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AERODYNAMIC FORCES ON A VIBRATING
UNSTAGGERED CASCADE®

By H. Schngen

The unsteady aerodynemic forces, [based on two-dimensional incom-
pressible flow considerations], are determined for an unstaggered cascade,
the blades of which are vibrating in phase in an spproach flow parallel
to the blades.

INTRODUCTION

In the theory of axial turbomachines, the aerodynemic forces acting
on & vibrating cascade are of interest for investigations of vibrations.
These forces were determined in reference 1 for the-case where the
spacing of the cascade 1s small. Information regerding an arbltrary
staggering does not yet exist; we shall investigate here the simplest
case of this kind, namely an unstaggered cascade with straight profiles,
the blades of which vibrate in phase. We do not presuppose to limit
our consideration to pure bending or torsional vibrations; rather, arbi-
trery periodic deformetions of the blade are admitted and their 1ift
distribution i1s determined. This includes also the case where the flow
approaching the blades is unsteady. We do assume, however, that the
blades are not under static load, that the fluid is incompressible and
frictionless, and that the amplitudes of vibration are small.

LIFT DISTRIBUTION AND LIFT

Assume the epproach flow towasrd the cascade to be parallel to the
blades with the velocity V. Let the velocity with which the blade

point x' moves in the y' direction be given by g(x') x elvt, Thig
velocity is the same for all blades. We visuslize the blades of the

cascade as covered by vortices of the density 7(x')ein. It must be

noted, in addition, that free vortices separate from the trailing edges
of the individual blades in proportion as the total circulstion ebout

* . e
"Luftkrafte an einem schwingenden Gitter." Zeitschrift fir
angevandte Mathematik und Mechanik, vol. 35, issue 3, Mar. 1955,
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the blade in question varles with the time, although with the inverse
slgn. This is stipulated by the theorem of the conservation of circu-
lation in the total space. In & linear theory, for the amplitudes of
vibration to which we here limit ourselves, we may assume that these
free vortices move sway with the basic flow. If we denote accordingly
thelr density by

e (x' 2 1/2)

there applies at the trailing edge (x' = 1/2) the relationship

/2
ivt
& y(x")e dx* + Vyge

by which the density of the free vortices is connected with the varia-
tion of the circulation about the blade.

iv(t - 1/2v) -0 (1)

The vortices situated on the blades 7(x') and the free vortices
7o have to be determined - with consideration of the relationship (1) -

in such & manner that the velocity component in the y' direction,
induced by all the vortices together st the blade point x', is equal
to that with which the blade point moves in this direction, that is,
equal to g(x'). A row of vortices, which lie on the blades at the
point x' = 0 and each of which has the circulation 7y, induce a field
whose y' component on the blades at the point x' 1s equal to

This expression 1s easily obtained by superimposing the fields of the
individual vortices and by taking into consideration since this is an
axial-flow problem, that there can be no velocity induced far upstream of
the cascade, at development. This mskes it necessary to superimpose
another transverse velocity on the simmed row of vortices. Using the
expression given above, we then obtain as a boundary condition the inte-
gral equation
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lf e (g") e&(x' ) de !
“Ji/2 7 2(x'-£") -E(x'-t")
~-e
70 " - Hxr-g") )
°°f7,/2 ) Z(x-e) e-ﬂg(x'-g‘) wom el

21
lj'rZ/z (e") Nl ag*
-= 7(g" -
¢J /2 %?x' Sfg t
e - e
211 1
70 © _i%gl -E-X
Tz."f © e 4 = etx’) (2)
1/2 Rl

From this equation and equation (1), we have to determine the vortex
density 7(x').

However, it is not so much the vortex density which is physically
interesting but the 1ift distribution A@(x'), that is, the pressure
difference between positive pressure side and suction side. We conclude
from the unsteady-pressure equation that between 1lift distribution and
vortex density there exists the relationship

(x*) = 7(x") I' (e") (3)

P(x') = )+ 1 2 y(gr)ae! 3
Vn./--[,/ 3 3

where

fo(x') = oVP(x')er""

Thus, the 1ift distribubtlon may be calculated as soon as the vortex
distribution is known.

In determining the 1ift distribution for the single blade, one
usually starts from the integral equation which is satisfied by the
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11t distribution. Therefore, we shall indicate the latter for the X
present case. It reads

"

1/2 = -~
jf P(e")K(x' -~ g')ae' = g(x") (x| <1/2) (&)
-1/2

with the kermel

1

=¥ - _411‘ _JL LIETR

* + 1 X N e iv ea(x o) du’
Tyt -gx' Vo g g(x'-u') -g-(x'-u')

e - e e - e

K(x') = -2

(5)

If we note that, because of (3),

x! ~i(x'-g")
7uv=ruw-1%f P(g')e ¥ ag’
-1/2
we can show that the integral equation (4) is identical with (2) if 70

satisfies equation (1).

However, since the kernel of the integral equation (4) can be less
easily seen through than that of (2), it appears more suitable to deter-
mine the 1ift distribution not directly by inversion of equation (%)
but first to solve equation (2) with respect to 7(x'), with an as yet
undetermined constent 7,. Thus we obtain v{x') as a function of g(x!')

and 70" If we introduce it into egustion (l), a linear equation for Yo
results from which 7, may be calculated as a function of glx').

Thereby 7y(x') also is determined, and the 1ift distribution can be
calculated.

For solving the integral equation (2), one's first impulse 1s to
try to reduce it back to the integral equation

1
L F 6 - oo (6)

1 X=-¢&

known from lifting-surface theory. For this purpose, we set

x =2 (7
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and

5 =3 - ®

with

T =xl/a 8§ =SinhT c¢=2Cosh T
Furthermore, we stipulate that the primed coordinates shall always be
dimensional quantities; those without primes, in contrast, dimensionless,
as they result by means of equation (7). Coordinates with the sub-
script 1 shall always result from the coordinates without primes by .

means of the substitution (8). In s manner which cannot be misinter-
preted, we write

g(x') =g(x) = g(x,)

and. correspondingly also, other functions. If f(x) is a given func-
tion, we always understand by fl(xl) the expression

f(xl)

filxa) = 55

Thus, the integral equation (2) then is transformed into

dgl = -7Ow]_(xl) - Sl(xl) (9)

1 j(‘l 7 ()

where wl(xl) denotes the function described by

A
Wl(Xl) = ECI—;S-_/;_ e x—l'—_g—l (lo)

and
o = vi/2v

is the so-called reduced frequency. Furthermore, the relationship (1)
is equivalent to

w Pl
7To=-1—e f y1(x1)dx; (11)
-1
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From the integral equation (9), there follows, (reference 2)

o¥1(81) + & (&) ity

X3 =&y

71(X1) =

1
__c____+§f
ﬂ\’l - x12 -1
where the constant C at first may still be chosen arbitrarily.
condition of a smooth outflow at the trailing edge requires that

L 1+
¢ = ‘f_l \ /lf gi [270"'1(51) + 281(§1ﬂ dgy

Hence 7l(xl) then takes the form

1- xlfl 1+ gl rovi(e1) + &1(81) aty
-1

2
71(X1) ==
T L+ x 1 -6 Xy - &y

If we finally take into consideration that

1
c =f 71(x1)dx)
1

there resultes for the constant %o the value

1 28 Pt 1+ %9

= g1(x7)
Blw,T) TJ_1 1141 1-x

70 = dxl

where

-iw 1 1+ x
B(w =S5~ .2 —El\/n wq(x L ax
( ;T) ” T " l( 1) T - % al

(12)

The

(13)

(14)

(15)

(16)

(a7

is & function which depends only on the reduced fre@uency and the geo-

metrical dimensions of the cascade.

Thus the problem is solved in principle. The function g(x') is
glven; with it, the constant 7y, may be calculated from equation (16),

equation (14) then yields the vortex distribution 7l(xl), and the 1ift

distribution results from
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1
P(x) = 7)oy + o) + w0 8 [ AL (18)

It is now only a matter of writing this expression in a form more suit-
able for numerical calculstion. It will be seen, in particular, that,
whereas the influence of the function wl(xl - that is the influence

of the free vortices - enters into the vortex distribution in s rela-
tively complicated manner, its effect on the 1lift distribution is of s
considersbly simpler structure.

THE FUNCTION T(w,T)

Before deriving a simpler representation of the lift distribution,
we shall give a series expansion for the function B{w,T). From (10)
and (17), it follows that

~im 1 T + % o ~1mg
= & 1 1 e
Blw,T) = i T E“/ﬁ_l\’l = xl\_/:_ X - & dg dxy

If we interchange the integration sequence and take into account that

l+x dx: E. + 1
f-l\l = L A —-———-gi_l-l (g, > 1)

l-xlxl—gl

there results

Blw,) = - ae (19)

e-im ‘/\“’ e'img g, + 1
i 1 L.\l §]_ -1

Purthermore it is convenient to split the function Blw ) T) into two
perts. We let

[=-] _ia)g
B(an)=-2-f —e At (20)
(O "J1 Je2 -1
and
-3 ™ 3
=2 ~1mg 1
By(w,7) = 248—+ j; e~I8) - 1a (21)
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Then
B(o,7) = E{Bo(0,m) + By(o,m} (22)

Particularly simple representations exist for these two functions 1if
o/l = «, that is, T = 0, so that we have the case of the single blade.
Bince, &7 =&, we see immediately that

By(w,0) = -iHO(‘?)(w)

where Ho(z) is the Hankel function. Furthermoré, we can easily show
that

B, (,0) = -5, (w)

We shall now derive representations for these _two functions which
are convenient especially for moderate wvalues of cx,/ 1. We have
e"i‘ng

f J(e-rg o7 'r§ e ) s

Bo(a.), T) =

If we understand by C the path of integration represented in figure 2,
the integral taken over it vaiilshes. Since the expression under the
square root sign takes equal values on the two parallel paths, there
follows, with

(l - ™ ')Bo(w, T)

1]
|
A 1o
1]
£
—*
o>
¥
~.
o~
L
—
‘-l-
_‘
-3
e
=3
Iy
=3
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However (ref. 3, P. 138)
b1 t 5 3

en (w'-in) 8 2n
I wn [Te
0 \[ (1° 19 0 2 sin 8/2

- l)e

ad

21(_3/2_( L1l

3 .
I‘(n + 3 + ius‘)l“(-n - :m')
and therefore,

0

Bo(a),'r) - an'ﬁb. - e.'rrl_'r)e;lt'D Z a.ne—anT
(1 + 2i0* )T (7 - iw')l"(n 5+ im’)Sinh :\:cn‘n___o

where

- X '
% = vgl (:( 2)iv+ im))

= 1

v+ i
Because of la.nl < 1, this expansion converges so well for the spacing
factors customary in turbomsachines cx./ 1<£1, that is, T 2 =, that we
generally can get by with only the two first terms. The function Bl(c.u, T)
mey be calcmlated in exactly the same manner, and we obtain

3/2_-im & .
By {w,T) = - i e 1~ Z(Q-.]_-.a,nea”
(L - iw')I‘(—Jé‘- + im‘)Sinh o' 1+ 2iw

Therefore, for the function which, later on, will be the only one
of interest

T(w,7) = i M (23)

Bl+ Bo

which, for T = 0, is transformed into the function known from the theory
of the single wing (ref. L), namely,
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there follows the representation
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Plwo,1) = 1 - 2R (1 - e'gT) o (24)
1+ 2w’ i’ 1 -2nT
Lo L e
1

From this we see that for spacing factors cr,/ 1 €1 with an error of

not quite 1 percent we may set
21w’

1 - Hw,T) =
1+ 2iw!'

LIFT DISTRIBUTION AND LIFT

If we write the vortex distribution in the form

1-x Yowp (x1) + &, (x1)
nlx) = -2 l+xif 70" 1
1l - xl2
2 \/—f YoV (E1) + 31(?'1)
T -1 (xl - §1\fl - &

there follows (ref. 5, Al)

X
1
1
d =Cjl - =
jll 71(51) Eq [ = arc cos x]] +
\/l_-_:_cff rva(8y) + 8o (ey at,
-1 xl-gl l-§l

(24')

l+

(25)

(26)

»~
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with

0 < arc cos X; S %

where

X X
1 1
Wg(xl) = f Wy (ﬁl)dgl golx1) = f Sl(ﬁl) dg, (27)
and C has the significance given above; namely

C = % = 70 (28)

In order to celculate the function Wz(xl) , we start from the
function

o«
=0
wl(xl;d) = -Z—f e . _de lxli <1l
2as dJ X - &1
For this function, wy(xy,iw) = wi(x;). If we first assume that Ro > O,

there applies

xl 7, [~} -—O'g
f wl(ul,o')d.ul = e ln(gl - xl)d.g

- 2asJd
-g © _ ag
= .._7'._ e _ ]_n(l - xl) + .];f e og ___l___. ._l_ d.§
2as g o 1 E‘l - X dg
1 - T ® ot s(gl - xl) + 8% + ¢
= —Jd& _ ]_n(l - Xl) + —— e dg
2a.8 [0 80J 1 gl - Xl

Hence it follows that
x
1
-0
f wi(uy,0) du, = aa‘{'sce In(1 - x7) -~ (sx; + ¢) _sIE wy(xq,0)

If we let o - iw, there follows

) - T
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If we further consider the integral relationship

| — 1n(1 - &) 2 1
l-xlf d§l=::[zl.-—arccosxg
(31 - &) Y1 - &4 i

with

O <arc cos x; <«

we obtain from (18) for the 1ift distribution the representation

1% ,1+v g, (vy)
2 1 1 ARRAE
P(x) = ;(le"'@) l+le — dvy +

vi)dv

198201 L2 f gp(v1)av, z
T R 3
-1 (%1 - vl)\’l - v

/l-x L wy(vq)
1Vl
70Esxl + c) T Xi -8 ‘,l - xl_g:]%f — dvl
-1 1l - V12

in which only the integral over the fumction Wy remains to be calcu-
lated. TFor it there results

o) - Wl(vl)' 1 1 ® e'-:m)§
T d.Vl = _ﬂa,s 7=_lﬁ —— dg d.Vl
vl ;il-vl -1 l-vl 1 vl-gl
[>o] _iwg
- [ £ a (,7)
D e e B o —— T

and we obtain, ‘because of (16)

(Vl . 1 1+ x

~%5 “f AT dvl = -2]= [l - T(‘D’T_):I %f g1(x1) 1 dxy
-1 l v - -1 l-x
- 1 L
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where T is the expression defined by (23). There follows finally the
ultimate representation for the 1ift distribution

1l - 1 1
P(x) = 2 (sxl + c) ____g_]_-f + &1 S]_(El) aty +
1 1+ xl -1 1l - §l xl - gl

1 g (E]_)
mg\/l - Ef 2 a
T X1 J1 (x]_ _ §]_> M-t 2 N §1 +

12'- [l - T(w,-r)] (sx; + c)‘,Z]J_"—'-;—'-z—]; - 8y ,:L - xle (29)

which for 7 -0 1s transformed into the representation known for the
single wing (refs. L4, 5). For the lift we obtain from (29)

1/2 1
A Apﬁ_;g*:lpvz.‘if ——ILX)—d.xlxein
-1/2 2 Td.o1 8xy + ¢

s 1@ - To,m) —L " 6,y [

if

1+ el

1 gg(xl)(l - ¢ - s%x71) 1vt

i dx; > e (30)

=
-1 (c+ sxl)\/l - xl2

BENDING VIBRATIONS

As an example of gpplicetion, we shall consider the case where the
blades of the ring perform bending vibrations. If A 1is the amplitude

of the deflection, w2V & eV’ 15 the velocity with which each blade
point moves in the direction of the y' axis. Therefore,

g(x') = ipy2V S = 8 = const

~{D

and hence there follows from the definition glven above:

o)

and go(xy) = 5 In(sxy + c)
le + C s .

g1(x;) =
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If we enter these into (30), we obtain for the 1ift the expression

A=nov2 AE Jinf(1 - 1) =2 3|2 4 428 11 cosn IV (31)
T 1+ eT 1+ eT T8 2

which for T -5 0 1s transformed into
noVe A{me - (1 + T(w) )}
That is the value known for the single wing (ref. 4). If‘we assume,

on the other hand that <+ is large, and limit ourselves to a linear
theory in a/1, we obtain, in agreement with reference 1

a=p?al [mg i 21:»] (32)

If we use for spacings o/t < 1 the approximation (24') for 1 - T,
the 1ift may be written in the form -

A= pV2 A% {l&wafl(cu','r) - Eiwfz(w','r)} (33)

with
eT - 7T

-r(l + 14&'2)(1 + e"')2

2 T
T ! = £ In Cosh & -~
l((D ,'T) p 8 5

e’ - e ™ |7 _ o2
e’ + 1 (l + hw'z)(i + eT)

f2(w',T)

where these two functions assume the value 1 for & linear theory in a/1.
Hence we can see that for spacings a/Z < 0.5, that is, for T wvalues
2 21, the linear theory yields the left term which is proportional to
the velocity; thus the damping, with an error of not quite 1 percent.
In contrast, for the term which is proportional to the deflection, that
is, behaves like a spring force, conditions are considerably more unfa-
vorable. This term is very inadequately included by the linear theory.
We must note, however, that in vibration calculations this term is
opposed by a mechanical spring force which is generally very large com-~
pared to the corresponding term of an aserodynamic force so that the
deflclency has only a slight effect.

Translated by Mary L. Mahler
National Advisory Committee
for Aeronautics
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