test - September 19, 1997

Monitoring & Controlling the environment

- •Air
- •Water
- •Plant chambers
- •Food and Food
- Preparation surfaces
- •Gradual buildup of toxic species
- •Hazardous events
- •Chemical
- •Biological

Long time

COMPOUND	DETECTION LIMIT
PRIORITY 1	PPM
Acetaldehyde	0.1
Formaldehyde	0.01
Methanol	0.2
Dichloromethane	0.03
Perfluoropropane (F218)	10
Acetone	1
Octamethylcyclotetrasiloxane	0.05
2-Propanol	3
Freon 82	5

*microgravity combustion not shown

Gradual buildup of harmful chemical or microbials

> Hazardous event such as fire or leakage

Ground-based Commercial technology

- •High mass
- •High power requirement
- •High operator skill
- •High capability
- •May require gravity

Lower mass
Lower power requirement
Low operator skill
Low capability
May require gravity

•Breakthroughs needed to achieve high capability and low mass/power plus autonomy

Optimizing Size vs Capability

Some Top level Issues for Wastes Processing

• Gas-liquid Separation

National Aeronautics and Space Administration

All P/C, Bio water treatment systems

Humidity control systems

• Solid-liquid Interactions

Settling problems in Bio and P/C systems

- Optimal functioning of P/C systems
- Thermal Control
 - Heat Rejection
 - Heat Transport

NASA/TM-2003-212598

Water Recovery Systems Flight Verification Topics

- Thermal properties of thin fluid films
- Two phase flow in open chambers
- Splashing in liquid/gas boundaries
- Centrifugal separations, what occurs during start and stop events
- Pumping of saturated fluids
- Surface tension directed flow stability

Water Recovery Systems Flight Verification Topics (Cont.)

- Reaction kinetics in packed beds, effects of channeling and condensation
- Stability of packed beds during launch
- Deterioration of packed beds during operation
- Lubrication of rotating gears

NASA/TM-2003-212598

NASA

Issues for Plant Growth Systems

- Delivery of adequate water and oxygen to rooting systems
- Recovery and recycling of transpired water from plant systems (typically can expect ~5 L m^{2/}day)
- Liquid / gas phase separation issues for both water delivery and retrieval systems
- Maintain adequate air flow around leaves and "soil" surface to offset lack of thermal stirring

Some Top level Issues that Prevail

- Particles issues in air filtration systems
 Fine particles in air treatment systems (CDRA)
 Settling issues ad clogging (Bends in systems)
 Gravity effects
- Sensors and Monitoring Systems
 - Particulate pre-filtering (MCA)
 - Fine particles in miniaturized monitoring systems
- Health issues associated with PM₁₀ and less?

